材料热力学习题解答第1一2章..
第一章 热力学第一、二定律试题及解答
第一章 热力学第一定律一、选择题1.下述说法中,哪一种正确( )(A)热容C 不是状态函数; (B)热容C 与途径无关;(C)恒压热容C p 不是状态函数;(D)恒容热容C V 不是状态函数。
2.对于内能是体系状态的单值函数概念,错误理解是( )(A) 体系处于一定的状态,具有一定的内能;(B) 对应于某一状态,内能只能有一数值不能有两个以上的数值;(C) 状态发生变化,内能也一定跟着变化;(D) 对应于一个内能值,可以有多个状态。
3.某高压容器中盛有可能的气体是O 2 ,Ar, CO 2, NH 3中的一种,在298K 时由5dm3绝热可逆膨胀到6dm3,温度降低21K ,则容器中的气体( )(A) O 2 (B) Ar (C) CO 2 (D) NH 34.戊烷的标准摩尔燃烧焓为-3520kJ·mol -1,CO 2(g)和H 2O(l)标准摩尔生成焓分别为-395 kJ·mol -1和-286 kJ·mol -1,则戊烷的标准摩尔生成焓为( )(A) 2839 kJ·mol -1 (B) -2839 kJ·mol -1 (C) 171 kJ·mol -1 (D) -171 kJ·mol -15.已知反应)()(21)(222g O H g O g H =+的标准摩尔反应焓为)(T H m r θ∆,下列说法中不正确的是( )。
(A).)(T H m r θ∆是H 2O(g)的标准摩尔生成焓 (B). )(T H m r θ∆是H 2O(g)的标准摩尔燃烧焓 (C). )(T H m r θ∆是负值 (D). )(T H m r θ∆与反应的θm r U ∆数值相等 6.在指定的条件下与物质数量无关的一组物理量是( )(A) T , P, n (B) U m , C p, C V(C) ΔH, ΔU, Δξ (D) V m , ΔH f,m (B), ΔH c,m (B)7.实际气体的节流膨胀过程中,下列那一组的描述是正确的( )(A) Q=0 ΔH=0 ΔP< 0 ΔT≠0 (B) Q=0 ΔH<0 ΔP> 0 ΔT>0(C) Q>0 ΔH=0 ΔP< 0 ΔT<0 (D) Q<0 ΔH=0 ΔP< 0 ΔT≠08.已知反应 H 2(g) + 1/2O 2(g) →H 2O(l)的热效应为ΔH ,下面说法中不正确的是( )(A) ΔH 是H 2O(l)的生成热 (B) ΔH 是H 2(g)的燃烧热(C) ΔH 与反应 的ΔU 的数量不等 (D) ΔH 与ΔH θ数值相等9.为判断某气体能否液化,需考察在该条件下的( )(A) μJ-T > 0 (B) μJ-T < 0 (C) μJ-T = 0 (D) 不必考虑μJ-T 的数值10.某气体的状态方程为PV=RT+bP(b>0),1mol 该气体经等温等压压缩后其内能变化为( )(A) ΔU>0 (B) ΔU <0 (C) ΔU =0 (D) 该过程本身不能实现11.均相纯物质在相同温度下C V > C P的情况是()(A) (∂P/∂T)V<0 (B) (∂V/∂T)P<0(C) (∂P/∂V)T<0 (D) 不可能出现C V>C P12.理想气体从相同始态分别经绝热可逆膨胀和绝热不可逆膨胀到达相同的压力,则其终态的温度,体积和体系的焓变必定是()(A) T可逆> T不可逆, V可逆> V不可逆, ΔH可逆>ΔH不可逆(B) T可逆< T不可逆, V可逆< V不可逆, ΔH可逆<ΔH不可逆(C) T可逆< T不可逆, V可逆> V不可逆, ΔH可逆<ΔH不可逆(D) T可逆< T不可逆, V可逆< V不可逆, ΔH可逆>ΔH不可逆13.1mol、373K、1atm下的水经下列两个不同过程达到373K、1atm下的水汽:(1)等温可逆蒸发,(2)真空蒸发。
材料物理化学作业-热力学第一定律
材料物理化学作业第一章 热力学第一定律1.某体系在压力101.3kPa 下,恒压可逆膨胀,体积增大5L ,计算所做的功。
2. 在300K 的常压下,2mol 的某固体物质完全升华过程的体积功为多少?3.2mol H 2在00C ,压力为101.3kPa 下恒压可逆膨胀至100L ,求W 、Q 、ΔU 、ΔH 。
4.计算1mol 铅由250C 加热到3000C 时所吸收的热。
已知铅的C p =23.55+9.74×10-3T/K J ·K -1·mol -15.1mol 单原子理想气体,温度为250C ,压力为101.3kPa ,经两种过程达到同一末态:Ⅰ、恒压加热,温度上升到12170C ,然后再经恒容降温到250C 。
Ⅱ、恒温可逆膨胀到20.26kPa 。
分别计算两个过程的W 、Q 、ΔU 和ΔH 。
6.已知250C 时下列反应的热效应:2Pb+O 2=2PbO ΔH 1=-438.56kJ ·mol -1 S+O 2=SO 2 ΔH 2=-296.90kJ ·mol -1 2SO 2+ O 2=2SO 3 ΔH 3=-197.72kJ ·mol -1 Pb+S+2O 2=PbSO 4 ΔH 4=-918.39kJ ·mol -1 求反应PbO+SO 3= PbSO 4的热效应。
7.已知250C 时下列反应的热效应:Ag 2O+2HCl (g )=2Agl+H 2O (l ) ΔH 1=-324.71kJ ·mol -12 Ag+21O 2= Ag 2O ΔH 2=-30.57kJ ·mol -1 21H 2+21Cl 2=HCl (g ) ΔH 3=-92.31kJ ·mol -1 H 2+21O 2= H 2O (l ) ΔH 4=-285.84kJ ·mol -1 求AgCl 的生成热。
第一章-热力学第一、二定律试题及答案
第一章热力学第一定律一、选择题1 •下述说法中,哪一种正确()(A)热容C 不是状态函数; (B)热容C 与途径无关;(C)恒压热容C P 不是状态函数;(D)恒容热容C V 不是状态函数。
2•对于内能是体系状态的单值函数概念,错误理解是()(A) 体系处于一定的状态,具有一定的内能;(B) 对应于某一状态,内能只能有一数值不能有两个以上的数值; (C) 状态发生变化,内能也一定跟着变化; (D) 对应于一个内能值,可以有多个状态。
3.某高压容器中盛有可能的气体是 O 2 ,Ar, CO 2, NH 3中的一种,在298K 时由5dm3绝热可逆膨胀到6dm3,温度降低21K ,则容器中的气体()(A) 02 (B) Ar (C) CO 2 (D) NH 34 •戊烷的标准摩尔燃烧焓为 -3520Jmol -1,CO^)和 出0(1)标准摩尔生成焓分别为 -395 kJ mol -1和-286kJ mol -1,则戊烷的标准摩尔生成焓为()(A) 2839 kJ mol -1 (B) -2839 kJ mol -1 (C) 171 kJ mol -1 (D) -171 kJ mol -115.已知反应H 2(g)02(g) H 2O(g)的标准摩尔反应焓为 r H m(T),下列说法中不正确的是2()。
6 •在指定的条件下与物质数量无关的一组物理量是()(A) T , P, n (B) U m , C P , C V(C) 出,AU,沁(D) V m , AH f,m (B), △H c,m (B)7 •实际气体的节流膨胀过程中,下列那一组的描述是正确的()(A) Q=0△ H=0 △ P< 0△ T^ 0(B) Q=0 △ H<0 △ P> 0 △ T>0(C) Q>0 △ H=0 △ P<0 △ T<0 (D) Q<0△ H=0 △ P< 0 △ T^0&已知反应H 2(g) + 1/2O 2(g) THO(I)的热效应为△H ,下面说法中不正确的是( )(A)△ H 是H 2O(|)的生成热(B) △ H 是H 2(g)的燃烧热(C) AH 与反应 的AU 的数量不等 (D) AH 与厶日^数值相等9 •为判断某气体能否液化,需考察在该条件下的()(A) 0-丁> 0(B) 詔-T V 0(C) 0-T = 0(D)不必考虑 0-T 的数值10.某气体的状态方程为 PV=RT+bP(b>0),1mol 该气体经等温等压压缩后其内能变化为((A) AJ>0(B) AU <0 (C) AU =0(D) 该过程本身不能实现(A). r H m (T )是H 2O(g)的标准摩尔生成焓 (B). r H m (T )是H 2O(g)的标准摩尔燃烧焓 (C). r H m (T)是负值 (D). r H m (T)与反应的r U m 数值相等11 •均相纯物质在相同温度下C V > C P的情况是( )(A) (?P/?T)V<0(B) (?V/?T)P<0(C) (?P/?V)T<0(D)不可能出现 C V>C P12•理想气体从相同始态分别经绝热可逆膨胀和绝热不可逆膨胀到达相同的压力,则其终态的温度,体积和体系的焓变必定是( )(A) T可逆> T不可逆, V 可逆> V 不可逆, AH可逆>AH 不可逆(B) T可逆< T不可逆, V 可逆< V 不可逆, AH可逆<AH 不可逆(C) T可逆< T不可逆, V 可逆> V 不可逆, AH可逆<AH 不可逆(D) T可逆< T不可逆, V可逆< V 不可逆, AH可逆>AH不可逆13. 1mol、373K、1atm下的水经下列两个不同过程达到373K、1atm下的水汽:(1)等温可逆蒸发,(2)真空蒸发。
