数据结构课程设计实验报告-栈和队列的用
数据结构栈和队列的基本操作及应用实验报告
实验日期2010.4.26教师签字________________ 成绩__________【实验名称】第三章栈和队列的基本操作及应用【实验目的】(1)熟悉栈的特点(先进后出)及栈的基本操作,如入栈、出栈等,掌握栈的基本操作在栈的顺序存储结构和链式存储结构上的实现;(2)熟悉队列的特点(先进先出)及队列的基本操作,如入队、出队等,掌握队列的基本操作在队列的顺序存储结构和链式存储结构上的实现。
【实验内容】1.链栈的基本操作(链栈的初始化、进栈、出栈以及取栈顶的值)#include H stdio.h H#include H malloc.h ninclude "stdlib.h"typedef int Elemtype;typedef struct stacknode {Elemtype data;stacknode * next;JStackNode;typedef struct {stacknode * top; 〃栈顶指针} LinkStack;/*初始化链栈*/void InitStack(LinkStack * s){ s->top=NULL;printf("\n已经初始化链栈!\n”);)/*链栈置空*/void setEnipty(LinkStack * s){ s・>top 二NULL;printf(H\n 链栈被置空! \n”);}/*入栈*/void pushLstack(LinkStack * s, Elemtype x){ StackNode * p; p=(StackNode *)maHoc(sizeof(StackNode)); 〃建立一个节点° p->data=x;p->next=s->top; //ill于是在栈顶pushLstack,所以要指向栈顶。
s->top=p; 〃插入}/*出栈勺Elemtype popLstack(LinkStack * s){ Elemtype x;StackNode * p; p=s->top; 〃指向栈顶if (s->top ==0){ printf("\n栈空,不能出栈!\n”); exit(-l);}x=p->data;s->top=p->next; 〃当前的栈顶指向原栈的nextfree(p); 〃释放return x;}/*取栈顶元素*/Elemtype StackTop(LinkStack *s){ if (s->top ==0){ printf(H\n 链栈空\n”);exit(-l);)return s->top->data;}/*遍历链栈*/void Disp(LinkStack * s){ printf("\n链栈中的数据为:\n");printf(H======================================\n n); StackNode * p;p=s->top;while (p!=NULL){ printf(H%d\n'\p->data);p=p->next;} printf("=======================================\n");}void main(){ printf(H====================链栈操作==========\n\nj;int i,m,n,a; LinkStack * s; s=(LinkStack *)malloc(sizeof(LinkStack)); int cord;do{ printf(H\n n);printf(”第一次使用必须初始化! \n H);printf(H\ii 主菜单W);printf(H\n 1 初始化链栈\n“);printf(H\n 2 入栈\n“);printf(M\ii 3 出栈\n");printf(H\n 4 取栈顶元素\n");printf(H\n 5 置空链栈\n");printf(H\n 6 结束程序运行\n”);printf(H\n ---------------------------------printfC*请输入您的选择(1,2, 3, 4, 5,6)”);scanf(M%d,\&cord);printf(H\n n);switch(cord){ case 1:{ InitStack(s);Disp(s);} break;case 2:(printfC输入将要压入链栈的数据的个数:I匸“);scanf(”%d”,&n);printf(”依次将%d个数据圧入链栈:\n",n);for(i=l;i<=n;i++){scanf("%d”,&a); pushLstack(s,a);}Disp ⑸;[break;case 3:{ printf("\n出栈操作开始!\n“); printf("输入将要出栈的数据个数:m=”);scrmf(”%d:&m);for(i=I;i<=m;i++){printf("\n 第%d 次出栈的数据是:%d",i,popLstack(s));)Disp(s);[break;case 4:{ printf("\n\n 链栈的栈顶元素为:%d\n",StackTop(s)); printf(H\n H);(break;case 5:{ setEnipty(s);Disp(s);(break;case 6:exit(O);})while (cord<=6);}2.顺序栈的基本操作(顺序栈的初始化、进栈、出栈以及取栈顶的值) #include<stdio.h>#include<malloc.h>#include<stdlib.h>#define STACKSIZE 100#define STACKINCREMENT 10#define null 0typedef struct {int 水base;int *top;int stacksize;}SqStack;SqStack Initstack(){SqStack S;S.base=(int *)malloc(STACKSIZE*sizeof(int));if(!S.base){printf("\n 存储分配失败\n");exit(0);}S.top=S.base;S.stacksize 二STACKSIZE;return S;}int StackEmpty(SqStack S){if(S.top==S.base) return 1;else return 0;}int StackLength(SqStack S){int *p;p=S.base;for(int i=0;p!=S・top;p++,i++);return i;int GetTop(SqStack S)int e;if(StackEmpty(S)) {printf(”当前栈为空,不能执行此操作\n”);exit(O);}e=*(S.top-l);return e;}int Push(SqStack &Sjnt e){if(StackLength(S)>=S.stacksize) {S.base=(int*)realloc(S.base,(STACKSIZE+STACKINCREMENT)*sizeof(int));if(!S.base){printf("\n 再分配存储失败\n");return 0;}S ・ top=S ・ base+S. stacksize;S.stacksize+二STACKINCREMENT;}*S.top++=e;return 1;}int Pop(SqStack &S){int e;if(StackEmpty(S)){printf("当前栈为空,不能执行此操作\n”);exit(0);}e=*—S.top;return e;}void main(){int i=0,e;int *p;SqStack S;S=Initstack();printf("\n 1.元素进栈\n 2.元素出栈\n 3.取栈顶元素\n 4. 求栈的长度\n 5.判栈空\n 6.