第二章热力学第一定律

合集下载

第二章 热力学第一定律

第二章 热力学第一定律

T (B, ,T)
£K r Hm (T)
标准摩尔燃烧焓[变]的定义 在温度 T 物质 B 完全氧化( T)表示 叫标准摩尔燃烧焓 g H2O(l)的 T)计算
£K r Hm £K cHm £K r Hm B
-
)成相同温度下指定产物时的标准摩尔焓[变] 用
£K cHm
(B
指定产物 CO2 由
£K c Hm
物理化学学习指导
第二章 热力学第一定律
第二章 热力学第一定律
一. 基本概念及公式
1 热力学基本概念
(1)系统和环境 系统——热力学研究的对象(是大量分子 外的周围部分存在边界 环境——与系统通过物理界面(或假想的界面)相隔开并与系统密切相关的周围部分 根据系统与环境之间发生物质的质量与能量的传递情况 系统分为三类: 原子 离子等物质微粒组成的宏观集合体) 系统与系统之
H = Qp 适用于真实气体 理想气体 液体
T2 T1
∆H = ∫ nC p ,m dT
T1
T2
固体定压过程 理想气体任意 p
V
T 变化过程
∆U = ∫ nCV ,m dT = nC v ,m (T2 − T1 ) ∆H = ∫ nC p ,m dT = nC p ,m (T2 − T1 )
T1 T2
体积功 功有多种形式 通常涉及的是体积功 它是系统发生体积变化时的功 定义为
δW = − p su dV
式中 psu 为环境的压力
W = ∑ δW = − ∫ p su dV
V2 V1
对恒外压过程
psu = 常数
W = − p su (V2 − V1 ) W = − ∫ pdV
V1 V2
对可逆过程 因 p =psu

第二章 热力学第一定律

第二章   热力学第一定律
1
第二章 热力学第一定律
2
第二章 热力学第一定律
2.1 热、功和内能
2.2 热力学第一定律
2.3 热力学第一定律在某些特殊过程中的应用
2.4 可逆过程 2.5 焓 2.6 热容 2.7 热力学第一定律对理想气体的应用 2.8 热力学第一定律对实际气体的应用 2.9 热力学第一定律在化学反应及相变过程中
(后面有例题进行相关的计算)
6
2.1.1 热
温度反映了物体冷热程度,是分子平均平动动 能的标志,是状态量。
3.热量的计算
Q mc(T2 T1)
c 是比热:1kg物质升高1 ºC吸收的热量; mc是热容:mkg物质升高1 ºC吸收的热量; 此式适用于无相变的过程。
7
2.1.2 功
2.1.2 功
16
2.1.3 内能
•分子运动的动能(平动能、转动能和振动能); 它与温度有关 。 •分子间相互作用的位能 ;它与分子间的作用力有 关,即与体积相关 。 •原子、电子的运动能以及原子核内能量等 ;这些 能量在热力学研究中不会发生变化,可以不考虑这 些能量 。
注:内能是体系的一种热力学性质,处于一个确定状态的
Wb P环(V2 V1) 0Pa (4.54 2.27) 102 m3 0J
该例题能不能按下面的方法计算做功?
W V2 pdV V2 nRT dV nRT ln V2
V1
V1 V
V1
13
2.1.2 功
结果表明:两种膨胀方式尽管系统的初、末态 相同,但因途径不同功也不同,这再一次有力地说 明了功不是状态函数,它的数值不仅与系统的状态 变化有关,而且与变化的途径有关。
活塞与汽缸无摩擦,当气体作 准静态压缩或膨胀时,外界的压强

第二章热力学第一定律

第二章热力学第一定律
敞开系统 系 统
所研究的 物质对象
系统与环境
物质进出 能量得失 √ √
封闭系统 隔离系统




状态及状态函数
系统有p, V, T, 组成, 内能等等宏观性质, 系统内的每个粒子 又有结构, 运动情况和粒子间相互作用等微观性质. 系统的宏观 性质有些是各粒子微观性质的某种平均作用, 如温度是分子热 运动的平均强度; 有些则是粒子微观性质的总体表现, 如压力是 分子运动碰撞容器壁面时对单位面积壁面的总垂直力.
状态及状态函数
系统的状态 是系统所有宏观性质的综合表现. 具有单值对应的函数关系 (a) 系统所有的性质一定, 状态就一定; (实际上当系统中物质量及组成, 温度, 压力(或体积) 一定时, 状态便可确定) (b) 状态一定, 系统所有的性质均一定. 因此, 宏观性质又称为状态函数 状态函数的基本性质——状态函数法的基础. • 其微小变化值可用数学上的全微分表示,如dT, dp, dV… • 其增量只与系统的始态和终态有关, 与具体变化途径无关
系统的宏观性质简称性质, 有的可以测量, 有的不可以测量. 性质可分为如下两大类:
系统的性质
{ 强度性质 无空间上的加和性: T,
T p T p
广延性质 有空间上的加和性: n, V ,U, H ,S ,G …
p ,Vm , Um …
nL VL UL SL nR VR UR SR
两者的关系:广延性质的 摩尔量是(准)强度性质, 如:摩尔体积 Vm 等.
{p
su
}
W
p始
一粒粒取走砂粒 (剩 余 砂 粒 相 当 前 述 一个重物)


