第二章:热力学第二定律(物理化学)
第2章热力学第二定律
课程名称《物理化学》2.1 自发变化过程的共同特征1、热力学自发过程热力学自发过程:不需要借助人为(非自然)外力就能够发生的过程;热力学非自发过程:必须借助人为(非自然)外力才能够发生的过程;(1)自发传热↓(2)自发混合(扩散)↓(3)自发化学反应298K 101kPa2H2(g) + O2(g) —————→ 2H2O(l)2、热力学可逆过程体系经过一过程,若体系与环境能同时复原,则称该过程为热力学可逆过程。
例:气体的可逆膨胀或可逆压缩例:1 mol理想气体,在273.2K下1:由202.6 kPa 等温恒外压膨胀到101.3 kPa ;W1 = -1136 J Q1 = 1136 J2:由202.6 kPa等温可逆膨胀到101.3 kPa ;W2 = -1574 J Q2 = 1574 J3:由101.3 kPa等温恒外压压缩到202.6 kPa ;W3 = 2272 J Q3 =-2272 J 4:由101.3 kPa等温可逆压缩到202.6 kPa;W4 = 1574 J Q4 =-1574 J求过程的△U、△H、W、Q。
解:理想气体等温过程:△U = △H = 0等温恒外压膨胀或压缩:W = -Q = -P外(V2—V1)等温可逆膨胀或压缩:W = -Q =-nRT ln(V 2/V 1)————————→结果:例:可逆传热过程例:在标准压强下,将1.80 kg 水从273 K ①用373 K 热源加热到373 K ;②可逆加热加热到373 K ,分析其可逆性。
已知:C pm = 75.8 JK -1 mol -1 解:加热过程:Q = n C pm (T 2-T 1)= 100×75.8×100 = 758 kJ体系降温复原:Q = n C pm (T 1-T 2)= -100×75.8×100 = -758 kJ可逆加热:准备从273 K 到373 K 的热源无穷多个,相临热源温度相差无穷小,让水依次在273 K 到373 K 热源上加热。
北京大学-物理化学-第2章-热力学第二定律
2.1 变化的方向性------不可逆性
除可逆过程外,一切变化都有一定的方 向和限度,都不会自动逆向进行。热力 学的不可逆过程。
各类变化过程的不可逆性不是孤立而是 彼此相关的,而且都可归结为借助外力 使系统复原时在环境留下一定量的功转 化为热的后果。
有可能在各种不同的热力学过程之间建 立起统一的普遍适用的判据,并由此去 判断复杂过程方向和限度。
热机效率(efficiency of the engine )
功功W与任,所另何吸一热的部机热分从之Q高c比传温值给(T称低h )为热温热源(T机吸c ) 热效热源率Qh.,,或将一称热部为机分热所转机作化转的为
换系数,用 表示。 恒小于1。
W Qh Qc
Qh
Qh
(Qc 0)
或
nR(Th
卡诺定理的意义:(1)引入了一个不等号 I R , 原则上解决了化学反应的方向问题;(2)解决了热
机效率的极限值问题。
卡诺定理:
所有工作在同温热源与同温冷源之间的热 机,其效率不可能超过可逆机。 Carnot循环:第二定律发展中重要里程碑。
指明了可逆过程的特殊意义
原则上可以根据Clausius或Kelvin说法来判断一个过程的 方向,但实际上这样做是很不方便,也太抽象,还不能指 出过程的限度。Clausius从分析Carnot过程的热功转化关 系入手,最终发现了热力学第二定律中最基本的状态函 数——熵。
即ABCD曲线所围面积为 热机所作的功。
卡诺循环(Carnot cycle)
•根据绝热可逆过程方程式
: 过程2 T V 1 h2
T V 1 c3
过程4:
T V 1 h1
TcV4 1
物理化学第2章 热力学第二定律
§3.7 熵变的计算
一、单纯状态变化过程
1. 等温过程 2.变温过程
S QR T
①等容变温过程
S T2 Qr T2 nCp,mdT
T T1
T1
T
nC
p,m
ln
T2 T1
②等压变温过程
S T2 Qr T T1
T2 nCV ,mdT
T1
T
nCV
,m
ln
T2 T1
U3 0
p
W3
nRTc
ln V4 V3
A(p1,V1,Th )
B(p2,V2,Th )
Th
Qc W3
D(p4,V4,TC )
C(p3,V3,TC )
Tc
环境对系统所作功如 DC曲线下的面积所示
a db
c
V
过程4:绝热可逆压缩 D( p4,V4,TC ) A( p1,V1,Th )
Q4 0
p
用一闭合曲线代表任意可逆循环。 在曲线上任意取A,B两点,把循环分成AB和 BA两个可逆过程。 根据任意可逆循环热温商的公式:
δ Q
T R
0
将上式分成两项的加和
B Q
( AT
)R1
A Q
( BT
)R2
0
移项得:
B A
(
Q T
)R1
B A
(
Q T
)R
2
说明任意可逆过程的热温商的值决定于始终 状态,而与可逆途径无关,这个热温商具有状态 函数的性质。
所以Clausius 不等式为
dS 0
等号表示绝热可逆过程,不等号表示绝热不
可逆过程。
熵增加原理可表述为:
物理化学简明教程(第四版)第二章 热力学第二定律
-1
Q 0 T
(2)定压或定容变温过程的熵变
• (A) 定压过程
S
T2
Qr
T
T1
T2
C p dT T
T1
T2 C p ln T1
• (B) 定容过程
S
T2
Qr
T
T1
T2
T1
CV dT T CV ln 2 T T1
• 注意:使用此两式时不能有相变。
自发过程的实例
• 要使系统复原,则需要进行电解对系统 做功。 • 结论:然界中发生的一切实际宏观过
程都有一定方向和限度。不可能自 发按原过程逆向进行,即自然界中 一切实际发生的宏观过程总是不可 逆的。
§2.1自发过程的共同特征
• • • 自发过程的共同特征是: (1) 自发过程必为不可逆过程; (2) 自发过程必有功的损失。
Q1 Q2 Q2 ir 1 Q1 Q1 Q1 Q2 0 T1 T2
对于可逆循环,其热温商之和为零。可以得到:
不可逆循环 Q1 Q2 0 T1 T2 = 可逆循环
对任意循环:
不可逆循环 ( Q / T ) 0 可逆循环
γ -1 γ -1 TV = T V 1 2 2 3
TV
γ -1 1 1
=T V
γ -1 2 4
V2 / V1 V3 / V4
Q2=-W2 = -nRT2ln(V2 / V1 ) Carnot 循环过程中,系统对环境所作之功 -W=Q1+Q2
W Q1 Q2 RT1 ln(V2 / V1 )-RT2 ln(V2 / V1 ) T1 - T2 = = Q1 Q1 RT1 ln(V2 / V1 ) T1
第二章 热力学第二定律(简明教程物理化学)
§2.1 热力学第二定律的经典表述
1. Clausius说法:不可能把热从低温物体传到高温物 体而不引起其它变化。 2. Kelvin & Plank说法:不可能从单一热源吸热使之 完全变为功而没有任何其它变化。 3.第二类永动机是不可能造成的。 第二类永动机乃是一种能够从单一热源吸热,并 将所吸收的热全部变为功而无其他影响的机器。 强调说明: 1. 第二类永动机是符合能量守恒原理的; 2. 热可以完全变为功,注意其限制条件; 3. 可以判断过程进行的方向。
T2
2.卡诺热机的效率只与热源温度有关,而与工作 介质无关。 卡诺定理告诉人们:提高热机效率的有效途径是加 大两个热源之间的温差。 单一热源:T1=T2, = 0,即热不能转化为功。
证明卡诺定理1:
反证法 假定I > R , 则|W’ | > | W |
高温热源T2
吸热Q2 吸热 Q 22 放热 Q
* 不同种理气 (或理想溶液)的等温混合过程,并 V 符合分体积定律,即 xB B
V总
1mol A,T,V
1mol B,T,V
n=nA + nB T, 2V
mix S R nB ln xB
B
二、定容或定压变温过程
定容
S
T2
T1
Qr
T
nCV ,m
T1
T2
若CV,m为常数
第二章 热力学第二定律
不可能把热从低温 物体传到高温物体, 而不引起其它变化
化学与材料科学学院
§2.1 自发过程的共同特征
自发过程:能够自动发生的过程。
经验说明:自然界中一切自发过程都是有方向和限度的。
如: 方向 热: 高温低温 电流:高电势低电势 气体:高压低压 钟摆:动能热
大学课程《物理化学》第二章(热力学第二定律)知识点汇总
VB ,m
V nB T , p ,n jB
H nB T , p ,n jB G nB T , p ,n jB
U B ,m
U nB T , p ,n jB
S nB T , p ,n jB
T2 p1 dT S S '1 S '2 nR ln C p p2 T1 T
dU TdS pdV
T p V S S V
dH TdS Vdp
( U )V T S
T V p S S p
S系统 S B S A
Qr
T
S孤立=S系统 S环境 0
A
熵变的计算
总则
S环境
Q实际 T环境
理想气体等温过程的熵变
S S B S A
B
Qr
A
Q ( )r T T
Wmax Qr S T T
可逆相变过程的熵变
V2
V1
dG SdT Vdp B dnB