退出\n“);for(;i!=6;){printf(“\n请选择你要进行的操作:“);scanf(H%d\&i);switch(i){case l:printf("\n请输入进栈元素:");scanf(”%cT,&e);Push(S,e);p=S.base;printf("\n当前栈中元素:"); if(StackEmpty(S))printfC'当前栈为空\n”); while(p!=S.top){printf(n%d '\*p);p++;}break;case 2:printf("\n%d 已出栈\n",Pop(S)); printf("\n当前栈中元素:”);if(StackEmpty(S))printf(,'当前栈为空\n“);p=S.base;while(p !=S .top) {printf(" %d ",*p);p++;} break;case 3:printf("\n 栈顶元素为:%d\n",GetTop(S));break;case 4:printf("\n 栈的长度为:%d\n",StackLength(S));break;case 5:if(StackEmpty(S))printf("\n 当前栈为空\n");else printf("\n 当前栈不空\n"); break;default:printf("\n 退出程序\n");}}}3•顺序队列的基本操作(顺序队的初始化、进队、出对以及取对头)#include <stdio.h>#include <malloc.h>#define MAXNUM 100#define Elemtype int#define TRUE 1#define FALSE 0typedef struct{ Elemtype queuefMAXNUM];int front;int rear;Jsqqueue;/*队列初始化*/int initQueue(sqqueue *q){ if(!q) return FALSE;q->front=-1;q->rear=-1;return TRUE;}/*入队*/int append(sqqueue Elemtype x){ if(q->rear>=MAXNUM-1) return FALSE;q->rear++;q->queue[q->rear]=x;return TRUE;/*出队*/Elemtype Delete(sqqueue *q){ Elemtype x;if (q->front==q->rear) return 0;x=q->queue[++q->front];return x;}/*判断队列是否为空*/int Empty(sqqueue *q){ if (q->front=q->rear) return TRUE;return FALSE;}/*取队头元素*/int gethead(sqqueue *q){ if (q->front==q->rear) return 0; return(q->queue[q->front+1]);)/*遍历队列*/void display(sqqueue *q){ int s;s=q->front;if (q->front==q->rear) printf(”队列空!\n“);else{printf("\n顺序队列依次为:“);while(s<q->rear){s=s+l;printf(H%d<-'\ q->queue[s]);}printf(H\n H);printf("顺序队列的队尾元素所在位置:rear=%d\n",q->rear); printf("顺序队列的队头元素所在位S: front=%d\n " ,q->front);})/*建立顺序队列*/void Setsqqueue(sqqueue *q){ int njjn;printf("\n请输入将要入顺序队列的长度:”);scanf(H%d,r,&n);printfC*\n请依次输入入顺序队列的元素值:\n“);for (i=0;i<n;i++){ scanf(”%d”,&m);append(qjn);}main(){ sqqueue *head;int x,y,z,select; head=(sqqueue*)malloc(sizeof(sqqueue));do{printf("\n第一次使用请初始化!\n");printf("\n 请选择操作(1 -7):\n”);pri ntf("=================================\n"); printf(n l 初始化\n“);printf("2建立顺序队列\n");printf("3 入队\n”);printf("4 出队\n“);printf("5判断队列是否为空\n“);printf("6取队头元素\n");printf(H7 遍历队列\n“);printf(,,===================================\n");scanf("%d",&select);switch(select){case 1:{ initQueue(head);printfC'B经初始化顺序队列! \n“); break;)case 2:{ Setsqqueue(head);printf("\n已经建立队列!\n");display(head); break;)case 3:{ printf("请输入队的值:\n”);scanf(”%cT,&x);append(head,x); display(head);break;)case 4:{ z=Delete(head);printf("\n队头元素%(1已经出队!\n",z); display(head);break;)case 5:if(Empty(head))printf(”队列空\n”);elseprintf("队列非空\n“);break;}case 6:{ y=gethead (head);printf("队头元素为:%d\n",y);break;)case 7:{ display(head);break;}}}while(select<=7);}4•链队列的基本操作(链队列的初始化、进队、出对操作)#include<stdio.h>#include<stdlib.h>#define ElemType inttypedef struct Qnode{ ElemType data;struct Qnode *next;(Qnodetype;typedef struct{ Qnodetype *front;Qnodetype *rear;JLqueue;/*初始化并建立链队列*/void creat(Lqueue *q){ Qnodetype *h;int i,n,x;printf(”输入将建立链队列元素的个数:n=”);scanf(“%d",&n);h=(Qnodetype*)malloc(sizeof(Qnodetype));h->next=NULL;q->front=h;q->rear=h;for(i=l;i<=n;i++){ printfC链队列第%<1个元素的值为:”,i);scanf(“%d”,&x);Lappend(q,x);)/*入链队列*/void Lappend(Lqueue *q,int x){ Qnodetype *s; s=(Qnodetype*)manoc(sizeof(Qnodetype)); s->data=x;s->next=NULL;q->rear->next=s;q->rear=s;}/*出链队列勺ElemType Ldelete(Lqueue *q){ Qnodetype *p;ElemType x;if(q->front==q->rear){ printfC* 队列为空!