热力学所有答案
1-2 试确定表压力为0.01MPa 时U 形管压力计中液柱的高度差。
(1)U 形管中装水,其密度为1000kg/m 3;(2)U 形管中装酒精,其密度为789kg/m 3。
解答:m29.178981.91001.02m02.1100081.91001.0166=⨯⨯=∆=⨯⨯=∆=∆∴∆=酒精水)()即(h h gP h h g P gg ρρ1—3 用U 形管测量容器中气体的压力。
在水银柱上加一段水柱(如图1—3)。
已侧的水柱高850mm ,汞柱高520mm 。
当时大气压力为755mmHg. 问容器中气体的绝对压力为多少MPa?解答:MPa P P P PHg O H 178.080665.98503224.1335207552b =⨯+⨯+=++=)(图1—3 图1—41-4 用斜管压力计测量锅炉烟道中烟气的真空度(如图1-4)。
管子的倾角o 30=α;压力计中使用密度为800kg/m3的煤油;斜管中液柱长度l=200mm 。
当时大气压力mmHgP 745b =。
问烟气的真空度为多少毫米水柱?绝对压力为多少毫米汞柱?解答:mmHgP P P mmHgPa h g P v b o v 1135.7391050062.78.7847452801001972.18.784 8.81784.930sin 2.0800131=⨯⨯-=-==⨯⨯=⨯⨯⨯=∆=--绝)()(ρ1—7 从工程单位制热力性质表中查得,水蒸汽在500℃、100at 时的比体积和比焓分别为kg kcal h kg m v /6.806/03347.03==、。
在国际单位制中,这时水蒸气的压力和比热力学各为多少?解答:kgkJ pV U MPaP /8.304803347.01080665.91868.46.806h 280665.91080665.9100134=⨯⨯-⨯=-==⨯⨯=)()(1—8 摄氏温标取水在标准大气压下的冰点和沸点分别为C 0o和C 010o ,而华氏温标则相应地取为F o 32和F o 212。
热统习题解答(全]
第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κ。
解: 理想气体的物态方程为RT pV =,由此可算得: PP V V k T T P P T T V V T V P 1)(1;1)(1,1)(1=∂∂-==∂∂==∂∂=βα1.2 证明任何一种具有两个独立参量T ,P 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κ ,根据下述积分求得: ⎰-=)(ln kdP adT V ,如果Pk T a 1,1==,试求物态方程。
证明:dp p VdT T V p T dV T P )()(),(∂∂+∂∂= 两边除以V,得dp dT dp p VV dT T V V V dV T P κα-=∂∂+∂∂=)(1)(1积分后得 ⎰-=)(ln kdP adT V 如果,1,1p T ==κα代入上式,得C P T PdP T dT V ln ln ln )(ln +-=-=⎰所以物态方程为:CT PV =与1mol 理想气体得物态方程PV=RT 相比较,可知所要求的物态方程即为理想气体物态方程。
1.3在00C 和1atm 下,测得一块铜的体胀系数和压缩系数为a=4.185×10-5K -1,k=7.8×10-7atm -1。
a 和k 可以近似看作常数。
今使铜加热至100C ,问(1)压力要增加多少大气压才能使铜块的体积维持不变?(2)若压力增加100atm ,铜块的体积改变多少?解:(a )由上题dp dT dp p VV dT T V V V dV T P κα-=∂∂+∂∂=)(1)(1体积不变,即0=dV所以dT kadP = 即atm T k a P 62210108.71085.475=⨯⨯⨯=∆=∆-- (b)475121211211007.4100108.7101085.4)()(---⨯=⨯⨯-⨯⨯=---=-=∆p p T T V V V V V κα可见,体积增加万分之4.07。
材料热力学习题集
C ( x, t )
C0
n0
4C0 (2n 1)
sin
2n 1 h
x
exp
(2n
1)2 h2
2
Dt
例题 6-5 在中碳钢中由于锰的枝晶偏析,定向轧制后,易引起带状组织。为了消除带状组
织,应进行扩散退火,如果锰的浓度按正弦规律分布如下:
C(x,t) C
1 2
C0
sin
2 l
x
exp
例 4-5 碳在 1 个大气压、25℃时,以石墨为稳定相,试求在 25℃由石墨转变为金刚石所需 要的压强。
例题 5-1 实验测得 Cd-Mg 的摩尔体积如下表所示。 Cd-Mg 合金摩尔体积的实验值
例题 5-2 已知某三元溶液的摩尔体积为 Vm=7X1+10X2+12X3-2X1X2+3X1X2X3 (cm3/mol)
个大气压下)。
例 1-4 已知液体铅在 1 个大气压下的比热为: Cp(l)=32.43-3.10×10-3T J/(mol·k) Cp(s)=23.56+9.75×10-3T J/(mol·k)
液体铅在熔点(600K)凝固为固体时放热 4811.6 J/mol,求液体铅过冷至 590K 凝固时熵值的变 化(在一个大气压下)。
6
4
2
A
1
0 -10 -8 -6 -4 -2 0 2 4 6 8 10
x
六大 板块
第一章 第二章 第三章 第四章 第五章 第六章
物理化学复习纲要
热力学定律(热力学第一定律、热力学第二定律) 自由能(ΔF、ΔG) 热力学状态函数、关系式及应用 相变热力学 溶液 扩散
.
计算锡在绝热器内过冷到 495 K 时能自动凝固的分数。
材料热学性能答案标准版PPT
结论:所有材料的摩尔热容是一个与温度无关的常数,其 值接近于3R。
不足:在高温时与实验相符合,在低温时与实验不符合。 问题在于把原子振动的能量认为是连续的。
二、爱因斯坦量子热容理论
晶格中每个原子都在其格点做振动,各个原子的振动是独立而
互不依赖的;每个原子都具有相同的周围环境,因而其振动频率
是相同的;原子振动的能量是不连续量子化的。即把原子的振动
第一节 焓和热容 一、基本知识
在等压时,物体吸收或者放出的热量在数值上
等于焓的变化: Q dH
定义:在等压时,1克物体从0K到T时所需热量 Q为该物体的焓。
Q=CmT C是0K到TK区间的平均比例数。 将m克物体升高1K所需热量定义为热容C,单位 质量为c,单位为:J/K.
二、物理意义:
热容量反映了材料中原子热振动能量状态改变时 需要的热量。加热时,材料吸收的热能主要为点阵 吸收,增加了材料离子的振动能量。其次为自由电 子吸收,增加了电子的动能。所以,热振动为主要 贡献。自由电子运动为次要贡献。 定容和定压时的不同:
第三节 膨胀系数与其他物理量的关系
热膨胀是原子热振动加剧引起的振幅加大和振动能量 增大的结果。
一、与热格容留的耐关申系式:V
KVm
CV ,m
V :体膨胀系数; K :体积模量; N / m2
Cv,m :定容摩尔热容;
Vm:摩尔体积 格留耐申常数, =1.5~2.5.
以铝为例,如图5-4,P97,热膨胀曲线与热容曲
1摩尔气体的总能量为:
E
3 2
KN A阿伏加得罗常数; K:波尔兹曼常数。
气体定容摩尔热容:CV ,m
(uT )V
3 2
R
.
