第二章 谐振功率放大器

合集下载

第二章 谐振高频功率

第二章 谐振高频功率

返回
2.2 谐振功率放大器地性能特点
2.2.3 VBB、Vbm、VCC和Vcm四个电量对电路性能的影响
一、负载特性
图2-2-3是Re变化时, 引起ic的变化波形。
因为ic是脉冲波,而且是周期变化的,根 据傅立叶级数展开,可以得到 直流分量 基波分量
1 I co iC dt 2 1 I c1m iC costdt
2.1 谐振功率放大器地工作原理
2.1.1 丙类谐振功率放大器
1. 电路的特点
静态时,管子工作在截止区。 由Lr和Cr及负载ZL组成并联 谐振电路。
Cr Ct 其中, Ct Cr Ct
2 Re QL RL 0 Lr
RL
QL是有载品质因数
2.1 谐振功率放大器地工作原理
2.1.1 丙类谐振功率放大器 2.电路的工作原理 因为静态时,管子处于截止 状态。 所以当有信号输入时,只有 当瞬时的电位高于0.6V时, 才能有ib电流并形成ic电流。 因此形成的脉冲串的宽度均 小于半个周期。
返回
2.1 谐振功率放大器地工作原理
2.1.1 丙类谐振功率放大器
根据傅里叶级数展开得到


还有谐波分量。
2.2 谐振功率放大器地性能特点
2.2.3 VBB、Vbm、VCC和Vcm四个电量对电路性能的影响 理论证明:
因为Re的变化,则导致Ico、Icm、Vcm、Po、 PD、PC和ηC的变化。
但是若选取合适的Re,使电路工作在临界状 态,则Po达到最大值, ηC的值较高, PC较小。 所以,Re值称为谐振功率放大器的匹配负载。
2.3 谐振功率放大器电路
2.3.2 滤波匹配网络 传输网络设计考虑:
(1)因为谐波的抑制度与传输效率的要求是矛盾的。所以在网络的设 计时,考虑到ηK要高,Hn也要高,因此在实际的匹配网络往往是采用 Qe较低和π,T及L型及由其组成的多级混合网络(Qe<10)。

资料:第 2 章 谐振功率放大器 练习

资料:第 2 章 谐振功率放大器 练习

第 2 章谐振功率放大器1.LC串联谐振回路品质因数下降,频带变宽,选择性变差。

2.LC并谐振电路谐振时,感抗与容抗都为零,所以回路呈纯电阻特性。

( ╳ ).3.谐振功率放大器1)某丙类谐振功率放大器工作在临界状态,若使其工作在过压状态,应保持其它参数不变,将集电极直流电源电压增大(√ )2)丙类谐振功放外接负载开路不会造成晶体管损坏(╳)3)丙类谐振功放作为集电极调幅时,应工作于过压状态(√ )4)谐振功率放大器的串、并两种馈电方式对应的直流通路不同(╳)4.在高频放大器或振荡器中,由于某种原因,会产生不需要的振荡信号,这种振荡称为( B )。

A、间谒振荡B、寄生振荡C、高频振荡D、频率占据5.高频功率放大器输入、输出调谐回路的作用是______、______、______。

高频功率放大器原来工作于临界状态,当谐振阻抗增大时,工作于______状态,i c出现______。

丙类功率放大器输出波形不失真是由于______。

高频功率放大器三种工作状态,分别为______、______、_______。

(匹配;选频;抑制不需要的分量;过压;双峰;选频回路的作用;欠压;过压;临界)6. 丙类功率放大器工作在欠压状态,随着负载谐振电阻R P的增大而向临界状态过渡时, 放大器的交流输出电压V cm将 B 。

A) 减小 B) 增大 C) 略有增大 D) 略有减小7.谐振功率放大器工作于欠压区,若基极电源V BB中混入50Hz市电干扰,当输入为高频等幅正弦波时,其输出电压将成为 D 。

A) 调频波B) 等幅正弦波 C) 直流信号按50Hz正弦变化的波 D) 调幅波8.某谐振放大器工作在过压状态,现要调整使之工作到临界状态,若其他参数不变,可以增加负载R e来实现。

( ╳ )9.为什么高频功放一般在乙类、丙类状态下工作?为什么通常采用谐振回路作负载?答:为了提高效率,一般选择在乙类或丙类下工作;但此时的集电极电流是一个余弦脉冲,因此必须用谐振电路做负载,才能得到所需频率的正弦高频信号;另外,谐振回路还能实现阻抗匹配。