\n“);x=0;)else{ p=q->front->next;q->front->next=p->next; if(p->next=NULL) q->reai*=q->front;x=p->data;free(p);}return(x);)/*遍历链队列*/void display(Lqueue *q){ Qnodetype *p;p=q->front->next; /*指向第一个数据元素节点*/printf("\n链队列元素依次为:”);while(p!=NULL){ printf("%d—>",p->data);p=p->next;}printf(H\n\n遍历链队列结束!\n n);}main(){ Lqueue *p;int x^cord;printf(H\n*****第一次操作请选择初始化并建立链队列! **林*\口”);W); switch(cord){ case 1:{ p=(Lqueue *)malloc(sizeof(Lqueue)); creat(p);display(p);} break;case 2:{ printf (“请输入队列元素的值:x=“);scanf(”%d”,&x);Lappend(p,x); display(p);(break;case 3:{ printf(n 出链队列元素:x=%d\ii*\Ldelete(p));display(p);(break;case 4:{display(p);) break;case 5:{exit (0);) }(while (cord<=5);) 5 •循环队列的基本操作:#include<stdio.h> #include<iostream.h> #include<malloc.h> #define maxsize 100 struct Queueint *base; int front; int rear;);void initQueue(Queue &Q){Q.base=(int *)malloc(maxsize*sizeof(int));Q.front=Q.rear=0; printf(M 1初始化并建立链队列 \n n ); printf (” 2入链队列 S'); printf (” 3 出链队列 S');printf(H 4 遍历链队列W); printf(H 5 结束程序运行W); 主菜单 W); printf(H =======================================\n H );printf(Hscanf(M %d 1',&cord);do { printf(H \n链队列的基本操作\n J ; printf(H = printf(n W);}int QueueLen(Queue Q){return(Q.rear- Q・ front+maxsize)%maxsize;}void EnQueue(Queue &Q,int e){if((Q.rear+1 )%maxsize=Q.front)cout«"队列已满,无法插入!"«endl;else{Q.base[Q.rear]=e; Q.reai-(Q.rear+ l)%maxsize;)}int DeQueue(Queue &Q,int &e){if(Q.reai"==Q.front) coutvv"队列已空,无法删除「vvendl; else{e=Q.base[Q.front]; Q.front=(Q.front+1 )%maxsize;cout«"被删除的元素是:,,<<'\t'«e«endl;return e;})void main(){Queue Q;initQueue(Q);loop:cout«、Fvv"请选择你要进行的操作:"«endl;cout«'\t'«" 1 .插入元素"<<endl«'\t'«,'2.删除元素"<<endl«,\t'«"3.求队列长度,,<<endl«,\t,«,,4.结束u«endl;int i; cin»i;switch(i){case(l):{int e;coutvv”请输入要插入的元素: cin»e;EnQueue(Q,e);goto loop;}case(2):{int e;DeQueue(Q.e);goto loop;}case(3):{int 1;l=QueueLen(Q);cout«"队列的长度为:"«'\t'«l«endl; goto loop;)case(4): break;default:cout«"输入错误,请重新输入!"«endl;goto loop;}}6 •两个栈实现队列的功能#include<stdio.h>#include<malloc.h>#include<stdlib.h>#include<iostream.h>#define STACK_INIT_SIZE 100#define STACKINCREMENT 10typedef char SElemType;typedef struct{SEIeniType *base;SEleniType *top;int stacksize;JSqStack;〃队列III两个栈S1.S2构成typedef struct{SqStack S1;SqStack S2;}Queue;void InitStack(SqStack *S)S->base=(SElemType *)malloc(STACKJNIT_SIZE*sizeof(SElemType)); if(!S->base) exit(O);S->top=S->base; S->stacksize=STACK_INIT_SIZE;}void push(SqStack *S,SElemType e){if(S->top-S->base==S->stacksize){S・> base=(SElemType*)realloc(S->base,(S->stacksize+STACKINCREMENT)*sizeof(SElemType));if(!S->base) exit(O);S->top=S->base+S->stacksize;S->stacksize+=STACKINCREMENT;}*(S->top)++=e;}void pop(SqStack *S,SElemType *e){if(S->top==S->base) exit(O);S->top—; *e=*(S->top);}〃队列的相关操作void InitQueue(Queue *Q){InitStack(&(Q->S 1 ));InitStack(&(Q->S2));}void EnQueue(Queue *Q,SElemType e){push(&(Q->S l),e);)void DeQueue(Queue *Q,SElemType *e){if((Q->S2). top==(Q->S2). base){while((Q->S 1 ).top!=(Q->S 1 ).base) {pop(&(Q->S 1 ),e);push(&(Q->S2),*e);} pop(&(Q->S2),e);}else pop(&(Q->S2),e);}int QueueEmpty(Queue Q)if(Q.S 1 .base==Q.S 1 .top&&Q・S2・bjse==Q・S2・top) return 0; else return 1; void main(){SEIemType e; Queue Q; int i;InitQueue(&Q);for(i=0;i< 10:i++) EnQueue(&Q/a,+i); while(QueueEmpty(Q)!