固体材料的热运动既具有动能,又有位能。摩尔材料
北京科技大学热工学第1章和第2章重点思考题和习题解答
第1章和第2章重点思考题和习题解答第1章 基本概念思考题1. 平衡状态与稳定状态有何区别?热力学中为什么要引入平衡态的概念?答:平衡状态是在不受外界影响的条件下,系统的状态参数不随时间而变化的状态。
而稳定状态则是不论有无外界影响,系统的状态参数不随时间而变化的状态。
可见平衡必稳定,而稳定未必平衡。
热力学中引入平衡态的概念,是为了能对系统的宏观性质用状态参数来进行描述。
4. 准平衡过程与可逆过程有何区别?答:无耗散的准平衡过程才是可逆过程,所以可逆过程一定是准平衡过程,而准平衡过程不一定是可逆过程。
5. 不可逆过程是无法回复到初态的过程,这种说法是否正确?答:不正确。
不可逆过程是指不论用任何曲折复杂的方法都不能在外界不遗留任何变化的情况下使系统回复到初态,并不是不能回复到初态。
习题1-3 某容器被一刚性壁分为两部分,在容器不同部位装有3块压力表,如图1-9所示。
压力表B 上的读数为1.75 bar ,表A 的读数为1.10 bar ,如果大气压力计读数为0.97 bar ,试确定表C 的读数及两部分容器内气体的绝对压力。
解: bar p p p a b 07.210.197.01=+=+=bar p p p b 32.075.107.212=−=−= < 0.97 barC b p p p +=2bar p p p b C 65.032.097.032.02−=−−=−=1-4 如图1-10所示一圆筒形容器,其直径为450 mm ,表A 的读数为360 kPa , 表B 的读数为170 kPa ,大气压力为100 mmHg ,试求,⑴ 真空室及1、2两室的绝对压力;⑵ 表C 的读数;⑶ 圆筒顶面所受的作用力。
解: kPa H p p p b 0g mm 0100100==-==汞柱真空室−kPa p p p a 36036001=+=+=真空室kPa p p p B 19017036012=−=−=kPa p p p c 1901902==−=真空室N A p p F b 0.21190.45π41133.3100)(2=××××=−=真空室 1-7一热力系发生状态变化,压力随体积的变化关系为=3.1pV 常数,若热力系初态为 6001=p kPa ,3.01=V m 3,问当系统体积膨胀至 5.02=V m 3 时,对外作功为多少? 解:改过程系统对外作的功为∫∫=−−===−−0.50.33.013.023.1111.33.115.03.02585.)(0.3V W 1kJ V V V p dV V p pdV (积分公式:x dx µ=∫11x µµ++) 1-9 某气缸中气体由0.1 m 3膨胀至0.3 m 3,若气体的压力及容积按MPa 和m 3计算,则膨胀过程中气体的压力和体积的函数关系为04.024.0+=V p ,试求,气体所作的膨胀功。
材料热力学 习题答案
The problems of the first law1. a lead bullet is fired at a frigid surface. At what speed must it travel to melt on impact, if its initial temperature is 25℃ and heating of the rigid surface of the rigid surface is neglected? The melting point of lead is 327℃. The molar heat of fusion of the lead is 4.8kJ/mol. The molar heat capacity C P of lead may be taken as 29.3J/(mol K) (1.1)Solution: )/(5.112.20721]108.4)25327(3.29[2121)(2322s m V v n n WQ nMv mv W H T C n Q Q Q absorb melting p melt increase absorb ==⨯+-⨯===∆+∆=+=2. what is the average power production in watts of a person who burns 2500 kcal of food in a day? Estimate the average additional powder production of 75Kg man who is climbing a mountain at eh rate of 20 m/min (1.2)Solution )/(24560208.975)/(12160602410467000//)(104670001868.4102500sin 3S J t h mg P S J t Q t W P J Q gincrea Burning Burning =⨯⨯=∆==⨯⨯====⨯⨯=3 One cubic decimeter (1 dm 3) of water is broken into droplets having a diameter of onemicrometer (1 um) at 20℃. (1.3)(a) what is the total area of the droplets?(b) Calculate the minimum work required to produce the droplets. Assume that the dropletsare rest (have zero velocity)Water have a surface tension of 72.75 dyn/cm at 20℃ (NOTES: the term surface energy (ene/cm 2) is also used for surface tension dyn/cm)Solution)(25.218)106103(1075.72)(103)101(4)101(34)101(232523263631J S W m nS S Single total =⨯-⨯⨯⨯=∆=⨯=⨯⨯⨯⨯⨯⨯⨯⨯==-+----σππ4.Gaseous helium is to be used to quench a hot piece of metal. The helium is in storage in an insulated tank with a volume of 50 L and a temperature of 25℃, the pressure is 10 atm. Assume that helium is an ideal gas.(a) when the valve is opened and the gas escapes into the quench chamber (pressure=1 atm),what will be the temperature of the first gas to hit the specimen?(b) As the helium flows, the pressure in the tank drops. What will be the temperature of thehelium entering the quench chamber when the pressure in the tank has fallen to 1 atm? (1.4)Solution: )(180118298)(1185.229810101325501010101325)5500(1)()(118)101(298)()(0334.0/00K T T T K RR nC W T b K T P PT T Adiabatic a p C R P=-=∆-==⨯⨯⨯⨯⨯⨯⨯-⨯==∆=⨯==--5 An evacuated (P=0), insulted tank is surrounded by a very large volume (assume infinite volume) of an ideal gas at a temperature T 0. The valve on the tank is opened and the surrounding gas is allowed to flow quickly into the tank until the pressure inside the tank is equals the pressure outside. Assume that no heat flow takes place. What is the final tempeture of the gas in the tank? The heat capacity of the gas, C p and C v each may be assumed to be constant over the temperature rang spanned by the experiment. You answer may be left in terms of C p and C vhint: one way to approach the problem is to define the system as the gas ends up in the tank. (1.5)solution 0/000/00)()(T P P T T P PT T Adiabatic PPC R C R ≈-==6. Calculate the heat of reaction of methane with oxygen at 298K, assuming that the products of reaction are CO 2 and CH 4 (gas)[This heat of reaction is also called the low calorific power of methane] convert the answer into unites of Btu/1000 SCF of methane. SCF means standard cubic feet, taken at 298 and 1atmNOTE: this value is a good approximation for the low calorific powder of natural gas (1.6)DA TA:)()()(224g O H g CO g CH FOR80.5705.9489.17]/[0298---∙∆mol g Kcal Hsolution)1000/(9.2610252103048.01101076.191)/(76.191)89.1780.57205.94()2(22333332982982224422SCF Btu mol g Kcal H H H H H OH CO O CH CH O H CO =⨯⨯⨯⨯⨯=∙=∆+⨯---=∆-∆+∆-=∆+=+-7. Methane is delivered at 298 K to a glass factory, which operates a melting furnace at 1600 K. The fuel is mixed with a quantity of air, also at 298 K, which is 10% in excess of the amount theoretically needed for complete combustion (air is approximately 21% O 2 and 79% N 2) (1.7)(a) Assuming complete combustion, what is the composition of the flue gas (the gasfollowing combustion)?(b) What is the temperature of the gas, assuming no heat loss?(c) The furnace processes 2000kg of glass hourly, and its heat losses to the surroundingsaverage 400000 kJ/h. calculate the fuel consumption at STP (in m 3/h) assuming that for gas H 1600-H 298=1200KJ/KG(d) A heat exchanger is installed to transfer some of the sensible heat of the flue gas to thecombustion air. Calculate the decrease in fuel consumption if the combustion air is heated to 800KDA TA STP means T=298K, P=1atm22224O N O H CO CH for 2.82.89.117.1316)/(C mol cal C P ∙Solution)(210448.1125.9100076.191298)/(25.9)]87.012.72(2.843.179.1171.87.13[01.0)(%87.0%%12.72%%43.17%2%%71.8)11.1(221791.1231%22)(0,,222222224K T T T C mol cal X C C b O N CO O H CO O H CO O CH a i i p p p =⨯⨯+=∆+=∙=+⨯+⨯+⨯=======-⨯+⨯⨯+=+=+∑)/(1644)0224.011868.448.11)8001600(48.1125.9189570(102800000)/(189570)298800)](48.1187.8)48.1125.9[(100076.191)()/(87.848.11/]211002.22.816[)()/(3214)0224.011868.448.11)2981600(48.1125.9100076.191(102800000)/(280000040000020001200)(33min ,,,,298,,33min h m V mol g cal dTn C n C H H C mol cal X C C d h m V h KJ P C gConsu i i r p i i p p i i p r p g Consu =⨯⨯-⨯-⨯=∙=-⨯-⨯-⨯=--∆=∆∙=⨯⨯+===⨯⨯-⨯-⨯⨯==+⨯=⎰∑∑∑8.In an investigation of the thermodynamic properties of a-manganese, the following heat contents were determined: H 700-H 298=12113 J/(g