电子线路(非线性部分)第五版第二章

电子线路(非线性部分)第五版第二章

Qe
Xs Rs

Rp Xp
T 型网络分析
2.3.3 谐振功率放大器电路
双极型管谐振功率放大电路
50MHz
场效应管谐振功率放大器
400MHz
2.4 高频功率放大器
在通信等应用领域中,谐振功率放大器的工作频 率往往在几十MHz以上,高到几百MHz,通常将 这种谐振功率放大器统称为介于功率管T和外接负载RL之间:
交流通路:
主要要求 阻抗转换;滤波;高效率地功率传输。 要求网络的传输效率=PL/Po尽可能接近于1。
串并联阻抗转换
Rs2 X s2 2 Rp Rs (1 Qe ) Rs 2 2 R R Rs X s p s Xp Xs Xs
基于静态特性曲线的近似分析法虽然有助于了解 谐振功率放大器的性能变化特性,并指导功率放 大器的调试,但这种方法不适合分析和设计高频 功率放大器。工程上一般借助功率管的大信号输 入和输出阻抗来分析和设计高频功率放大器。
2.4.1 高频功率管及其大信号输入和输出阻抗
一、高频功率管结构
高频功率管的内部结构
称为倍频器 (Frequency Multiplier) 。
由于输出功率和滤波特性的限制,这种倍频
器的倍频次数不能太高,一般为2或3。
2.1.2 丁类和戊类谐振功率放大器
丁类(Class D)谐振功率放大器: 功率管开关工作,导通时 管子电流很大,管压降很 小;截止时管压降较大, 但几乎没电流。因此管耗 很小,籍此放大器的效率 得以提高 。 提高效率的措施是减小管 子导通期间的瞬时管耗。
实例: 设计一高频功率放大器,用于调频发射机, 输入和输出负载均为50Ω,输入信号频率为 80MHz,输出信号频率为160MHz,要求输 入功率为4mW时,输出负载上的功率 PL≥700mW,二次谐波抑制度小于-30dB,放 大器总效率大于50%,电源电压为15V。

谐振功率放大器详解

谐振功率放大器详解

Re
= ω02 Lr 2
RL
=
Lr Ct RL
式中, Ct
=
CrCL Cr + CL
—— 回路总电容
Qe = ω0 Lr / RL —— 回路有载品质因数
(2) 对非基波分量 谐振回路对 iC 中的其它分量呈现的阻抗均很小,平 均分量和各次谐波分量产生的电压均可忽略。
结论:回路上仅有由基波分量产生的电压vc,因而 在负载上可得到所需的不失真信号功率。
2. 集电极电流 ic
若忽略基区宽度调制效应及管 子结电容的影响,则在输入信号电 压 vb (t ) = Vbmcosωst 的作用下, 根据 vBE = VBB + vb (t ) = VBB + Vbmcosωst , 在静态转移特性曲线 (ic~vBE)上画 出的集电极电流波形是一串周期重 复的脉冲序列,脉冲宽度小于半
个周期。用付里叶级数可将电流 脉冲序列分解为平均分量、基波 分量和各次谐波分量之和,即
iC = IC0 + ic1 + ic2 + ⋅ ⋅ ⋅ ⋅
= IC0 + Ic1mcosωst + Ic2mcos2ωst + ⋅ ⋅ ⋅
3. 输出电压 vo (1) 对基波分量 由于集电极谐振回路调谐在输入信号频率上,因而 它对 iC 中的基波分量呈现的阻抗最大,且为纯电阻,称 为谐振电阻,在高 Q 回路中,其值 Re 近似为
在谐振功率放大器中,它的管外电路由直流馈电电
路和滤波匹配网络两部分组成。
2.1.1 丙类谐振功率放大器
1. 电路组成 ZL —— 外接负载,呈阻抗性,用 CL 与 RL 串联等 效电路表示。 Lr 和 Cr ——匹配网络, 与 ZL 组成并联谐振回路。调 节 Cr 使回路谐振在输入信号 频率。

010 第二章 高频功率放大器

010    第二章     高频功率放大器

变化.
c.在欠压状态时,VCC的变化对Ic0、Ic1的影响
小.
在过压状态时,VCC的变化对Ic0、Ic1的影响 大. 为实现集电极调制,放大器应工作于。 过压状态

此时U
ce对Ic1有明显的控制作用。
(3)放大特性:Ub变化对放大器工作状态的影响.
①前提条件:VBB、VCC、Re不变,Q不变。
1、丁类放大器工作在开关状态 ,负载谐振回
路区基波、管子功耗为零,效率在90 0 0
以上。
2、戊类放大器工作原理同丁类放大器,不同的
是采用一个特殊设计的集电极回路,以保证
VCe 为最小值时才有集电极电流。
谐振功率放大器
一、放大器的分类: 1、按信号的导通角分 甲类 乙类
θ 180 θ 90 θ 0o
o o
o
丙类
丁类 2、按信号的频率分 高频放大器 低频放大器
θ 90
负载多用谐振回路,匹配 网络。 纯电阻、低频变压器。
3、按信号的大小分
小信号放大器
功率放大器
线性分析法(等效电 路)
③分类:
2、电路:
EC
3、质量指标:
①增益:表示放大器放大信号的能力
Uo Au Ui
Po Ap Pi
Uo Au dB 20 log Ui
特点:
Po Ap dB 10 log Pi
a .多级级联时,单及增益越高,所需级数越
少,级数越多,通频带越窄。
b.增益与其它指标之间有矛盾(通频带稳定 性)。
0 1
0
1