B
dU TdS pdV B dnB
B
U dU TdS pdV dnB nB S ,V ,n j B
B
U H F G nB S ,V ,n j B nB S , p ,n j B nB T ,V ,n j B B nB T , p ,n j B
B
dG SdT Vdp B dnB
B
纯理想气体的化学势
Gm Vm p T p T
物理化学02章_热力学第二定律02
S体系
Qr Qsurr Qsys Q Δ S环 = = = Tsurr Tsurr Tsurr T
Δ S 总 =Δ S 体 + Δ S 环 ≥ 0
上一讲回顾
(1) 熵变的计算: 可逆过程,直接计算过程的热温商 不可逆过程,设计可逆过程计算。 (2) 等温过程,变温过程及相变过程熵变的计算 (3) 利用熵变判断过程的方向
a)恒 T 可逆 b)恒 T 不可逆 V2 V2 V2 Δ S 总 = nRTLn +(-nRLn ) Δ S 总 = nRTLn + 0 V1 V1 V1
= 0
V2 = nRTLn > 0 V1
等温过程的熵变
例: 1mol理想气体在等温下通过:(1)可逆膨胀,(2)真 空膨胀,体积增加到10倍,分别求其熵变。 解:(1)可逆膨胀
简化:
V2 P2 等 T:Δ S= nRLn =- nRLn V1 P1 T2 等 P:Δ S= CP Ln T1
T2 等 V:Δ S= CV Ln T1
变温过程的熵变
1. 先等温后等容 2. 先等温后等压 3. 先等压后等容
T2 nCV ,m dT V2 S nR ln( ) T1 V1 T T2 nC p ,m dT p1 S nR ln( ) T1 p2 T V2 p2 S nC p ,m ln( ) nCV ,m ln( ) V1 p1
S T
T2
1
nCV ,m dT T
(2) 物质的量一定的等压变温过程
S T
T2
1
nC p ,m dT T
等 P 过程:
W`=0, QP = dH = CPdT = QR
QR QP C P dT dS = = = T T T CP S )P 或 ( T T
物理化学 热力学第二定律
上式为
B
A
δ
Q T
ir
A B
δ Qr T
0
B
A
δ
Q T
ir
ABS
0
BAS
B A
δ
Q T
ir
S δTQ
> ir =r
Clausius Inequality
(1) 意义:在不可逆过程中系统的熵变大于过程 的热温商,在可逆过程中系统的熵变等于过 程的热温商。即系统中不可能发生熵变小于 热温商的过程。 是一切非敞开系统的普遍规律。
= r cycle (可逆循环)
意义:的极限 提高的根本途径
Carnot定理的理论意义:
§2-4 熵 (Entropy)
一、熵函数的发现 (Discovery of entropy)
1 T2
T1
即
1 Q2 1 T2
Q1
T1
< ir cycle = r cycle
Q1 Q2 0 T1 T2
1mol He(g) 200K
1m3o0l0HK2(g)
101.3kPa 101.3kPa
解:求末态 过程特点:孤立系统, U = 0
U U (He) U (H 2 )
n
3 2
RT2
200 K
n
5 2
RT2
300 K
0
T2 = 262.5K
1mol He(g) 200K
101.3kPa
1mol H2(g) 300K
对两个热源间的可逆循环:热温商
之和等于0
Q1 Q2 0 T1 T2
对任意可逆循环(许许多多个热源):
pቤተ መጻሕፍቲ ባይዱ
大学物理化学 第二章 热力学第二定律学习指导及习题解答
3.熵可以合理地指定
Sm$
(0K)
0
,热力学能是否也可以指定
U
$ m
(0K)
0
呢?
答:按能斯特热定理,当温度趋于0K,即绝对零度时,凝聚系统中等温变化过
程的熵变趋于零,即
, 只要满足此式,我们就可以任意
选取物质在0K时的任意摩尔熵值作为参考值,显然 Sm$ (0K) 0 是一种最方便的
选择。但0K时反应的热力学能变化并不等于零,
(2)变温过程
A.等压变温过程 始态 A(p1,V1,T1) 终态 B(p 1,V2,T2)
S
T2
δQ R
T T1
T2 Cp d T T T1
Cp
ln
T2 T1
B.等容变温过程 始态 A(p1,V1,T1) 终态 B(p2,V1,T2)
S
T2
δQ R
T T1
C.绝热过程
T2 CV d T T T1
,所以不
能指定
U
$ m
(0K)
0
。
4.孤立系统从始态不可逆进行至终态S>0,若从同一始态可逆进行至同
一终态时,则S=0。这一说法是否正确?
