工程热力学习题答案第四章-
工程热力学课后题答案
习题及部分解答第一篇 工程热力学 第一章 基本概念1. 指出下列各物理量中哪些是状态量,哪些是过程量:答:压力,温度,位能,热能,热量,功量,密度;2. 指出下列物理量中哪些是强度量:答:体积,速度,比体积,位能,热能,热量,功量,密度;3. 用水银差压计测量容器中气体的压力,为防止有毒的水银蒸汽产生,在水银柱上加一段水;若水柱高mm 200,水银柱高mm 800,如图2-26所示;已知大气压力为mm 735Hg,试求容器中气体的绝对压力为多少kPa 解:根据压力单位换算4. 锅炉烟道中的烟气常用上部开口的斜管测量,如图2-27所示;若已知斜管倾角 30=α,压力计中使用3/8.0cm g =ρ的煤油,斜管液体长度mm L 200=,当地大气压力MPa p b 1.0=,求烟气的绝对压力用MPa 表示解:5.一容器被刚性壁分成两部分,并在各部装有测压表计,如图2-28所示,其中C 为压力表,读数为kPa 110,B 为真空表,读数为kPa 45;若当地大气压kPa p b 97=,求压力表A 的读数用kPa 表示 kPa p gA 155=6. 试述按下列三种方式去系统时,系统与外界见换的能量形式是什么;1.取水为系统;2.取电阻丝、容器和水为系统;3.取图中虚线内空间为系统;答案略;7.某电厂汽轮机进出处的蒸汽用压力表测量,起读数为MPa 4.13;冷凝器内的蒸汽压力用真空表测量,其读数为mmHg 706;若大气压力为MPa 098.0,试求汽轮机进出处和冷凝器内的蒸汽的绝对压力用MPa 表示 MPa p MPa p 0039.0;0247.021==8.测得容器的真空度mmHg p v 550=,大气压力MPa p b 098.0=,求容器内的绝对压力;若大气压变为MPa p b102.0=',求此时真空表上的读数为多少mmMPa MPa p MPa p v8.579,0247.0='= 9.如果气压计压力为kPa 83,试完成以下计算:1.绝对压力为11.0MPa 时的表压力;2.真空计上的读数为kPa 70时气体的绝对压力;3.绝对压力为kPa 50时的相应真空度kPa ;4.表压力为MPa 25.0时的绝对压力kPa ;1.kPa p g 17=;2.kPa p 13=;3.kPa p v 33=;4.kPa p 333=;10.摄氏温标取水在标准大气压下的冰点和沸点分别为0℃和100℃,而华氏温标则相应地取为32℉和212℉;试导出华氏温度和摄氏温度之间的换算关系,并求出绝对零度所对应的华氏温度;将水在标准大气压下的冰点值032和F ℃,以及沸点值100292和F ℃代入,得解该二元一次方程组,得:32,8.1==B A ;从而有 328.1+=t t F当15.273-=t ℃时,有11.气体进行可逆过程,满足pV C =C 为常数,试导出该气体从状态1变化到状态2时膨胀功的表达式,并在p V -图上定性画出过程线、示出膨胀功;答案:略12.某气体的状态方程为g pV R T =,试导出:1.定稳下气体,p v 之间的关系;2.定压下气体,v T 之间的关系;3.定容下气体,p T 之间的关系;答案:1.2112v v p p =;2.1212T T v v =;3. 1212T T p p =;第二章 热力学第一定律1.一蒸汽动力厂,锅炉的蒸汽产量为318010/q kg h =⨯,输出功率为55000P kW =,全厂耗煤,19.5/m c q t h =,煤的发热量为33010/c q kJ kg =⨯;蒸汽在锅炉中吸热量2680/q kJ kg =;试求:1.该动力厂的热效率t η;2.锅炉的效率B η蒸汽总吸热量煤的总发热量;解:1.锅炉中蒸汽吸热量热效率 %411034.1550005=⨯=Φ=H t P η 2.锅炉效率2.系统经一热力过程,放热8kj 对外做功26kJ ;为使其返回原状态,对系统加热6kJ ,问需对系统作功多少解:由W U Q +∆=得对于返回初态的过程故需对系统做功kj 28;3.气体在某一过程只能感吸收了54kJ 的热量,同时热力学能增加了94kJ ;此过程是膨胀过程还是压缩过程系统与外界交换的功是多少答案:此过程为压缩过程;此过程中系统与外界交换的功是kj 40-;4.1kg 空气由115,0.5p MPa t MPa ==膨胀到220.5,500p MPa t ==℃,得到热量506kJ ,对外做膨胀功506kJ ;接着又从终态被压缩到初态,热出热量390kJ ,试求:1.膨胀过程空气热力学能的增量;2.压缩过空气热力学能的增量;3.压缩过程外界消耗的功;答案:1.0=∆U ;2. 0=∆U ;3.kj W 390-=;5.闭口系统中实施以下过程,试填补表中的空缺数据;表中括号内的数为答案;6.如图所示,某封闭系统沿b c a --途径由状态a 变化到b ,吸入热量kj 90,对外做功kj 40,试问:1.系统从a 经d 至b ,则吸收热量是多若对外做功kj 10,少2.系统由b 经曲线所示过程返回a ,若外界对系统左贡kj 23,吸收热量为多少3.设,45,5kj U kj U d adb ==,那么过程d a -和b d -中系统吸收的热量各为多少答案 1.kj Q adb 60=;2.kj Q ba 73-=;2.kj Q ad 50=;4.kj Q db 10=;7.容积为31m 的绝热封闭的气缸中装有完全不可压缩的流体,如图2-31所示;试问:1.活塞是否对流体做功2.通过对活塞加压,把流体压力从MPa p 2.01=提高到MPa p 33=,热力学能变化多少焓变化多少答案 1.0=W ;2.kj H U 3108.2,0⨯=∆=∆;8.一质量为kg 4500的汽车沿坡度为 15的山坡下行,车速为s m /300;在距山脚m 100处开始刹车,且在山脚处刚好刹住;若不计其它力,求因刹车而产生的热量;kj Q 51004.2⨯=;9.某蒸汽动力装置,蒸汽流量为h t /40,汽轮机进出口处压力表读数为MPa 9,进口比为kg kj /3440,汽轮机出口比焓为kg kj /2240,真空表读数为kPa 06.95,当时当地大气压力为kPa 66.98,汽轮机对环境放热为;试求:1.汽轮机进出口蒸汽的绝压各为多少2.单位质量蒸汽经汽轮机对外输出功为多少3.汽轮机的功率为多少答案 1.2.kg kj sh /1200=ω3.kW P 410332.1⨯=4.考虑进出口动能差后sh ω的相对偏差10.进入冷凝器的泛汽的蒸汽为MPa p 005.0=,比焓kg kj h /25001=,出口为同压下的水,比焓为kg kj h /77.1372=,若蒸汽流量为h t /22,进入冷凝器的冷却水温为171='t ℃,冷却水出口温度为302='t ℃,试求冷却水流量为多少水的比热容为)./(18.4K kg kj ;答案 )/(104.9563,h kg q w m ⨯=11.某活塞式氮气压气机,压缩的氮气的参数分别为:MPa p 1.01=,kg m v /88.031=;MPa p 0.12=,kg m v /16.03=;设在压缩过程中每kg 氮气热力学能增加kj 180,同时向外放出热量kj 60;压气机每min 生产压缩氮气kg 18,试求:1.压缩过程对每kg 氮气所做的功;2.生产每kg 压缩氮气所需的功;3.带动比压气机至少要多大的电动机;答案 1.kg kj /240-=ω;2.kg kj sh /312-=ω;3.kW P 6.93=;12.流速为s m /600的高速空气突然受阻停止流动,即02=c ,称为滞止;如滞止过程进行迅速,以致气流受阻过程中与外界的热交换可以忽略,问滞止过程空气的焓变化了多少答案 kg kj h /180=∆第三章 理想气体及其混合物1.把2CO 压送到体积为35.0m 的贮气罐内;压送前贮气罐上的压力表读数为kPa 3,温度为C 20,压送终了时压力表读数为kPa 30,温度为C 50;试求压送到罐内的2CO 的质量;大气压力为MPap b 1.0=;解由 ()())[]()kg T p T p R V T R V p T R V p m TmR pV K kg kJ M R R kPa p p p kPa p p p g g g g g g b g b 143.02732010103273501013010189.05.0.189.044314.813030101.01033101.033311221122322311=⎪⎪⎭⎫ ⎝⎛+⨯-+⨯⨯⨯=⎪⎪⎭⎫⎝⎛-=-=∆=====+⨯=+==+⨯=+=2. 体积为303.0m 的某钢性容器内盛有了C kPa 20,700的氮气;瓶上装有一排气阀,压力达到kPa 875时发门开启,压力降到kPa 840时关闭;若由于外界加热的原因造成阀门开启,问:1阀门开启时瓶内气体温度为多少2因加热造成阀门开闭一次期间瓶内氮气失去多少设瓶内空气温度在排气过程中保持不变;答案 13.932=t ℃;2kg m 0097.0=∆3.氧气瓶的容积330.0m V =瓶中氧气的表压力为Ct MPa p g 30,4.111==;问瓶中盛有多少氧气若气焊时用去一半氧气,温度降为C t202=,试问此时氧气的表压力为多少当地大气压力MPap b 1.0=答案 MPa p kg m g 625.0;86.72==4.某锅炉每小时燃煤需要的空气量折合表准状况时为h m 366000;鼓风机实际送入的热空气温度为C 250,表压力为kPa 0.20,当地大气压为MPa p b 1.0=,求实际送风量()m 3; 解 ()MPa p p p g b 12.010201.03=⨯+=+=- 由T R q pq g m V =得()()m P T T q p q T q p T pq V V V V 3511000000010068.112.027325027366000101325.0.⨯=+⨯⨯===5.某理想气体比热比4.1==V p c c k ,定压比热容()K kg kJ c p .042.1=,求该气体的摩尔质量;解 由k c c Vp =及MRR c c g V p ==-得 ()()()mol g k c R M p 93.274.111042.1314.811=-⨯=-=6.在容积为31.0m 的封闭容器内装有氧气,其压力为kPa 300,温度为C15,问应加入多少热量可使氧气温度上升到C8001按定值比热容计算;2按平均比热容计算;解 ()[]k kg kJ M R R g .26.032314.8===1()()()kJ t t R m t mc Q g V 3.6121580026.0252.12512=-⨯⨯⨯=-=∆=2查得()K kg kJ c V.656.015=7.摩尔质量为kg 30的某理想气体,在定容下由C 275,加热到C 845,若热力学能变化为kg kJ 400,问焓变化了多少答案kg kJ h 9.557=∆8.将kg 1氮气由C t 301=定压加热到C400,分别用定值比热容,平均比热容表计算其热力学能和焓的变化;用定值比热容计算用平均比热容计算9. kg 2的2CO ,由C t kPa p 900,80011==膨胀到C t kPa p 600,12022==,试利用定值比热容求其热力学能、焓和熵的变化;解10. 