atom) H 1000-H 298=22803 J/(g atom)Find a suitable equation for H T -H 298 and also for C P as a function of temperature in the form (a+bT) Assume that no structure transformation takes place in the given tempeture rang. (1.8)Solution )298(0055.0)298(62.35011.062.35011.062.3522803)2981000(2)2981000(12113)298700(2)298700(]2[2229822222982---=∆-=-===-+-=-+-+=+==∆⎰⎰T T H TC b a ba ba T baT bTdT a dT C H TP T P9.A fuel gas containing 40% CO, 10% CO 2, and the rest N 2 (by volume) is burnt completely with air in a furnace. The incoming and ongoing temperatures of the gases in the furnace are 773K and 1250K,respectively. Calculate (a) the maximum flame temperature and (b) heat supplied to the furnace per cu. ft of exhaust gas (1.9)molJ Hmol J H CO f CO f /393296/1104580,298,0,298,2-=∆-=∆)/(10184.403.29)/(1067.11010.492.19)/(1037.81020.935.44)/(1042.01097.345.283,253,253,253,222molK J T C molK J T T C molK J T T C molK J T T C N P O P CO P CO P -------⨯+=⨯-⨯+=⨯-⨯+=⨯-⨯+=Solution?0)499.0321.018.1()1067.01019.277.28(28.282831067.01038.477.289.0)1019.01058.528.33(2.0282838)()/(1019.01058.528.33722.0278.0)/(1067.01038.477.281.065.005.02.0)()/(282838110458393296%2.72%8.27%10%65%5%20)4/(1122298127332981523733253253298,,,,298,253,,,,,253,,,,,,,0,298,0,298,298,22222222222222==+--⨯+⨯++⨯=⨯-⨯++⨯⨯-⨯+-⨯=--∆=∆⨯-⨯+=+==⨯-⨯+=+++===-=∆-∆=∆========+-----------⎰⎰⎰∑∑⎰∑∑∑∑T T T T T T T dT T T dTT T dT n C n C n H H molK J T T C C n C C molK J T T C C C C n C C a mol J n Hn H H N CO production O N CO CO reation then O N air mole need fuel mole when CO O CO T TT i i r p i i p p i i N P CO P i i p p r p O P N P CO P CO P i i p p r p i pf i rf idTT T Q dT T T Q b T T T T T T T dT T T dTT T dT n C n C n H H T TT i i r p i i p p i i 9.0)1019.01058.528.33(2.02828389.0)1019.01058.528.33(2.0282838)(0)499.0321.018.1()1067.01019.277.28(28.282831067.01038.477.289.0)1019.01058.528.33(2.0282838)(253125029812502982531250298125029829812125029815231250253253298,,,,298,⨯⨯-⨯++⨯-=⨯⨯-⨯++⨯-===+--⨯+⨯++⨯=⨯-⨯++⨯⨯-⨯+-⨯=--∆=∆-----------⎰⎰⎰⎰⎰∑∑⎰10. (a) for the reaction 2221CO O CO →+,what is the enthalpy of reaction (0H ∆) at 298 K ?(b) a fuel gas, with composition 50% CO, 50% N 2 is burned using the stoichiometric amount of air. What is the composition of the flue gas?(c) If the fuel gas and the air enter there burner at 298 K, what is the highest temperaturethe flame may attain (adiabatic flame temperature)? DA TA :standard heats of formation f H ∆ at 298 K (1.10))/(393000)/(1100002mol J CO mol J CO -=-=Heat capacities [J/(mol K)] to be used for this problem N 2=33, O 2=33, CO=34, CO 2=57 Solution)(21100)298)(39889.0(222.02830000)/(3975.03325.057)/(33111.034222.033666.033)(%,75%%,251.111002.22%%1.11%%,6.66%%,2.222.0/25.015.0%)()/(283000393000110000)(,0,,,,,,22220,298,0,298,0K T T dT C n H H K mol J X C C K mol J X C C C N CO product O N CO fuel b mol J n H n H H a P p p i P r i P r i P p i P p i P f i r f ==-⨯-⨯=-∆=∆∙=⨯+⨯==∙=⨯+⨯+⨯====-====+==+-=∆-∆=∆⎰∑∑∑∑11.a particular blast furnace gas has the following composition by (volume): N 2=60%, H 2=4, CO=12%, CO 2=24%(a) if the gas at 298K is burned with the stochiometric amount of dry air at 298 K, what is the composition of the flue gas? What is the adiabatic flame temperature? (b) repeat the calculation for 30% excess combustion air at 298K(C)what is the adiabatic flame temperature when the blast furnace gas is preheated to 700K (the dry air is at 298K)(d) suppose the combustion air is not dry ( has partial pressure of water 15 mm Hg and a total pressure of 760 mm Hg) how will the flame temperature be affected? DA TA(k J/mol) (1.11)2CO CO FOR513.393523.110)/(--∆m o lkJ H f 2222,)(O N g O H CO CO FOR34505733]/[K mol J C P ∙Solution)(1052)(75438286370])295.03450(241604[026.0])335.03457(110523393513[079.0])([%8.66%%,8.6%%,6.2%%,8.15%%,9.72.0/83.110012%)()(1122)(82538313430])295.03450(241604[029.0])335.03457(110523393513[086.0])([%7.65%%,7.5%%,9.2%%,1.17%%,6.82.0/810012%2121)(,,,,,,,02222,,,,,,,0222222222K T K T T n C T T X C dT n C n C H x H N O H CO CO b K T K T T n C T T X C dT n C n C H x H N O H CO CO OH O H CO O CO a i i r P ii P i i r P i i p P i i i i r P ii P i i r P i i p P i i ===∆=∆-∆-⨯--+∆-⨯---=+--∆=∆=====⨯+====∆=∆-∆-⨯--+∆-⨯---=+--∆=∆=====+=→+→+∑∑∑⎰∑∑∑∑∑⎰∑∑)(1419),(11213842594034286.0)402(2.39714.0])295.03450(241604[029.0])335.03457(110523393513[086.0)3(K T K T T T T T H ===∆=∆⨯--∆⨯-∆-⨯--+∆-⨯---=∆12.A bath of molten copper is super cooled to 5℃ below its true melting point. Nucleation of solid copper then takes place, and the solidification proceeds under adiabatic conditions. What percentage of the bath solidifies?DATA: Heat of fusion for copper is 3100 cal/mol at 1803℃(the melting point of copper) C P,L =7.5(cal/mol ℃), C P,S =5.41+(1.5*10-3T )(cal/mol ℃) (1.12) Solution)/(310355.75.0)17981803(105.1541.5310002231798,1798,17981803,18031798,1803,mol cal H H dT C dT C HL S SL L P S P LS =⨯-⨯-⨯+⨯+==+++-⎰⎰13.Cuprous oxide (Cu 2O) is being reduced by hydrogen in a furnace at 1000K, (a)write the chemical reaction for the reduced one mole of Cu 2O(b)how much heat is release or absorbed per mole reacted? Given the quantity of heat and state whether heat is evolved (exothermic reaction) or absorbed (endothermic reaction) DATA: heat of formation of 1000K in cal/mol Cu 2O=-41900 H 2O=-59210 (1.13) solution)/(173104190059210222mol cal H OH Cu H O Cu =-=∆+=+,exothermic reaction14. (a) what is the enthalpy of pure, liquid aluminum at 1000K?(b) an electric resistance furnace is used to melt pure aluminum at the rate of 100kg/h. the furnace is fed with solid aluminum at 298K. The liquid aluminum leaves the furnace at 1000K. what is the minimum electric powder rating (kW) of furnace.DATA : For aluminum : atomic weight=27g/mol, C p,s =26(J/molK), C p,L =29(J/molK), Melting point=932K, Heat of fusion=10700J/mol (1.14)Solution )(28.0)(7.2793600110002727184)/(2718410700)9321000(29)298932(261000932,932298,1000,kW W P mol J H dT C dT C H SLL P S P l ==⨯⨯==+-⨯+-⨯=++=⎰⎰15 A waste material (dross from the melting of aluminum) is found to contain 1 wt% metallic aluminum. The rest may be assumed to aluminum oxide. The aluminum is finely divided and dispersed in the aluminum oxide; that is the two material are thermally connected.If the waster material is stored at 298K. what is the maximum temperature to which it may rise if all the metallic aluminum is oxidized by air/ the entire mass may be assumed to rise to the same temperature. Data : atomic weight Al=27g/mol, O=16g/mol, C p,s,Al =26(J/molK), C