V终
p始
V始

第2章热力学第一定律

第2章热力学第一定律

技术功:技术上可以利用的功
1 2 wt c gz wi 2
q u w
wt w pv w p2 v2 p1v1
可逆过程
wt pdv p1v1 p2v2 pdv d pv vdp
2 2 2 2 1 1 1 1
第二章 热力学第一定律
本章要求
理解热力学第一定律的实质—能量守恒定律 掌握流动功,轴功及技术功的概念 注意热力学能,焓的引入及定义
掌握热力学第一定律能量方程的基本表达式 及稳定流动能量方程
本章学习流程
热力学第一定律的提出
热力系能量的组成
能量之间的传递和转化 + 焓
闭口系能量方程 + 开口系能量方程 (第一定律数学表达式)
热力学能只取决于热力系内部的状态,且具有 可加性,是一个具有广延性质的状态参数

2
1
du u 2 u1
du 0
2u 2u Tv vT
u u du dT dv T v v T
二.外储存能
工质在参考坐标系中作为一个整体,因有宏观 速度而具有动能,因有高度差而具有位能
热力学能:是指储存于热力系内部的能量. 用U表示,单位是J或 kJ,单位质量工质的热力 学能称为比热力学能,用u表示,单位是J/kg或 kJ/Kg
热力学能是工质的状态参数,完全取决于工 质的初态和终态,与过程的途径无关
热力学能为两个独立状态参数的函数: u=f(T,v)或u=f(T,p)或u=f(p,v)
能量方程式的应用
确定研究对象—选好热力系统
写出所研究热力系对应的能量方程
针对具体问题,分析系统与外界的相互作用, 作出某些假设和简化,使方程简单明了 求解简化后的方程,解出未知量

第二章热力学第一定律

第二章热力学第一定律

第二章 热力学第一定律主要内容1.热力学基本概念和术语(1)系统和环境:系统——热力学研究的对象。

系统与系统之外的周围部分存在边界。

环境——与系统密切相关、有相互作用或影响所能及的部分称为环境。

根据系统与环境之间发生物质的质量与能量的传递情况,系统分为三类: (Ⅰ)敞开系统——系统与环境之间通过界面既有物质的质量传递也有能量的传递。

(Ⅱ)封闭系统——系统与环境之间通过界面只有能量的传递,而无物质的质量传递。

(Ⅲ)隔离系统——系统与环境之间既无物质的质量传递亦无能量的传递。

(2)系统的宏观性质:热力学系统是大量分子、原子、离子等微观粒子组成的宏观集合体。

这个集合体所表现出来的集体行为,如G A S H U T V p ,,,,,,,等叫热力学系统的宏观性质(或简称热力学性质)。

宏观性质分为两类:(Ⅰ)强度性质——与系统中所含物质的量无关,无加和性(如T p ,等); (Ⅱ)广度性质——与系统中所含物质的量有关,有加和性(如H U V ,,等)。

而强度性质另一种广度性质一种广度性质= n V V =m 如,等V m =ρ(3)相的定义:相的定义是:系统中物理性质及化学性质完全相同的均匀的部分。

(4)系统的状态和状态函数:系统的状态是指系统所处的样子。

热力学中采用系统的宏观性质来描述系统的状态,所以系统的宏观性质也称为系统的状态函数。

(Ⅰ) 当系统的状态变化时,状态函数的改变量只决定于系统的始态和终态,而与变化的过程或途径无关。

即系统变化时其状态函数的改变量=系统终态的函数值-系统始态的函数值。

(Ⅱ) 状态函数的微分为全微分,全微分的积分与积分途径无关。

即:2121X X X dX X X ∆==-⎰y yX x x X X x y d d d ⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫⎝⎛∂∂=(5)热力学平衡态:系统在一定环境条件下,经足够长的时间,其各部分可观测到的宏观性质都不随时间而变,此后将系统隔离,系统的宏观性质仍不改变,此时系统所处的状态叫热力学平衡态。

第2章热力学第一定律

第2章热力学第一定律
对于微元可逆过程,
q dh vdp
技术功的图形表示
2
wt 1 vdp
19
2.5 稳定流动能量方程的应用
1. 动力机械
h1 喷管 叶片 汽轮机
来自锅炉
发电机
调速器
q 0
去凝汽器
h2
ws h1 h2
20
2. 压缩机械 工质流经压缩机械时,压力升高,外界
对工质做功。
6
对于可逆过程
Q dU pdV
2
Q U 1 pdV
对于单位质量工质
q du w
q u w
对于单位质量工质的可逆过程
q du pdv
2
q u 1 pdv
7
2.4 开口系统的稳定流动能量方程
2.4.1 稳定流动与流动功
(1) 稳定流动 热力系统内各点状态参数不随时间变化的
对可逆过程,
2
wt 1 pdv ( p2v2 p1v1)
2
2
1 pdv 1 d( pv)
2
1 vdp
式中,v 恒为正值,负号表示技术功的正负
与dp 相反。
18
将上式代入开口系统的稳定流动能量方程式
q h wt (适用于一般过程)
2
可得 q h vdp(适用于可逆过程) 1


ws
14
技术功
定义:在工程热力学中,将工程技术上可
以直接利用的动能差、位能差及轴功三项之和
称为技术功,用Wt 表示。
Wt

1 2
mcf2

mgz
Ws
对于单位质量工质 ,

第二章 热力学第一定律

第二章 热力学第一定律

(二)热力学第一定律
热力学第一定律实质就是能量守恒和转换 定律在热现象上的应用。 表述1:热可以变为功,功也可以变为热;一 定量的热消灭,必产生一定量的功;消耗一 定量的功时,必出现与之相应数量的热。
表述2:第一类永动机是造不成的
First Law of Thermodynamics
In 1843, at the age of 25, James Prescott Joule did a series of careful experiments to prove the equivalence of heat and work.
A p V
dl
对推进功的说明
1、与宏观流动有关,流动停止,推进功不存在 2、作用过程中,工质仅发生位置变化,无状态变化
3、w推=pv与所处状态有关,是状态量 4、并非工质本身的能量(动能、位能)变化引起, 而由外界(泵与风机)做出,流动工质所携带的能量
可理解为:由于工质的进出,外界与系统之
间所传递的一种机械功,表现为流动工质进 出系统使所携带和所传递的一种能量
4、物理意义:开口系中随工质流动而携带的、取决 于热力状态的能量。
三、稳定流动能量方程
Energy balance for steady-flow systems
稳定流动条件
(P22)
1、