在体积为35.1mV=的钢性容器内装有氮气;初态表压力为MPapg0.21=,温度为C230,问应加入多少热量才可使氮气的温度上升到C750其焓值变化是多少大气压力为MPa1.0; 1按定值比热容计算;2按真实比热容的多项式计算;3按平均比热容表计算;4按平均比热容的直线关系式计算;解12查得()()()()()()()()()()()()kJ TnR Q dT nC kJ T T nR T a T a T a n T nR dT aT T a a n dT nR dT nC n dT R C n dT nC Q kmol m M n a a a T a T a a C m p T T m p m p m V m p 4321,3228223123221021212121021,,21,823102210,10226.150********.87532.010005.910005.9]5031023314.87532.050310231042.0315031023102335.52150310233146.27[7532.0327532.02809.211042.0,102335.5,3146.2721⨯=-⨯⨯+⨯=∆+==∆H ⨯=-⨯⨯--⨯⨯-⨯+-⨯⨯⨯+-⨯⨯=--⎪⎭⎫ ⎝⎛++=∆-++=-=-=====⨯-=⨯==++=⎰⎰⎰⎰⎰⎰----3查得4查得11. 某氢冷却发电机的氢气入口参数为C t MPa p g 40,2.011==,出口参数为C t MPa p g 66,19.022==;若每分钟入口处体积流量为35.1m ,试求氢气经过发电机后的热力学能增量、焓增量和熵增量;设大气压力为MPa p b 1.0=;1按定值比热容计算;2按平均比热容直线关系式计算;解(1) 按定值比热()[]()[]()()()()()[]min .4504.03.029.0ln 157.42734027360ln 55.143459.0ln ln min 9.130406655.143459.0min 44.93406639.103459.0.39.10157.455.14.55.14157.427271212K kJ p p R T T c q S kJ t c q kJ t c q U K kg kJ R c c K kg kg R c g p m p m V m g p V g p =⎪⎭⎫ ⎝⎛-++⨯=⎪⎪⎭⎫ ⎝⎛-=∆=-⨯⨯=∆=∆H =-⨯⨯=∆=∆=-=-==⨯==2按平均比热容的直线关系式12. 利用内燃机排气加热水的余热加热器中,进入加热器的排气按空气处理温度为C 300,出口温度为C 80;不计流经加热器的排气压力变化,试求排气经过加热器的比热力学能变化,比焓变化和比熵的变化;1按定值比热容计算;2按平均比热容表计算;答案1213. 进入气轮机的空气状态为C kPa 600,600,绝热膨胀到C kPa300,100,略去动能、位能变化,并设大气温度为KT 3000=,试求:1每千克空气通过气轮机输出的轴功;2过程的熵产及有效能损失,并表示在s T -图上;3过程可逆膨胀到kPa 100输出的轴功;解12熵产g s ∆及有效能损失i 如图3-36中阴影面积所示;314.由氧气、氮气和二氧化碳组成的混合气体,各组元的摩尔数为试求混合气体的体积分数、质量分数和在C t kPa p 27,400==时的比体积;解15.试证明:对于理想气体的绝热过程,若比热容为定值,则无论过程是否可逆,恒有()211T T k R w g --=式中:1T 和2T 分别为过程初终态的温度;证明 对于理想气体的绝热过程,有又 ⎪⎩⎪⎨⎧==-kc c R c c V p gV p得 1-=k R c g V故 ()211T T k R w g --=证毕第四章 理想气体的热力过程1. 某理想气体初温K T 4701=,质量为kg 5.2,经可逆定容过程,其热力学能变化为kJ U 4.295=∆,求过程功、过程热量以及熵的变化;设气体()35.1,.4.0==k K kg kJ R g ,并假定比热容为定值;解由⎪⎩⎪⎨⎧==-kc c R c c V p g V p得()[]()()()K kJ T T mc S K T mc U T T T mc T mc U K kg kJ k R c V V V V gV 568.04704.573ln 143.15.2ln3.573470143.15.24.295.143.1135.14.01121212=⨯==∆=+⨯=+∆=-=∆=∆=-=-=2. 一氧化碳的初态为K T MPa p 493,5.411==;定压冷却到K T 2932=;试计算kmol 1的一氧化碳在冷却过程中的热力学能和焓的变化量,以及对外放出的热量;比热容取定值;答案 kJ kJ U 441082.5,10154.4⨯=∆H ⨯=∆3. 氧气由MPa p C t 1.0,3011== 被定温压缩至MPa p 3.02=;1试计算压缩单位质量氧气所消耗的技术功;2若按绝热过程压缩,初态与终态与上述相同,试计算压缩单位质量氧气所消耗的技术功;3将它们表示在同一副v p -图和s t -图上,试在图上比较两者的耗功;解 ()[]K kg kJ M R R g .26.032314.8===155.863.01.0ln 30326.0ln211,-=⨯==p p T R w g T t 23两过程在v p -图和s T -图上的表示分别如图3-37a 和3-37b 所示;图中过程线T21-为定温过程,s 21-为绝热过程线;从v p -图中可以看到,绝热过程耗功比定温过程耗功多出曲边三角形面积s T 221--;4.使将满足以下要求的理想气体多变过程在v p -和s t -图上表示出来先画出4个基本热力过程:1气体受压缩、升温和放热;2气体的多变指数8.0=n ,膨胀;3气体受压缩、降温又降压;4气体的多变指数2.1=n ,受压缩;5气体膨胀、将压且放热;答案 如图3-38a 和图3-38b 所示的v p -图和s T -图上,1-1,1-2,1-3,1-4和1-5分别为满足1,2,3,4和5要求的多变过程线;5.柴油机汽缸吸入温度C t 601=的空气33105.2m -⨯,经可逆绝热压缩;空气的温度等于燃料的着火温度;若燃料的着火温度为C 720,问空气应被压缩到多大的体积答案3421063.1m V -⨯=6.有kg 1空气,初态为C t MPa p 27,6.011==,分别经下列三种可逆过程膨胀到MPa p 1.02=,试将各过程画在v p -图和s t -图上,并求各过程始态温度、做工量和熵的变化量:1定温过程;225.1=n 的多变过程;3绝热过程;答案123v p -图和s T -图如图3-39所示; 7.一容积为32.0m 的贮气罐,内装氮气,其初压力MPa p 5.01=,温度C t 371=;若对氮气加热,其压力、温度都升高;贮气罐上装有压力控制阀,当压力超过MPa 8.0时,阀门便自动打开,防走部分氮气,即罐中维持最大压力为MPa 8.0,问当贮气罐中氮气温度为C 287时,对罐内氮气共加入多少热量设氮气比热容为定值;解()[]K kg kJ M R R g .297.028314.8===由 T mR pV g =开始过程是定容过程,则8.容积为36.0m V =的空气瓶内装有压力MPa p 101=,温度为K T 3001=的压缩空气,打开压缩空气瓶上的阀门用以启动柴油机;假定留在瓶中的空气进行的是绝热膨胀;设空气的比热容为定值,)./(287.0K kg kj R g =;1.问过一段时间后,瓶中空气从室内空气吸热,温度有逐渐升高,最后重新达到与室温相等,即又恢复到K 300,问这时空气瓶中压缩空气的压力3p 为多大答案 1 kg m K T 6.15,1.2712-=∆= 2MPa p 75.73=9.是导出理想气体定值比热容的多变过程的初、终态熵变为解:主要步骤与公式由 ⎪⎩⎪⎨⎧==-k c c R c c Vp gV p 得 1-=k kR c g p10.压力为kPa 160的kg 1空气,K 450定容冷却到K 300,空气放出的热量全部被温度为17℃的大气环境所吸收;求空气所放出热量的饿有效能和传热过程、的有效能损失,并将有效能损失表示在s T -图上;解由于放出的热量全部被环境吸收,使热量有效能全部变成了无效能,故有效能损失有效能损失如图3-40的s T -图上阴影面积所示;11.空气进行可逆压缩的多变过程,多变指数,3.1=n 耗功量为kg kj /95.67,求热量和热力学能变化;答案 kJ U kJ Q 85.50,95.16=∆-=第六章 水蒸气1.湿饱和蒸汽,85.0,9.0==x MPa p ,试由水蒸气表求u s v h t 和,,,,;答案 kg kJ h C t s 99.2468,389.175==2.过热蒸汽,425.0.3==t MPa p ℃,根据水蒸气表求u s h v ,,,和过热度D ,再用s h -图求上述参数;答案 查表:kg kJ h m v 7.3286,103638.03==查图:kg kJ h kg m v 3290,105.03==3.开水房用开水的蒸汽与20=t ℃同压下的水混合,试问欲得t 5的开水,需要多少蒸汽和水解 设需蒸汽为kg m V ,则水为V w m m m -=;由MPa p 1.0=,查得kg kJ h kg kJ h 14.2675,52.417=''='C t 20=时,kg kJ h 96.832=根据热力学第学一定律4.已知水蒸气kg kj h MPa p /1300,2.0==,试求其s t v ,,;答案 )K kg kJ s C t kg m v .5452.3,30.120,3158.03===5.kg 1蒸汽,95.0,0.211==x MPa p ,定温膨胀至MPa p 1.02=,求终态s h v ,,及过程中对外所做的功;解 ()kg kJ w 0.683=6.进汽轮机的蒸汽参数为435,0.311==t MPa p ℃;若经可逆膨胀绝热至MPa p .2=,蒸汽流量为s kg /0.4,求汽轮机的理想功率为多少千克:答案 kW P 31066.4⨯=7.一刚性容器的容积为MPa 3.0,其中51为饱和水,其余为饱和蒸汽,容器中初压为MPa 1.0;欲使饱和水全部汽化,问需要加入多少热量终态压力为多少若热源温度为500℃,试求不可逆温差传热的有效能损失;设环境温度为27℃;8.容积为336.0m 的刚性容器中贮有350=t ℃的水蒸气,其压力表度数为kPa 100;现容器对环境散热使压力下降到压力表度数为kPa 50;试求:1.确定初始状态是什么状态2.求水蒸气终态温度;3.求过程放出的热量和放热过程的有效能损失;设环境温度为20℃,大气压力为MPa 1.0;答案 1过热蒸汽;2C t 8.1452=此结果为利用教材热工基础与应用后附录A-7所得;利用较详细水蒸气热表或s h -图答案应为C 1913kJ I kJ Q 8.35,6.82=-=同上,kJ I kJ Q 2.27,1.59=-=9.气轮机的乏汽在真空度为kPa 96干度为88.0=x 的湿空气状态下进入冷凝器,被定压冷却凝结为饱和水;试计算乏汽体积是饱和水体积的多少倍,以及kg 1乏汽2在冷凝器中放出的热量;设大气压力为MPa 1.0;答案 kg kJ q V V 2140,1005.3411=⨯='10.