管子导通角
90
0 电流为余弦脉冲波,
利用傅里叶级数将其分解为 ib

谐振功率放大器

谐振功率放大器
图 2–2–10 (b) 振幅限幅器旳作用
谐振功放旳放大特征
图 2–2–9 放大特征
(1)谐振功放作为线性功放 为了使输出信号振幅 Vcm 反 应输入信号 Vbm 旳变化,放大器 必须在 Vbm 变化范围内工作在欠 压状态。
图 2–2–10 (a) 线性功率放大器旳作用
(2) 谐振功放作为振幅限幅器(Amplitude Limiter) 作用:将 Vbm 在较大范围内旳变化转换为振幅恒定旳 输出信号。 特点:根据放大特征,放大器必须在 Vbm 旳变化范围 内工作在过压状态,或 Vbm 旳最小值应不小于临界状态相 应旳 Vbm 限幅门限电压。
(3)基极调幅原理电路
图 2–2–8 基极调幅电路
VBB (t ) VBB0 v (t ) —— 基极偏置电压 使 Vcm 按 VBB(t) 旳规律变化,放大器工作在欠压状态。
三、放大特征
1.含义 当 VBB、VCC 和 Re 一定, 放大器性能随 Vbm 变化旳特征。
2.特征
固定 VBB,增大 Vbm 与上 述固定 Vbm 增大 VBB 旳情况类 似,它们都使 iC 旳宽度和高 度增大,放大器由欠压进入过 压,图 2–2–9(a)。
谐振功率放大器旳分析
(1)求动态点,画波形
设定 VBB、Vbm、VCC、Vcm ,
将 t 按等间隔(t = 0º, 15º,
30º, ) 给定数值,由 vBE VBB Vbmcost vCE VCC Vcmcost
便可拟定 vBE 和 vCE (图 a)。
图 2–2–1 谐振功率放大器旳近似分析措施(a)
小,因而 Vcm(= ReIc1m)和 Po(
I
2 c1m
Re
)近似线性增大,而

谐振功率放大器电路

谐振功率放大器电路

Rp Rs Xs
Rs
Rp 1 Qe2
Xs
Rs Rp Xp
Qe
Xs Rs
Rp Xp
解:将 T 型网络分割成两个串接的 L 型网络,图 中 XC1 XC 1 // X L1 。
再对这两个 L 型网络进行分析。 在后一个 L 型网络中,将 XC2 和 RL 的串接阻抗转换
为 Xp2 和 Rp2 的并接阻抗,分别取值为
Rp2 RL (1 Qe22 )
X p2
Rp2 RL XC2
Rp2 Qe2
(注意 XC2 含负号)
令 X L1 Xp2 ,0 回路并联谐振,则 L 型网络呈现的
谐振电阻为
Re Rp2 RL (1 Qe22 )
其中,Qe2 XC2 / RL 且网络元件的表达式为
XC2 = - Qe2RL, X L1 X p2 Rp2 / Qe2
图 2–3–2 (b)偏置电路:LB、RB、CB1。 RB :产生压降,提供自偏电压;LB :避免 RB、CB1 对 输入滤波匹配网络的旁路影响。
3.自给偏置电路 (1)自给偏压 IB0 的产生
图 2–3–2 (b),vb 0 ib 0,为 脉 冲 电 流 , 可 分 解 为 IB0 、 Ib1m 、 Ib2m 、···
Hn 10lg
PLn PL
20lg
I Lnm I L1m
Hn 越小,网络对 n 次谐波的抑制能力越强。通常n 选
2,即对二次谐波的抑制度。
(3)高效
将功率管给出的信号功率 Po 高效地传送到外接负载上,
即要求网络的传输效率 K = PL/ Po 接近 1。
3.讨论
(1)谐波抑制度 Hn 和 K 间的矛盾
利用串、并联阻抗转换公式,就可以导出各种滤波匹 配网络的元件表达式。