=O){DeQueue(&Q,&e); cout«e;}cout«endl;}7・用双端队列模拟栈#include<stdio.h>#include<malloc.h>#include<stdlib.h>#define null 0typedef struct QNode{int data;struct QNode *next;struct QNode *prior;)QNode;typedef struct)QNode *frontL*front2;QNode *rearl,*rear2;}LinkDeque;LinkDeque InitQueue(){LinkDeque Q;Q.front 1 =Q.rearl =(QNode *)malloc(sizeof(QNode)); if(!Q.front 1){printf("\n 存储分配失败\n");exit(O);} Q.front2=Q.rear2=(QNode *)malloc⑸zeof(QNode));if(!Q.front2){printf("\n 存储分配失败\n H);exit(O);) Q. front l->next=Q.front2;Q.front2->next=Q.frontl;return Q;}int EnDeque(LinkDeque &Q,int e){QNode *p;p=(QNode *)malloc(sizeof(QNode)); if(!p){printf("\n 存储分配失败\n");exit(O);} p->data=e;p->next=Q.front2;p->prior=Q.rearl;Q.rearl->next=p;Q.reail 二p;Q.rear2=Q.front 1 ->next;return 1;}int DeDeque(LinkDeque &Q){int e;QNode *p;if(Q.front 1 ==Q.rear 1){printf("栈为空,不能执行删除操作\n");return 0;)p=Q.rearl;e=p->data;p->prior->next=p->next;p->next->prior=p->prior;Q.rearl=p->prior;if(Q.front l==Q.front2){Q.rear 1=Q.front l;Q.rear2=Q.front2;} free(p);return e;}int DequeLength(LinkDeque Q){int len=0;QNode *p;p=Q.frontl->next;while(p!=Q.front2){ Ien++;p=p->next;)return len;}int Gethead(LinkDeque Q){QNode *p;if(Q.front 1 !=Q.rear 1){p=Q.rear 1 ;return p->data;}}void main(){int i=0,e;LinkDeque Q;QNode *p;Q=InitQueue();printf(n\n 1.元素进栈\n 2.元素出栈\n 3.求栈的长度\n 4. 取栈顶元素\n 5.退出\n");for(:i!=5;){printf(-\n请选择你要进行的操作:”);scanf(n%d\&i);switch(i){case l:printf("\n请输入进栈元素:”);scanf(”%cT,&e);EnDeque(Q,e);if(Q.front 1 !=Q.rearl){printf("\n 当前栈元素:");p=Q.front 1 ->next;while(p!=Q.front2){ printf(H%d '\p->data);p=p->next;}}else printf(n当前栈为空\iT);break;case 2:if(Q.frontl!=Q.rearl)printf(H\n 已删除%d\n*\DeDeque(Q));eIse printfC*栈为空,不能此删除操作\n“);if(Q.frontl !=Q.rearl)(printf("\n 当前栈元素:");p=Q.frontl・>next;while(p!=Q.front2){ printf(H%d H,p->data);p=p->next;}}else printfC当前栈为空E);break;case 3:printf(M\n 栈的长度:%d,\DequeLength(Q));break;case 4:if(Q.front 1 !=Q.rearl)printf(H\n 栈顶元素:%d\n”,Gethead(Q));else printfC栈为空,不能此删除操作\n H);break;default:printf("\n 结束程序\n");}1}&约瑟夫队列:#include<stdio.h>#include<malloc.h>#include<iostream.h>#define len sizeof(struct QNode)struct QNode{int data;QNode *next;};void main(){int m,n,k,i,e,num=l;cout«"请输入总人数:"«endl; cin»n;cout«"请输入出局数:"«endl; cin»m;coutvv"请输入开始报数人的编号:"«endl; cin»k;QNodeQ=(QNode *)malloc(len);Q->next=Q;Q->data= 1; p二Q;for(i=2;i<=n;i++){p->next=(QNode *)malloc(len);p=p->next;p->data=i;)p->next=Q;r=Q;t=r;for(i= 1 ;i<=k-1 ;i++){ t=r;r=r->next;}cout«"出队顺序为:"vvendl;do{for(i= 1 ;i<=m-1 ;i++){ t=r;r=r->next;)e=r->data;t->next=r->next;r=t->next;cout«e«H H; num++;}while(num<=n);cout«endl;)【小结讨论】1.一个程序中如果要用到两个栈时,可通过两个栈共享一维数组来实现,即双向栈共享邻接空间。
栈和队列的实验报告
栈和队列的实验报告栈和队列的实验报告引言:栈和队列是计算机科学中常用的数据结构,它们在算法设计和程序开发中起着重要的作用。
本实验旨在通过实际操作和观察,深入理解栈和队列的概念、特点以及它们在实际应用中的作用。
一、栈的实验1.1 栈的定义和特点栈是一种具有特殊操作约束的线性数据结构,它的特点是“先进后出”(Last-In-First-Out,LIFO)。
栈的操作包括入栈(push)和出栈(pop),入栈操作将元素放入栈顶,出栈操作将栈顶元素移除。
1.2 实验步骤在本次实验中,我们使用编程语言实现了一个栈的数据结构,并进行了以下实验步骤:1.2.1 创建一个空栈1.2.2 向栈中依次压入若干元素1.2.3 查看栈顶元素1.2.4 弹出栈顶元素1.2.5 再次查看栈顶元素1.3 实验结果通过实验,我们观察到栈的特点:最后入栈的元素最先出栈。
在实验步骤1.2.2中,我们依次压入了元素A、B和C,栈顶元素为C。
在实验步骤1.2.4中,我们弹出了栈顶元素C,此时栈顶元素变为B。
二、队列的实验2.1 队列的定义和特点队列是一种具有特殊操作约束的线性数据结构,它的特点是“先进先出”(First-In-First-Out,FIFO)。
队列的操作包括入队(enqueue)和出队(dequeue),入队操作将元素放入队尾,出队操作将队头元素移除。
2.2 实验步骤在本次实验中,我们使用编程语言实现了一个队列的数据结构,并进行了以下实验步骤:2.2.1 创建一个空队列2.2.2 向队列中依次插入若干元素2.2.3 查看队头元素2.2.4 删除队头元素2.2.5 再次查看队头元素2.3 实验结果通过实验,我们观察到队列的特点:最先入队的元素最先出队。
在实验步骤2.2.2中,我们依次插入了元素X、Y和Z,队头元素为X。
在实验步骤2.2.4中,我们删除了队头元素X,此时队头元素变为Y。
三、栈和队列的应用栈和队列在实际应用中有广泛的应用场景,下面简要介绍一些常见的应用:3.1 栈的应用3.1.1 表达式求值:通过栈可以实现对表达式的求值,如中缀表达式转换为后缀表达式,并计算结果。
数据结构栈和队列实验报告