一刚性绝热容器内刚性各班将容器分为容积相同的B A ,两部分;设A 的容积为316.0m ,内盛有压力为MPa 1.0、温度为300℃的水蒸气;B 为真空;抽掉隔板后蒸汽蒸汽自由膨胀达到新的平衡态;试求终态水蒸气的压力、温度和自由膨胀引起的不可逆有效能损失;设环境温度为20℃,并假设该蒸汽的自由膨胀满足常数=pV ;解1由==1122V p V p 常数得 ()MPa V V p p 5.0210.12112=⨯== (2) 由C t MPa p 300,0.111==,查得 由kg m v MPa p 3225161.0,5.0==,查得11.利用空气冷却蒸汽轮机乏汽的装置称为干式冷却器;瑞哦流经干式冷却器的空气入口温度为环境温度201=t ℃,出口温度为352=t ℃;进入冷凝器的压力为kPa 0.7,干度为8.0,出口为相同压力的饱和水;设乏汽流量为h t /220,空气进出口压力不变,比热容为定值;试求:1.流经干式冷却器的焓增量和熵增;2.空气流经干式冷却器的熵变以及不可逆传热引起的熵产;解1由8.0,0.7==x kPa p 查算得对空气)()K kg kJ c K kg kJ R p g .004.1,.287.0==根据热力学第一定律有2()()()()K kW S kW t t c q a p a m a 18.3910177.12035004.110818.75312,=∆⨯=-⨯⨯⨯=-=∆H3()()K kW S K kW S g V 63.1417.377=∆-=∆39.500,0.911==t MPa p ℃的水蒸汽进入气轮机中作绝热膨胀,终压为kPa p 502=;汽轮机相对内效率式中s h 2——为定熵膨胀到2p 时的焓;试求1.每kg 蒸汽所做的功;2.由于不可逆引起熵产,并表示在s T -图上;答案 由C t MPa p 500,0.911==查得()K kg kJ s kg kJ h .656.6,338511==由()kPa p K kg kJ s s 0.5,.656.6212===查得kg kJ h s 20302=由s T h h h h 2121--=η得()kg kJ h 22202=()kg kJ w sh 1165=(3) 由kg kJ h kPa p 2220,522==查得过程如图所示第七章 湿空气1.设大气压力为MPa 1.0,温度为25℃,试用分析法求湿空气的相对湿度为%55=ϕ,露点温度、含湿量及比焓,并查d h -图校核之;答案 解析法 ()()a kg kJ h a kg kg d C t d 15.53,011.0,8.14===查d h -图:2.空气的参数为%30,20,1.01===ϕC t MPa p b ,在加热器中加热到85℃后送入烘箱取烘干物体/从烘箱出来时空气温度为353=t ℃,试求从烘干物体中吸收kg 1水分所消耗的赶空气质量和热量;解 由%,30,2011==ϕC t 查d h -图得由C t d d 85,212==得3.设大气压力为MPa 1.0,温度为30℃,相对湿度为8.0;如果利用空气调节设备使温度降低到10℃去湿,然后再加热到20℃,试求所的空气的相对湿度;答案 %53=ϕ4.一房间内空气为MPa 1.0,温度为5℃,相对湿度为%80;由于暖气加热使房间温度升至18℃;试求放暖气后房内空气的相对湿度;答案 %32=ϕ5.在容积为3100m 的封闭室内,空气的压力为MPa 1.0,温度为25℃,露点温度为18℃,试求室内空气的含湿量,和相对湿度;若此时室内放置若干盛水的敞口容器,容器的加热装置使水能保持25℃定温蒸发至空气达到室温下饱和空气状态;试求达到饱和空气状态的空气含湿量和水的蒸发量;解 1由C t 25=查得由C t d 18=查得MPa p V 002064.0=所以%65=ϕ2%1002=ϕ6.一股空气流压力为MPa 1.0,温度为20℃,相对湿度为%30,流量为每分钟315m ;另一股空气流压力也为MPa 1.0,温度为35℃,相对湿度为%80,流量为每分钟320m ;混合后压力仍为MPa 1.0,试求混合后空气的温度、相对湿度和含湿量;解: 水蒸气的()[]K kg kJ R v g .462.0,=由%30,2011==ϕC t 查得由%80,3522==ϕC t 查得由热力学第一定律由 ()()a kg kg d a kg kJ h 0181.0,3.7333==查得第八章 气体和蒸汽的流动1.燃气经过燃气轮机中渐缩喷管绝热膨胀,流量为s kg q m /6.0=,燃气参数6001=t ℃,压力MPa p 6.01=,燃气在喷管出口的压力为MPa p 4.02=,喷管进口流速及摩擦损失不计,试求燃气在喷管出口处的流速和出口截面积,设燃气的 热力性质与空气相同,取定值比热容; 答案: s m A s m c /65.7,/43822==2.空气流经一出口截面积为3210cm A =的渐缩喷管,喷管进口的空气参数、为s m c C t MPa p /150,80,0.2111=== ,背压为MPa p b 8.0=,试求喷管出口处的流速和流经喷管的空气流量;若喷管的速度系数为96.0,喷管的出口流速和流量又为多少解:1.528.0356.0246.28.0)(246.2)3332.344(2)()(2.344004.1210150333204.04.111010322110=<===⨯===⨯⨯+=+=--er k k p v p MPa T T p p K c c T T 所以 )(186.1246.2528.002MPa p v p p er er =⨯=⋅==2.3.水蒸气经汽轮机中的喷管绝热膨胀,进入喷管的水蒸气参数525,0.911==t MPa p ℃,喷管背压力为MPa p b 0.4=,若流经喷管的流量为s kg q m /6=,试进行喷管设计计算;解: 由546.044.00.90.41=<==er b v p p 知喷管形状应选缩放型的;由,525,0.911C t MPa p ==s h -图得由,,0.4,),(914.4546.00.912211s s MPa p p s s MPa v p p b cr cr cr =====⨯==和查得4.空气以s m /200的速度在管内流动,用水银温度计测得空气的温度为70℃,假设气流在温度计壁面得到完全滞止,试求空气的实际温度;答案 1.50=f t ℃5.压力kPa p 1001=、温度为271=t ℃的空气,流经扩压管时压力提高到kPa p 1802=,问空气进入扩压管是至少有多大流速这时进口马赫数是多少答案 956.0,/33211==M s m c6.某单级活塞式压气机每小时吸入温度171=t ℃、压力MPa p 1.01=的空气3120m ,输出空气的压力为MPa p 64.02=;试按下列三种情况计算压气机所许的理想功率:1.定温压缩;2.绝热压缩;3.多变压缩2.1=n ;答案 1.kW P T c 19.6,=; 2.kW P s c 2.8,=; 3.kW P n c 3.7,=7.一台两级压气机,几如压气机的空气温度是171=t ℃,压力为MPa p 1.01=,压气机将空气压缩至MPa p 5.23=,压气机的生产量为h m /503标态下,两级压气机中的压缩过程均按多变指数25.1=n 进行;现以压气机耗功最小为条件,试求:1.空气在低压气缸中被压缩后的饿压力为2p ;2.空气在气缸中压缩后的温度;3.压气机耗功量;4.空气在级间冷却器中放出的热量;解 1.)(5.051.051.05.21213MPa p p p p opt opt =⨯=====ππ 2.K T T T T K p p T T nn 400,)(4005290231225.125.011212==='=⨯=⎪⎪⎭⎫ ⎝⎛=- 3.)(9.56)15(125.1290287.018.025.12)1(12)/(180.0)/(6.64627310287.010*********.025.125.01136000kW n T R nq P s kg h kg T R q p q opt n n g m c g v m =-⨯-⨯⨯⨯⨯=--===⨯⨯⨯⨯==-π4.()()()()kW T T c q T T c q p m p m 9.19400290004.118.02122-=-⨯⨯=-=-'=Φ8.某轴式压气机,每秒生产kg 20压力为MPa 5.0的压缩空气;若进入压气机的空气温度为201=t ℃,压力为MPa p 1.01,压气机的绝热效率92.0,=s c η,求出口处压缩空气的温度及该压气机的耗功率;解 )(1.4641.05.02934.114.111212K p p T T k k =⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛=-- 由12121212,T T T T h h h h s c -'-=-'-=η得 9.一离心式压气机每分钟吸入压力为2010011==t kPa p 、℃的空气3200m ;空气离开压气机的温度为502=t ℃,出口截面上的流速为s m /50,空气的比热容()K kg kJ c p ./004.1=,假定与外界无热量交换;试求压气机的耗功率;答案 kW P 4.124=10.定容加热汽油机循环在每千克空气加入热量kJ 1000,压缩比5/21==v v ε,压缩过程的初参数为15,100kPa ℃;试求:1.循环的最高压力和最高温度;2.循环的热效率;答案 1.K T 1943max =,MPa p 37.3max =; 2.%6.52,=s c η11.一混合加热理想内燃机循环,工质视为空气,已知3.1/,8.1/,12/,50,1.034232111========v v p p v v C t MPa p ρλε ,比热容为定值;试求在此循环中单位质量工质的吸热量、净功量和循环热效率;解 循环s T -图如右图所示;1点:2点: 3点:4点:5点:12.在相同的初态及循环最高压力与最高温度相同的条件下,试在s T -图上利用平均温度的概念比较定容加热、定压加热及混合加热的内燃机理想循环的热效率;答案 s T -图如图所示 若定容加热理想循环热效率为V t ,η,定压加热理想循环热效率为p t ,η,混合加热理想循环热效率为t η,则有p t t V t ,,ηηη<<13.在燃气轮机的定压循环中,工质视为空气,进入压气机的温度271=t ℃,压力MPa p 1.01=,循环增压比4/12==p p π;在燃烧事中加入热量,经绝热膨胀至MPa p 1.04=;设比热为定值;1.画出循环的s T -图;2.求循环的最高温度;3.求循环的净功量和热效率;4.若燃气轮机的相对内效率为91.0,循环的热效率为多少答案 1.s T -图如图所示;2.K T T 11763max ==;3.%7.32,/8.2390==t kg kJ ηω;4.%28=t η14.对于燃气轮机定压加热理想循环,若压气机进出口空气参数为MPa p 1.01=,271=t ℃,燃气轮机进出口处燃气温度10003=t ℃,试向增压比π最高为多少时,循环净功为0 答案 157max =π15.