谐振功率放大器基本原理分析

谐振功率放大器基本原理分析
谐振功率放大器基本原理分析
谐振功率放大器基本原理分析
2.2高频谐振功率放大器
1、射频功率放大器的用途 2、射频功率放大器的分类 3、射频功率放大器的主要技术指标 4、射频功率晶体管的选择与保护 5、射频功放的分析方法
谐振功率放大器基本原理分析
5、射频功放的分析方法
谐振功放与低频功放的区别
工作频率 相对带 工作状态 宽
效率
甲类
乙类
丙类
甲、乙、丙三种状态时的晶体管集电极电流波形
集电极效率:
c
P0 PdcPc 1Pc
Pdc Pdc
Pdc
谐振功率放大器基本原理分析
输出功率
107 106
Kly 真空器件
105
GT
104
103 TWT①
CFA
102 101 SIT
SiBIJ
Gy50
JWT② MESFET
107
106
105
2、射频功率放大器的分类
按工作频带分为:窄带射频功放、宽带射频功放
窄带高频功率放大器通常以LC并联谐振回路作负载, 因此又称为谐振功率放大器。
按电流导通角不同分为:甲类、甲乙类、乙类、丙类。
射频功放大多工作于丙类,采用谐振回路做负载。
按工作状态分为:线性放大和非线性放大
射频功放通常工作于非线性放大状态,具有较高的效率。
谐振功率放大器基本原理分析
2.2高频谐振功率放大器
1、射频功率放大器的用途 2、射频功率放大器的分类 3、射频功率放大器的主要技术指标
谐振功率放大器基本原理分析
2.2高频谐振功率放大器
3、射频功率放大器的主要技术指标
ic
ICM
PCM

第1,2章 功率电子电路 谐振功率放大器(1)

第1,2章 功率电子电路 谐振功率放大器(1)

一、选择题(将一个正确选项前的字母填在括号内)1.在调谐放大器的LC回路两端并上一个电阻R,可以( C )A.提高回路的Q值B.提高谐振频率C.加宽通频带D.减小通频带2.利用高频功率放大器的集电极调制特性完成功放和振幅调制,功率放大器的工作状态应选( C )A.欠压 B.临界 C.过压3.石英晶体谐振于fs时,相当于LC回路的(A)A.串联谐振现象 B.并联谐振现象 C.自激现象 D.失谐现象4.高频功率放大器放大AM信号时,工作状态应选(A)A.欠压 B.临界 C.过压5.高频小信号调谐放大器主要工作在( A)A.甲类B.乙类 C.甲乙类 D.丙类6.功率放大电路与电压放大电路的区别是(C)A.前者比后者电源电压高B.前者比后者电压放大倍数大C.前者比后者效率高D.前者比后者失真小7.小信号调谐放大器主要用于无线通信系统的(B)A.发送设备B.接收设备C.发送设备、接收设备8.高频功率放大器主要工作在(D)A.甲类B.乙类 C.甲乙类 D.丙类9.单调谐放大器经过级联后电压增益增大、通频带变窄、选择性变好。

(在空格中填写变化趋势)10.谐振功率放大器与调谐放大器的区别是( C )A.前者比后者电源电压高B.前者比后者失真小C.谐振功率放大器工作在丙类,调谐放大器工作在甲类D.谐振功率放大器输入信号小,调谐放大器输入信号大11.无线通信系统接收设备中的中放部分采用的是以下哪种电路( A )A.调谐放大器B.谐振功率放大器C.检波器D.鉴频器12.如图所示调谐放大器,接入电阻R4的目的是(C)A.提高回路的Q值B.提高谐振频率C.加宽通频带D.减小通频带13.谐振功率放大器输入激励为余弦波,放大器工作在临界状态时,集电极电流为(B)A.余弦波B.尖顶余弦脉冲波C.有凹陷余弦脉冲波14、并联谐振回路外加信号频率等于回路谐振频率时回路呈(C )A)感性B)容性C)阻性D)容性或感性15、在电路参数相同的情况下,双调谐回路放大器的通频带与单调谐回路放大器的通频带相比较( A )。

杭州电子科技大学2023年《通信电路》考研专业课同等学力加试大纲

杭州电子科技大学2023年《通信电路》考研专业课同等学力加试大纲

杭州电子科技大学硕士研究生复试同等学力加试科目考试大纲学院:通信工程学院加试科目:通信电路第一章谐振网络与阻抗匹配网络1.LC并联谐振回路的结构,谐振频率、品质因素、带宽及谐振点电阻计算。