mout min m
2、

Q Const
min
uin 1 2
c
2 in
gzin
3、


Wnet ConstWs
三、总能
热力系统的储存能: 储存于热力系统的能量。 (1)内部储存能———热力学能 (2)外部储存能———宏观动能,宏观位能。

工程传热学-第二章 热力学第一定律

工程传热学-第二章 热力学第一定律


1 2
c
2 f
2

gz2 )
p2v2 ]
m1[(u1

1 2
c
2 f
1

gz1 )
p1v1 ]
W s
Q

dE
d

qm2
[(u2

1 2
c
2 f
2

gz2 )
p2v2 ]
qm1 [(u1

1 2
c
2 f
1

gz1 )
p1v1 ]
Ps
2.4 稳定状态稳定流动能量方程式
Q - W U Q U W
对热力过程:
Q1-2 U1,2 W1-2
q1-2 u1,2 w12 (u2 u1 ) w12
对微元过程:
q w du
适用范围:Ek 0, E p 0,初、终态平衡状态,
闭口系统,任意工质,任意过程。
开口系统遵循的定律:能量守恒,质量守恒。
质量守恒定律:开口系统内增加的质量等于流入和流出系统 的质量之差:
dm m1 m2 dm m1 m2 d d d
dm
d qm1 qm2
(连续性方程)
能量守恒定律:输入系统的能量—由系统输出的能量=系统 贮存能量的变化
① 轴功δ Ws:开口系统和外界通过进出口截面以外的边界 (一般为机器轴)所传递的功。
②推动能:微元工质流经进口截面1-1处,外界推动工质进 入系统需要消耗能量,其大小为:
p 1 A 1 dx p1 dV1 p1 v 1m 1
同理在出口截面2-2 ,系统将消耗能

第二章热力学第一定律

第二章热力学第一定律

W=We(体积功)+Wf(非体积功)
体积功
自由膨胀(真空膨胀)
pe=0 We=-pedV=0
计算公式
一次等外压膨胀 多次等外压膨胀
pe 保持恒定 We=-pe(V2-V1) 膨胀分两步第一步外压p1.第二步p2 We=-p1(V2-V1)-P2(V3-V2)
外压pe总是比内压pi小衣柜无限小的膨胀
pe=pi-dp We=-nRTln(V2/V1)
Qp=U+pV
dU=δQ+δW=δQ+δWe+δWf
没有相边和和化学变化且不做非体积功的均相封 闭系统,系统升高单位热力学温度时所吸收的热 成该系统的热容
等压热和焓
符号C
影响因素:系统的质量或者物质的量,以及升温条件有关
<Cp>(T)=Qp/(T2-T1) 升温会导致热容发生变化所以一般T2-T1→0
Qp=Qv+△nRT
两者的关系
等压下为等压热 等容下为等容热
化学反应热
溶解热:将一定量溶质溶于溶剂中的热效应
稀释热:将一定量的纯溶剂假如溶液中的热效应
溶解热和稀释热(等压)
混合热:将两种不同物质混合是的热效应
△H(相变)=Qp(相变)
△U=△H-p△V=△H-pVg(有气体参与)
纯净物的相变实在等温等压下进行的
宏观性质
广延性质
是系统物质的量n的一次齐函数
具有加和性,整个系统的某个广度性质等于该系 统中各部分该种广度性质的加和
其数值仅取件与系统自身的特性,与系统的数量 无关
强度性质
是系统物质的量n的零次齐函数
不具有加和性
平衡:系统的各性质不再随时间而改变,也没有 可以使系统和环境之间或系统内部发生物质交 换,能量交换和化学反应力的存在

工程热力学 第二章 热力学第一定律

工程热力学 第二章 热力学第一定律
pv p2v2 p1v1
是系统为维持工质流动所需的功
对推动功的说明
1、与宏观流动有关,流动停止,推动功不存在 2、作用过程中,工质仅发生位置变化,无状态变化
3、w推=pv与所处状态有关,是状态量 4、并非工质本身的能量(动能、位能)变化引起, 而由外界做出,流动工质所携带的能量
可理解为:由于工质的进出,外界与系统之间
The work depends on the process path
作功的说明
“作功”是系统与外界间的一种相互作用,是越过系统边
界的能量交换。
功是指作功过程中在传递着的能量的总称,过程一旦结束
就再无所谓功。
机械能与机械功、电能与电功等同吗?
系统可以拥有电能,机械能,但决不会拥有电功、机械功之类的功。 功只不过是特定条件下在过程中传递着的能量。
实质:能量守恒及转换定律在热现象中的应用
• 18世纪初,工业革命,热效率只有1% • 1842年,J.R. Mayer阐述热力学第一定律, 但没有引起重视
• 1840-1849年,Joule用多种实验的一致性 证明热力学第一定律,于1850年发表并得 到公认
热力学第一定律的普遍表达式
第一定律的表述: 热是能的一种,机械能变热能,或热能 变机械能的时候,他们之间的比值是一定的。 或:热可以变为功,功也可以变为热;一定量的热消失时 必定产生相应量的功;消耗一定量的功时,必出现与之相 应量的热。
系统是否作功应以过程在外界所引起的效果来判断,而不
应从系统的内部去寻找依据,对系统的内部来说无所谓 “功”。
功是有序能量传递。
传热
系统与外界之间的另一种相互作 用,是系统与外界之间依靠温差进行 的一种能量传递现象,所传递的能量 称放热为负