某锅炉每小时生产t 4水蒸气;蒸汽出口的表压为MPa p g 122=,温度3502=t ℃;设给水温度401=t ℃,锅炉效率8.0=B η,煤的发热量热值kg kJ q p /1097.24⨯=,试求每小时锅炉的耗煤量;答案 耗煤量h kg q c m /448,=16、 填空题:1用水银温度计测量高速流动的气流温度,设温度计上读数为t ,气流温度为f t ,则二者的大小关系为____________;2在喷管的气体流动中,气体压力不断__________,流速____,马赫数 ______; 3有一减缩喷管,空气进口压力为MPa p 11=,背压MPa p b 3.0=,册出口压力=2p ;4现设计一喷管,若进口过热蒸汽压为MPa p 91=,背压为MPa p b 2=,此 喷管的形状应选择 ;17、压力为MPa 1.0、温度为C 015的空气,分别以s m /100,s m /200,和s m /400的流速流动,当空气滞止时,问空气的滞止温度和滞止压力各为多少18、某减缩喷管进口氮气压力为MPa p 6.61= ,温度C t 0960= ,背压为MPa p b 0.4=试求出口截面流速;19.某减缩喷管出口截面积为225mm ,进口空气参数C t Pa p 011300,5.0==,初速s m c /1781=,问背压为多大时达到最大质量流量该值是多少20.压力为MPa 1.0,温度C 030的空气经扩压管后压力升高至MPa 16.0,问空气进入扩压管的初速是多少21.压力MPa p 0.91=、温度C t 01550=的水蒸气,经节流阀后压力降为MPa P 6.82=,然后进入喷管作可逆膨胀至压力为MPa p 63=;设环境温度为K T 3000=,流量s kg q m /32=问:1该喷管为何形状;2喷管出口流速及截面积为多少;3因节流引起的熵产及有效能损失为多少第九章 蒸汽动力循环1.蒸汽动力循环的主要设备是什么各起什么作用2.提高蒸汽动力循环热效率的主要措施与方法有那些3.在蒸汽压缩制冷循环中,如果用膨胀代替节流阀,有何优缺点4.试画出蒸汽再循环的s T -图;5.某朗肯循环,水蒸气初参数为C t MPa p 011500,4==,背压为MPa p 004.02=;试求循环吸热、放热量、汽轮机做功和循环热效率;6.某蒸汽动力循环,水蒸气的初参数为C t MPa p 011530,5.4==,背压为MPa p 005.02=,汽轮机相对内效率88.0=T η,试求循环吸热量、放热量、汽轮机做功量和循环热效率;7.某蒸汽压缩制冷循环,制冷剂为氟里昂134a,蒸发器的出口温度为C 045.26-,冷凝器的出口温度C 030;试求:1循环制冷量和压气机耗功量;2制冷系数;3循环热效率;8.某蒸汽动力循环装置为郎肯循环;蒸汽的初压为MPa p 0.41=,背压为MPa p 005.02=,若初温分别为300℃和500℃,试求蒸汽在不同初温下的循环热效率t η及蒸汽的终态干度2x ; 解:1.由MPa p 0.41=,3001=t ℃,查过热蒸汽表得由MPa p 005.02=,查饱和水和饱和蒸汽表得由12s s =得又 kg kJ h h /22.13723='=忽略泵功 34h h =2.过程和上一问相同,最后结果是%39=t η,832.02=x9.某朗肯循环,水蒸气初温为5001=t ℃,背压为MPa p 005.02=,试求当初压分别为MPa 0.4和MPa 0.6时的循环热效率及排汽干度;答案10.某蒸汽动力厂按再热循环工作,锅炉出口蒸汽参数为500,1011==t MPa p ℃,汽轮机排汽压力MPa p 004.02=;蒸汽在进入汽轮机膨胀至MPa 0.1时,被引出到锅炉再热器中再热至500℃,然后又回到汽轮机继续膨胀至排汽压力;设汽轮机和水泵中的过程都是理想的定熵过程,试求: 1.由于再热,使乏汽干度提高多少2.由于再热,循环的热效率提高了多少解: 1.由500,1011==t MPa p 查得由)./(5954.6,0.11K kg kJ s s MPa p a a ===查得由500,0.1==b b t MPa p ℃查得由)(7597.7,004.022K kg kJ s s MPa p b •===且 kg kJ h 3.1212=' 由)(5954.6,004.012K kg kJ s s MPa p a •===查得忽略泵功 kg kJ h h h 3.121234='== 2忽略泵功 ()()210h h h h w w b a T -+-===()())(17060.23378.347628078.3372kg kJ =-+-=()())(3.392128078.34763.1218.3372kg kJ =-+-无再热时第十章 制冷循环1.某蒸气压缩制冷装置如图5-26所示;制冷剂为氨,蒸发器出口氨的温度为 C t ︒-=151,在冷凝器中冷凝后的氨为饱和液,温度C t ︒=251;试求:蒸发器中氨的压力和冷凝器中氨的压力;循环的制冷量L q ,循环净功0w 和制冷系数ε; 若该装置的制冷能力为h kJ L 41042⨯=Φ,氨的流量为多大解 1T-s 图参阅图5-26b。
工程热力学第四章 习题解答
第四章 习题解答4-1 多变指数:()()2112ln ln 0.1250.9ln ln 0.1p p n v v ===()210.9 1.4110.91v n n q c T T u u n n κκ---=-=∆=∆---∴11408 kJ/kg 55u q ∆==⨯=40832 kJ/kg w q u =-∆=-=()21 1.4811.2 kJ/kg p h c T T u κ∆=-=⋅∆=⨯= 4011.228.8 kJ/kg s w q h =-∆=-=2211ln ln 1.01ln100.732ln 0.1250.822 kJ/kg Kp v v ps c c v p ∆=+=⨯+⨯=⋅ 4-2 ⑴1 1.4112 1.410.287423110.21 1.41 111.9 kJ/kg RT p w p κκκ--⎡⎤⎛⎫⎛⎫⨯⎢⎥=-=- ⎪ ⎪⎢⎥--⎝⎭⎝⎭⎢⎥⎣⎦= 0s ∆=⑵ ()()120.72342330088.25v w u c T T =-∆=-=⨯-=kJ/kg22113000.1lnln 1.0045ln 0.287ln 4230.5 0.117 kJ kg p T p s c R T p ∆=-=⋅-⋅=⑶1120.5ln 0.287ln195.4 kJ kg 0.2p w RT p ==⋅= 120.5ln 0.287ln 0.462 kJ kg K 0.2p s R p ∆==⨯=⋅⑷1112210.287423110.267.1121n n RT p w n p -⎡⎤⎡⎤⎛⎫⨯⎢⎥=-=-= ⎪⎢⎥⎢⎥--⎝⎭⎣⎦⎢⎥⎣⎦kJ/kg2221ln ln 1.005ln 0.723ln 0.20.35 kJ kg Kp v v ps c c v p ∆=+==-⋅4-3 ⑴ 21ln8.314373ln107140.6 kJ kmol v w RT v ==⨯= 21ln8.314ln1019.14 kJ K v s R v ∆==⨯=⋅ ⑵ 0w =21ln8.314ln1019.14 kJ K v s R v ∆==⨯=⋅ 4-4 210.12ln 50.2598ln 2.091 kJ K 0.6v S mR v ∆==⨯=-()303 2.091633.6 kJ Q W T S ==∆=⨯-=-0, 0H U ∆=∆=4-5 2211201.3286568.3 K 101.3p T T p ⎛⎫==⨯= ⎪⎝⎭()()210.287568.3286202.6 kJ kg 1.41v u c T T ∆=-=-=-()()21 1.40.287568.3286283.6 kJ kg 1.41p h c T T ⨯∆=-=-=-210.287586.3ln ln 0.493 kJ kg K 1.41286v T s c T ∆===⋅-4-6 ⑴ 21303 K T T ==120.3ln 60.287303ln 573.2 kJ 0.1p Q W mRT p ===⨯⨯⨯=⑵ 1 1.411.422110.1303221.4 K 0.3p T T p κκ--⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭ , 0Q = ()()120.2876303221.4351.3 kJ 1 1.41R W m T T κ=-=⨯-=--⑶ 1 1.211.222110.1303252.3 K 0.3n np T T p --⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭()()120.2876303252.3436.5 kJ 1 1.21R W m T T n =-=⨯-=--()()21 1.2 1.40.2876252.33031 1.21 1.41 218.3 kJv n Q m c T T n κ--=-=⨯⨯⨯----=4-7 ()()()()1221ln ln 0.60.12 1.30ln ln 0.8150.236p p n v v ===1116000.236493.4 K 0.287p v T R ⨯===2221200.815340.8 K 0.287p v T R ⨯===()()120.287493.4340.8146 kJ 1 1.31R w T T n =-=-=--()()21 1.3 1.40.287340.8493.411 1.31 1.4136.5 kJ/kgn R q T T n κκ--=⋅-=⋅⋅-----= ()()210.723340.8493.8109.5 kJ kg v u c T T ∆=-=⨯-=- ()()21 1.01340.8493.4154.1 kJ kg p h c T T ∆=-=⨯-=-22120.8150.12ln ln 1.01ln 0.723ln0.2360.6 0.089 kJ kg Kp v v p s c c v p ∆=+=⋅+⋅=⋅4-8 40200160 kJ kg u q w ∆=-=-=-211600.533 kJ kg K 373673v u c T T ∆-===⋅--()()()()()2121122112ln ln ln 16 1.491673ln ln ln 6373p p p p n v v p T p T ====⎛⎫⋅ ⎪⎝⎭()()121 1.4912000.327 kJ/kg K 673373n w R T T --⨯===⋅-- 0.5330.3270.86 kJ kg K p v c c R =+=+=⋅4-9 10.412122933454.7 K v T T v κ-⎛⎫==⨯= ⎪⎝⎭()()1120.287293454.7116 kJ 1 1.41R w T T κ=-=-=---2221ln 0.287454.7ln 3143.4 kJ vw RT v ==⨯⨯=12116143.427.4 kJ w w w =+=-+=4-10 ⑴ 333100 1.73583 K 0.2968p v T R ⨯=== 11.413232 1.735831265 K 0.25v T T v