p,s,Al2O3=104J/mol, heat formation of Al 2O 3=-1676000J/mol(1.15)Solution;)(600)(3021041029927275.116122711676000K T K T T ==∆∆⨯⨯++⨯⨯=⨯⨯16 Metals exhibit some interesting properties when they are rapidly solidified from the liquid state. An apparatus for the rapid solidification of copper is cooled by water. In the apparatus, liquid copper at its melting point (1356K) is sprayed on a cooling surface, where it solidified and cools to 400K. The copper is supplied to the apparatus at the rate of one kilogram per minute. Cooling water is available at 20℃, and is not allowed to raise above 80℃. What is the minimum flow rate of water in the apparatus, in cubic meters per minute? DATA; for water: C p =4.184J/g k, Density=1g/cm 3; for copper: molecular weight=63.54g/mol C p =7cal/mol k, heat of fusion=3120 cal/mol (1.16)Solution:min)/(10573.2)2080(1min /min54.631000)]4001356(73120[min /33m V VQ Q Water Copper -⨯=-=⨯⨯-⨯+=17 water flowing through an insulated pipe at the rate of 5L/min is to be heated from 20℃ to 60℃ b an electrical resistance heater. Calculate the minimum power rating of the resistance heater in watts. Specify the system and basis for you calculation. DATA; For water C p =4.184J/g k, Density=1g/cm 3 (1.17) Solution: )(139476010005)2060(184.4W W =⨯⨯-⨯=18 The heat of evaporation of water at 100℃ and 1 atm is 2261J/mol (a) what percentage of that energy is used as work done by the vapor?(b)if the density of water vapor at 100℃ and 1 atm is 0.597kg/m 3 what is the internal energy change for the evaporation of water? (1.18)Solution: )/(375971822613101%6.71822613101%)/(31010224.0273373101325mol J Q W U mol J V P =⨯+-=+=∆=⨯==⨯⨯=∆19 water is the minimum amount of steam (at 100℃ and 1 atm pressure) required to melt a kilogram of ice (at 0℃)? Use data for problem 1.20 (1.19) Solution )(125,3341000)10018.42261(g m m =⨯=⨯+20 in certain parts of the world pressurized water from beneath the surface of the earth is available as a source of thermal energy. To make steam, the geothermal water at 180℃ is passed through a flash evaporator that operates at 1atm pressure. Two streams come out of the evaporator, liquid water and water vapor. How much water vapor is formed per kilogram of geothermal water? Is the process reversible? Assume that water is incompressible. The vapor pressure of water at 180℃ is 1.0021 Mpa( about 10 atm) Data: C P,L =4.18J/(g k), C P,v =2.00J/(g k), △H V =2261J/g, △H m =334 J/g (1.20) Solution:leirreversib g x x x )(138),1000(8018.4)8018.48022261(=-⨯⨯=⨯-⨯+The problems of the second law1 The solar energy flux is about 4J cm 2/min. in no focusing collector the surface temperature can reach a value of about 900℃. If we operate a heat engine using the collector as the heat source and a low temperature reservoir at 25℃, calculate the area of collector needed if the heat engine is to produce 1 horse power. Assume the engine operates at maximum efficiency. (2.1)Solution )(664.0)(74660104273900)25900(24m S W tWP StQ T T T W H H L H ===⨯⨯+-=-=2 A refrigerator is operated by 0.25 hp motor. If the interior of the box is to be maintained at -20℃ ganister a maximum exterior temperature of 35℃, what the maximum heat leak (in watts) into the box that can be tolerated if the motor runs continuously? Assume the coefficient of performance is 75% of the value for a reversible engine. (2.2)Solution:)(114474625.02035202733475.0%75W P P T T T P Q T T T W L LLLH HHLH =⨯⨯+-⨯=-=-=3 suppose an electrical motor supplies the work to operate a Carnot refrigerator. The interior of the refrigerator is at 0℃. Liquid water is taken in at 0℃ and converted to ice at 0℃. To convert 1 g of ice to 1 g liquid. △H=334J/g is required. If the temperature outside the box is 20℃, what mass of ice can be produced in one minute by a 0.25 hp motor runningcontinuously? Assume that the refrigerator is perfectly insulated and that the efficiencies involved have their largest possible value. (2.3)Solution: )(4576033474625.020273g m M m P P T T T P L LLLH ===⨯⨯=-=4 under 1 atm pressure, helium boils at 4.126K. The heat of vaporization is 84 J/mol what size motor (in hp) is needed to run a refrigerator that must condense 2 mol of gaseous helium at 4.126k to liquid at the same temperature in one minute? Assume that the ambient temperature is 300K and that the coefficient of performance of the refrigerator is 50% of the maximum possible. (2.4)Solution: )(52.0)(393'60284216.4216.4300'5.0%50hp W P P T T T P P Q T T T W L L L H LLLH ==⨯⨯-=-==-= 5 if a fossil fuel power plant operating between 540 and 50℃ provides the electrical powerto run a heat pump that works between 25 and 5℃, what is the amount of heat pumped into the house per unit amount of heat extracted from the power plant boiler. (a) assume that the efficiencies are equal to the theoretical maximum values(b) assume the power plant efficiency is 70% of maximum and that coefficient ofperformance of the heat pump is 10% of maximum(c) if a furnace can use 80% of the energy in fossil foe to heat the house would it be moreeconomical in terms of overall fissile fuel consumption to use a heat pump or a furnace ? do the calculations for cases a and b (2.5)solution:1,2,2,1,212,2,2,2,21,1,1,1,198.82527352527354050540)(H H H H H H L H H H L H P P P P P P P T T T P P T T T P a =+-=+-=-=-=.,)(6286.0)(1,2,not is b ok is a c P P b H H =6 calculate △U and △S when 0.5 mole of liquid water at 273 K is mixed with 0.5 mol of liquid water at 373 K and the system is allowed to reach equilibrium in an adiabaticenclosure. Assume that C p is 77J /(mol K) from 273K to 373K (2.6) Solution:)/(933.0)273323ln(5.0)373323ln(5.0)ln()ln()(02211K J C C T T C n T T C n S J U P P E P E P =+=+=∆=∆ 7 A modern coal burning power plant operates with a steam out let from the boiler at 540℃and a condensate temperature of 30℃.(a) what is the maximum electrical work that can be produced by the plant per joule of heatprovided to the boiler?