第二章 热力学第一定律

第二章 热力学第一定律
压力能 动能 位能
机械能守恒 柏努利方程
dp 1 2 dc dz 0 g 2g
§ 2-7 稳定流动能量方程应用举例
q h c / 2 gz ws
2
热力学问题经常可忽略动、位能变化 例:c1 = 1 m/s c2 = 30 m/s (c22 - c12) / 2 = 0.449 kJ/ kg
in
流动时,总一起存在
二、稳定流动能量方程
Steady State Steady Flow(SSSF)
稳定流动条件
1、 mout min m 2、 Q Const





min uin 1 2 cin 2 gzin Q
Wnet
mout uout 1 2 cout 2 gzout
uin pvin gzin Wnet qmout uout pvout 1 2 cout gzout 2
1 2 qmin cin 2
zin
Q zout
开口系能量方程微分式
Q + qmin(u + pv+c2/2 + gz)in - Wnet - qmout(u + pv+c2/2 + gz)out = dEcv
§2-2
热一律的推论热力学能 (内能)
热力学能的性质
热力 学能 说明: 热力学能是状态量 U : 广延参数 [ kJ ] u : 比参数 [kJ/kg] 分子动能(移动、转动、振动) 分子位能(相互作用) 核能 化学能
热力学能总以变化量出现,热力学能零点人为定
系统总能
外部储存能
2、H为广延参数 H=U+pV=
m(u+pv)= mh

第二章热力学第一定律

第二章热力学第一定律

第二章二、热力学第一定律热力学第一定律是与能量守恒定律在同一时代建立的。

它阐述了与热现象有关的宏观过程中的能量关系,它是在热运动与机械运动相互转化的研究中提出来的。

我们已经在初中物理中学过,要使容器中的水温升高有两种办法,一方面可以直接对水加热,另一方面也可以对水做功。

这表明,改变物体内能的途径有两个:外界与物体进行热交换或外界对物体做功。

一个物体,如果没有从外界吸收热量,也没有向外界放出热量,外界对它做多少功,它的内能就增加多少。

如果用W表示外界对物体做的功,用U1和U2分别表示外界对它做功前与做功后的内能,那么,上述关系可以写为U2-U1=W一个物体,如果没有其他物体对它做功,也没有对其他物体做功,它从外界吸收多少热量,它的内能就增加多少。

如果用Q表示物体从外界吸收的热量,分别用U1和U2表示物体与外界进行热交换前后的内能,那么,这个关系可以表示为U2-U1=Q如果外界既向物体传热,又对物体做功,那么物体内能的增量就等于物体吸收的热量Q 与外界对物体所做功W的总和,即U2-U1=Q+W通常以ΔU表示内能的增量U2-U1,于是有ΔU=Q+W这表明:物体内能的增加等于物体从外界吸收的热量与外界对物体所做的功的总和。

这就是热力学第一定律(first law of thermodynamics)。

热力学第一定律是能量守恒定律在涉及热现象的宏观过程中的具体表述。

科学足迹一、古代热力技术应用事例古人很早就发现热可以用于产生动力,渐渐地开始利用这种动力。

下面列举其中的几例略展古代利用热力的风采。

希罗(Hero,约公元62-约公元150)是古希腊的一位工程师。

他研究过车轮、杠杆、滑轮、螺旋、劈等简单机械。

在他众多的发明中,最有名的当属“小涡轮”。

当时的人们把“小涡轮”用于孩子的玩具,或在寺庙中用于转动神像,以引起信徒们的惊奇。

“小涡轮”是利用蒸汽使空心圆球转动的装置。

空心圆球安装在架子上。

球上安装着两个弯管(见图2.2-1)。

第二章 热力学第一定律

第二章 热力学第一定律

任何能量方程都是针对具体的系统的, 任何能量方程都是针对具体的系统的,所以同一问 题取不同系统可建立不同形式的能量方程, 题取不同系统可建立不同形式的能量方程,因此当你发 现自己建立的方程不同于你的学友建立的方程时, 现自己建立的方程不同于你的学友建立的方程时,不要 轻易否定任何方程, 轻易否定任何方程,而是按照能量守恒原理进行分析再 确定。 具体建立能量方程时还需注意下列两点: 确定。 具体建立能量方程时还需注意下列两点:在开 口系能量方程中引进(或排出)工质时引进(或排出) 口系能量方程中引进(或排出)工质时引进(或排出) 系统的能量应采用焓的概念而不是热力学能; 系统的能量应采用焓的概念而不是热力学能;只有在能 量越过边界时,才有功和热量在能量方程中出现。最后, 量越过边界时,才有功和热量在能量方程中出现。最后, 如何选择系统, 如何选择系统,对能量方程的建立和求解有时会有非常 大的影响,只有通过自己的实践和总结, 大的影响,只有通过自己的实践和总结,才能尽快掌握 选择一个合适的系统的关键。 选择一个合适的系统的关键。
第二章 热力学第一定律 13
二. 稳定流动的能量方程
一般情况下,能量转换装置都是在稳定条件下工作的。 一般情况下,能量转换装置都是在稳定条件下工作的。 稳定状态:各点的状态不随时间变化; 稳定状态:各点的状态不随时间变化; 稳定流动:系统内各处及进出口截面,工质的流量和流速不变。 稳定流动:系统内各处及进出口截面,工质的流量和流速不变。 系统与外界交换的热量和功量稳定不变。 系统与外界交换的热量和功量稳定不变。
2
2
wt = ∫1 pdv − ( p2v2 − p1v1 ) = − ∫1 vdp
2 2
由上式可知,准静态过程的技术 由上式可知, 功的大小可用过程线左边的面积来表 示。 忽略宏观动能和位能, 忽略宏观动能和位能,则有