2.LC串联谐振回路的结构,谐振频率、品质因素、带宽及谐振点电阻计算。

3.带有抽头的LC复杂谐振回路的阻抗变换关系及谐振频率与带宽计算。

4.电抗与电阻串并联等效概念及有关计算。

5.L型阻抗匹配的结构及匹配元件值计算。

第二章谐振功率放大器1. 谐振功率放大器的电路结构及工作原理。

2. 谐振功率放大器的准静态近似分析方法。

3. 谐振功率放大器的功率、效率及电源功耗等计算。

4. 谐振功率放大器的欠压、临界、过压三种工作状态特点及其判断依据。

5. 谐振功率放大器的负载特性、调制特性、放大特性的概念及应用。

6. 谐振功率放大器的直流馈电电路,集电极串馈、并馈及基极自给偏置的概念。

第三章正弦波振荡器1. 反馈振荡器的电路结构及工作原理,起振条件、平衡条件及稳定条件。

2. LC三点式振荡器的电路结构,起振条件、振荡频率的工程估算。

3. 振荡器频率稳定度的因素及改进措施。

4. 石英晶体等效电路及参数,石英晶体的Q值、串并联谐振频率及谐振曲线。

5. 并联型及串联型石英晶体振荡器的工作原理及典型电路。

第四章振幅调制、解调与混频电路1. 频谱搬移电路的组成模型。

2. AM、DSB、SSB信号的数学表达式、功率及带宽计算。

3. AM、DSB、SSB的产生模型及解调模型。

4. 非线性器件相乘作用及特性,组合频率分量表达式及其与多项式阶数的联系。

5. 非线性相乘器的线性时变工作原理及频谱特点。

6. 二极管平衡、双平衡混频器的电路结构及分析方法,混频输出信号表达式、输入阻抗及混频插损(增益)计算。

7. 三极管Gilbert混频器的电路结构及分析方法。

8. 混频失真的主要类型及产生机理。

混频器1dB压缩点概念,混频器三阶互调截止点概念及3阶互调失真计算。

高频实验2高频谐振功率放大器.ppt

高频实验2高频谐振功率放大器.ppt

Icmax
ic
ic1
ic2 ic3
故输出仍为不失 Ico 真的正弦波.
ωt
θc
θc
利用功放负载 LC回路的选频 功适能当,选择LC的 参数使之谐振与 基波频率,
-VBB
C
BT Ec
R+
L
Uc1
-
高频功放的工作状态: ic
高频功放的工作状态有三种,分别是: (1) 欠压工作状态
特点:晶体管的工作范围在放大区和截止区。
④ 缓慢增大输入信号幅度,使放大器处于临界工作状态,即Ie由尖顶余弦 脉冲变化到即将出现双峰的时刻,注意观测此时输出信号幅度与输入信号 幅度变化的特点(输出信号最大)。
⑤ 继续增大输入信号幅度。当输入信号幅度增大到一定程度时,放大器将由临
界进入到过压工作状态,即Ie由尖顶余弦脉冲变化到集电极电流脉冲则出现凹陷 的双峰,注意观测此时输出信号幅度与输入信号幅度变化的特点(输出电压振幅 增长缓慢)。
4测、试丙电路类框功图率和放实大验器测试负条载件特同性上测:定的测 R输结L试 入=根果条 信12据件 号,0:频Ω实说率Vc验明=c=谐测什+振1量么频2V率数是fo据高
① 使高功放处于最佳谐振状态。
功放的负载特性?
② 用示波器“ CH1”探头检测“高频功率放大器”实验板的 “Ie”波形;用示波器”CH2”探头检测“高频功率放大器” 实验板的“OUT”波形。
③ 适当调整高频信号发生器的输出信号 幅度,使放大器处于过压工作状态,即 使Ie出现双峰,并记录此时的电流波形。
④ 改变负载(用连接线),使负载电 阻依次变为75Ω→50Ω。观察并记录不 同负载时的电流波形。
三、实验应会技能 根据实验测量的结果,