(b) How many metric tons (1000kg) of coal per hour is required if the plant out put is to be500MW (megawatts). Assume the maximum efficiency for the plant. The heat of combustion of coal is 29.0 MJ/k g(c) Electricity is used to heat a home at 25℃ when the out door temperature is 10℃ bypassing a current through resistors. What is the maximum amount of heat that can be added to the home per kilowatt-hour of electrical energy supplied? (2.7)Solution:)(3.69)(6937136005000.29)()(89.013054030540)(ton kg m T T T mb J Q T T T W a LH LH H L H ==⨯=-=+-=-=)(9.191102525273)(J Q Q T T T W c H HHLH =-+=-=8 an electrical resistor is immersed in water at the boiling temperature of water (100℃) the electrical energy input into the resistor is at the rate of one kilowatt(a) calculate the rate of evaporation of the water in grams per second if the water containeris insulated that is no heat is allowed to flow to or from the water except for that provided by the resistor(b) at what rate could water could be evaporated if electrical energy were supplied at therate of 1 kw to a heat pump operating between 25 and 100℃data for water enthalpy of evaporation is 40000 J/mol at 100℃; molecular weight is 18g/mol; density is 1g/cm 3 (2.8)solution:)(23.2,2510027310010004000018)()(45.0,10004000018)(g m m b g m ma =-+===9 some aluminum parts are being quenched (cooled rapidly ) from 480℃ to -20℃ byimmersing them in a brine , which is maintained at -20℃ by a refrigerator. The aluminum is being fed into the brine at a rate of one kilogram per minute. The refrigerator operates in an environment at 30℃; that is the refrigerator may reject heat at 30℃. what is them minuspower rating in kilowatts, of motor required to operate the refrigerator? Data for aluminum heat capacity is 28J/mol K; Molecular weight 27g/mol (2.9)Solution:)(5.102)(102474202732030)20480(28271000kW W P P T T T P P L L L L H W L ==---=-=--⨯=10 an electric power generating plant has a rated output of 100MW. The boiler of the plantoperates at 300℃. The condenser operates at 40℃(a) at what rate (joules per hour) must heat be supplied to the boiler?(b) The condenser is cooled by water, which may under go a temperature rise of no morethan 10℃. What volume of cooling water in cubic meters per hour, is require to operate the plant?(c) The boiler tempeture is to be raised to 540℃,but the condensed temperature and electricoutput will remain the same. Will the cooling water requirement be increased, decreased, or remain the same?Data heat capacity 4.184, density 1g/cm 3 (2.10)Solution: )(109.7)(102.21040300273300)(1188J t P Q W P T T T P a H H L H H H ⨯==⨯=-+=-=)(1003.1184.41010)(103.4)(34611m V Q V J Q b L L ⨯==⨯⨯⨯⨯=noW P T T T P c L H H H )(10626.11040540273540)(88⨯=-+=-=11 (a) Heat engines convert heat that is available at different temperature to work. Theyhave been several proposals to generate electricity y using a heat engine that operate on the temperature differences available at different depths in the oceans. Assume that surface water is at 20℃, that water at a great depth is at 4℃, and that both may be considered to be infinite in extent. How many joules of electrical energy may be generated for each joule of energy absorbed from surface water? (b) the hydroelectric generation of electricity use the drop height of water as the energy source. in a particular region the level of river drops from 100m above sea level to 70m above the sea level . what fraction of the potential energy change between those two levels may be converted into electrical energy? how much electrical energy ,in kilowatt-hours, may be generated per cubic meter of water that undergoes such a drop? (2.11)Solution:)/(1006.136001000)()(055.0127320420)(6h kW hmg P b J Q T T T W a H H L H ⨯=⨯∆==+-=-=12 a sports facility has both an ice rink and a swimming pool. to keep the ice frozen during the summer requires the removal form the rink of 105 KJ of thermal energy per hour. It has been suggested that this task be performed by a thermodynamic machine, which would be use the swimming pool as the high temperature reservoir. The ice in the rink is to be maintain at a temperature of –15℃, and the swimming pool operates at 20℃, (a) what is the theoretical minimum power, in kilowatts, required to run the machine? (b) how much heat , in joule per hour , would be supplied t the pool by this machine? (2.12)Solution:)(1014.1101527320273)()(77.33600/10152731520)(555kJ Q b kW P T T T P a H L L L H ⨯=-+==-+=-=13solution:)/(81.6810ln 314.877.45277.6282.4)/(152940)()/(67.4977.45277.6282.4)()/(152940)(22)(2molK cal S mol cal H d molK cal S c mol cal H b AlNN Al a -=+-⨯-⨯=∆=∆-=-⨯-⨯=∆=∆=+14solution:)/(2257412000)27340273ln 184.4273336263273ln1.2()(40,010,K J dT T C T H dT T C m S WATER P m mICE P =+++=+∆+=∆⎰⎰- 15)(70428)(2896100077773002J W J Q T T T W L L L H ==-=-=16)(4.3719))2.4300(314.85.13.83(3002.4300)(7.58663.832.42.4300J Q T T T W J Q T T T W H H L H L L L H =-⨯+-=-==-=-=17yesd Q c K J PPnR S b J pdV n W Q OU T a )(0)()/(1.1910ln 314.81ln )()(570410ln 298314.810)(0==⨯⨯==∆=⨯⨯=-=-==∆=∆⎰18)(122233527302033560500g m m m T T T L L H =-=-=⨯教材各章习题参考答案 (魏)3.2 ΔG = -108.9 J/mol; ΔS = -21.42 J/(mol.K)3.6 (a ) 22.09/(.)S J mol K ∆=;(b) At 0︒C, ∆G =0; (c) ∆H = 5841.9 J;(d) ∆S =21.39J /(mol.K),∆G = 109.38 J/mol4.1 (a ) 2898.28J/mol; ( b ) No; ( c ) 345 J/mol; ( d ) 14939 atm; ( e )4921 J/mol4.2 ( a ) 272.8K; ( b ) Pa P 610345⨯≈∆ ; ( c ) 249.46K 4.3 1202K4.4 P=5.73⨯10-6 atm 4.5 0.16P4.7 08.10430685ln +-=TP 4.8 ( a ) 1180K; ( b ) 695.3K; ( c ) 114.4kJ/mol; ( d ) 7123 J/mol; ( e )4.2J/mol4.9 In the initial state: 4.06 mol %; in the final state:5.3 mol% 4.10 ( a )348 kJ; ( b ) 2.3×10-3Pa ;( c ) “ solution not possible ”; (d ) “solution not possible ”5.1 atm p H 0005.0= 5.2、atmp o 1221007.1-⨯=If the error in enthalpy is 500cal, the uncertainty in the pressure calculated is 28.6%, and if the error in enthalpy is -500cal, the uncertainty is -22.1%5.3、(a) T =462K; (b) T = 420K5.4 (a) atm P O 2621014.1-⨯=, (b) P O2 =2.28⨯10-10 atm., (c) The equilibriumoxygen pressure remains the same when the total pressure increases, which means a higher purity level of N 2 .5.5 (a) 略; (b) Pa atm P H 8.181013056.1800019.0)('2=⨯==; (c) 21.5L Ar isneeded to be bubbled into the melt.5.6(a )l n K a1/T, 10-31/K=∆-=∆o o G kJ H 1000;50- 66.6kJ(b) Ja = 3 < Ka, the reaction will proceed from left to right, and theatmosphere will not oxidize Ni. 5.7 略5.8. (a) P SiO = 8.1⨯10-8 (atm) (b) ∆H o = 639500J; ∆So =334.9J/K (c ) PO2 =10-30 atm 5.9 5.10.J H o72250=∆,the reaction is an endothermic one.5.11. (a),166528J H o =∆ the reaction is an endothermic one.; (b) At 1168K, the equilibrium pressure of CO2 equals one atmosphere.)