数据结构栈和队列实验报告实验报告:数据结构栈和队列一、实验目的1.了解栈和队列的基本概念和特点;2.掌握栈和队列的基本操作;3.掌握使用栈和队列解决实际问题的方法。
二、实验内容1.栈的基本操作实现;2.队列的基本操作实现;3.使用栈和队列解决实际问题。
三、实验原理1.栈的定义和特点:栈是一种具有后进先出(LIFO)特性的线性数据结构,不同于线性表,栈只能在表尾进行插入和删除操作,称为入栈和出栈操作。
2.队列的定义和特点:队列是一种具有先进先出(FIFO)特性的线性数据结构,不同于线性表,队列在表头删除元素,在表尾插入元素,称为出队和入队操作。
3.栈的基本操作:a.初始化:建立一个空栈;b.入栈:将元素插入栈的表尾;c.出栈:删除栈表尾的元素,并返回该元素;d.取栈顶元素:返回栈表尾的元素,不删除。
4.队列的基本操作:a.初始化:建立一个空队列;b.入队:将元素插入队列的表尾;c.出队:删除队列表头的元素,并返回该元素;d.取队头元素:返回队列表头的元素,不删除。
四、实验步骤1.栈的实现:a.使用数组定义栈,设置栈的大小和栈顶指针;b.实现栈的初始化、入栈、出栈和取栈顶元素等操作。
2.队列的实现:a.使用数组定义队列,设置队列的大小、队头和队尾指针;b.实现队列的初始化、入队、出队和取队头元素等操作。
3.使用栈解决实际问题:a.以括号匹配问题为例,判断一个表达式中的括号是否匹配;b.使用栈来实现括号匹配,遍历表达式中的每个字符,遇到左括号入栈,遇到右括号时将栈顶元素出栈,并判断左右括号是否匹配。
4.使用队列解决实际问题:a.以模拟银行排队问题为例,实现一个简单的银行排队系统;b.使用队列来模拟银行排队过程,顾客到达银行时入队,处理完业务后出队,每个顾客的业务处理时间可以随机确定。
五、实验结果与分析1.栈和队列的基本操作实现:a.栈和队列的初始化、入栈/队、出栈/队以及取栈顶/队头元素等操作均能正常运行;b.栈和队列的时间复杂度均为O(1),操作效率很高。
数据结构实验报告-栈和队列的应用
《数据结构》第五次实验报告学生姓名学生班级学生学号指导老师雷大江重庆邮电大学计算机学院一、实验内容1) 利用栈深度优先进行迷宫求解。
用数组表示迷宫建立栈,利用栈实现深度优先搜索2) 利用队列宽度优先进行迷宫求解。
用数组表示迷宫建立队列,利用队列实现宽度优先搜索二、需求分析利用栈的结构,走过的路入栈,如果不能走出栈,采用遍历法,因此栈内存储的数据就是寻一条路径。
当到达了某点而无路可走时需返回前一点,再从前一点开始向下一个方向继续试探。
因此,压入栈中的不仅是顺序到达的各点的坐标,而且还要有从前一点到达本点的方向,即每走一步栈中记下的内容为(行,列,来的方向)。
三、详细设计(1)基本代码struct item{int x ; //行int y ; //列} ;item move[4] ;(2)代码栈构造函数:void seqstack::Push(int x,int y,int d) //入栈{if(top>=StackSize-1)throw"上溢";top++;data[top].d=d;data[top].x=x;data[top].y=y;}寻找路径:int seqstack::findpath(int a,int b){item move[4]={{0,1},{1,0},{0,-1},{-1,0}};//定义移动结构int x, y, d, i, j ;Push(a,b,-1); //起点坐标入栈while(top!=-1){d=data[top].d+1;x=data[top].x;y=data[top].y;Pop(); //出栈while (d<4) //方向是否可以移动{i=x+move[d].x ; j=y+move[d].y ; //移动后坐标if(Map[i][j]==0) //是否能移动 {Push(x,y,d); //移动前坐标入栈x=i;y=j;Map[x][y]= -1 ;if(x==m&&y==n) //判断是否为终点坐标 {Push(x,y,-1);return 1 ;}else d=0 ;}else d++ ;}}return 0;}(3)伪代码a)栈初始化;b)将入口点坐标及到达该点的方向(设为-1)入栈c)while (栈不空){栈顶元素=(x , y , d)出栈 ;求出下一个要试探的方向d++ ;while (还有剩余试探方向时){ if (d方向可走)则 { (x , y , d)入栈 ;求新点坐标 (i, j ) ;将新点(i , j)切换为当前点(x , y) ;if ( (x ,y)= =(m,n) ) 结束 ;else 重置 d=0 ;}else d++ ;}}(4)时间复杂程度时间复杂程度为O(1)2.3 其他在运行时可选择是否自己构造地图,实现函数如下:void creatmap() //自创地图函数{for(int i=1;i<9;i++){for(int j=1;j<9;j++)Map[i][j]=0;}Map[8][9]=1;printmap();cout<<"请设置障碍物位置:(x,y)。
数据结构栈与队列的实验报告
数据结构栈与队列的实验报告实验概述本次实验的目的是通过对栈和队列进行实现和应用,加深对数据结构中的栈和队列的理解和巩固操作技能。
栈和队列作为常见的数据结构在程序开发中得到了广泛的应用,本次实验通过 C++ 语言编写程序,实现了栈和队列的基本操作,并对两种数据结构进行了应用。
实验内容1. 栈的实现栈是一种先进后出的数据结构,具有后进先出的特点。
通过使用数组来实现栈,实现入栈、出栈、输出栈顶元素和清空栈等操作。
对于入栈操作,将元素插入到数组的栈顶位置;对于出栈操作,先将数组的栈顶元素弹出,再使其下移,即将后面的元素全部向上移动一个位置;输出栈顶元素则直接输出数组的栈顶元素;清空栈则将栈中所有元素全部清除即可。
3. 栈和队列的应用利用栈和队列实现八皇后问题的求解。
八皇后问题,是指在8×8 的国际象棋盘上放置八个皇后,使得任意两个皇后都不能在同一行、同一列或者同一对角线上。
通过使用栈来保存当前八皇后的位置,逐个放置皇后并检查是否有冲突。
如果当前位置符合要求,则将位置保存到栈中,并继续查询下一个皇后的位置。
通过使用队列来进行八数码问题的求解。
八数码问题,是指在3×3 的矩阵中给出 1 至 8 的数字和一个空格,通过移动数字,最终将其变为 1 2 3 4 5 6 7 8 空的排列。
通过使用队列,从初始状态出发,枚举每种情况,利用队列进行广度遍历,逐一枚举状态转移,找到对应的状态后进行更新,周而复始直到找到正确的答案。
实验结果通过使用 C++ 语言编写程序,实现了栈和队列的基本操作,并对八皇后和八数码问题进行了求解。
程序执行结果如下:栈和队列实现的基本操作都能够正常进行,并且运行效率较高。
栈和队列的实现方便了程序编写并加速了程序运行。
2. 八皇后问题的求解通过使用栈来求解八皇后问题,可以得到一组成立的解集。
图中展示了求解某一种八皇后问题的过程。
从左到右是棋盘的列数,从上到下是棋盘的行数,通过栈的操作,求出了在棋盘上符合不同要求(不在同一行、同一列和斜线上)的八皇后位置。
数据结构栈和队列实验报告
数据结构栈和队列实验报告数据结构栈和队列实验报告1.实验目的本实验旨在通过设计栈和队列的数据结构,加深对栈和队列的理解,并通过实际操作进一步掌握它们的基本操作及应用。
2.实验内容2.1 栈的实现在本实验中,我们将使用数组和链表两种方式实现栈。
我们将分别实现栈的初始化、入栈、出栈、判断栈是否为空以及获取栈顶元素等基本操作。
通过对这些操作的实现,我们可将其用于解决实际问题中。
2.2 队列的实现同样地,我们将使用数组和链表两种方式实现队列。
我们将实现队列的初始化、入队、出队、判断队列是否为空以及获取队头元素等基本操作。
通过对这些操作的实现,我们可进一步了解队列的特性,并掌握队列在实际问题中的应用。