射频电路基础(第二章

射频电路基础(第二章

当UBB=UBE(on)时,θ=90°;当UBB<UBE(on)时,θ<π/2; 当 UBB>UBE(on)时, θ>π/2。
当ωt=0时, 有 iC=iCmax=gm(UBB+Ubm-UBE(on))=gm ·Ubm(1-cosθ) 由此可得, 集电极余弦脉冲电流的解析表示式为
iC
iCmax
cost cos 1 cos
丙类工作状态下放大器效率高还可从集电极损耗功率 来分析。 由
可知, 当Po一定时, 减小PC可提高ηC。 PC可表示为
因此, 减小iC ·uCE及通角θ可减小PC。
第二章 谐振功率放大器
在高频功率放大器中, 提高集电极效率的同时, 还应 尽量提高输出功率。 根据式(2.1.3)和式(2.1.4), 可得
第二章 谐振功率放大器
图 2.2.3 三种状态下的动态特性及集电极电流波形
第二章 谐振功率放大器
2.2.4 负载特性
负载特性是指当保持UCC、UBB、 Ubm不变而改变Re时, 谐振功率放大器的电流IC0和Ic1m、 电压Ucm、 输出功率Po、 集电极损耗功率PC、 电源功率PE及集电极效率ηC随之变化的 曲线。
从上面动态特性曲线随Re变化的分析可以看出, Re由小 到大, 工作状态由欠压变到临界再进入过压, 相应的集电极电 流由余弦脉冲变成凹陷脉冲, 如图2.2.4(a)所示。
第二章 谐振功率放大器
图 2.2.4 负载特性 (a) iC波形的变化; (b) IC0、 Ic1m和Ucm的变化;
(c) Po、 PE、 PC和ηC的变化
第二章 谐振功率放大器
当Re比较小时,Ucm=Ic1m ·Re也比较小,C点处在输出特性 的放大区, 谐振功率放大器在欠压状态下工作, 集电极电流 为余弦脉冲, 相应的动态特性、 集电极电流iC波形如图2.2.3 中曲线①所示。 当Re增大时, Ucm增大, uCEmin减小, C点沿 uBEmax的输出特性左移。 若放大器仍处于欠压状态, 则集电极 电流波形不变。 Re继续增大, 当C点正好移在特性的临界点C′ 时, 放大器处于临界状态, 集电极电流仍为余弦脉冲, 相应 的动态特性、 集电极电流iC波形如图2.2.3 中曲线②所示。

实验二 高频谐振功率放大器.

实验二  高频谐振功率放大器.

实验二 高频谐振功率放大器在通信系统中, 高频谐振功率放大电路,是无线电发射机的重要组成部分,它的主要功用是实现对高频已调波信号的功率放大, 然后经天线将其转化为电磁波辐射到空间,以实现用无线信道的方式完成信息的远距离传送。

所以研究高频功率放大器的主要任务是怎样以高效率输出最大的高频功率。

因此, 高频功放常采用效率较高的丙类工作状态, 即晶体管集电极电流导通时间小于输入信号半个周期的工作状态,导通角090≤θ。

虽然功率增益比甲类和乙类小,但效率η却比甲类和乙类高。

一般可达到80%。

同时, 为了滤除丙类工作时产生的众多高次谐波分量, 采用LC 谐振回路作为选频网络, 故称为高频谐振功率放大器,显然,谐振功放属于窄带功放电路。

一、实验目的1.掌握高频谐振功率放大器的电路结构特点、基本功能与工作原理。

2.掌握高频谐振功率放大器的调谐方法和掌握高频谐振功率放大器的调谐特性,负载特性以及激励电压、偏置电压、电源电压变化时对其工作状态的影响。

3.了解高频谐振功率放大器的主要性能指标意义,掌握测试方法。

学会电路设计方法。

二、实验设备与仪器高频实验箱 WYGP-3或GP-4 一台 双踪示波器 TDS-1002 一台 高频信号发生器 WY-1052 一台 频率特性测试仪 BT-3C 一台 万用表 一块三、实验任务与要求1、高频谐振功放的基本电路结构高频谐振功率放大器的电路构成,除电源电路外,主要由晶体管、输入激励电路、输出谐振回路三个部分组成,谐振功率放大器原理电路如图2-1所示。

图中b u 为输入交流信号,B E 是基极偏置电压,调整B E ,可改变放大器的导通角,以使放大 图2-1 谐振功率放大器的工作原理 器工作在导通角090≤θ丙类状态。