κ--⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭22120.296812651.5 MPa 0.25RT p p v ⨯====11227730.250.153 MPa 1265T v v T ==⨯=⑵ 定压过程:()()210.29681265773365 kJ kg 1 1.41R u T T κ∆=-=-=--()()210.29681265773146 kJ kg w R T T =-=⨯-=定熵过程:()()320.29685831265506 kJ kg 1 1.41R u T T κ∆=-=-=---506 kJ kg w u =-∆=4-11 ⑴ 31110.2875730.274 m 600RT v p ⨯===321330.2740.822 m kg v v ==⨯=11.4112121573369 K 3v T T v κ--⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭2220.2873690.129 MPa 0.822RT p v ⨯===310.274 v v ==3m kg223330.1290.387 MPa p v p v ==⨯= 32369T T ==K⑵ ()()1120.287573369146.41 1.41R w T T κ=-=-=--kJ kg32221ln 0.287369ln 116.43v w RT v ==⨯⨯=-kJ kg()1.293146.4116.438.8 kJ W mw ==⨯-=4-12 1112101.3ln101.3150ln 59250 kJ 5000p Q pV p ==⨯⨯=- 4-13 101.3256000.21550.2872733600pV mRT ⨯===⨯⨯ kg/s 1,120.1ln 0.21550.287293ln 37.8 kW 0.8s T p W mRTp ==⨯⨯=- 112,1 1.411.4111.40.2872930.8 0.2155151.3 kW 1.410.1s SRT p W m p κκκκ--⎡⎤⎛⎫⎢⎥=- ⎪⎢⎥-⎝⎭⎢⎥⎣⎦⎡⎤⨯⨯⎛⎫⎢⎥=⨯-=-⎪⎢⎥-⎝⎭⎣⎦4-14 1600 kg/h kg/s 6m== ⑴定温压缩11210.1ln 0.287293ln 25.1 kW 60.6s T p W mRTp ⋅==⨯⨯=- ⑵定熵压缩112,1 1.411.4111 1.40.2872930.6 132.8 kW 6 1.410.1s SRT p W m p κκκκ--⎡⎤⎛⎫⎢⎥=- ⎪⎢⎥-⎝⎭⎢⎥⎣⎦⎡⎤⨯⨯⎛⎫⎢⎥=⨯-=-⎪⎢⎥-⎝⎭⎣⎦⑶多变压缩 112,1 1.2211.22111 1.220.2872930.6 129.6 kW 6 1.2210.1n n s nnRT p W m n p --⎡⎤⎛⎫⎢⎥=- ⎪⎢⎥-⎝⎭⎢⎥⎣⎦⎡⎤⨯⨯⎛⎫⎢⎥=⨯-=- ⎪⎢⎥-⎝⎭⎣⎦4-15 压缩比2160.160p p ==,应采用二级压缩20.775 MPa p == ∵13322n nT p T p -⎛⎫= ⎪⎝⎭,2120T T '==℃ (冷却至初温)∴1 1.2511.2533226293441.90.775n np T T p --'⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭K3168.8t =℃ 4-16 ()()()()()2121122112ln ln ln 0.50.1 1.130.5289ln ln ln 0.1348p p p p n v v p T p T ====⎛⎫⋅ ⎪⎝⎭111100400482.3 kg/min 8.04 kg/s 0.287289p V mRT ⨯====⨯ ()()12 1.130.2878.042893481 1.1311183 kWs nR W mnwm T T n ⨯==-=⨯---=- ()()21 1.13 1.48.040.7233482891 1.131 712.3 kW 42738 kJ/minv n Q m c T T n κ--=-=⨯⨯⨯---=-= 4-17 12111v p c p λ⎡⎤⎛⎫⎢⎥=-- ⎪⎢⎥⎝⎭⎣⎦⑴ n =1.4,11.40.510.0610.870.1v λ⎡⎤⎛⎫=--=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦⑵ n =1.25,11.250.510.0610.840.1v λ⎡⎤⎛⎫=--=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ⑶ n =1.0,11.00.510.0610.760.1v λ⎡⎤⎛⎫=--=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦4-18 ()21w pw a n m c t m c T T ∆=--111100250297.3 kg/h 0.08258 kg/s 0.287293a p V m RT ⨯====⨯ ()()()2112 4.186846514297.3293423 0.705 kJ/kg Kw pw w pw n a a m c t m c t c m T T m T T ∆∆⨯⨯=-==--⨯-=-⋅111n v n n Rc c n n κκκ--==--- 1.40.2870.7051.411 1.200.2870.7051 1.41nn Rc n R c κκκ⨯+---===-+--1.211.2122114230.10.905 MPa 293n n T p p T --⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭()()1211.20.2870.0825829342318.48 kW1.21s a s a anRW m w m nw m T T n ===--⨯=⨯-=-。
工程热力学第4章习题答案
4-12 一个气缸活塞系统如图 4-19 所示,活塞的截面积为 40cm2,活塞离气缸底部 10cm, 重物 20kg,初始状态温度 300K,大气压力 101325Pa。求
(1)如果使缸内空气温度升高 5℃的同时使重物升高 2cm 需要加入多少热量; (2)然后当可逆绝热情况下使活塞回到原位置,需要再加上多少重物。
4-6 空气的初参数为 p1=0.5MPa 和 t1=50℃,此空气流经阀门发生绝热节流作用,并使空 气容积增大到原来的 2 倍。求节流过程中空气的熵增,并求其最后的压力。
解:对于理想气体 ∆h = cp∆T ,可得 h2 − h1 = cp (T2 − T1 ) ,绝热节流前后焓值相等,因此
T1 = T2 ,因此对于理想气体绝热节流前后温度也相等
4-3 某理想气体动力循环由这样 4 个过程构成,先从状态 a 定温膨胀到状态 b,后绝热 膨胀到状态 c,再定压放热到状态 d,最后绝热压缩回到状态 a,在 p-v 图、T-s 图上表示该 循环。已知吸热量 q1 和各点的焓,列出放热量、功和循环热效率的计算式。
解:由 T-s 图,c-d 过程是定压放热过程,放热量 q2 = ∆h + wt = ∆h = hd − hc < 0
= 0.789kJ/ (kg ⋅ K)
由理想气体状态方程可得
p1V1 T1
=
p2V2 T2
,而V2
= 2V1 ,可得
p2 p1
= 0.379
κ −1
绝热过程 T2 T1
=
⎛ ⎜ ⎝
p2 p1
⎞ ⎟ ⎠
κ
,可得绝热指数κ = 1.4
因此 cp = κ cV = 1.4× 0.789 = 1.105kJ/ (kg ⋅ K )
第三版工程热力学课后思考题答案
第一章1、答:不一定。
稳定流动开口系统内质量也可以保持恒定。
2、答:这种说法是不对的。
工质在越过边界时,其热力学能也越过了边界。
但热力学能不是热量,只要系统和外界没有热量地交换就是绝热系。
3、答:只有在没有外界影响的条件下,工质的状态不随时间变化,这种状态称之为平衡状态。
稳定状态只要其工质的状态不随时间变化,就称之为稳定状态,不考虑是否在外界的影响下,这是他们的本质区别。
平衡状态并非稳定状态之必要条件。
物系内部各处的性质均匀一致的状态为均匀状态。
平衡状态不一定为均匀状态,均匀并非系统处于平衡状态之必要条件。
4、答:压力表的读数可能会改变,根据压力仪表所处的环境压力的改变而改变。
当地大气压不一定是环境大气压。
环境大气压是指压力仪表所处的环境的压力。
5、答:温度计随物体的冷热程度不同有显著的变化。
6、答:任何一种经验温标不能作为度量温度的标准。
由于经验温标依赖于测温物质的性质,当选用不同测温物质的温度计、采用不同的物理量作为温度的标志来测量温度时,除选定为基准点的温度,其他温度的测定值可能有微小的差异。
7、答:系统内部各部分之间的传热和位移或系统与外界之间的热量的交换与功的交换都是促使系统状态变化的原因。
8、答:(1)第一种情况如图1-1(a ),不作功(2)第二种情况如图1-1(b ),作功(3)第一种情况为不可逆过程不可以在p-v 图上表示出来,第二种情况为可逆过程可以在p-v 图上表示出来。
9、答:经历一个不可逆过程后系统可以恢复为原来状态。
系统和外界整个系统不能恢复原来状态。
10、答:系统经历一可逆正向循环及其逆向可逆循环后,系统恢复到原来状态,外界没有变化;若存在不可逆因素,系统恢复到原状态,外界产生变化。
11、答:不一定。
主要看输出功的主要作用是什么,排斥大气功是否有用。
第二章1、答:将隔板抽去,根据热力学第一定律w u q +∆=其中0,0==w q 所以容器中空气的热力学能不变。
工程热力学课后题答案
习题及部分解答第一篇 工程热力学 第一章 基本概念1. 指出下列各物理量中哪些是状态量,哪些是过程量: 答:压力,温度,位能,热能,热量,功量,密度。
2. 指出下列物理量中哪些是强度量:答:体积,速度,比体积,位能,热能,热量,功量,密度。
3.用水银差压计测量容器中气体的压力,为防止有毒的水银蒸汽产生,在水银柱上加一段水。
若水柱高mm 200,水银柱高mm 800,如图2-26所示。
已知大气压力为mm 735Hg ,试求容器中气体的绝对压力为多少kPa ?解:根据压力单位换算kPap p p p kPaPa p kPap Hg O H b Hg O H 6.206)6.106961.1(0.98)(6.10610006.132.133800.96.110961.180665.92002253=++=++==⨯=⨯==⨯=⨯=4.锅炉烟道中的烟气常用上部开口的斜管测量,如图2-27所示。
若已知斜管倾角 30=α,压力计中使用3/8.0cm g =ρ的煤油,斜管液体长度mm L 200=,当地大气压力MPa p b 1.0=,求烟气的绝对压力(用MPa 表示)解:MPaPa g L p 6108.7848.7845.081.98.0200sin -⨯==⨯⨯⨯==αρMPa p p p v b 0992.0108.7841.06=⨯-=-=-5.一容器被刚性壁分成两部分,并在各部装有测压表计,如图2-28所示,其中C 为压力表,读数为kPa 110,B 为真空表,读数为kPa 45。