答:不正确。熵是状态函数与变化的途径无关,故只要始态与终态一定S
必有定值,孤立系统中的不可逆过程S>0,而可逆过程S=0 是毋庸置疑的,
问题是孤立系统的可逆过程与不可逆过程若从同一始态出发是不可能达到相同
4.熵 (1)熵的定义式
dS δ QR T
或
S SB SA
B δ QR AT
注意,上述过程的热不是任意过程发生时,系统与环境交换的热量,而必须是在
可逆过程中系统与环境交换的热。
第二章:热力学第二定律(物理化学)
精选可编辑ppt
31
克劳修斯不等式的意义
克劳修斯不等式引进的不等号,在热力学上可以
作为变化方向与限度的判据。
dS Q T
dSiso 0
“>” 号为不可逆过程 “=” 号为可逆过程
“>” 号为自发过程 “=” 号为处于平衡状态
I < 20% 1度电/1000g煤
高煤耗、高污染(S、N氧化物、粉尘和热污染)
精选可编辑ppt
16
火力发电厂的能量利用
400℃
550℃
ThTC67330055%
Th
673
I < 40% 1度电/500g煤
ThTC82330063%
Th
823
精选可编辑ppt
17
火力发电厂的改造利用
精选可编辑ppt
十九世纪,汤姆荪(Thomsom)和贝塞罗特(Berthlot) 就曾经企图用△H的符号作为化学反应方向的判据。他们认 为自发化学反应的方向总是与放热的方向一致,而吸热反应 是不能自动进行的。虽然这能符合一部分反应,但后来人们 发现有不少吸热反应也能自动进行,如众所周知的水煤气反 应就是一例。这就宣告了此结论的失败。可见,要判断化学 反应的方向,必须另外寻找新的判据。
精选可编辑ppt
4
2.2 自发变化不可逆症结
T1高温热源 Q1
M
W
Q2
T2低温热源
精选可编辑ppt
5
2.3 热力学第二定律(The Second Law of Thermodynamics)
开尔文(Kelvin) :“不可能从单一热源取出热使之完全 变为功,而不发生其它的变化。”
物理化学 第二章 热力学第二定律
101.325kPa,变到100℃,253.313 kPa,计
算△S。
S
p S1
S2
T
分析:此题是p、V、T三者都变的过程,若要计 算熵变,需要设计成两个可逆过程再计算。先等 压变温,再等温变压。
S
p S1
S2
T
S
S1
S2
C pm
ln T2 T1
R ln
p1 p2
5 R ln 37315 R ln 101325 114J K 1
-5℃苯(l)→5℃苯(l)
S1
278 Cpm(l) dT 268 T
C pm(l )
ln
T2 T1
126g77 ln 278 268
4 64J K 1
(2) 相变点的相变 5℃苯(l)→5℃苯(s)
S2
H T
9916 08 278
35 66J
K 1
(3) 恒压变温 5℃苯(S)→-5℃苯(S)
4.绝热可逆缩D(p4V4)→A(p1V1)
下面计算每一步的功和热 以1mol理想气体为体系
第一步: U1 0
W1
Q2
RT2
ln V2 V1
第二步:
T1
Q 0 W2 U2 CVmdT
T2
第三步: U3 0 第四步: Q 0
W3
Q1
RT1
ln
V4 V3
T2
W4 U4 CVmdT
T1
解:(1)
S体
nR ln V2 V1
8314 ln10 19 15J
K 1
S环
QR T
nR ln V2 V1
19 15J gK 1
S体 S环 0
物理化学热力学第二定律课件
通常手册中可以查得物质在298.15K时的标准摩尔熵值。
()
2.5.4 化学反应熵变
通常
标准摩尔反应熵变为
对任意化学反应
对生成物B取;对反应反应物B取。
化学反应熵变
化学反应熵变
C2H5OH(g)脱水制乙烯反应在800 K时进行,根据下表数据求反应的rSm (800 K)
解:
如果是不可逆相变,可以设计可逆相变求 值。
不可逆相变的熵变
对不可逆相变,可以设计一条包括有可逆相变步骤在内的可逆途径,此可逆途径的热温商才是该不可逆过程的熵变。
在101.325kPa的条件下
T=263.15K H2O(l)
T=273.15K H2O(l)
T=263.15K H2O(s)
T=273.15K H2O(s)
>0 绝热不可逆
=0 绝热可逆
2. 热力学第二定律
孤立体系:
>0 不可逆,自发
=0 可逆,平衡
<0 不可能发生
熵增加原理:一个孤立体系的熵永不减少。
2. 热力学第二定律
实际体系:
环境视为无限大,其微小变化可当作可逆过程:
>0 自发,不可逆
=0 平衡,可逆
——熵增加原理 第二定律的数学表达式
—— 体系+环境 = 大孤立体系
第二章 热力学第二定律
P
(1)恒温可逆膨胀 (2)绝热可逆膨胀 (3)恒温可逆压缩 (4)绝热可逆压缩
T1 Qr = 0 T2
Q1
Qr = 0
Q2
V
热机效率: η= - W/Q1 = (Q1+Q2)/ Q1 (T1-T2)/ T1
证明: (1)可逆热机效率η
r
W = W T1+W2-3+ W T2 + W4-1 = nRT1ln(V1 / V2) + nCv,m(T2–T1) + nRT2ln(V3/ V4)
第二章 热力学第二定律
系 统 热力学第一定律
Q
W
环 境
系统热力学能变化(ΔU, Δ H)
热力学第二定律
过程进行的方向及判据 (ΔS,ΔA ,ΔG )
过程进行的限度及判据 ( K )
2-1 过程的可逆性与不可逆性
一、自发过程及其不可逆性 1.自发过程
过 电 程 流
无外界做功的情况下能够发生的变化
推 动 力 方 向 T 1→ T 2 φ 1→ φ 2 P 1→ P 2 限 度 (平 衡 态 ) T1 = T2 φ1 = φ2 P1 = P2
B
(
A
Q
T
r
) II
B
(
A
Q
T
r
) III
B
(
A
Q
T
r
) IV
三、不可逆过程的热温商与熵变 对于不可逆过程:
ir Q1 Q 2 Q1 T1 T 2 T1
Q1 T1
Q2 T2
0
如前法可证得: P
Q
物理化学 热力学第二定律概念函数
B δQ δQ 即: ( )r( ) ( )r( ) A T A T B
B δQ B δQ 则: A ( )r( ) A ( )r( ) A dS S B S A S T T B
二、任意可逆循环过程的热温商与熵函数 热温商:Q/T
Q1 Q2 对卡诺循环有: 0 T1 T2
p A
设任意可逆循环:A
B
A
B δQi δQi 1 0 每个小卡诺循环: Ti Ti 1 V δQi δQi 整个循环过程: ( )r 0 或 ( )r 0 Ti Ti i 1
T , p ,S
S1 S 2
Ttrs
nC p ,m [ A( )]
T
T
T nC p ,m [ A( )] T
dT dT
A( ) A()
Ttrs , p , trsS
Ttrs
则:S T
Ttrs
n{C p ,m [A( )] C p,m [A( )]} T
1.A (PAVAT2 )
B (PBVBT2 )等温可逆膨胀,△U1=0
2. B (PBVBT2 ) ������
p
C (PCVCT1 )绝热可逆膨胀
D (PD VD T1)等温可逆压缩
A
Q=0, B D C
3. C (PCVCT1 ) ������
△U3=0
4. D (PD VD T1) ������
Qr S T
△ S环 =
Q环 / T环 =-Q实/T环境
物理化学2 热力学第二定律
2、自发过程的共同特征 、 •气体向真空膨胀 •热量从高温物体传入低温物体 •锌片与硫酸铜的置换反应
自发过程的共同特征—不可逆性; 自然界的所有自发过程都可以归结为热功转换的 不可逆性
具有普遍意义的过程: 具有普遍意义的过程:热功转换的不等价性
无代价,全部
功
不可能无代价,全部
热
① W
Q 不等价,是长期实践的结果。
1mol 理想气体的卡诺循环在 pV 图上可以分为四步: 过程1:等温(T2)可逆膨胀由 p1,V1到 p2,V2
∆U1 = 0
V2 W = RT2 ln 1 V 1
Q =−W 2 1
过程2:绝热可逆膨胀由 p2 , V2 , T2到 p3 , V3 , T1
Q=0
W2 = ∆U = ∫ CV dT = CV (T1 − T2 )
∆H = ∆H ( He) + ∆H ( H 2 )
= 207.9J
5 7 = n ⋅ R (262.5K − 200K ) + n ⋅ R (262.5K − 300K ) 2 2
(2)
∆S = ∆S ( He ) + ∆S ( H 2 )
3 262.5 5 262.5 = n ⋅ R ln + n ⋅ R ln 2 200 2 300
S是容量性质,J.K-1
T δ Q ≠ ∑ T
2、不可逆过程的热温商
* Q1* + Q2 T2 − T1 < * Q2 T2
Q Q + <0 T1 T2
* 1
* 2
∑
δQ*
T
<0
β