第二章 热力学第一定律

第二章 热力学第一定律

第二章热力学第一定律基本公式功: δW = -P外dV热力学第一定律: dU =δQ + δW ΔU = Q + W焓的定义: H ≡ U + PV热容的定义: C=limΔT→0δQ/ ΔT等压热容的定义: C P =δQ P /dT =(∂H/∂T)P等容热容的定义: C V =δQ V /dT =(∂U/∂T)V任意体系的等压热容与等容热容之差: C P - C V = [P + (∂U/∂V)T] (∂V/∂T)P 理想气体的等压热容与等容热容之差: C P - C V = nR理想气体绝热可逆过程方程: γ = C P / C VPVγ-1 =常数T Vγ-1 =常数P1-γTγ=常数理想气体绝热功: W =C V(T1 – T2 ) W = P1V1 – P2V2 /γ-1热机效率: η = W/Q2可逆热机效率: η = T2 – T1 / T2冷冻系数: β= Q1′/W可逆制冷机冷冻系数: β = T1 / T2 – T1焦汤系数: μ = ( ∂T/ ∂P)H = - (∂H/∂P)/C P反应进度: ξ= n B – n B0 / νB化学反应的等压热效应与等容热效应的关系: Q P = Q V + ΔnRT当反应进度ξ= 1 mol 时Δr H m= Δr U m +ΣBνB RT化学反应等压热效应的几种计算方法:Δr H m⊖=ΣBνBΔf H m⊖(B)Δr H m⊖=ΣB (єB )反应物 - ΣB(єB )产物Δr H m⊖= -ΣBνBΔC H m⊖(B)反应热与温度的关系: Δr H m(T2) =Δr H m(T1) + ∫21T TΔr C P dT表 1-1 一些基本过程的W 、Q、△U 、△H 的运算过程W Q △U △H 理想气体自由膨胀0 0 0 0 理想气体等温可逆 -nRTLnV2/V1 -nRTLnV2/V10 0任意物质等容可逆理想气体0∫C V dT∫C V dTQ v∫C V dT△U + V△P∫C P dT任意物质等压可逆理想气体-P外△V-P外△V∫C P dT∫C p dTQ P - P△V∫C V dTQ P∫C P dT理想气体绝热过程C V(T2 – T1)1/γ-1(P2V2-P1V1) 0 ∫C V dT ∫C P dT理想气体多方可逆过程PVδ=常数n R/1-δ(T2-T1) △U + W ∫C V dT ∫C P dT 可逆相变(等温等压) -P外△V Q P Q P -W Q P化学反应(等温等压) -P外△VQ PQ P – WΔr H m=Δr U m+ΣBνB RTQ PΔr H m⊖=ΣBνBΔf H m⊖(B) 例题例1 0.02Kg 乙醇在其沸点时蒸发为气体。

第二章 热力学第一定律

第二章 热力学第一定律
19
考察图中管道对容器的充气过程,假定管道中气体 参数不变,容器绝热。取容器为系统:
Q
dECV
h
c
2 f
2
gz mout
out
h
c
2 f
2
gz min
Wi
绝热充气过程的条件可表示为:
Q 0 Wi 0 mout 0
忽略进入容器时气体的动能及 位能变化,则方程变为:
dUCV hinmin 20
➢若空气流量为100kg/s,压气机消耗的功率为多少?
➢若燃气发热值qB=43960kJ/kg,燃料耗量为多少?
➢燃气喷管出口处的流速是多少?
➢燃气轮机的功率为多少?
➢燃气轮机装置的总功率为多少?
23
1)压气机
wc h2 h1 580 290 290kJ/kg Pc mwc 290kJ/kg 100kg/s=29000kW
q0
q h wc wc h2 h1
12
3、 热交换器
炉墙
蒸发管
没有做功部件
ws 0
q h2 h1
2状态
过热 器
来自水 泵 1状态
13
4、 管道(喷管、扩压器)
喷管
14
CFM56燃烧室-短环形突扩扩压器
12级台风:32.7m/s~37m/s
17级台风:56.1~61.2m/s
15
没有做功部件
Q
dECV
h2
c
2 f
2
2
gz2
m2
h1
c
2 f1
2
gz1 m1
Wi
流过开口系1kg流体的稳定流动的能量方程:
q
h
1 2

第二章 热力学第一定律

第二章 热力学第一定律
量的总和,是状态参数。热量是传递过程中 的热能,不是状态参数。
思考
定量气体在等温过程中热力学能不变?
错误。气体的热力学能是温度和比体积的函
数,等温过程中虽然温度不变,但比体积可
能会发生改变,故热力学能也会改变。
思考
理想气体的热力学能只与温度有关。
正确。对于理想气体,因为分子间不存在相
互作用力,因此没有内位能。其热力学能仅 包括分子内动能。因此,理想气体热力学能 只是温度的单值函数。
二、外部储存能
需要用在系统外的参考坐标系测量的
参数来表示的能量,称为外部储存能,
它包括系统的宏观动能和重力位能。
质量为m的物体相对于系统外的参考坐 标以速度c运动时,其具有的宏观动能为:
1 2 Ek mc 2
重力场中质量为m的物体相对于系统外的 参考坐标系的高度为z时,其具有的重力位 能为:
滚球永动机
软臂永动机
19世纪有人设计了一种特殊机 构,它的臂可以弯曲。臂上有 槽,小球沿凹槽滚向伸长的臂 端,使力矩增大。转到另一侧, 软臂开始弯曲,向轴心靠拢。 设计者认为这样可以使机器获 得转矩。然而,他没有想到力 臂虽然缩短了,阻力却增大了, 转轮只能停止在原地。
软臂永动机
阿基米得螺旋永动机
分子热运动形成的内动能。它是温度的函数。
分子间相互作用形成的内位能。它是比体积的函 数。
维持一定分子结构的化学能、原子核内部的原子 能及电磁场作用下的电磁能等。
1、内动能
根据分子运动学说,组成气体的分子是处于不 断运动的状态中,不仅分子本身作直线运动、 旋转运动和相对于其它分子的振动,构成分子 的内部原子也在不断地振动,这些运动着的分 子与原子都具有动能,称为气体的内动能。 气体的内动能与气体的温度有关。气体的温 度越高,内动能越大。