若当地大气压kPa p b 97=,求压力表A 的读数(用kPa表示)kPa p gA 155=6. 试述按下列三种方式去系统时,系统与外界见换的能量形式是什么。
(1).取水为系统;(2).取电阻丝、容器和水为系统; (3).取图中虚线内空间为系统。
答案略。
7.某电厂汽轮机进出处的蒸汽用压力表测量,起读数为MPa 4.13;冷凝器内的蒸汽压力用真空表测量,其读数为mmHg 706。
《工程热力学》(第四版)习题提示及答案04章习题提示与答案
习题提示与答案 第四章 理想气体的热力过程4-1 设气缸中有0.1 kg 二氧化碳,其压力为0.1 MPa 、温度为27 ℃。
如进行一个定压过程,气体对外作功3kJ 。
设比热容为定值,试求过程中气体热力学能和熵的变化以及气体吸收的热量。
提示:理想气体;Q =ΔU +W ;ΔU =mc V 0ΔT ;12120ln lnp pR T T c s p g Δ-=。
答案:ΔU =10.5 kJ ,ΔS =0.036 11 kJ/K ,Q =13.5 kJ 。
4-2 有一气缸,其中氮气的压力为0.15 MPa 、温度为300 K 。
如果按两种不同的过程变化:(1)在定压下温度变化到450 K ;(2)在定温下压力下降到0.1 MPa 。
然后在定容下变化到0.15 MPa 及450 K 。
设比热容为定值,试求两种过程中热力学能和熵的变化以及从外界吸收的热量。
提示:略。
答案:(1)u Δ=111.15 kJ/kg ,s Δ=0.421 kJ/(kg ·K),q 1-2=155.7 kJ/kg 。
(2)u Δ=111.15 kJ/kg ,s ∆=0.421kJ/(kg ·K),q 1-3-2=147.25 kJ/kg 。
4-3 设气缸中空气的压力为0.5 MPa 、温度为600 K ,若经绝热过程膨胀到0.1 MPa ,试求膨胀终了的温度及比体积:(1)按定值比热容计算;(2)按空气的热力性质表进行计算。
提示:(2) 1200ln 12p p R S S g T T +=;依02T S ,由热力性质表确定T 2 及v r2。
答案:(1) T 2=378.8 K ,v 2=1.089 m 3/kg ;(2) T 2=382.6 K ,v 2=1.10 m 3/kg 。
4-4 柴油机吸气终了时气缸中空气的温度为60 ℃、压力为0.1 MPa 。
为使压缩终了时空气温度超过柴油的自燃温度以使其着火,故要求压缩终了的温度至少为720 ℃。
工程热力学第四章答案
工程热力学第四章答案【篇一:工程热力学答案(第四版严家騄著含第六章)】考题1、如果容器中气体压力保持不变,那么压力表的读数一定也保持不变,对吗?答:不对。
因为压力表的读书取决于容器中气体的压力和压力表所处环境的大气压力两个因素。
因此即使容器中的气体压力保持不变,当大气压力变化时,压力表的读数也会随之变化,而不能保持不变。
2、“平衡”和“均匀”有什么区别和联系答:平衡(状态)值的是热力系在没有外界作用(意即热力、系与外界没有能、质交换,但不排除有恒定的外场如重力场作用)的情况下,宏观性质不随时间变化,即热力系在没有外界作用时的时间特征-与时间无关。
所以两者是不同的。
如对气-液两相平衡的状态,尽管气-液两相的温度,压力都相同,但两者的密度差别很大,是非均匀系。
反之,均匀系也不一定处于平衡态。
但是在某些特殊情况下,“平衡”与“均匀”又可能是统一的。
如对于处于平衡状态下的单相流体(气体或者液体)如果忽略重力的影响,又没有其他外场(电、磁场等)作用,那么内部各处的各种性质都是均匀一致的。
3、“平衡”和“过程”是矛盾的还是统一的?答:“平衡”意味着宏观静止,无变化,而“过程”意味着变化运动,意味着平衡被破坏,所以二者是有矛盾的。
对一个热力系来说,或是平衡,静止不动,或是运动,变化,二者必居其一。
但是二者也有结合点,内部平衡过程恰恰将这两个矛盾的东西有条件地统一在一起了。
这个条件就是:在内部平衡过程中,当外界对热力系的作用缓慢得足以使热力系内部能量及时恢复不断被破坏的平衡。
4、“过程量”和“状态量”有什么不同?答:状态量是热力状态的单值函数,其数学特性是点函数,状态量的微分可以改成全微分,这个全微分的循环积分恒为零;而过程量不是热力状态的单值函数,即使在初、终态完全相同的情况下,过程量的大小与其中间经历的具体路径有关,过程量的微分不能写成全微分。
因此它的循环积分不是零而是一个确定的数值。
习题1-1 一立方形刚性容器,每边长 1 m,将其中气体的压力抽至 1000 pa,问其真空度为多少毫米汞柱?容器每面受力多少牛顿?已知大气压力为 0.1mpa。
工程热力学 第四章答案
Cp,m = 3.653 −1.337 ×10−3T + 3.294×10−6T 2 −1.913×10−9T 3 + 0.2763×10−12T 4 R
若已知 p1 = 0.5MPa ,T1 = 1000K ,①T2 = 500K求p2 ;② p2 = 0.1MPa求T2 ;③将计算结
解:(1)定值比热容
p2
=
T2 T1
p1
=
600K × 0.32MPa 477K
= 0.4025MPa
由附表 M
= 28.01×10−3 kg/mol
Rg
=
R M
=
8.3145J/(mol ⋅ K) 28.01×10−3 kg/mol
= 296.8J(kg ⋅ K)
cV
=
5 Rg 2
=
5 × 296.8 = 0.7421J/(kg ⋅ K) 2
cp
=
7 2
Rg
===
7 2
× 296.8
= 1.03894J/(kg ⋅ K)
∆U = mcV (T2 − T1) = 2.3kg × 742.1J/(kg ⋅ K)(600 − 477)K = 209.94kJ
∆H = mcp (T2 − T1) = 2.3kg ×1038.94J/(kg ⋅ K)(600 − 477)K = 293.92kJ
⋅
K)
−
8.3145J/(mol
⋅
K)
ln
600K 477K
= 0.4186 ×103 J/K
W =0
Q = ∆U = 219.10kJ
4—2 甲烷 CH4 的初始状态 p1 = 0.47MPa,T1 = 393K ,经可逆定压冷却对外放出热量 4110.76J/mol ,试确定其终温及1molCH4 的热力学能变化量 ∆U m 、焓变化量 ∆H m 。设甲烷
工程热力学第四版完整课后答案(华自强张忠进)
工程热力学第四版(华自强/张忠进)习题提示与答案1-1 试确定表压力为0.1 kPa 时U 形管压力计中的液柱高度差。
(1)液体为水,其密度为1 000 kg/m 3;(2)液体为酒精,其密度为789 kg/m 3。
提示:表压力数值等于U 形管压力计显示的液柱高度的底截面处液体单位面积上的力,g h p ρ∆=e 。
答案:(1) mm 10.19=∆水h (2) mm 12.92=∆酒精h 。
1-2 测量锅炉烟道中真空度时常用斜管压力计。
如图1-17所示,若α=30°,液柱长度l =200 mm ,且压力计中所用液体为煤油,其密度为800 kg/m 3 ,试求烟道中烟气的真空度为多少mmH 2O(4 ℃)。
提示:参照习题1-1的提示。
真空度正比于液柱的“高度”。
答案:()C 4O mmH 802v ο=p 。
1-3 在某高山实验室中,温度为20 ℃,重力加速度为976 cm/s 2,设某U 形管压力计中汞柱高度差为30 cm ,试求实际压差为多少mmHg(0 ℃)。
提示:描述压差的“汞柱高度”是规定状态温度t =0℃及重力加速度g =980.665cm/s 2下的汞柱高度。
答案:Δp =297.5 mmHg(0℃)。
1-4 某水塔高30 m ,该高度处大气压力为0.098 6 MPa ,若水的密度为1 000 kg/m 3 ,求地面上水管中水的压力为多少MPa 。
提示:地面处水管中水的压力为水塔上部大气压力和水塔中水的压力之和。
答案:Mpa 8 0.392=p 。
1-5 设地面附近空气的温度均相同,且空气为理想气体,试求空气压力随离地高度变化的关系。
又若地面大气压力为0.1 MPa ,温度为20 ℃,求30 m 高处大气压力为多少MPa 。
提示: h g p p ρ-=0 →TR hg p p g d d -=,0p 为地面压力。
答案:MPa 65099.0=p 。
1-6 某烟囱高30 m ,其中烟气的平均密度为0.735 kg/m 3。
工程热力学和传热学课后题答案
第十章
4、 汽油机定容加热循环的 工作条件为=5,环境压力p1 0.1Mpa,温度 15C , 空气与汽油的质量比为 : 汽油的发热值为 15 1, 44000kJ kg。求循环热效率、单位 质量空气的做功量和平 均压力。
解:先画出示意图:
t 1 t
1
1 t
1
解:设需要x分钟才能把空气瓶充满据题意: , x m pV ,m , m m充气后 m充气前 m一分钟 RT
(3 0.1) 106 5 (0.5 0.1) 106 5 则:m - =131.16 kg 287 50 273 ( ) 287 17 273 ( ) (注意将表压力换算成 绝对压力) x m 131.16 545.62 min 9.09hour 6 m一分钟 0.1 10 0.2 287 17 273 ( )
解:() t ,c 1 1 (2) t ,c
T2 300 273 1 0.694 T1 1600 273
W0 W0 Q1 t ,c 400 0.694 277.6KJ Q1
(3)Q2 Q1 W0 400 277.6 122KJ
12. 某热机循环中,工质先 TH 600K的第一热源吸收热量 1,再从TH 800K 从 Q 的第二热源吸收热量 1,向TL 300K的冷源放出热量 2,循环净功为 。在下列条 Q Q W 件下,试分别判断该热 机是可逆的、不可逆的 或不可能实现的: (1)Q1 1200J , Q1 400J , W 800J ( 2)Q1 1200J , Q1 400J , Q2 750J (3), Q1 400J , Q2 750J , W 900J 解:利用孤立系统的熵 增原理: S iso S工质+S H S L 其中:S工质=0 S H=S H +S H = ( S L= ( Q1 Q 1 ),高温热源放热,故 S H 0 TH TH
工程热力学(第五版)课后习题答案(全章节)廉乐明谭羽非等编
工程热力学(第五版)习题答案工程热力学(第五版)廉乐明 谭羽非等编 中国建筑工业出版社第二章 气体的热力性质2-2.已知2N 的M =28,求(1)2N 的气体常数;(2)标准状态下2N 的比容和密度;(3)MPa p 1.0=,500=t ℃时的摩尔容积Mv 。
解:(1)2N 的气体常数2883140==M R R =296.9)/(K kg J ∙(2)标准状态下2N 的比容和密度1013252739.296⨯==p RT v =0.8kg m /3 v 1=ρ=1.253/m kg(3)MPa p 1.0=,500=t ℃时的摩尔容积MvMv =pT R 0=64.27kmol m/32-3.把CO2压送到容积3m3的储气罐里,起始表压力301=g p kPa ,终了表压力3.02=g p Mpa ,温度由t1=45℃增加到t2=70℃。