设有一个循环,A→B为不可逆过程, B→A为可逆过程,整个循环为不可逆 循环。 则有
物理化学-热力学第二定律PPT课件
(2) 当T2-T1=0, (3) 当T1=0K,
=0 =100%
表述
第四节 卡诺定理
1. 所有工作在相同的高温热源与低温热源 之间的任意热机以卡诺热机的效率最大。
2.卡诺热机的效率只与两热源的温度有关, 而与工作物质无关
证明:
卡诺定理的数学表达式 R≧ I
T2–T1 ≧ T2
Q2+Q1 Q2
Q1 + T1
低电位
逆过程称为非自发过程
(2)不可逆性 理想气体真空膨胀 Q=0 W=0 U=0 再等温可逆压缩回去 U=0 Q=W 系统恢复,环境失W,而得Q
环境恢复,Q能否全部转变W
自发过程能否成为可逆过程,可归结为: 在不引起其它任何变化条件下,热能
否全部变为功。 焦尔的热功当量测定实验
一切自发过程都是不可逆过程
二、热力学第二定律数学表达式 ——克劳修斯不等式
U=0
W=Q1+Q2
W=W1+W2+W3+W4
=
nRT2ln(V2/V1)
-∫
T1 T2
CV
dT
+
nRT1ln(V4/V3)
-∫
T2 T1
CV
dT
W= nRT2ln(V2/V1) + nRT1ln(V4/V3) (2) 绝热膨胀
T2V2 -1 = T1V3 -1 (3) 绝热压缩
T2V1 -1 = T1V4 -1
式中, K1, K2, K 3 均为常数, Cp /CV
绝热功的求算
理想气体绝热可逆过程的功
W V2 pdV V1
=
K V2 V V1
dV
=
K
(1
热力学第二定律
卡诺热机工作原理
T2 Q2
热机
W
低温热源 高温热源 脱离高温热源 脱离低温热源
p A
高温热源T2 等温膨胀
Q1
T1
绝 热 压 缩
B D
绝 热 膨 胀
低温热源T1
等温压缩
C
V
p
A (p1V1)
U=0,
Q2=-W1=RT2ln(V2/V1)
Q=0 W4= U=CV(T2-T1) Q=0 D (p4V4) U=0, Q1=-W3=RT1ln(V4/V3)
熵增原理
• 一.
•
• 又:
熵的引出
=(T2-T1)/T2=1-T1/T2
= W/Q2=Q/Q2=(Q1+Q2)/Q2=1+Q1/Q2
∴
•
1-T1/T2=1+Q1/Q2
T1/T2=-Q1/Q2
•
•
∴
Q1/T1+Q2/T2=0
卡诺循环的热温商之和为零.
卡诺循环的热温商等于零
卡诺循环是可逆循环
任意可逆循环的热温商是否也为零?
物理化学第二章
热力学第二定律
• 如图是一个典型的自发过程
小球能量的变化: 重力势能转变为动能, 动能转化为热能, 热传递给地面和小球. 最后,小球失去势能, 静止地停留在地面。 此过程是不可逆转的, 或逆转的几率几乎为零.
每次碰撞,小球的部分动能会转变为热能损失掉。 此过程的逆过程的发生几率极其微小。
功可以无条件地全变为热; 热不能无条件地全变为功。
第二定律的表述
19世纪英国卓越的科学家。 原名W.汤姆孙 (Wil-liaM ThoMson),1824-1907。 英国政府于1866年封他为 爵士,1892年封为男爵, 称为开尔文男爵,以后他 就改名为开尔文。
大学物理化学 热力学第二定律
(1)隔离体系中所发生的一切不可逆过程,
都使其熵值增加: 过程方向的标志;
dS隔离,这0 是自发
(2)隔离体系中所发生的一切可逆过程, 其熵值都保持不变:dS隔离 0 ,这是体 系已达到平衡态的标志。平衡态是自发 过程的限度;
(3)隔离体系不可能发生使其熵值减少的 过程。
熵增加原理:隔离体系所发生的一切自 发过程都是朝着使其熵值增加的方向进 行,一直到隔离体系的熵值达到最大为 止,即体系处于平衡态。
三、熵的物理意义
1.自发过程的本质 自发过程的方向性归结为功热转换的不 可逆性。
热:分子混乱运动的表现;
功:一种稳定有序运动的表现;
功热转换:分子由有序状态自发地变为 无序状态,即混乱度增加。无序运动却 不会自动地变为有序运动。
从微观上讲:
热功转换不可逆性是分子运动由混乱程 度较小的状态自发地向混乱程度较大的 状态变化的必然结果。一切不可逆过程 都是向混乱度增加的方向进行。
RT2
ln V4 V3
CV ,m (T2
T1)
RT1
ln
V2 V1
RT2
ln V4 V3
TV 1 常数,有:
T1V2 1 T2V3 1,T2V4 1 T1V1 1
V2 V3
1
V1 V4
1
V2 V1
nA TA
恒容
nB TB