第二章 热力学第一定律

第二章  热力学第一定律


U f (T ,v)
• 温度和比容是状态参数,内能也是一个状 态参数,它可以有全微分,并且内能的变 化只决定于起始和终了状态,而与过程的 途径无关,即

2
1 dU U 2 U1 U
• 根据内能的2性质,如图1—2—3中所表示
的过程A 、B、C和D,它们起始和终了的
两状态相同,所以它们的内能变化均应相
• 在这一平衡的膨胀过程中,工质对活塞作了 膨胀功,若是没有摩擦损失的理想机器,则 膨胀功以动能的形式全部储存在飞轮中,此 时若利用飞轮的动能来推动活塞逆行,使工 质沿276543l压缩,则压缩工质所消耗的功, 恰与膨胀时产生的功相等。此外,在压缩过 程中,工质同时向热源放热,所放的热量也 沽与膨胀时所吸收的热量相等。由此可见, 当工质恢复到原来状态1时,机器与热源也都 恢复到原来的状态,过程所牵涉到整个体系 全部都恢复到原来的状态而不留下任何变化, 这样的一个变化过程,就是可逆过程。
• 由于平衡状态在压容图上可用—个点表示, 因此,平衡过程则可用一条由这些连续的 点所形成的曲线表示,如图l—2—5(a)所示。 至于不平衡过程一般不能在坐标图上表示, 但有时在起始和终了两平衡状态之间用虚 线示意,如图1—1—5(b)所示,工程实际 中,气缸内的气体分子运动的速度很快, 以至于气体的内部很快地达到平衡状态, 整个过程也就非常接近一个平衡过程。
2552 30.52% 1/ 5 41800
§2—2 热力学第一定律的解析式
• 一、解析式的建立
• 设某体系由状态经过过程A变化至状态2, 并且由状态2经过程C回到状态1(见图1— 2—2),可得

dQ dQ dW dW
1A2
2c1
1a2
2c1

工程热力学 第2章 热力学第一定律

工程热力学 第2章  热力学第一定律

6
可逆膨胀过程:
系统内部准静→系统的压力与外界压力相差只是无穷小 →可看作过程中P=Ps→微元过程中系统对外界所作的膨 胀功可完全用系统内部参数表示:
W PdV
对1kg工质的微元过程 对1→2的有限过程
m kg工质:
w Pdv
1 kg工质:
以上公式适用于任何简单可压缩物质可逆过程
2020/1/10
• 系统温度的变化与传热并无必然的联系 • 热能是微观粒子无序紊乱运动的能量;传热是微观粒
子间无序运动能量的传递
2020/1/10
12
⑵ 可逆过程的热量计算
①利用熵参数进行热量计算
热力学状态参数熵的定义
经历可逆的微元过程时,系统的熵变 量dS等于该微元过程中系统所吸入的热 量đQ与吸热当时的热源温度T之比
这时
E=U
2020/1/10
20
§2.5 控制质量(CM)能量分析
⑴热力学第一定律基本表达式
控制质量 热力过程中吸入热量Q, 对外界作功W,热力学能增加∆U 根据热力学第一定律
Q = ∆E + W W——广义功
输入能量 贮能增量 输出能量
若系统固定不动,U=E,则
Q = ∆U + W
对于微元能
⑴状态参数热力学能
物质内部拥有的能量统称为热力学能(内能)
分子平移运动、转动和振动的动能(内动能) 分子间因存在作用力而相应拥有的位能(内位能) 维持一定分子结构的化学能、分子的结合能 U 电偶极子和磁偶极子的偶极矩能 原子核能(原子能) ……(电子的运动能量等)
第2章 热力学第一定律
( The First Law of Thermodynamics )
主要内容

第二章热力学第一定律

第二章热力学第一定律

W ' Vf pdV Vi
W W ' Vf pdV Vi
体系的体积增大时,体系对环境的作用力与力的作用
点的位移同向,体系对环境作了正功,体系的能量减少;
反之,若体系的体积缩小,体系对环境作负功,即环境对
体系作了正功,体系的能量增加。
(2)表面功
以液膜为例
框内有一个双表面的液体膜,液体的表面张力为
正、负规定:吸热,Q >0;放热, Q <0
单位:J、cal、atm·l 等
表示法:宏观过程的热用Q 表示,微小过程的微量热 用Q 表示。注意与状态函数表示法区分
Note: (1)热量与热能(与系统温度有关的热运动能量) (2)热量与能量(过程量与状态量) (3)作功与传热是系统与外界相互作用的方式 (作功:通过广义功产生广义位移而实现是宏观形式; 传热:是热运动能量的转移是微观形式,常常与耗散有关)
Note:
(1)热力学中所谈的功都 是指体系与环境通过 它们的边界相互作用 的功;
(2)关于功的规定,采用 1970年IUPAC所建议 的W或W代表环境对 体系所作之功。
正、负规定: 环境对系统作功,W >0; 系统对环境作功,W <0
单位:J、cal、atm·l 等
体积功 W 机械功

