高压输电线路防雷要求措施探讨(修改)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绪论
输电线路是电力系统的大动脉,它将巨大的电能输送到四面八方,是连接各个变电站、各重要用户的纽带。输电线路的安全运行,直接影响到了电网的稳定和向用户的可靠供电。因此,输电线路的安全运行在电网中占据举足轻重的地位,是实现“强电强网”的需要,也是向工农业生产、广大人民生活提供不间断电力的需要
由于我国地处温带(部分地区属于亚热带气候),所以雷电活动比较强烈。漫长的输电线路穿过平原、山区、跨越江河湖泊,遇到的地理条件和气象条件各不相同,所以遭受电击的机会较多。据统计,我国电力系统各类事故、障碍统计中,输、配电线路的雷害事故占有很大的比例。由于输电线路对于保“网”的重要地位,如何减少输电线路的雷害事故成为电力系统安全稳定运行的一项重要课题。
输电线路雷害事故引起的跳闸,不但影响电力系统的正常供电,增加输电线路及开关设备的维修工作量,而且由于输电线路上的落雷,雷电波还会沿线路侵入变电所。而在电力系统中,线路的绝缘最强,变电所次之,发电机最弱,若发电厂、变电所的设备保护不完善,往往会引起其设备绝缘损坏,影响安全供电。由此可见,输电线路的防雷是减少电力系统雷害事故及其所引起电量损失的关键。做好输电线路的防雷设计工作,不仅可以提高输电线路本身的供电可靠性,而且可以使变电所,发电厂安全运行得到保障。
关键字:输电线路防雷雷击
摘要:文章通过对雷击放电过程的分析以及高压送电线路雷击跳闸产生的原因,在进行线路防雷工作时,提出一些合理的防雷方式,以提高送电线路耐雷水平。
1.防雷设计
1.1防雷设计原则
线路防雷保护首先在于抓好基础工作,目前国内外在雷电防护手段上并没有出现根本的变化,很大程度上要依赖传统的技术措施,只要运用的好,仍然是可以信赖的。对已投入运行的线路,应结合地区的地貌、地形、地质以及土壤状况和接地电阻的合理水平给出正确的评价,找出可能存在的薄弱环节或缺陷,因地制宜地采取措施。
1.2防雷设计方法
目前,我国输电线路防雷设计主要有以下几个方面:
⑴理选择线路路径;
⑵设避雷线;
⑶低杆塔接地电阻;
⑷部分地段装设避雷器;
⑸提高线路整体绝缘水平。
这几种方法在目前的输电线路防雷设计中运用得非常多,在线路路径受地形和投资限制,选择范围不大的情况下,架设避雷线,降低杆塔接地电阻、装设避雷器、提高线路绝缘水平成为防雷设计的主要方法。避雷线、杆塔接地电阻、避雷器、线路绝缘的设计标准在各类规程和技术规范都有较为详细的阐述。
在选择设计输电线路的防雷设施时,应按照当地的累点活动情况、系统的中性点接地方式、输电线路的绝缘情况、有无自动重合闸或备用自投装置、负荷的重要程度等各项条件来综合考虑,并按照技术经济比较的结果来做出决定采用最佳保护方案。
在输电线路防雷设计中,必须紧密结合当前电力生产和建设中的课题,不断收集和积累各种数据和资料,经常总结防雷保护工作中的经验教训,提出新的更加有效地保护技术措施,制造相应的保护装置,以满足不断发展的电网要求。
输电线路防雷保护工作必须一切从实际出发,要充分听取各种意见,科研、设计、施工和运行部门应紧密结合,通力协作,根据当地雷电活动情况和电力网的具体特点等,进行充分的技术经济论证,保证防雷保护的设计方案技术先进、方案合理。
2.雷击跳闸分析
高压输电线路遭受雷击的事故主要与四个因素有关:线路绝缘子的50%冲击放电电压;有无架空地线;雷电流强度;杆塔的接地电阻。高压输电线路各种防雷措施都有其针对性,因此,在进行高压输电线路设计时,我们选择防雷方式首先要明确高压输电线路遭雷击跳闸原因。
2.1高压输电线路绕击成因分析
根据高压输电线路的运行经验、现场实测和模拟实验君证明,雷电绕击率
(lgPa )与避雷线对边导线的保护角(α)、杆塔高度(h)以及高压输电线路经过的地形、地貌和地质条件有关。对山区的杆塔,我们的计算公式是:
lgPa=αh 1/286
-3.35 山区高压输电线路的绕击率约为平地高压输电线路不可避免会出现大跨越、大高差挡距,这是线路耐雷水平的薄弱环节;一些地区雷电活动相对强烈,使某一区段的线路较其他线路更容易遭受雷击。