(106.08)(atm Pg u -⨯=5.12 (a) 略 , (b) Mg CO P P =; (c) T = 2037 K 5.13 (a) 略; (b) 13109.2⨯=K ; (c) ppm 186.0 5.14 (a) 略; (b) kJ H 52.267=∆; (c) K T 1592= 5.15 (a) )(106.13atm -⨯≈; (b) )(1028.210)(2atm P g O H -⨯=5.16 (a) 97.9=K ; (b) atm x 14.4=; (c) if the temperature is increased, the fraction of water reacted will increase since the equilibria constant increases with increasing temperature.6.2 (a )1.287V;(b) When the water impure, the voltage will go higher; (c) 1.219V 6.4 (a) 145.3kJ;(b) The maximum work that could be derived is 702.36kJ; (c) In this case, the maximum work that could be derived is696.56kJ.6.5 (a) -6252J/mol; (b) 370.0)(=II Cd a ; (c) )(42.3mmHg P Cd =; 6.67.87⨯10-4 V 6.7 (a))(22g Cl Mg MgCl +=(b) Pa P Cl 21'1086.82-⨯=;(c) 2.485V6.8 (a) Pa P O 11'2105.5-⨯=;(b) Anode: e Ni Ni 2+→Cathode: -→+2222/1O e O ;(c) 0.757V; (d) 0.261V6.10 (a) )(509.3V E o=;(b) 0.074kJ;(c) 4.1⨯106J;(d) Yes. In this case, the open circuit voltage is 3.648V;(e) In this case, to keep the temperature constant, 3.92⨯106J heatshould be removed from the battery per hour. 6.11(a) TG CO Al C O Al o 26.3211008.12/322/36232-⨯=+=+Δ(b) The minimum voltage at which the electrolysis may be carriedout at 1250K is 1.172V .7.1 0.117 atm 7.5 ( a ) ,82.5 2.5 2.5B A BA BB T PV V V x x x x x ⎛⎫∂=+=--⎪∂⎝⎭ ,102.5 2.5 2.5A B A A B A T PV V V x x x x x ⎛⎫∂=+=-- ⎪∂⎝⎭( b) B A M x x V 5.2=7.7 2)1(736.0ln Sn Sn x --=γ7.8 The maximum solubility of MgF2 in liquid MgCl at 900︒C is 19。
热力学习题与答案(原件)讲解
材料热力学习题1、阐述焓H 、内能U 、自由能F 以及吉布斯自由能G 之间的关系,并推导麦克斯韦方程之一:T P PST V )()(∂∂-=∂∂。
答: H=U+PV F=U-TS G=H-TS U=Q+W dU=δQ+δWdS=δQ/T, δW=-PdV dU=TdS-PdVdH=dU+PdV+VdP=TdS+VdP dG=VdP-SdTdG 是全微分,因此有:TP P TP ST V ,PT G T P G ,T V P G T P T G P S T G P T P G )()()()()()(2222∂∂-=∂∂∂∂∂=∂∂∂∂∂=∂∂∂∂=∂∂∂∂∂-=∂∂∂∂=∂∂∂因此有又而2、论述: 试绘出由吉布斯自由能—成分曲线建立匀晶相图的过程示意图,并加以说明。
(假设两固相具有相同的晶体结构)。
由吉布斯自由能曲线建立匀晶相图如上所示,在高温T 1时,对于所有成分,液相的自由能都是最低;在温度T 2时,α和L 两相的自由能曲线有公切线,切点成分为x1和x2,由温度T 2线和两个切点成分在相图上可以确定一个液相线点和一个固相线点。
根据不同温度下自由能成分曲线,可以确定多个液相线点和固相线点,这些点连接起来就成为了液相线和固相线。
在低温T 3,固相α的自由能总是比液相L 的低,因此意味着此时相图上进入了固相区间。
3、论述:通过吉布斯自由能成分曲线阐述脱溶分解中由母相析出第二相的过程。
第二相析出:从过饱和固溶体α中(x0)析出另一种结构的β相(xβ),母相的浓度变为xα. 即:α→β+ α1α→β+ α1 的相变驱动力ΔGm的计算为ΔGm=Gm(D)-Gm(C),即图b中的CD段。
图b中EF是指在母相中出现较大为xβ的成分起伏时,由母相α析出第二相的驱动力。
4、根据Boltzman方程S=kLnW,计算高熵合金FeCoNiCuCrAl和FeCoNiCuCrAlTi0.1(即FeCoNiCuCrAl各为1mol,Ti为0.1mol)的摩尔组态熵。
材料热力学习题解答第1一2章
(3)ΔU=ΔH=0
V W = -Q = -nRT ln 2 = - ×8.314×273×ln2 = -5619(J) V1
(4)Q=0; W=ΔU,即-pe(V2-V1)=nCV,m(T2-T1), -0.5p2V2= nCV,m(T2-T1) ; -0.5nRT2= nCV,m(T2-T1)-0.5×8.314×T2=2.5×8.314×(T2-273) ; T2=227.5K
W =Байду номын сангаасΔU = nCV, m (T2 - T1 ) = ΔH = nCp, m (T2 - T1 ) =
100 ×2.5×8.314×(227.5- 273)= -3378(J) 28
100 ×3.5×8.314×(227.5- 273)= -4729(J) 28
13、在244K温度下,1.00mol单原子气体(1)从1.01MPa、244K等温可逆膨胀到 505kPa,(2) 从1.01MPa、244K绝热可逆膨胀到505kPa,求两过程中的Q、W、ΔU 及ΔH,并作p-V图表示上述气体所进行的两个过程。 解:(1)ΔU=ΔH=0
5、2.00mol的水蒸气在100℃、101325Pa下变为水,求Q、W、ΔU及ΔH。已知水 的气化热为2258J/g。
解:Q Q p H -n vapH m -2 22581810-3 -81.29(kJ) W -pe V p e Vg nRT -2 8.314 37310-3 6.20(kJ) U Q W -81.29 6.20 -75.09(kJ)
4、在101kPa下,气体由10.0dm3膨胀到16.0dm3,吸收了1255J的热,求ΔU、 ΔH、W。
2H Q p 1255J 3U Q W 1255- 606 649J 1W -pe V -101103 (16- 10)10 - 3 -606(J) 解:
热力学课程习题解答-109页精选文档
目录第一章 (1)第二章 (18)第三章 (258)第一章 温 度1-1 在什么温度下,下列一对温标给出相同的读数:(1)华氏温标和摄氏温标;(2)华氏温标和热力学温标;(3)摄氏温标和热力学温标? 解:(1)Q 9325F t t =+∴当F t t =时,即可由9325t t =+,解得325404t ⨯=-=- 故在40c -o 时 F t t =(2)又Q 273.15T t =+ ∴当F T t =时 则即9273.15325t t +=+ 解得:241.155301.444t ⨯== ∴273.15301.44574.59T K =+= 故在574.59T K =时,F T t =(3)Q 273.15T t =+ ∴若T t = 则有273.15t t += 显而易见此方程无解,因此不存在T t =的情况。
1-2 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg 。
(1)用温度计测量300K 的温度时,气体的压强是多少? (2)当气体的压强为68mmHg 时,待测温度是多少? 解:对于定容气体温度计可知:()273.15trPT P K P = (1) 115030055273.16273.16tr P T P mmHg ⨯===(2) 2268273.16273.1637250tr P T KK K P === 1-3 用定容气体温度计测得冰点的理想气体温度为273.15K ,试求温度计内的气体在冰点时的压强与水的三相点时压强之比的极限值。
题1-4图解:根据00lim ()273.16limtr tr P P trP T T P K P →→==已知 冰点273.15T K =你∴0273.15lim0.99996273.16273.16tr P trP T KP K K →==。
1-4 用定容气体温度计测量某种物质的沸点。
原来测温泡在水的三相点时,其中气体的压强500tr P mmHg =;当测温泡浸入待测物质中时,测得的压强值为734P mmHg =,当从测温泡中抽出一些气体,使tr P 减为200mmHg 时,重新测得293.4P mmHg =,当再抽出一些气体使tr P 减为100mmHg 时,测得146.68P mmHg =.试确定待测沸点的理想气体温度.解:根据273.16trPT K P =333146.68273.16273.16400.67100tr P T KK K P === 从理想气体温标的定义:0273.16limtr P trPT K P →=依以上两次所测数据,作T-P 图看趋势得出0tr P →时,T 约为400.5K 亦即沸点为400.5K. 1-5 铂电阻温度计的测量泡浸在水的三相点槽内时,铂电阻的阻值为90.35欧姆。
热统习题解答(全)
第一章 热力学的基本规律1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κ。
解: 理想气体的物态方程为RT pV =,由此可算得: PP V V k T T P P T T V V T V P 1)(1;1)(1,1)(1=∂∂-==∂∂==∂∂=βα1.2 证明任何一种具有两个独立参量T ,P 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κ ,根据下述积分求得: ⎰-=)(ln kdP adT V ,如果Pk T a 1,1==,试求物态方程。
证明:dp p VdT T V p T dV T P )()(),(∂∂+∂∂= 两边除以V,得dp dT dp p VV dT T V V V dV T P κα-=∂∂+∂∂=)(1)(1积分后得 ⎰-=)(ln kdP adT V 如果,1,1p T ==κα代入上式,得C P T PdP T dT V ln ln ln )(ln +-=-=⎰所以物态方程为:CT PV =与1mol 理想气体得物态方程PV=RT 相比较,可知所要求的物态方程即为理想气体物态方程。
1.3在00C 和1atm 下,测得一块铜的体胀系数和压缩系数为a=4.185×10-5K -1,k=7.8×10-7atm -1。
a 和k 可以近似看作常数。
今使铜加热至100C ,问(1)压力要增加多少大气压才能使铜块的体积维持不变?(2)若压力增加100atm ,铜块的体积改变多少?解:(a )由上题dp dT dp p VV dT T V V V dV T P κα-=∂∂+∂∂=)(1)(1体积不变,即0=dV所以dT kadP = 即atm T k a P 62210108.71085.475=⨯⨯⨯=∆=∆-- (b)475121211211007.4100108.7101085.4)()(---⨯=⨯⨯-⨯⨯=---=-=∆p p T T V V V V V κα可见,体积增加万分之4.07。
第01章--热力学基本定律--习题及答案
8U0o-[h 习题及答案§ 1. 1 (P10)1.“任何系统无体积变化的过程就一定不做功。
”这句话对吗?为什么?解:不对。
体系和环境之间以功的形式交换的能量有多种,除体积功之外还有非体积功,如电功、表面功等。
2. “凡是系统的温度下降就一定放热给环境,而温度不变时则系统既不吸热也不放热。
”这结论正确吗?举例说明。
答:“凡是系统的温度下降就一定放热给环境”不对:体系温度下降可使内能降低而不放热,但能量可以多种方式和环境交换,除传热以外,还可对外做功,例如,绝热容器中理想气体的膨胀过程,温度下降释放的能量,没有传给环境,而是转换为对外做的体积功。
“温度不变时则系统既不吸热也不放热”也不对:等温等压相变过程,温度不变,但需要吸热(或放热), 如P Ө、373.15K 下,水变成同温同压的水蒸气的汽化过程,温度不变,但需要吸热。
3. 在一绝热容器中,其中浸有电热丝,通电加热。
将不同对象看作系统,则上述加热过程的Q 或W 大于、小于还是等于零?(讲解时配以图示) 解:(1)以电热丝为系统:Q<0,W>0(2)以水为系统:Q>0,W=0(忽略水的体积变化) (3)以容器内所有物质为系统:Q=0,W>0(4)以容器内物质及一切有影响部分为系统:Q=0,W=0(视为孤立系统)4. 在等压的条件下,将1mol 理想气体加热使其温度升高1K ,试证明所做功的数值为R 。
解:理想气体等压过程:W = p(V 2 -V 1) = pV 2 -PV 1= RT 2 -RT 1= R(T 2 -T 1) = R5. 1mol 理想气体,初态体积为25dm 3, 温度为373.2K ,试计算分别通过下列四个不同过程,等温膨胀到终态体积100dm 3时,系统对环境作的体积功。
(1)向真空膨胀。
(2)可逆膨胀。
(3)先在外压等于体积50 dm 3时气体的平衡压力下,使气体膨胀到50 dm 3,然后再在外压等于体积为100dm 3时气体的平衡压力下,使气体膨胀到终态。
热力学第一、二定律答案
《热力学第一、二定律》习题参考答案一、填空题1、不做非体积功的恒容过程;不做非体积功的恒压过程;理想单纯状态改变,对其它系统则需过程恒容;理想气体的单纯状态改变,对其它系统则需过程恒压;过程恒温且不做非体积功;理想气体的绝热可逆过程;恒温恒容不做非体积功的过程;恒温恒压不做非体积功的过程;不做非体积功的封闭系统。
2、CO2(g);C(石墨);C(石墨);碳元素各晶型中最稳定的相态;CO2(g);碳元素完全氧化的最终产物.3、=;=;=;>4、大,小5、1299.06J;779.44J;1299.06J;-519.63J6、-nRTln(v2/v1);nRTln(v2/v1);=0;=07、各产物的热容之和与各反应物的热容之和不相等;在所涉及的温度范围内各物质均无相变.8、广延;自发;增大;极大;减小9、封闭系统;隔离系统;纯物质的完美晶体10、<;<11、(1)U;(2)G;(3)S;(4)H、U12、=0;=nRln(v2/v1)13、等温;等压;封闭系统不做其它功;减少14、=0;>015、66.3J·K-1;0;23400J;23400J;-2935J;20465J;-2939J16、<0;>0 ; = 0。
17、>0; =0;>0;<0二、选择题1、不对,△H = Q p ,只说明Q p 等于状态函数的改变值。
并不意味着Q p 具有状态函数的性质,Q p 是一过程量,不是体系的状态性质,只能说在恒压而不做非体积功的特定条件下Q p 的值等于体系状态函数H 的改变。
2、因为对理想气体U=f(T)内能仅是温度的函数,只要始终态温度分别相同,△U 就一定相同。
所以公式dT C U T T m v ⎰=∆21,并不受定容条件的限制。
3、不对。