电功 表面功
W ' EdQ
若正电荷通过的量为n,电池对外界作的功为:
W ' nEF
当外加电池上的电位差比E略大时,在无摩擦准 静态过程中外界对电池作电功:
W EdQ
W nEF
综合:
在无摩擦准静态过程中的不同形式的微功,通式 (一个强度量与一个广度量的乘积):
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章热力学第一定律思考题1设有一电炉丝浸于水中,接上电源,通过电流一段时间。

如果按下列几种情况作为系统,试问A U ,Q,W为正为负还是为零?(1) 以电炉丝为系统;(2 )以电炉丝和水为系统;(3)以电炉丝、水、电源及其它一切有影响的部分为系统。

2设有一装置如图所示,(1)将隔板抽去以后,以空气为系统时,AJ, Q, W为正为负还是为零?(2)如右方小室亦有空气,不过压力较左方小,将隔板抽去以后,以所有空气为系统时,A U, Q , W为正为负还是为零?作业题1 (1)如果一系统从环境接受了160J的功,内能增加了200J,试问系统将吸收或是放出多少热?(2)一系统在膨胀过程中,对环境做了10 540J的功,同时吸收了27 110J的热,试问系统的内能变化为若干?[答案:⑴吸收40J; (2) 16 570J] 2在一礼堂中有950人在开会,每个人平均每小时向周围散发出4. 2xl05J的热量,如果以礼堂中的空气和椅子等为系统,则在开会时的开始20分钟内系统内能增加了多少?如果以礼堂中的空气、人和其它所有的东西为系统,则其AU = ?[答案:1.3 M08J;0]3 一蓄电池其端电压为12V,在输出电流为10A下工作2小时,这时蓄电池的内能减少了 1 265 000J,试求算此过程中蓄电池将吸收还是放岀多少热?[答案:放热401000J] 4体积为4.10dm3的理想气体作定温膨胀,其压力从106Pa降低到105Pa计算此过程所能作出的最大功为若干?[答案:9441J] 5在25C下,将50gN2作定温可逆压缩,从105Pa压级到2X106Pa,试计算此过程的功。

如果被压缩了的气体反抗恒定外压105Pa作定温膨胀到原来的状态,问此膨胀过程的功又为若干?[答案:-.33 X04J; 4.20 X03J] 6计算1mol理想气体在下列四个过程中所作的体积功。

已知始态体积为25dm3终态体积为100dm3;始态及终态温度均为100 Co(1) 向真空膨胀;(2) 在外压恒定为气体终态的压力下膨胀;(3) 先在外压恒定为体积等于50dm3时气体的平衡压力下膨胀,当膨胀到50dm3(此时温度仍为100C)以后,再在外压等于100 dm3时气体的平衡压力下膨胀;(4) 定温可逆膨胀。

试比较这四个过程的功。

比较的结果说明了什么问题?[答案:0; 2326J; 310l J; 4299J] 习题10试证明对遵守范德华方程的1mol实际气体来说,其定温可逆膨胀所作的功可用下式求算。

a(范德华方程为 p+兮(Vm 』尸RT )< V m 丿习题11假设CO 2遵守范德华方程,试求算 1mol CO 2在27C 时由10dm 3定温可逆压缩到1dm 3所作的 功。

(所需范德华常数自己查表)。

[答案:一5 514J]习题12 1mol 液体水在100C 和标准压力下蒸发,试计算此过程的体积功。

(1)已知在100 C 和标准压力下,水蒸气的比体积 (体积除以质量)为1 677cm 3 • g -1,水的比体积为3-11.043cm • g 。

(2)假设水的体积比之蒸气的体积可略去不计,蒸气作为理想气体。

比较两者所得的结果,说明(2)的省略是否合理。

33[答案:3.057 X 103J ; 3.101 X103J] 习题13已知在0C 和标准压力下,冰的密度为0.917g -cm -3,水的密度为1.000g ・cm -3。

试计算在0°C 及标准压力下,1mol 冰熔化成水所需之功。

(要注意本题所需之功比之上题的涉及有蒸气的相变化的功是很 小的) [答案:-0.165J] 习题14在373K 和标推压力下,水的蒸发热为 4.067 X 04J mol -1,1mol 液态水体积为18.08cm 3,蒸气则为30 200cm 3。

试计算在该条件下 1mol 水蒸发成气的 A U 和A H 。

[答案:3.761 X 04J ; 4.067 X 04J] 习题15 一理想气体在保持定压 105Pa 下,从10dm 3膨胀到16dm 3,同时吸热1255J ,计算此过程的 A U和A H 。

[答案:655J ; 1 255J] 习题16假设N 2为理想气体。

在0C 和5X 105Pa 下,用2dm 3N 2作定温膨胀到压力为105Pa 。

(1) 如果是可逆膨胀;(2)如果膨胀是在外压恒定为 105Pa 的条件下进行。

试计算此两过程的 Q 、W 、A U 和少。

[答案:(1)1 609J ; 0; (2)800 J ; 0]习题18 有3mol 双原子分子理想气体由 25 C 加热列150C ,试计算此过程的△ U 和厶H 。

[答案:7.79X 103J ; 1.09 X 104J]5习题19 有1mol 单原子分子理想气体在 0C ,10 Pa 时经一变化过程,体积增大一倍,△ H = 2 092J , Q=1 674J 。