变温
nA T’
n=nA+nB T’
恒温
膨胀
nB T’
S S A S B
S A
nA .CV .m
ln
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例:
100℃ 101.325kPa H2O (l) H2O(g)
vap H = Q = 40.700 kJ mol-1
Q 40700 J mol -1 S = = = 109 J K -1 mol -1 T 373.15 K
Q 40700 J mol -1 Ssur = - = = -109 J K -1 mol -1 T 373.15 K
积分
S
T2
nCV ,mdT T
T1
V2
V1
nRdV V
ΔS= nCV,mln(T2/T1)+ nRln(V2/V1)
2 可逆相变:
在两相平衡压力和温度下的相变,即 是可逆相变。因为压力恒定,此时相变焓 在量值上等于可逆热。
B( ) B( )
p ,T
S H /T
熵值的大小规律:
⑴ ⑵ S气 > S液 > S固 S(复杂分子) > S(简单分子)
⑶
⑷
S(高温)> S(低温)
S(低压气体) > S(高压气体)
CaCO3(s)
CaO(s) + CO2(g)
混乱度增加
NH4Cl(s)
NH4+(aq) + Cl-(aq) 混乱度增加
试判断下列过程的△S是正还是负。 ⑴ 冰融化成水 (+) ⑵炸药爆炸 (+) ⑶ 甲烷燃烧 CH4(g) +2O2(g) =CO2(g) + 2H2O(l) (-)
T2
1
nC p ,mdT T
4. 理想气体pVT变化过程熵变的计算
恒容
T2,V1,P
恒温
T1,V1,P1
T2,V2,P2
恒压 T2,V,P1
恒温
pVT同时变化熵变的计算
S
T2
nCV ,mdT T
T1
V2
V1
nRdV V
ΔS= nCV,mln(T2/T1)+ nRln(V2/V1)
ΔS= nCp,mln(T2/T1)+ nRln(p2/p1)
1.简单可逆过程熵变的计算 2.环境熵变的计算 3.简单不可逆过程熵变的计算
常见可逆过程 a.恒温可逆
1.气体可逆膨胀压缩过程
b.绝热可逆
2 可逆相变:
ቤተ መጻሕፍቲ ባይዱ
1. 环境的熵变
1.环境熵变的计算
Samb δQ sys δQ amb Tamb Tamb
2. 系统恒温过程的熵变 (1)恒温可逆状态变化的熵变
Q Q ( ) S SA )IR,AB B A ( A SBT SR i T
B
当始、终态相同时,可逆过程的热温商 值和大于不可逆过程的热温商之和。
克劳修斯不等式
SAB
Q
Q Q S Q) ( A B A B ( ) S ( ) 0 0 A B A B0 A B T ii T T i
它们的逆过程都不能自动进行。当借助外力,系统恢复原 状后,会给环境留下不可磨灭的影响。(后果不可消除) 均为热力学不可逆过程。
2.2 自发变化不可逆症结
气缸 系统 环境 真空膨胀 假设可逆 气缸 系统 环境 Q W
机器
这个机器把热量全部转化为功而不引起环境的变 化,也是一类永动机,称为第二类永动机
2. 系统恒温过程的熵变 (2)真空膨胀
3.气体恒容变温、恒压变温过程熵变的计算
4. 理想气体pVT变化过程熵变的计算
3.气体恒容变温、恒压变温过程熵变的计算
恒容过程:由δQV = dU=nCV,mdT得: S T nCV ,mdT
2
T1
T
恒压过程:由δQp= dH=nCp,mdT得: S T
任意
可逆
Q1 Q 2 0 T1 T2
循环过程有可逆不可逆循环之分 任何循环过程的热温商之和小于等于零:
Qi ) 0 ( i Ti
可逆时等于零,不可逆时小于零。
克劳修斯不等式
设有一个循环, A B 为不可逆过程, BA 为可逆过程,整个循环为不可逆循环。 则有
A Q Q ( )IR,AB ( ) R 0 B T T i B Q Q ( )IR,AB ( )R 0 A T T i
提高能量的使用效率
高温热源(T2)
Q2
W
热机
Q1
1796---1832
Carnot N.L.S . 法国物理学家
低温热源(T1)
卡诺循环
卡诺循环(Carnot cycle)
(1) 恒温可逆膨胀 (2)绝热可逆膨胀 (3)恒温可逆压缩 (4)绝热可逆压缩
卡 诺 循环 第 四 步
热机效率(efficiency of the engine )
Q SB SA S ( ) R A T