3.实验步骤3.1 栈的实现步骤3.1.1 数组实现栈(详细介绍数组实现栈的具体步骤)3.1.2 链表实现栈(详细介绍链表实现栈的具体步骤)3.2 队列的实现步骤3.2.1 数组实现队列(详细介绍数组实现队列的具体步骤)3.2.2 链表实现队列(详细介绍链表实现队列的具体步骤)4.实验结果与分析4.1 栈实验结果分析(分析使用数组和链表实现栈的优缺点,以及实际应用场景)4.2 队列实验结果分析(分析使用数组和链表实现队列的优缺点,以及实际应用场景)5.实验总结通过本次实验,我们深入了解了栈和队列这两种基本的数据结构,并利用它们解决了一些实际问题。
我们通过对数组和链表两种方式的实现,进一步加深了对栈和队列的理解。
通过实验的操作过程,我们也学会了如何设计和实现基本的数据结构,这对我们在日后的学习和工作中都具有重要意义。
6.附件6.1 源代码(附上栈和队列的实现代码)6.2 实验报告相关数据(附上实验过程中所产生的数据)7.法律名词及注释7.1 栈栈指的是一种存储数据的线性数据结构,具有后进先出(LIFO)的特点。
栈的操作主要包括入栈和出栈。
7.2 队列队列指的是一种存储数据的线性数据结构,具有先进先出(FIFO)的特点。
数据结构实验三栈和队列的应用
数据结构实验三栈和队列的应用数据结构实验三:栈和队列的应用在计算机科学领域中,数据结构是组织和存储数据的重要方式,而栈和队列作为两种常见的数据结构,具有广泛的应用场景。
本次实验旨在深入探讨栈和队列在实际问题中的应用,加深对它们特性和操作的理解。
一、栈的应用栈是一种“后进先出”(Last In First Out,LIFO)的数据结构。
这意味着最后进入栈的元素将首先被取出。
1、表达式求值在算术表达式的求值过程中,栈发挥着重要作用。
例如,对于表达式“2 + 3 4”,我们可以通过将操作数压入栈,操作符按照优先级进行处理,实现表达式的正确求值。
当遇到数字时,将其压入操作数栈;遇到操作符时,从操作数栈中弹出相应数量的操作数进行计算,将结果压回操作数栈。
最终,操作数栈中的唯一值就是表达式的结果。
2、括号匹配在程序代码中,检查括号是否匹配是常见的任务。
可以使用栈来实现。
遍历输入的字符串,当遇到左括号时,将其压入栈;当遇到右括号时,弹出栈顶元素,如果弹出的左括号与当前右括号类型匹配,则继续,否则表示括号不匹配。
3、函数调用和递归在程序执行过程中,函数的调用和递归都依赖于栈。
当调用一个函数时,当前的执行环境(包括局部变量、返回地址等)被压入栈中。
当函数返回时,从栈中弹出之前保存的环境,继续之前的执行。
递归函数的执行也是通过栈来实现的,每次递归调用都会在栈中保存当前的状态,直到递归结束,依次从栈中恢复状态。
二、队列的应用队列是一种“先进先出”(First In First Out,FIFO)的数据结构。
1、排队系统在现实生活中的各种排队场景,如银行排队、餐厅叫号等,可以用队列来模拟。
新到达的顾客加入队列尾部,服务完成的顾客从队列头部离开。
通过这种方式,保证了先来的顾客先得到服务,体现了公平性。
2、广度优先搜索在图的遍历算法中,广度优先搜索(BreadthFirst Search,BFS)常使用队列。
从起始节点开始,将其放入队列。
数据结构栈和队列实验报告
3检查一遍已输入的程序是否有错〔包括输入时输错的和编程中的错误〕,如发现有错,及时改正。
4进展编译和连接。如果在编译和连接过程中发现错误,频幕上会出现"报错信息〞,根据提示找到出错位置和原因,加以改正。再进展编译,如此反复直到不出错为止。
5运行程序并分析运行结果是否合理。在运行是要注意当输入不同的数据时所得结果是否正确,应运行屡次,分别检查在不同情况下结果是否正确。
s->ne*t=NULL;
}
void DestroyStack(LiStack *&s)//销毁栈
{LiStack *p=s,*q=s->ne*t;
while (q!=NULL)
{free(p);
p=q;
q=p->ne*t;
}
free(p);//此时p指向尾节点,释放其空间
}
bool StackEmpty(LiStack *s)//判断栈是否为空
printf("栈s的根本运算如下:\n");
printf(" (1)初始化栈s\n");
InitStack(s);
printf(" (2)栈为%s\n",(StackEmpty(s)""空":"非空"));
printf(" (3)依次进栈元素a,b,c,d,e\n");
Push(s,'a');Байду номын сангаас
Push(s,'b');
#include <stdio.h>
#include <malloc.h>
#define Ma*Size 100
【精品】数据结构栈和队列实验报告
【精品】数据结构栈和队列实验报告实验目的:1.了解栈和队列的概念和基本操作。
2.熟练掌握按顺序存储、链式存储、循环存储结构。
3.掌握栈和队列的应用。
实验环境:操作系统:Windows 7编程软件:Dev-C++实验内容:1.用数组作为栈的存储结构,并以学生管理系统为例,实现“进栈”、“出栈”等基本操作。
先用 typedef struct 学生信息实现一个结构体类型,包含了学号、姓名、性别、出生日期、专业等成员。
typedef struct student{char num[10]; //学号char name[10]; //姓名char sex[2]; //性别int year; //出生年份int major; //专业}StuType;定义一个常量 MAXSIZE 来代表栈的最大空间,建立一个顺序栈。
初始化栈:void init_seqstack(SeqStack &p){p.top = -1;}判断是否为空:进栈操作:bool push_seqstack(SeqStack &p,StuType e){if(p.top==MAXSIZE-1)return 0;p.top++;p.data[p.top]=e;return 1;}定义一个链表结构体类型以存放队列,包含首节点指针和尾结点指针。
typedef struct link_queue{ComType data;struct QueueNode *next;}QueueNode;出队操作:bool de_queue(queue &q,ComType &qdata){QueueNode *p=q.front->next;if(q.front==q.rear)return false;qdata=p->data;q.front->next=p->next;if(q.rear==p)q.rear=q.front;free(p);return true;}实验结果:通过本次实验,我可以熟练掌握栈和队列的基本概念和操作,并能够在相应的程序设计中熟练操作,达到掌握栈和队列的目标。
实验报告——栈和队列的应用
实验报告——栈和队列的应用第一篇:实验报告——栈和队列的应用实验5 栈和队列的应用目的和要求:(1)熟练栈和队列的基本操作;(2)能够利用栈与队列进行简单的应用。
一、题目题目1.利用顺序栈和队列,实现一个栈和一个队列,并利用其判断一个字符串是否是回文。
所谓回文,是指从前向后顺读和从后向前倒读都一样的字符串。
例如,a+b&b+a等等。
题目2.假设在周末舞会上,男士们和女士们进入舞厅时,各自排成一队。
跳舞开始时,依次从男队和女队的队头上各出一人配成舞伴。
若两队初始人数不相同,则较长的那一队中未配对者等待下一轮舞曲。
现要求写一算法模拟上述舞伴配对问题,并实现。
题目3.打印机提供的网络共享打印功能采用了缓冲池技术,队列就是实现这个缓冲技术的数据结构支持。
每台打印机具有一个队列(缓冲池),用户提交打印请求被写入到队列尾,当打印机空闲时,系统读取队列中第一个请求,打印并删除之。
请利用队列的先进先出特性,完成打印机网络共享的先来先服务功能。