(1)试求算终态的温度、压力及此过程的△ U 和W ;⑵如果该气体经定温和定容两步可逆过程到 达上述终态,试计算 Q 、W 、A U 和厶H 。

习题20[答案:(1)373.7K ,6.84X 104 Pa, 1255J ,419J , (2)2828 J ,1573J ,1255J,2092J] 已知 300K 时NH 3 的.曲 m i =840 J - m -3 • mol -1, CV,m=37.3J • K " • mol -1。

当 1mol NH 3 1刃T 气经一压缩过程其体积减少 10 cm 3而温度上升2度时,试计算此过程的△ U[答案:74.6J]习题21试证明对任何物质来说W = RTlnV m,2』 Vm,1』+aQ 丄Jm,2 V m,1 ;习题仃试由=°及多T=0证明理想气体的 =0及0。

i C -C- pP Vb:VT(2Cp d=V _(鲁订詈 V习题22计算1gN 2在常压下由600C 冷却到20C 时所放出的热,所需数据自己查找。

[答案:629J]习题23试求算2mol100 C, 4 X 104pa 的水蒸气变成IOO C 及标准压力的水时,此过程的△ U 和厶H 。

设 水蒸气可视为理想气体,液体水的体积可忽略不计。

已知水的摩尔气化热为4 0670J - mol -1。

[答案:一75 138J ;— 81 340J]习题24已知任何物质的习题25 一物质在一定范围内的平均定压摩尔热容可定义为------ Q p其中n 为物质的量。

已知 NH 3的TT 2】C = 33.64+2.93X10 ;42.13X10-5P ,m JKK J试求算NH 3在0〜500C 之间的平均定压摩尔热容 Cp m习题26已知N 2和。

2的定压摩尔热容与温度的关系式分别为C p m (N 2 )= (7.87也.27>10(Cp,m o 2 '〔36.162 0.845 10iK试求空气的C p ,m 与温度的关系式应为如何?习题27 1molH 2在25 C 、105 Pa 下,经绝热可逆过程压缩到体积为5dm 3,试求⑴终态温度 T ?;⑵终态压力P 2;⑶过程的 W,A U 和厶H 。

( H 2的C V ,m 可根据它是双原子的理想气体求算)[答案: 565K ; 9.39 X 105 Pa ; 5550J ; 5550J ; 7769J]习题28 25C 的空气从106 Pa 绝热可逆膨胀到105 Pa,如果做了 1.5 X 104J 的功,计算空气的物质的量。

(假设空气为理想气体,空气的热容数据可查表或作一近似计算)[答案:5.01mol]习题29某理想气体的C p,m =35.90J• K -1 • mol -1,⑴当2mol 此气体在25C ,1.5 X106 Pa 时,作绝热可逆膨胀到最后压力为5X 105 Pa ;⑵当此气体在外压恒定为 5X 105 Pa 时作绝热快速膨胀;试分别求算上述两过程终态的 T 和V 及过程的 W 、△ U 和厶H 。

[答案:⑴231K ; 7.68dm 3;-3697J ; -3697J ;-4811J ;⑵252K ; 8.38 dm 3; 2538J ; -2538J ; -3303J] 习题30 1mol 某双原子分子理想气体发生可逆膨胀:(1)从2 dm 3, 106 Pa 定温可逆膨胀到5x 105 Pa ;⑵从2 dm 3, 106 Pa 绝热膨胀到5x 105 Pa 。

CP -C V2 — TV其中a 为膨胀系数,B 为压缩系数。

现已查得 25C 时液体水的定容热容X 10「4K T, B =4.44X 1oT °Pa 「S 而水的18X 10「6mC v , m=75.2J • K 1 • mol", 3• mol -1。

试计算液体水在25 C 时的C p,m =?[答案:75.7J • K t a =2.1-mo|T ]C p,m “2可 jLK -1_mol -1[答案:41.4J ・K t -mo 「]5_1_T/K,JJK -1」mol -1⑴试求算过程⑴和⑵的W, Q ,△U和厶H;⑵大致画出过程⑴和⑵在p—V图上的形状;⑶在p—V图上画岀第三个过程将上述两过程的终态相连,试问这第三个过程有何特点(是定容还是定压)?[答案:⑴ 1386J; 1386J; 0; 0;⑵ 919J; 0; -919J; -1286J] 习题31某高压容器所含的气体可能是N2或是Ar。

今在25C时取出一些样品由5 dm3绝热可逆膨胀到6 dm3,发现温度下降了2「C,试判断容器中为何气体?[答案:N2] 在573K及0至6X10-6Pa的范围内,N2(气)的焦耳一汤姆逊系数可近似用下式表示-7 -14 -1叶T=[1.40 X10 253 X10 (p/Pa)]K • Pa假设此式与温度无关。

N2(气自6X10-6Pa作节流膨胀到2X10-6Pa,求温度变化。

[答案:A T= - 0.16K] 习题33 已知CO2的旳-T=1.07 X10-5K • Pa-1,C p,m=36.6J • K-1• mol-1,试求算50g CO2在25 C下由105Pa定温压缩到106Pa时的少。

如果实验气体是理想气体,则A H又应为何值?[答案:-401J ; 0]-5 -c习题34 假设He为理想气体。

1molHe由2X10 Pa、0C变为10 Pa、50 C,可经两个不同的途径:(1)先定压加热,在定温可逆膨胀;(2)先定温可逆膨胀;再定压加热。

试分别计算此二途径的Q、W、AJ、A H。

计算的结果说明什么问题?[答案:(1)2900J,2276J,624J,1039J; (2)2612J,1988J,624J,10039J] 习题35 将115V、5A的电流通过浸在100C装在绝热筒中的水中的电加热器,电流通了1小时。

相关文档
最新文档