只有在等压下,无其它功时,Q p =ΔH m , ΔH m >0故Q p >0,体系必定吸热。
在其他条件下,ΔH m >0,Q p 可以小于0,等于0,不一定吸热。
热力学习题与解答
习题提示与答案第一章基本概念及定义1-1试确定表压力为0.1 kPa 时U 形管压力计中的液柱高度差。
(1)液体为水,其密度为1 000 kg/m 3;(2)液体为酒精,其密度为789 kg/m 3。
提示:表压力数值等于U 形管压力计显示的液柱高度的底截面处液体单位面积上的力,g h p ρ∆=e 。
答案:(1)mm 10.19=∆水h (2)mm 12.92=∆酒精h 。
1-2测量锅炉烟道中真空度时常用斜管压力计。
如图1-17所示,若α=30°,液柱长度l =200 mm ,且压力计中所用液体为煤油,其密度为800 kg/m 3,试求烟道中烟气的真空度为多少mmH 2O(4 ℃)。
提示:参照习题1-1的提示。
真空度正比于液柱的“高度”。
答案:()C 4O mmH 802v =p 。
1-3在某高山实验室中,温度为20 ℃,重力加速度为976 cm/s 2,设某U 形管压力计中汞柱高度差为30 cm ,试求实际压差为多少mmHg(0 ℃)。
提示:描述压差的“汞柱高度”是规定状态温度t =0℃及重力加速度g =980.665cm/s 2下的汞柱高度。
答案:Δp =297.5mmHg(0℃)。
1-4某水塔高30 m ,该高度处大气压力为0.098 6 MPa ,若水的密度为1 000 kg/m 3,求地面上水管中水的压力为多少MPa 。
提示:地面处水管中水的压力为水塔上部大气压力和水塔中水的压力之和。
答案:Mpa 8 0.392=p 。
1-5设地面附近空气的温度均相同,且空气为理想气体,试求空气压力随离地高度变化的关系。
又若地面大气压力为0.1 MPa ,温度为20 ℃,求30 m 高处大气压力为多少MPa 。
提示:h g p p ρ-=0→T R h g p p g d d -=,0p 为地面压力。
答案:MPa 65099.0=p 。
1-6某烟囱高30 m ,其中烟气的平均密度为0.735 kg/m 3。
热力学习题
a 吸热 b 放热 c 无热效应 d 吸放热不能肯定 0 46.1 mol H2(为理想气体)由始态298K、p 被绝热可逆地压缩到5dm3,那 么终态温度T2 与内能变化∆U分别是( )。 a 562K,0 kJ b 275K,-5.49 kJ c 275K,5.49kJ d 562K, 5.49 kJ 47.下面所列物理量中,皆为广度性质的是( )。 a Cp,U b T,n c P,V d m,Vm 48.在( )条件下,化学反应吸收或放出的热,称为化学反应的热效 应。 a T1=T2,P1=P2 b T1=T2,W'=0 c P1=P2,W'=0 d T1=T2, V1=V2 49.( ),可以使用公式 DU = nCV,m(T2-T1),计算体系内能的变化。 a 任意体系发生热容为常数的任意变化 b 任意体系发生热容为常数 的等容变化 c 理想气体发生热容为常数的P、T、V的变化 d 理想气体发生热容为 常数的等容变化 答案:bbccc cbdda abad abbcb ddaca bcbbb aaaad abcac cacbc ddabc
25.某封闭系统经历一个绝热等压过程,则( )。 a △U = 0 b △H = 0 c △H = W d △U = W 26. .在一个绝热刚瓶中,发生一个放热的分子数增加的化学反应,那
么( )。 a Q > 0,W > 0,∆U > 0 b Q = 0,W = 0,∆U < 0 c Q = 0,W = 0,∆U = 0 d Q < 0,W > 0,∆U < 0 。 27.一定量的单原子理想气体,从 A 态变化到 B 态,变化过程不知道, 但若 A 态与 B 态两点的压强、体积和温度都已确定,那就可以求出( )。 a气体膨胀所做的功 b气体内能的变化 c气体分子的质量 d热 容的大小 28. 恒压下,一定量的理想气体,当温度升高时内能将 ( ) 。 a 降低 b 增加 c 不变 d 增加、减少不能确定 29.恒容下,一定量的理想气体,当温度升高时内能将 ( ) 。 a降低 b增加 c不变 d增加、减少不能确定 30.如图,将CuSO4水溶液置于绝热箱中,插入两个铜电 极,以蓄电池为电源进行电解,可以看作封闭体系的是( )。 a 绝热箱中所有物质 b 两个铜电极 c 蓄电池和铜电极 d CuSO4水溶液 31.下述说法中, 不正确的是( ) 。 a 焓是体系能与环境进行交换的能量 b 焓是人为定义的一种具有能量量纲的热力学量 c 焓是体系状态函数 ; d 焓只有在某些特定条件下,才与体系吸热相等 。 32.在等压下,进行一个反应 A + B → C,若∆rHm > 0,则该反应一定 是( ) 。 a 吸热反应 b 放热反应 c 温度升高 d 无法确定 33.下述说法中,哪一种正确: a 热容C不是状态函数 b 热容C与途径无关 c 恒压热容Cp不是状态函数 d 恒容热容CV不是状态函数 。 34.热力学第一定律仅适用于什么途径: a 同一过程的任何途径 b 同一过程的可逆途径 c 同一过程的不可逆途径 d 不同过程的任何途径 。 35.非理想气体的节流膨胀过程中,下列哪一种描述正确的是( ) 。 a Q = 0,∆H = 0,∆p < 0 b Q = 0,∆H < 0,∆p < 0 ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:[(1)+2×(2)+6×(3)]/3=(4) ΔrHm,4=(ΔrHm,1+2×ΔrHm,2+6×ΔrHm,3)/3=(6.3+2×22.6-6×13.9)/3= -14.83 kJ/mol
16、若知甲烷的标准摩尔燃烧焓为-8.90×105 J/mol,氢的标准摩尔燃烧 焓为-2.86×105 J/mol,碳的标准摩尔燃烧焓为-3.93×105 J/mol,试求甲 烷的标准摩尔生成焓为多少。
计算结果表明,Q、W与途径有关,而ΔU、ΔH与途径无关。
11、20.0mol氧在101kPa时,等压加热,使体积由1000dm3膨胀至2000dm3。设氧为理 想气体,其热容Cp,m=29.3J· mol-1· K-1,求ΔU及ΔH。 解: T1=607.4K,T2=1214.8K Q=20×29.3×(1214.8-607.4)=355936(J)=356kJ W=-101×103×(2-1)= -101×103(J)=-101kJ ΔU=Q+W=356-101=255(kJ) ΔH=Qp=Q=356kJ
7、某热处理车间室温为25℃,每小时处理400kg链轨节(碳钢),淬火温度为850℃,假 定炉子热损失量是加热链节热量的30%,问电炉每小时耗电量多少?已知碳钢的 Cp=0.5523J/g. 解:Q=400×103×0.5523×(850-25)×(1+30%)×10-3=236937(kJ) =236937/3600=65.82(kWh) 8、将1000g铜从25℃加热到1200℃,需供给多少热量?已知铜的熔点为1083℃,熔化 热为13560J/mol,Cp(l)=31.40 J· mol-1· K-1,Cp(s)=24.48J· mol-1· K-1。
2.在一绝热水箱装有水,接联电阻丝,由蓄电池供应电流,试问下
列情况下,Q、W及U的值是大于零、小于零还是等零。 系统 环境 解: 电池 水+电阻丝 电阻丝* 水+电阻丝
W 0,Q 0, U 0 0
水 电池+电阻 丝
Q 0,W 0, U 0
水+电阻丝 电池+电阻丝 电池 水
Q Q1 Q 2 1.001.5R (751.6- 300) 1.00 2.5R (300- 751.6) 5632- 9387 -3755(J) W W1 W2 0 - 25.3103 (0.09858 - 0.2470) 3755(J) U Q W 0 H U (pV) 0 25.3 0.09858 - 10.1 0.2470 0
5、2.00mol的水蒸气在100℃、101325Pa下变为水,求Q、W、ΔU及ΔH。已知水 的气化热为2258J/g。
解:Q Q p H -n vapH m -2 22581810-3 -81.29(kJ) W -pe V p e Vg nRT -2 8.314 37310-3 6.20(kJ) U Q W -81.29 6.20 -75.09(kJ)
(3)ΔU=ΔH=0
V W = -Q = -nRT ln 2 = - ×8.314×273×ln2 = -5619(J) V1
(4)Q=0; W=ΔU,即-pe(V2-V1)=nCV,m(T2-T1), -0.5p2V2= nCV,m(T2-T1) ; -0.5nRT2= nCV,m(T2-T1)-0.5×8.314×T2=2.5×8.314×(T2-273) ; T2=227.5K
解:(1)CH4+2O2==CO2+2H2O; ΔrHm,1=-8.90×105 kJ/mol (2)H2+0.5O2==H2O; ΔrHm,2=-2.86×105kJ/mol (3)C+O2==CO2; ΔrHm,3=-3.93×105kJ/mol (4)C+2H2=CH4; ΔrHm,4=? [(3)+2×(2)-(1)]=(4) ΔrHm,4=-3.93×105-2×2.86×105+8.90×105=-0.75×105 kJ/mol
W=ΔU= nCV,m(T2-T1)=1.5×8.314×(183-244)=-761(J) ΔH= nCp,m(T2-T1)=2.5×8.314×(183-244)=-1268(J) 14、在101325Pa下,1.00mol的水从50℃变为127℃的水蒸气,求所吸收的热 解:Cp,m(l)=46.86+0.03T , Cp,m(g)=30+0.011T
4、在101kPa下,气体由10.0dm3膨胀到16.0dm3,吸收了1255J的热,求ΔU、 ΔH、W。
2H Q p 1255J 3U Q W 1255- 606 649J 1W -pe V -101103 (16- 10)10 - 3 -606(J) 解:
解: Q p =
1000 1000 1000 ×24.48×(1083- 25) + × 13560+ ×31.40×(1200- 1083) 63.54 63.54 63.54 J = 678.8kJ = 407615+ 213409+ 57819= 678843
9、求55.85kg的α-Fe从298K升温到1000K所吸收的热。 (1)按平均热溶计算,Cp,m=30.30Jmol-1K-1; (2)按Cp,m=a+bT计算(查本书附录)
第一章热力学第一定律
1、10mol氧在压力为101kPa下等压加热,使体积自1000dm3膨胀到 2000dm3,设其为理想气体,求系统对外所做的功。 解:
W -pe V -101 103 (2000-1000)10-3 -101 103 (J)
即系统对外做功101×103J
W = ΔU = nCV, m (T2 - T1 ) = ΔH = nCp, m (T2 - T1 ) =
100 ×2.5×8.314×(227.5- 273)= -3378(J) 28
100 ×3.5×8.314×(227.5- 273)= -4729(J) 28
13、在244K温度下,1.00mol单原子气体(1)从1.01MPa、244K等温可逆膨胀到 505kPa,(2) 从1.01MPa、244K绝热可逆膨胀到505kPa,求两过程中的Q、W、ΔU 及ΔH,并作p-V图表示上述气体所进行的两个过程。 解:(1)ΔU=ΔH=0
17、已知(C2H2,g,298K)=-1299.6 kJ/mol;(H2O,l)=-285.85 kJ/mol (CO2,g,298K)=-393.5 kJ/mol;试求(C2H2,g,298K)=? 解:(1) C2H2 + 2.5O2 = 2CO2 + H2O; (1)=-1299.6 kJ/mol (2) H2 + 0.5 O2 = H2O(l); (2)=-285.85 kJ/mol (3) C + O2 =CO2; (3)=-393.5 kJ/mol (4) 2C + H2 =C2H2; (4)=(C2H2,g,298K)=? (3)×2+(2)-(1)=(4) (C2H2,g,298K)=-393.5×2-285.85+1299.6=226.75 (kJ/mol)
解: (1) W = -peΔp = -101103 ×10×8.314×300×( 1 1 ) ×10-3 = -22.45(kJ) 3 4 10110 10110 101103 (2)W = nRT ln 2 = 10×8.314×300×10-3 ln = -57.43(kJ) 1 101104
12、有100g氮气,温度为0℃,压力为101kPa,分别进行下列过程: (1)等容加热到p=1.5×101kPa。 (2)等压膨胀至体积等于原来的二倍。 (3)等温可逆膨胀至体积等于原来的二倍。 (4)绝热反抗恒外压膨胀至体积等于原来的二倍。 求各过程的Q、W、ΔU及ΔH。
解:V1=100×8.314×273/101000/28=0.08026m3 (1)温度升高到409.5K
6、1.00mol冰在0℃、101325Pa下变为水,求Q、W、ΔU及ΔH。已知冰的熔化热为 335J/g。冰与水的密度分别为0.917及1.00g/cm-3。
解: Q = Qp = ΔH = n fus H m 1? 335× 18× 10-3 = 6.03(kJ) 18 18 )× 10-6 = 0.165(J) 1 0.97 ΔU = Q + W = 6.03+ 0.000165 = 6.03(kJ) W = -pe ΔV = -101325 ×(
Q 0,W 0, U 0
W 0,Q 0, U 0
W 0,Q 0, U 0
(有*者表示通电后,电阻丝及水温皆升高,假定电池放电时无热效应。)
3、10mol的气体(设为理想气体),压力为101×104 Pa,温度为 27℃,分别求出下列过程的功: (1)反抗恒外压101×103等温膨胀到气体的压力也为101×103。 (2)等温可逆膨胀到气体的压力为101×103Pa。
P W = -Q = -nRT ln 1 = -1? 8.314×244×ln2 = -1406(J) P2
(2)Q=0 ;γ=2.5R/1.5R=1.67 根据p1-γTγ=常数,得 10101-1.67×2441.67=5051-1.67×T21.67 ,解得T2=183K W=ΔU= nCV,m(T2-T1)=1.5×8.314×(183-244)=-761(J)
1Qp 解:
55.85103 30.30 (1000- 298)10-3 21271(kJ) 55.85
(2)Fe的Cp,m=14.10+29.71×10-3T
55.85×103 1000 55.85×103 × 14010 29.71 dT ×[14.10 ×(1000- 298) 298 55.85 55.85 2 J = 23434 KJ +× 10-3 ×(1000 - 2982 )] = 9898200 + 134- 535817= 23434017 Qp =