试求被压入的CO2的质量。
当地大气压B =101.325 kPa 。
解:热力系:储气罐。
应用理想气体状态方程。
压送前储气罐中CO2的质量1111RT v p m =压送后储气罐中CO2的质量2222RT v p m =根据题意容积体积不变;R =188.9Bp p g +=11 (1) Bp p g +=22(2) 27311+=t T(3) 27322+=t T(4)压入的CO2的质量)1122(21T p T p R v m m m -=-=(5)将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg2-5当外界为标准状态时,一鼓风机每小时可送300 m3的空气,如外界的温度增高到27℃,大气压降低到99.3kPa ,而鼓风机每小时的送风量仍为300 m3,问鼓风机送风量的质量改变多少? 解:同上题1000)273325.1013003.99(287300)1122(21⨯-=-=-=T p T p R v m m m =41.97kg2-6 空气压缩机每分钟自外界吸入温度为15℃、压力为0.1MPa 的空气3 m3,充入容积8.5 m3的储气罐内。
工程热力学习题解答-4
第四章 热力学第二定律例 题例4-1 先用电热器使 20 kg 、温度t 0=20 ℃的凉水加热到t 1=80 ℃,然后再与40 kg 、温度为 20 ℃的凉水混合。
求混合后的水温以及电加热和混合这两个过程各自造成的熵产。
水的比定压热容为 4.187 kJ/(kg·K );水的膨胀性可忽略。
[编题意图] 实际过程中熵产的计算是本章的重点和难点之一,本题的目的在于检测和练习电热器加热造成的熵产和不等温水混合过程中的熵产的分析计算。
[解题思路] 电加热水过程引起熵产是由于电功转变为热产,水吸收这个热后其自身温度逐渐上升,这是一个不断积累过程,需通过微元热产量g Q δ与水变化的水温T 之比这个微元熵产的积分求得。
要求凉水与热水混合造成的熵产,必须先求出20kg80℃的水放热的熵减与20℃的凉水吸热的熵增,这种内热流造成的熵产也是个逐渐积累的过程,也需积分求得。
整个加热混合造成的总熵产由二者相加得到。
[求解步骤]设混合后的温度为t ,则可写出下列能量方程:()()1120p p m c t t m c t t -=-即 ()()2041878040418720kg kJ /(kg C)C kg kJ /(kg C)C o o o o ⨯⋅⨯-=⨯⋅⨯-..t t 从而解得 t = 40 ℃ (T = 313.15 K ) 电加热过程引起的熵产为1g 0g11g 10d lnT Qp p T Q m c T T S m c TTT δ===⎰⎰353.15K 20kg 4.187kJ/(kg K)ln 293.15K=⨯⋅⨯=15.593 kJ / K 混合过程造成的熵产为i 1012ig 1210d d ln lnTT p p Q p p T T m c T m c T Q T T S m c m c TT T T T δ==+=+⎰⎰⎰313.15K 20kg 4.187kJ/(kg K)ln353.15K313.15K40kg 4.187kJ/(kg K)ln293.15K10.966kJ/K 11.053kJ/K 0.987kJ/K =⨯⋅⨯+⨯⋅⨯=-+= 总的熵产S S S QQ g g g g ikJ /K kJ /K kJ /K =+=+=15593098716580...由于本例中无熵流(将使用电热器加热水看作水内部摩擦生热),根据式(4-12)可知,熵产应等于热力系的熵增。
工程热力学第三版课后习题答案
工程热力学第三版课后习题答案工程热力学是工程学科中的重要分支,它研究能量转化和传递的原理及其应用。
在学习过程中,课后习题是巩固知识、提高能力的重要途径。
然而,由于工程热力学的内容较为复杂,课后习题往往令人感到困惑。
为了帮助学习者更好地掌握工程热力学,下面将给出《工程热力学第三版》课后习题的答案。
第一章:基本概念和能量转化原理1. 答案略。
2. 根据能量守恒定律,系统的内能增加等于吸收的热量减去对外做功的量。
因此,ΔU = Q - W。
3. 根据能量守恒定律,系统的内能增加等于吸收的热量减去对外做功的量。
因此,ΔU = Q - W。
4. 答案略。
5. 答案略。
第二章:气体的状态方程和热力学性质1. 对于理想气体,状态方程为PV = nRT,其中P为气体的压力,V为气体的体积,n为气体的摩尔数,R为气体常数,T为气体的温度。
2. 对于理想气体,内能只与温度有关,与体积和压力无关。
3. 对于理想气体,焓的变化等于吸收的热量。
4. 对于理想气体,熵的变化等于吸收的热量除以温度。
5. 答案略。
第三章:能量转化和热力学第一定律1. 根据热力学第一定律,系统的内能增加等于吸收的热量减去对外做功的量。
因此,ΔU = Q - W。
2. 根据热力学第一定律,系统的内能增加等于吸收的热量减去对外做功的量。
因此,ΔU = Q - W。
3. 根据热力学第一定律,系统的内能增加等于吸收的热量减去对外做功的量。
因此,ΔU = Q - W。
4. 答案略。
5. 答案略。
第四章:热力学第二定律和熵1. 答案略。
2. 答案略。
3. 答案略。
4. 答案略。
5. 答案略。
通过以上对《工程热力学第三版》课后习题的答案解析,相信读者对工程热力学的相关知识有了更深入的了解。
掌握热力学的基本概念和原理,对于工程学科的学习和实践具有重要意义。
希望读者能够通过课后习题的解答,提高自己的热力学能力,并将其应用于工程实践中,为社会发展做出贡献。
工程热力学课后作业答案chapter4
p734-11kg空气在可逆多变过程中吸热40kJ,其容积增大为,压力降低为,设比热为定值,求过程中内能1?10v2v8/?p1p2的变化、膨胀功、轴功以及焓和熵的变化。
解:热力系是1kg空气过程特征:多变过程ln(p2/p1)ln(1/8)=0.9??n))/10ln(1ln(v1/v2因为T??cq n内能变化为5=717.5 R?c)?KJ/(kg v277=1004.5 cRc??)K/(Jkg?vp52n?k=3587.5?c?c5?c)Kkg?J/(vvn1?n3J×10=8cqc?u?c?T?/nvv3J 1032 ×=膨胀功:u??q?w3J×10轴功:28.8 ??nww s3J10×11.2 =焓变:8×1.4=u?k?h?c?T?pv2p23×熵变:10=0.82?clnln?s?c)?KJ/(kg vp v1p1有1kg4-2空气、初始状态为,℃,进150?t1MPa5?10.p行下列过程:(1)可逆绝热膨胀到;MPa.1p2?0(2)不可逆绝热膨胀到,;K?300T2MPa.p2?01(3)可逆等温膨胀到;MPa1?p20.(4)可逆多变膨胀到,多变指数;2?nMPa1p2?0.试求上述各过程中的膨胀功及熵的变化,并将各过程的相对位置画在同一张图和图上s?Tvp?解:热力系1kg空气(1)膨胀功:Jk?12pRT13×10=111.9]w?[1)?(k1pk?1熵变为03J×10)88.3=(2)?T2(uw????cT1v T2p2=116.8 ln?Rlncs??)?KkgJ/(p1p1T.p13 10=195.4(3)×ln1w?RT)K/(kg?J p2p13 10=0.462×ln?s?R)K/(kg?Jp2n?1RT1p23J×10=(4)67.1]()[w?1?n1pn?11n?2p=189.2K)1T(T2?n1p T2p2=-346.4 ln?s??lnRc)K/(kg?J p T1p13,终态1m1kmol空气的闭口系统,其初始容积为4-3具有3,当初态和终态温度均10010 m℃时,试计算该闭口系容积为统对外所作的功及熵的变化。
工程热力学思考题参考答案,第四章
工程热力学思考题参考答案,第四章Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】第四章气体和蒸汽的基本热力过程 试以理想气体的定温过程为例,归纳气体的热力过程要解决的问题及使用方法解决。
答:主要解决的问题及方法:(1) 根据过程特点(及状态方程)——确定过程方程(2) 根据过程方程——确定始、终状态参数之间的关系(3) 由热力学的一些基本定律——计算,,,,,t q w w u h s ∆∆∆(4) 分析能量转换关系(P —V 图及T —S 图)(根据需要可以定性也可以定量)例:1)过程方程式:T =常数(特征)PV =常数(方程)2)始、终状态参数之间的关系:12p p =21v v 3)计算各量:u ∆=0、h ∆=0、s ∆=21p RInp -=21v RIn v 4)PV 图,TS 图上工质状态参数的变化规律及能量转换情况对于理想气体的任何一种过程,下列两组公式是否都适用答:不是都适用。
第一组公式适用于任何一种过程。
第二组公式21()v q u c t t =∆=-适于定容过程,21()p q h c t t =∆=-适用于定压过程。
在定容过程和定压过程中,气体的热量可根据过程中气体的比热容乘以温差来计算。
定温过程气体的温度不变,在定温过程中是否需对气体加入热量如果加入的话应如何计算答:定温过程对气体应加入的热量过程热量q 和过程功w 都是过程量,都和过程的途径有关。
由理想气体可逆定温过程热量公式2111v q p v In v =可知,故只要状态参数1p 、1v 和2v 确定了,q 的数值也确定了,是否q 与途径无关 答:对于一个定温过程,过程途径就已经确定了。
所以说理想气体可逆过程q 是与途径有关的。
在闭口热力系的定容过程中,外界对系统施以搅拌功w δ,问这v Q mc dT δ=是否成立答:成立。
这可以由热力学第一定律知,由于是定容过2211v v dv w pdv pvpvIn RTIn v v v ====⎰⎰为零。
工程热力学经典例题-第四章_secret
冷源吸热,则S sio ( 2.055 2.640 0)kJ/K 0所以此循环能实现。
效率为c1 T2 1 303K 68.9%cT 1 973K而欲设计循环的热效率为800kJ1 60% c 2000 kJ c 即欲设计循环的热效率比同温度限间卡诺循环的低,所以循环可行。
(2)若将此热机当制冷机用,使其逆行,显然不可能进行,因为根据上面的分析,此 热机循环是不可逆循环。
当然也可再用上述3种方法中的任一种,重新判断。
欲使制冷循环能从冷源吸热 800kJ ,假设至少耗功 W min ,4. 4 典型例题精解 4.4 .1 判断过程的方向性,求极值 例题 4-1 欲设计一热机, 使之能从温度为 973K 的高温热源吸热 2000kJ ,并向温 度为 303K 的冷源放热 800kJ 。
(1)问此循环能否实现?(2)若把此热机当制冷机用,从 冷源吸热 800K ,能否可能向热源放热 2000kJ ?欲使之从冷源吸热 800kJ,至少需耗多少功? 解 (1)方法1:利用克劳修斯积分式来判断循环是否可行。
如图4- 5a 所示。
Q |Q 1| |Q 2| 2000kJ -800kJ = -0.585kJ/K <0T r T 1 T 2 973K 303K 所以此循环能实现,且为不可逆循环。
方法2:利用孤立系统熵增原理来判断循环是否可行。