C E 是集电极电源电压。

集电极外接LC 并联谐振回路的功用是作放大器负载,实现滤波选频和阻抗匹配。

2、高频谐振功率放大器的工作原理与主要性能指标放大器工作时,设输入信号电压:t U u bm b ωcos =则加到晶体管基极,发射级的有效电压为: t U U U u u bm BB BB b BE ωcos +-=-= 由晶体管的转移特性曲线可知,如图2-2所示:当BZ BE U <u 时,管子截止,0=c i 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2-2-1)
① 由式 2-2-1 确定 vBE 和 vCE: 先设定VBB、Vbm、VCC、Vcm 四个电量数值,并将ωt 按等间隔 (ωt = 0º ,±15º ,±30 º,……) 给定不同的数 值,则 vBE 和 vCE 便确定(图 a)。
②由输出特性画 iC:根据不同间隔上的 vBE 和vCE 值, 在输出特性曲线上(以 vBE 为参变量)找到对应的动态 点,由此可以确定 iC 值的波形,其中动态点的连线称为 谐振功率放大器的动态线。
③ 后果:加到基极 上的最大反向电压(VBB -Vbm)可能使功率管发 射结反向击穿。
在维持输出功率 的条件下,一味地减 管子导通时间来提高 可采用开关工作的谐振功率放大器——丁类。
集电极效率的做法往往是不现实的。为进一步提高效率,
2.1.2 丁类和戊类谐振功率放大器
1. 丁类简介 (1) 电路 Tr 次级两绕组相同,极性相反。 T1 和 T2 特性配对,为同型管。
用途:对载波或已调波进行功率放大
2.1 谐振功率放大器的工作原理
在谐振功率放大器中,它的管外电路由直流馈电电 路和滤波匹配网络两部分组成。
2.1.1 丙类谐振功率放大器
1. 电路组成
ZL —— 外接负载,呈阻抗性,用 CL 与 RL 串联等 效电路表示。 Lr 和 Cr ——匹配网络,与 ZL 组成并联谐振回路。 调节 Cr 使回路谐振在输入信号频率。 VBB——基极偏置电压,设置在功率管的截止区, 以实现丙类工作。
① 欠压状态:随 VCC 减小,集电极电流脉冲高度 略有减小,因而 IC0 和 Ic1m 也将略有减小,Vcm( = ReIc1m) 也略有减小。
② 过压状态:随 VCC 减小,集电极电流脉冲的高 度降低,凹深加深,因而 IC0、Ic1m、Vcm 将迅速减小。
vBE VBB Vbm cost vCE VCC Vcm cost
(2-2-1)
假设二:功率管的特性用输入和输出静态特性曲 线表示,其高频效应可忽略。分析时的输出特性曲线, 其参变量采用 vBE,而不是通常的 iB。
(2) 分析步骤 vBE VBB Vbm cost vCE VCC Vcm cost
2.2 谐振功率放大器的性能特点
2.2.1 近似分析方法
1. 概述 非谐振功率放大器:集电极负载为纯电阻,在特性 曲线上作负载线,画出激励信号下的集电极电流和电压 求出功率性能 丙类谐振功率放大器:集电极负载为包含电抗元件 的谐振回路,使得集电极电压,电流波形不同。但二者 又互为确定。
要精确分析谐振功放,要解非线性方程,繁琐。
所以,谐振功率放大器中,谐振回路起到选频和匹 配负载的双重作用。
4. 丙类功放的功率特性分析 (1) 丙类功放效率提升问题 若提高集电极效率,可使 管子导通时间减小;但引起 iC 中基波分量幅度 Icm 减小,从 而导致输出功率减小。 (2) 解决方法 ① 将基极偏置电压 VBB 向负值方向增大,减少管 子导通时间。 ② 增大集电极脉冲高度,即提高输入激励电压幅 度 Vbm,使减小导通时间的同时维持输出功率不变。
小结:丙类谐振功率放大器的功能 (1) 选频:利用谐振回路的选频作用,可将失真的 集电极电流脉冲变换为不失真的输出余弦电压。
(2) 阻抗匹配:谐振回路将含有电抗分量的外接负 载变换为谐振电阻 Re,而且调节 Lr 和 Cr 还能保持回 路谐振时使 Re 等于放大管所需的集电极负载值,实现 阻抗匹配。
2.1.3 倍频器
1. 概念 倍频器 (Frequency Multiplier):将输入信号的频 率倍增 n 倍的电路。 2. 实现原理 在丙类谐振放大器中,将输出谐振回路调谐在输入 信号频率的 n 次谐波上,则输出谐振回路上仅有 iC 中 的 n次谐波分量产生的高频电压,而其它分量产生的 电压均可忽略,因而 RL 上得到了频率为输入信号频率 n 倍的输出信号功率。 3. 倍频电路
动态点A左移
情况 ① ——A:Vcm 的取值,使所对应的动态点 处在放大区。 情况 ② ——A:Vcm 增大,使 t = 0 所对应的动 态点处在临界点,iCmax 略微减小。 情况 ③——A:Vcm 继 续增大,使 t = 0 所对应的 动态点处在饱和区,iC 迅速减 小,电流脉冲出现凹陷,且随 Vcm 增大,凹陷加深。
据此可以画出 Ic0 和 Ic1m 随 Re 变化的特性。
Vcm = ReIc1m Po = VcmIc1m/2 PD = VCCIC0 PC = PD-Po C = Po/ PD