题目4.假设以数组Q[m]存放循环队列中的元素, 同时设置一个标志tag,以tag == 0和tag == 1来区别在队头指针(front)和队尾指针(rear)相等时,队列状态为“空”还是“满”。
试编写与此结构相应的插入(enqueue)和删除(dlqueue)算法。
题目5.利用循环链队列求解约瑟夫环问题。
请大家从本组未讨论过的五道题中选择一道,参照清华邓俊辉老师MOOC视频及课本相关知识,编写相应程序。
选择题目3:打印机提供的网络共享打印功能采用了缓冲池技术,队列就是实现这个缓冲技术的数据结构支持。
二、程序清单//Ch3.cpp #include #include #include“ch3.h” template void LinkedQueue::makeEmpty()//makeEmpty//函数的实现{ LinkNode*p;while(front!=NULL)//逐个删除队列中的结点{p=front;front=front->link;delete p;} };template bool LinkedQueue::put_in(T&x){//提交命令函数if(front==NULL){//判断是否为空front=rear=new LinkNode;//如果为空,新结点为对头也为对尾front->data=rear->data=x;if(front==NULL)//分配结点失败return false;} else{rear->link=new LinkNode;//如不为空,在链尾加新的结点rear->link->data=x;if(rear->link==NULL)return false;rear=rear->link;} return true;};template bool LinkedQueue::carry_out()//执行命令函数 { if(IsEmpty()==true)//判断是否为空{return false;} cout<data<LinkNode*p=front;front=front->link;//删除以执行的命令,即对头修改delete p;//释放原结点return true;};void main()//主函数 { LinkedQueue q;//定义类对象char flag='Y';//标志是否输入了命令const int max=30;//一次获取输入命令的最大个数while(flag=='Y')//循环{ int i=0;char str[max];//定义存储屏幕输入的命令的数组gets(str);//获取屏幕输入的命令while(str[i]!=''){q.put_in(str[i]);//调用提交命令函数,将每个命令存入队列中i++;}for(int j=0;j<=i;j++){if(q.IsEmpty()==true)//判断是否为空,为空则说明没有可执行的命令{cout<cin>>flag;continue;//为空跳出for循环为下次输入命令做好准备}q.carry_out();//调用执行命令的函数,将命令打印并删除}三、程序调试过程中所出现的错误无。
栈和队列的应用实验报告
栈和队列的应用实验报告栈和队列的应用实验报告引言:栈和队列是计算机科学中常用的数据结构,它们在各种算法和应用中都有广泛的应用。
本实验报告旨在探讨栈和队列的基本概念、特性以及它们在实际应用中的具体使用。
一、栈的基本概念和特性栈是一种特殊的数据结构,它遵循“先进后出”的原则。
栈有两个基本操作:压栈(push)和弹栈(pop)。
压栈将元素添加到栈的顶部,弹栈则将栈顶元素移除。
栈还具有一个重要的特性,即它的访问方式是受限的,只能访问栈顶元素。
在实际应用中,栈可以用于实现递归算法、表达式求值、括号匹配等。
例如,在递归算法中,当函数调用自身时,需要将当前状态保存到栈中,以便在递归结束后能够恢复到正确的状态。
另外,栈还可以用于实现浏览器的“后退”功能,每次浏览新页面时,将当前页面的URL压入栈中,当用户点击“后退”按钮时,再从栈中弹出最近访问的URL。
二、队列的基本概念和特性队列是另一种常见的数据结构,它遵循“先进先出”的原则。
队列有两个基本操作:入队(enqueue)和出队(dequeue)。
入队将元素添加到队列的尾部,出队则将队列头部的元素移除。
与栈不同的是,队列可以访问头部和尾部的元素。
在实际应用中,队列经常用于任务调度、消息传递等场景。
例如,在操作系统中,任务调度器使用队列来管理待执行的任务,每当一个任务执行完毕后,从队列中取出下一个任务进行执行。
另外,消息队列也是一种常见的应用,它用于在分布式系统中传递消息,保证消息的顺序性和可靠性。
三、栈和队列在实际应用中的具体使用1. 栈的应用栈在计算机科学中有广泛的应用。
其中一个典型的应用是表达式求值。
当计算机遇到一个复杂的表达式时,需要将其转化为逆波兰表达式,然后使用栈来进行求值。
栈的特性使得它非常适合处理这种情况,可以方便地保存运算符和操作数的顺序,并按照正确的顺序进行计算。
另一个常见的应用是括号匹配。
在编程语言中,括号是一种常见的语法结构,需要保证括号的匹配性。
数据结构栈和队列实验报告
数据结构栈和队列实验报告一、实验目的本次实验的主要目的是深入理解和掌握数据结构中的栈和队列的基本概念、操作原理以及实际应用。
通过编程实现栈和队列的相关操作,加深对其特性的认识,并能够运用栈和队列解决实际问题。
二、实验环境本次实验使用的编程语言为C++,开发工具为Visual Studio 2019。
三、实验原理(一)栈栈(Stack)是一种特殊的线性表,其操作遵循“后进先出”(Last In First Out,LIFO)的原则。
可以将栈想象成一个只有一端开口的容器,元素只能从开口端进出。
入栈操作(Push)将元素添加到栈顶,出栈操作(Pop)则从栈顶移除元素。
(二)队列队列(Queue)也是一种线性表,但其操作遵循“先进先出”(FirstIn First Out,FIFO)的原则。
队列就像是排队买票的队伍,先到的人先接受服务。
入队操作(Enqueue)将元素添加到队列的末尾,出队操作(Dequeue)则从队列的头部移除元素。
四、实验内容(一)栈的实现与操作1、定义一个栈的数据结构,包含栈顶指针、存储元素的数组以及栈的最大容量等成员变量。
2、实现入栈(Push)操作,当栈未满时,将元素添加到栈顶,并更新栈顶指针。
3、实现出栈(Pop)操作,当栈不为空时,取出栈顶元素,并更新栈顶指针。
4、实现获取栈顶元素(Top)操作,返回栈顶元素但不进行出栈操作。
5、实现判断栈是否为空(IsEmpty)和判断栈是否已满(IsFull)的操作。
(二)队列的实现与操作1、定义一个队列的数据结构,包含队头指针、队尾指针、存储元素的数组以及队列的最大容量等成员变量。
2、实现入队(Enqueue)操作,当队列未满时,将元素添加到队尾,并更新队尾指针。
3、实现出队(Dequeue)操作,当队列不为空时,取出队头元素,并更新队头指针。
4、实现获取队头元素(Front)操作,返回队头元素但不进行出队操作。
5、实现判断队列是否为空(IsEmpty)和判断队列是否已满(IsFull)的操作。
栈与队列 实验报告
栈与队列一,问题的提出在这次的实验当中,我选的题目是用队列的知识解决停车场问题。
停车场问题的具体描述是:假设停车场是一个可停放n辆汽车的狭长通道,且只有一个大门可供汽车进出。
汽车在停车场内按车辆到达时间的先后顺序,依次由南向北排列(大门在最南端,最先到达的第一辆车停放在车场的最北端),若车场内停满n辆汽车,则后来的汽车只能在门外的便道上等候,一旦有车开走,则排在便道上的第一辆车可以开入;当停车场的某辆车要离开时,在它之后进入的车辆必须先退出车场为它让路,待这辆车开出大门之后,其他车再按原来的次序进入车场,每辆停放在车场的车在它离开停车场的时候必须按它停留的时间长短交纳费用。
二,需求分析总体来说这个程序主要包括三个部分:车辆到达,车辆离开,列表显示。