如图4- 源、冷源及热机组成,因此 5a 所示,孤立系由热 S iso S H S L S E S E 0 a ) 式中: 和分别为热源及冷源的熵变; 原来状态,所以 为循环的熵变,即工质的熵变。
因为工质经循环恢复到而热源放热,所以 S Eb )S H|Q 1 | T 12000kJ2. 055 k J/ K973Kc )SL|Q 2 |T2800kJ2. 640kJ/K303Kd )将式( b )、( c )、(d ) 代入式( a ),得方法3:利用卡诺定理来判断循环是否可行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章4-1 1kg 空气在可逆多变过程中吸热40kJ ,其容积增大为1102v v =,压力降低为8/12p p =,设比热为定值,求过程中内能的变化、膨胀功、轴功以及焓和熵的变化。
解:热力系是1kg 空气 过程特征:多变过程)10/1ln()8/1ln()2/1ln()1/2ln(==v v p p n =0.9 因为T c q n ∆=内能变化为R c v 25==717.5)/(K kg J ∙ v p c R c 5727===1004.5)/(K kg J ∙=n c ==--v vc n kn c 51=3587.5)/(K kg J ∙ n v v c qc T c u /=∆=∆=8×103J膨胀功:u q w ∆-==32 ×103J 轴功:==nw w s 28.8 ×103J焓变:u k T c h p ∆=∆=∆=1.4×8=11.2 ×103J熵变:12ln 12ln p p c v v c s v p +=∆=0.82×103)/(K kg J ∙ 4-2有1kg 空气、初始状态为MPa p 5.01=,1501=t ℃,进行下列过程:(1)可逆绝热膨胀到MPa p 1.02=;(2)不可逆绝热膨胀到MPa p 1.02=,K T 3002=; (3)可逆等温膨胀到MPa p 1.02=;(4)可逆多变膨胀到MPa p 1.02=,多变指数2=n ;试求上述各过程中的膨胀功及熵的变化,并将各过程的相对位置画在同一张v p -图和s T -图上解:热力系1kg 空气(1) 膨胀功:])12(1[111kk p p k RT w ---==111.9×103J熵变为0(2))21(T T c u w v -=∆-==88.3×103J12ln12lnp p R T T c s p -=∆=116.8)/(K kg J ∙ (3)21ln1p p RT w ==195.4×103)/(K kg J ∙ 21lnp p R s =∆=0.462×103)/(K kg J ∙ (4)])12(1[111nn p p n RT w ---==67.1×103Jnn p p T T 1)12(12-==189.2K12ln 12lnp p R T T c s p -=∆=-346.4)/(K kg J ∙4-3 具有1kmol 空气的闭口系统,其初始容积为1m 3,终态容积为10 m 3,当初态和终态温度均100℃时,试计算该闭口系统对外所作的功及熵的变化。
该过程为:(1)可逆定温膨胀;(2)向真空自由膨胀。
解:(1)定温膨胀功===110ln *373*287*4.22*293.112lnV V mRT w 7140kJ ==∆12lnV V mR s 19.14kJ/K (2)自由膨胀作功为0==∆12lnV V mR s 19.14kJ/K4-4 质量为5kg 的氧气,在30℃温度下定温压缩,容积由3m 3变成0.6m 3,问该过程中工质吸收或放出多少热量?输入或输出多少功量?内能、焓、熵变化各为多少? 解:===36.0ln *300*8.259*512lnV V mRT q -627.2kJ 放热627.2kJ因为定温,内能变化为0,所以q w = 内能、焓变化均为0熵变:==∆12lnV V mR s -2.1 kJ/K 4-5 为了试验容器的强度,必须使容器壁受到比大气压力高0.1MPa 的压力。
为此把压力等于大气压力。
温度为13℃的空气充入受试验的容器内,然后关闭进气阀并把空气加热。
已知大气压力B =101.3kPa ,试问应将空气的温度加热到多少度?空气的内能、焓和熵的变化为多少? 解:(1)定容过程=+==3.1013.101100*2861212p p T T 568.3K (2) 内能变化:=-=-=∆)2863.568(*287*25)12(T T c u v 202.6kJ/kg =-=-=∆)2863.568(*287*27)12(T T c h p 283.6 kJ/kg==∆12lnp p c s v 0.49 kJ/(kg.K)4-6 6kg 空气由初态p1=0.3MPa ,t1=30℃,经过下列不同的过程膨胀到同一终压p2=0.1MPa :(1)定温过程;(2)定熵过程;(3)指数为n =1.2的多变过程。
试比较不同过程中空气对外所作的功,所进行的热量交换和终态温度。
解:(1)定温过程===1.03.0ln *303*287*621lnp p mRT W 573.2 kJ W Q =T2=T1=30℃(2)定熵过程=--=--=--])3.01.0(1[*303*14.1287*6])12(1[114.114.11kk p p T k R m W 351.4 kJQ =0=-=k k p p T T 1)12(12221.4K(3)多变过程nn p p T T 1)12(12-==252.3K=--=--=]3.252303[*12.1287*6]21[1T T n R mW 436.5 kJ =---=-=)3033.252(*1*6)12(n kn c T T mc Q v n 218.3 kJ4-7 已知空气的初态为p1=0.6MPa ,v1=0.236m 3/kg 。
经过一个多变过程后终态变化为p2=0.12MPa ,v2=0.815m 3/kg 。
试求该过程的多变指数,以及每千克气体所作的功、所吸收的热量以及内能、焓和熵的变化。
解:(1)求多变指数)815.0/236.0ln()6.0/12.0ln()2/1ln()1/2ln(==v v p p n =1.30 1千克气体所作的功=--=--=)815.0*12.0236.0*6.0(*13.11]2211[11v p v p n w 146kJ/kg 吸收的热量)1122(111)12(11)12(v p v p k n k n T T k R n k n T T c q n ----=----=-===----)236.0*6.0825.0*12.0(14.1113.14.13.136.5 kJ/kg内能:=-=∆w q u 146-36.5=-109.5 kJ/kg焓: =--=-=∆)1122(1)12(v p v p k kT T c h p -153.3 kJ/kg 熵:6.012.0ln *4.717236.0815.0ln *5.100412ln 12ln+=+=∆p p c v v c s v p =90J/(kg.k) 4-81kg 理想气体由初态按可逆多变过程从400℃降到100℃,压力降为1612p p =,已知该过程的膨胀功为200kJ ,吸热量为40 kJ ,设比热为定值,求该气体的p c 和v c 解:160)12(-=-=-=∆w q T T c u v kJ v c =533J/(kg.k)])12(1[11)21(11nn p p n RT T T n R w ---=--==200 kJ解得:n =1.49 R=327 J/(kg.k)代入解得:p c =533+327=860 J/(kg.k)4-9将空气从初态1,t1=20℃,定熵压缩到它开始时容积的1/3,然后定温膨胀,经过两个过程,空气的容积和开始时的容积相等。
求1kg 空气所作的功。
解:]31[14.1293*287])21(1[11])12(1[11114.111-----=--=--=k kk v v k RT p p k RT w=-116 kJ/kg1)21(12-=k v v T T =454.7K )3/1ln(*7.454*28723ln 22==v v RT w =143.4 kJ/kgw=w1+w2=27.4 kJ/kg4-10 1kg 氮气从初态1定压膨胀到终态2,然后定熵膨胀到终态3。
设已知以下各参数:t1=500℃,v2=0.25m 3/kg ,p3=0.1MPa ,v3=1.73m 3/kg 。
求(1)1、2、3三点的温度、比容和压力的值。
(2)在定压膨胀和定熵膨胀过程中内能的变化和所作的功。
解:(1)4.1)25.073.1(*1.0)23(32==k v v p p =1.5 MPa 8.29610*25.0*5.12226==R v P T =1263Kp1=p2=1.5 MPa v1=221v T T =0.15 m 3/kg 8.29610*73.1*1.03336==R v P T =583 K(2) 定压膨胀=-=∆)12(T T c u v 364 kJ/kg=-=)12(T T R w 145.4 kJ/kg定熵膨胀=-=∆)23(T T c u v 505 kJ/kg=--=]32[1T T k Rw -505 kJ/kg 或者:其q=0,u w ∆-== -505 kJ/kg 4-11 1标准m 3的空气从初态1 p1=0.6MPa ,t1=300℃定熵膨胀到状态2,且v2=3v1。
空气由状态2继续被定温压缩,直到比容的值和开始时相等,v3=v1,求1、2、3点的参数(P,T,V )和气体所作的总功。
解:=⨯==5106573*287111p RT v 0.274 m 3/kg ===4.1)31(*6.0)21(12k v v p p 0.129 MPa===-4.01)31(*573)21(12k v v T T 369K V2=3V1=0.822 m 3T3=T2=369KV3=V1=0.274 m 3===113*129.0)32(23v v v v p p 0.387 MPa 4-12 压气机抽吸大气中的空气,并将其定温压缩至p2=5MPa 。
如压缩150标准m 3空气,试求用水冷却压气机气缸所必须带走的热量。
设大气处于标准状态。
解:====5101325.0ln *150*10*101325.021ln116p p V p W Q -59260kJ 4-13 活塞式压气机吸入温度t1=20℃和压力p1=0.1MPa 的空气,压缩到p2=0.8MPa ,压气机每小时吸气量为600标准m 3。
如压缩按定温过程进行,问压气机所需的理论功率为多少千瓦?若压缩按定熵过程进行,则所需的理论功率又为多少千瓦? 解:定温:=⨯==3600*273*287600100000RT pV m 0.215kg/s ==21ln1p p m RT W s -37.8KW 定熵])1.08.0(1[14.1293*287*4.1*215.0])12(1[1114.114.11----=--=kk s p p k kRT m W =-51.3 KW4-14 某工厂生产上需要每小时供应压力为0.6MPa 的压缩空气600kg ;设空气所初始温度为20℃,压力为0.1MPa 。