由 IC0 和 Ic1m 的变化就可以画出 Vcm、Po、PD、PC、 C 随 Re 变化的曲线。
3. 讨论 (1) 欠压区:由图(a),Re 由小增大时,iC 脉冲的高度 略有减小,相应的 IC0、Ic1m 也略有减小,因而由图(b), 2 Vcm (=ReIc1m)和 Po( I c1m Re )近似线性增大,而
(1) 三极管倍频器 倍频次数不能太高,一般为二倍或三倍频。原因: ① 效率。集电极电流脉冲中包含的谐波分量的幅度 随着 n 的增加而迅速减小。倍频次数过高,倍频器的输 出功率和效率就会过低。
② 滤波。谐振回路需滤除高于 n 和低于n 的各次分 量。低于 n 的分量幅度较大,滤除较难。倍频次数越高, 对谐振回路提出的滤波要求越苛刻,不易实现。 (2) 变容二极管等构成参量倍频器,适用于倍频次数 较高时。
(2) 原理
若 vi 足够大,则 vi > 0时,T1 饱和导通,T2 截止,
v A1 VCC vCE(sat)
vi < 0,T2 饱和导通,T1 截止,
v A2 vCE(sat)
A 点幅值: vA = vA1 vA2 = VCC 2vCE(sat) 该电压加到 L、C、R 串联谐振 回路上,若谐振回路工作在输入信 号角频率上, 且其 Q 值足够高,则 可近似认为通过回路的电流 iL 是
2.2.3 四个电量对性能影响的定性讨论
一、负载特性
1. 含义:谐振功放的负载特性是指 VBB、Vbm 和 VCC 一定,放大器性能随 Re 的变化特性。
2. 特性
Re 的增加势必将引起 Vcm 增大( Vcm Re I c1m)
Re↑→Vcm↑→vCEmin↓→放大器欠压→过压→ iC 由接近 余弦变化的电流脉冲转变为中间有凹陷的脉冲波。
二、调制特性 包括集电极调制和基极调制两种特性。 1. 集电极调制特性 (1) 含义:VBB、Vbm 和 Re一定,放大器性能随 VCC 变化的特性。
(2) 调制特性:VBB、 Vbm一定,则 VBEmax 和 iC 脉宽一定。而对应于 VCEmin 的动态点必定在 vBE = VBEmax 的那条输出 特性曲线上移动。
用付里叶级数可将电流脉冲序列分解为平均分量、
基波分量和各次谐波分量之和,即
iC I C0 ic1 ic2 I C0 I c1mcos s t I c2mcos2 s t
3. 输出电压 vc (1) 对基波分量 由于集电极谐振回路调谐在输入信号频率上,因而 它对 iC 中的基波分量呈现的阻抗最大,且为纯电阻,基 波电流分量产生的相应基波电压的幅度将很大 (2) 对非基波分量 谐振回路对 iC 中的其它分量呈现的阻抗均很小,平 均分量和各次谐波分量产生的电压均可忽略。
第2章
谐振功率放大器
2.1 谐振功率放大器的工作原理
2.2 谐振功率放大器的性能特点 2.3 谐振功率放大器电路
第2章
谐振功率放大器
谐振功放是一种用谐振系统作为匹配网络的功率
放大器,一般工作在丙类(或丁类),主要用在无线
电发射机中,用来对载波或已调波进行功率放大。
构成:匹配网络为谐振系统 应用状态:丙类(或丁类)
(2) iC 的值:
由 v BE VBB Vbmcost; vBE vBEmax VBB Vbm ,
当 t = 0 时,
vCE VCC Vcm cost
vCE VCEmin VCC Vcm
当 VBB、Vbm 即 vBEmax 为定值时,Vcm↑→vCEmin↓
2. 欠压、临界、过压 欠压 (Undervoltage):vCEmin 对应的动态点处于放 大区。 临界 (Critical):vCEmin 对应的动态点处于放大区和 饱和区之间的临界点。 过压(Overvoltage):vCEmin 对应的动态点处于饱和 区。
3. iC平均分量IC0 与基波分量Ic1m iC 脉冲越宽,高度越高,IC0 和 Ic1m 就越大。如果 出现凹陷,则凹陷越深,IC0 和 Ic1m 就越小。
角频率为 的余弦波,RL 上获得
基本不失真输出功率。
(3) 性能特点 ① T1、T2 尽管导通电流很大,但相应的管压降很 小( vCE(sat)) ,管耗小,放大器的效率高。 ② 考虑结电容、分布电容等影响,实际波形如 vA 虚线所示,管子动态管耗增大,丁类功放效率受限。 2. 戊类放大器 为了克服这个缺点,在开关 工作的基础上采用一个特殊设计 的集电极,保证 vCE 为最小值的 一段期间内,才有集电极电流流 通。

Re Vcm / I c1m
② 功率性能
PD VCC I C0 Po Vcm I C1m / 2 PC PD Po C Po / PD
2.2.2 欠压、临界和过压状态
1. VBB、Vbm、VCC 不变,iC 随 Vcm 的变化规律
(1) iC 的宽度:由图所示,主要取决于 VBB、Vbm, VBB、Vbm 一定,iC 脉宽近似确定,与 Vcm 关系不大。
结论:回路上仅有由基波分量产生的电压vc,因而 在负载上可得到所需的基本不失真的信号功率。
Re
0 Lr
2
2
RL
Lr C t RL
CrCL 式中, C t —— 回路总电容 Cr CL
相关文档
最新文档