2.2高压输电线路反击成因分析
雷击杆塔顶部或避雷线时,雷电电流流过塔体和接地体,使杆塔电位升高,同时在相导线上产生感应过电压。如果升高塔体电位和相导线感应过电压合成的电位差超过高压输电线路绝缘闪络电压值,即U j >U50%时,导线与杆塔之间就会发生闪络,这种闪络就是反击闪络。
由以上公式可以看出,降低杆塔接地电阻Rch 、提高耦合系数k 、减小分流系数 、加强高压输电线路绝缘都可以提高高压输电的耐雷水平。在实际设计中,我们着重考虑降低杆塔接地电阻Rch 和提高耦合系数的方法作为提高线路耐雷水平的主要手段。
I j =U 50%
(1-k )βR ch +(h k h g -k)βL gt 2.6
+(1-h b h d k 0)h d 2.6 U 50%—绝缘子串(或塔头带电部分与杆塔构件的空气间隙)的50%冲击放电电压。
k —导线和架空地线的耦合系数
k 0—导线和地线间的几何耦合系数
β—杆塔的分流系数
R ch —杆塔的冲击接线电阻,Ω
L gt—杆塔电感,H
h d—杆塔对地平均高度,m h k—杆塔横担对地高度,m h g—杆塔高度,m
h b—避雷线对地平均高度,m
3.高压输电线路设计防雷措施
大量运行经验表明,线路遭受雷击往往集中于线路的某些地段。我们称之为选择性雷击区,或称为易击区。线路若能避开易击区,或对易击区线段加强保护,则是防止雷害的根本措施。实践表明,下列地段易遭受雷击:
①雷暴走廊,如山区风口以及顺风的河谷和峡谷等处;
②四周是山丘的潮湿盆地,如杆塔周围有鱼塘、水库、湖泊、沼泽地、森林或灌木、附近又有蜿蜒起伏的山丘等处;
③土壤电阻率有突变的地带,如地质断层地带,岩石与土壤、山坡与稻田的交界区,岩石山脚下有小河的山谷等地,雷易击与低土壤电阻率处;
④地下有导电性矿的地面和地下水位较高处;
⑤当土壤电阻率差别不大时,例如有良好的土层和植被的山丘,雷易击于突出的山顶、山的向阳坡等。
⑴高压输电线路的绝缘水平
高压输电线路的绝缘水平与耐雷水平成正比,加强零值绝缘子的检测,保证高压输电线路有足够的绝缘强度是提高线路耐雷水平的重要因素。我们在设计高压线路时充分比较各种绝缘子的性能,分析其特性,认为玻璃绝缘子有较好的耐电弧和不易老化的优点,并且绝缘子本身具有自洁性能良好和零值自爆的特点。特别是玻璃石熔融体,质地均匀,烧伤后的新表面仍是光滑的玻璃体,仍具有足够的绝缘性能,所以设计中我们要多考虑采用玻璃绝缘子。
⑵降低杆塔的接地电阻
高压输电线路的接地电阻与耐雷水平成反比,根据各基杆塔的土壤电阻率的情况,尽可能地降低杆塔的接地电阻,这是提高高压输电线路耐雷水平的基础,是最经济、有效的手段。对于土壤电阻率较高的疑难地区的线路,则应跳出原有设计参数的框框,特别是要强化降阻手段的应用,如增加埋设深度,延长接地极的使用,就近增加垂直接地极的运用。
⑶增设耦合地线
根据规程规定:在雷电活动强烈的地区和经常发生雷击故障的杆塔和地段,可以增设耦合地线。由于耦合地线可以使避雷线和导线之间的耦合系数增大,并使流经杆塔的雷电流向两侧分流,从而提高高压输电线路的耐雷水平。
⑷适当运用高压输电线路避雷器
由于安装避雷器使得杆塔和导线电位差超过避雷器的动作电压时,避雷器就加入分流,保证绝缘子不发生闪络。根据实际运行经验,在雷击跳闸较频繁的高压输电线路上选择性安装避雷器可达到很好的避雷效果。目前在全国范围已使用一定数量的高压输电线路避雷器,运行反映较好,但由于装设避雷器投资较大,目前只能根据特殊情况少量使用。
⑸采用中性点非有效接地方式
多年来的运行经验表明,在电力系统中的故障和事故,至少有60%以上是单相接地。但是,当中性点不接地的电力系统中发生单相接地故障时,仍然保持三项电压的平衡,并继续对用户供电,使运行人员有足够时间来寻找故障点并作即使的处理。35kV及以下电力系统中采用中性点不接地或经消弧线圈接地的方式。这样可以补偿流过故障点的短路电流,使电弧能自行熄灭,系统自行恢复到正常工作状态,降低故障相上的恢复电压上升的速度,减小电弧重燃的可能性,使雷击引起的大多数单相接地故障能够自动消除,不致引起相间短路和跳闸。而在二