B
对微小变化
Q dS ( ) R T
这几个熵变的计算式习惯上称为熵的定义式, 即熵的变化值可用可逆过程的热温商值来衡量。
熵的物理意义
熵(系统的宏观性质)是系统混乱度(微观性
质)的一种量度。熵是一个状态函数,是物质的
特性常用单位:J· K-1。
熵的引出
移项得:
B Q Q ( ) ( ) R A T 1 A T R2 B
说明任意可逆过程的热温 商的值决定于始终状态,而 与可逆途径无关,这个热温 商具有状态函数的性质。
任意可逆过程
熵的定义
克劳修斯根据可逆过程的热温商值决定于始终态而 与可逆过程无关这一事实定义了“熵”(entropy) 这个函数,用符号“S”表示,单位为: J K 1 设始、终态A,B的熵分别为 SA 和 SB ,则:
热力学第二定律指出,凡是自发的过程都是 不可逆的,而一切不可逆过程都可以归结为热转 换为功的不可逆性。
4.6 熵变的计算
计算要点 1.系统熵变必须沿可逆过程求其热温商; 2.环境熵变必须沿实际过程求其热温商,且系统 热与环境热大小相同,符号相反; 3.判断过程的方向必须用总熵变,绝热时可用系 统熵变; 4.计算系统熵变的基本公式:
第二类永动机:是一种热机,它只是从单一热源吸热使 之完全变为功而不留下任何影响。
2.4 自发变化不可逆症结
T1高温热源 Q1 Q2 M Q2 T2低温热源 同前面例子相似,要求热全部转化为功而不引起环境 的变化(不可能实现) W
2.3 热力学第二定律(The Second Law of Thermodynamics) 热力学第二定律的几种说法是在总结众多自发过 程的特点之后提出来的。 后果不可消除原理 它是自发过程不可逆性的一种较为形象的描述, 其内容是: 任意挑选一自发过程,指明它所产生的后果不论用 什么方法都不能令其消除,即不能使得发生变化的 系统和环境在不留下任何痕迹的情况下恢复原状
是实际过程的热效应,T是环境温度。若是不 可逆过程,用“>”号,可逆过程用“=”号,这 时环境与系统温度相同。 Q dS 0 对于微小变化: T
或
dS
Q T
这些都称为克劳修斯不等式,也可作为热力 学第二定律的数学表达式。
熵增加原理
对于绝热系统, Q 0 ,所以克劳修斯不等式为 dS 0
热力学第二定律
第二章 热力学第二定律 课前回顾
2.可逆过程 理想化过程,要求经过一个循环后系统和环境都能恢 复到原来的状态
2.1 自发变化的共同特征
例如: (1) (2) (3) (4) 气体向真空膨胀;(有压力差存在) 热量从高温物体传入低温物体;(有温差存在) 水往低处流;(有势差存在) 浓度不等的溶液混合均匀;(存在着浓差)
卡诺定理的意义:解决了热机效率的极限值问题。
I R
P45例1
火力发电厂的能量利用
200℃
Th TC (473 300)K R 36% Th 473 K
I < 20%
1度电 /1000g 煤
高煤耗、高污染(S、N氧化物、粉尘和热污染)
火力发电厂的能量利用
400℃
Th TC 673 300 55% Th 673
作为变化方向与限度的判据。
Q dS T
“>” 号为不可逆过程 “=” 号为可逆过程 “>” 号为自发过程 “=” 号为处于平衡状态
dSiso 0
因为隔离系统中一旦发生一个不可逆过程,则一定 是自发过程。
热力学第二定律的本质 混乱度最大原则:一切自发过程(不可逆过 程)都是向混乱度增加的方向进行。
⑷合成氨反应
N2(g) +3H2 (g)= 2NH3(g) (-) ⑸从溶液中析出结晶 (-)
Qi <0 0 而不可逆循环的热温商之和小于零: ( )R i Ti
W Q1 Q 2 任意 Qh Q2
W T2 T1 可逆 Qh T2
T 1 Q1 0 T2 Q2
Q1 Q2 0 T 1 T2
即卡诺循环中,热效应与温度商值的加和等于零。
2.5 熵
用一闭合曲线代表任意可逆循环。 在曲线上任意取A,B两点,把循环分成AB和 BA两个可逆过程。 根据任意可逆循环热温商的公式:
Q ( T )R 0 可分成两项的加和
A Q Q A ( T )R1 B ( T )R 2 0 B
I < 40%
550℃
1度电 / 500 g 煤
Th TC 823 300 63% Th 823
火力发电厂的改造利用
热电厂的能量利用
从卡诺循环得到的结论
W Q 2 Q1 T2 T 1 Qh Q2 T2
Q1 T 1 1 Q2 T2
1
Q1 Q2 T1 T2