1,在这个程序当中,要完成这个任务:从键盘上输入车的车编号和而且车的编号是两位数然后通过程序可以得出一个具体的结果,这就需要创建一个栈,用大写A表示,然后再选择是进站还是出站,这就又需要创建一个栈,用大写B表示,这就完成了这个任务的前一半.剩下的就对这个栈的操作了.这个值得注意的问题是注意输入完车的编号的时候,应该通过程序先检查停车场内是否已经满了,还有就是停车场内的车辆如果要是出站的话,应该再为便道上的车辆创建一个栈。
还有就是车如果要出站的话,离开停车场的时候必须按照它在停车场停留的时间交纳相应的费用,这个相对来说比较简单。
2,演示程序以用户和计算机的对话方式进行的,即在计算机终端显示”提示信息”之后,由用户在键盘上输入演示程序中规定的运算命令,相应的输入数据和显示结果显示在其后.3,其中比较重要的操作就是需另设一个栈,临时停放为给要离去的汽车让路而从停车场退出来的汽车,也用顺序存储结构实现。
输入数据按到达或离去的时刻有序。
栈中每个元素表示一辆汽车,包含两个数据项:汽车的牌照号码和进入停车场的时刻3,程序执行的命令包括:1).编写栈的初始化、进栈和出栈算法。
数据结构栈和队列实验报告
数据结构栈和队列实验报告数据结构栈和队列实验报告1.引言本实验旨在通过设计和实现栈和队列的数据结构,掌握栈和队列的基本操作,并进一步加深对数据结构的理解和应用。
2.实验目的本实验的主要目标包括:________●掌握栈和队列的数据结构实现。
●熟悉栈和队列的基本操作:________入栈、出栈、入队、出队。
●理解栈和队列的应用场景,并能够灵活运用。
3.实验原理3.1 栈栈是一种特殊的数据结构,它采用“后进先出”的方式对元素进行操作。
栈的主要操作包括入栈和出栈,入栈将元素压入栈顶,出栈将栈顶元素弹出。
3.2 队列队列也是一种特殊的数据结构,它采用“先进先出”的方式对元素进行操作。
队列的主要操作包括入队和出队,入队将元素放入队列尾部,出队将队列头部的元素移除。
4.实验过程4.1 栈的实现a. 定义栈的数据结构在实现栈之前,首先要定义栈的数据结构,包括数据存储结构和相关操作方法。
b. 定义入栈操作入栈操作将元素压入栈顶。
c. 定义出栈操作出栈操作将栈顶元素弹出。
4.2 队列的实现a. 定义队列的数据结构在实现队列之前,首先要定义队列的数据结构,包括数据存储结构和相关操作方法。
b. 定义入队操作入队操作将元素放入队列尾部。
c. 定义出队操作出队操作将队列头部的元素移除。
5.实验结果与分析将栈和队列的数据结构实现后,可以进行测试和验证。
通过将不同类型的元素入栈和入队,然后再进行出栈和出队操作,最后检查栈和队列的状态,验证其正确性。
6.实验总结本实验通过设计和实现栈和队列的数据结构,掌握了栈和队列的基本操作。
并通过对栈和队列的应用,加深了对数据结构的理解和应用。
附件:________无法律名词及注释:________无。
栈和队列实验报告
栈和队列实验报告引言:计算机科学中的数据结构是解决问题的关键。
栈和队列这两种常用的数据结构,无疑在许多实际应用中起着重要的作用。
本篇报告旨在探讨栈和队列的实验结果,并展示它们的实际应用。
一、栈的实验结果及应用1. 栈的实验结果在实验中,我们设计了一个基于栈的简单计算器,用于实现基本的四则运算。
通过栈的先进后出(Last In First Out)特性,我们成功实现了表达式的逆波兰表示法,并进行了正确的计算。
实验结果表明,栈作为一个非常有效的数据结构,可以很好地处理栈内数据的存储和检索。
2. 栈的应用栈在计算机科学中有许多实际应用。
其中之一是程序调用的存储方式。
在程序调用过程中,每个函数的返回地址都可以通过栈来保存和恢复。
另一个应用是浏览器的历史记录。
浏览器中每个访问网页的URL都可以通过栈来存储,以便用户能够追溯他们之前访问的网页。
二、队列的实验结果及应用1. 队列的实验结果在实验中,我们模拟了一个简单的出租车调度系统,利用队列的先进先出(First In First Out)特性实现乘客的排队和叫车。
实验结果表明,队列作为一个具有高效性和可靠性的数据结构,能够很好地处理排队问题。
2. 队列的应用队列在许多方面都有应用。
一个常见的应用是消息队列。
在网络通信中,消息队列可以用于存储和传递信息,确保按照特定的顺序进行处理。
另一个应用是操作系统的进程调度。
操作系统使用队列来管理各个进程的执行顺序,以实现公平和高效的资源分配。
三、栈和队列的比较及选择1. 效率比较栈和队列在实际应用中的效率取决于具体问题的需求。
栈的操作更简单,仅涉及栈顶元素的插入和删除,因此具有更高的执行速度。
而队列涉及到队头和队尾元素的操作,稍复杂一些。
但是,队列在某些问题中的应用更为广泛,例如调度问题和消息传递问题。
2. 如何选择在选择栈和队列时,需要根据实际问题的性质和需求进行综合考虑。
如果问题需要追溯历史记录或按照特定顺序进行处理,则应选择栈作为数据结构。
栈和队列的应用实验报告
栈和队列的应用实验报告
《栈和队列的应用实验报告》
一、实验目的
本实验旨在通过实际操作,掌握栈和队列的基本概念、操作及应用,加深对数
据结构的理解和应用能力。
二、实验内容
1. 栈的基本操作:包括入栈、出栈、获取栈顶元素等。
2. 队列的基本操作:包括入队、出队、获取队首元素等。
3. 栈和队列的应用:通过实际案例,探讨栈和队列在实际生活中的应用场景。
三、实验步骤
1. 学习栈和队列的基本概念和操作。
2. 编写栈和队列的基本操作代码,并进行调试验证。
3. 分析并实现栈和队列在实际应用中的案例,如表达式求值、迷宫问题等。
4. 进行实际应用案例的测试和验证。
四、实验结果
1. 成功实现了栈和队列的基本操作,并通过实际案例验证了其正确性和可靠性。
2. 通过栈和队列在实际应用中的案例,加深了对数据结构的理解和应用能力。
五、实验总结
通过本次实验,我深刻理解了栈和队列的基本概念和操作,并掌握了它们在实
际应用中的重要性和作用。
栈和队列作为数据结构中的重要内容,对于解决实
际问题具有重要意义,希望通过不断的实践和学习,能够更加熟练地运用栈和
队列解决实际问题,提高自己的编程能力和应用能力。
六、感想与展望
本次实验让我对栈和队列有了更深入的了解,也让我对数据结构有了更加深刻的认识。
我将继续学习和探索更多的数据结构知识,提高自己的编程能力和解决问题的能力,为将来的学习和工作打下坚实的基础。
同时,我也希望能够将所学知识应用到实际工程中,为社会做出更大的贡献。
数据结构栈和队列实验报告
数据结构栈和队列实验报告实验目的:掌握数据结构栈和队列的基本概念和操作,通过实验加深对栈和队列的理解。
1.实验原理1.1 栈的原理栈是一种具有后进先出(LIFO)特点的数据结构。
在栈中,只允许在栈顶进行插入、删除和访问操作,并且这些操作仅限于栈顶元素。
1.2 队列的原理队列是一种具有先进先出(FIFO)特点的数据结构。
在队列中,元素的插入操作只能在队列的一端进行,称为队尾。
而元素的删除操作只能在队列的另一端进行,称为队头。
2.实验要求2.1 实现栈和队列的基本操作●栈的基本操作:压栈、弹栈、获取栈顶元素和判断栈是否为空。
●队列的基本操作:入队、出队、获取队头元素和判断队列是否为空。
2.2 进行相应操作的测试●对栈进行插入、删除、访问等操作的测试,并输出测试结果。
●对队列进行插入、删除、访问等操作的测试,并输出测试结果。
3.实验环境●操作系统:Windows 10●开发工具:C++编译器4.实验步骤4.1 栈的实现步骤1:定义栈的结构体,包含栈的容量和栈顶指针。
步骤2:根据栈的容量动态分配内存。
步骤3:实现栈的基本操作函数:压栈、弹栈、获取栈顶元素和判断栈是否为空。
步骤4:进行栈的相关测试。
4.2 队列的实现步骤1:定义队列的结构体,包含队列的容量、队头和队尾指针。
步骤2:根据队列的容量动态分配内存。
步骤3:实现队列的基本操作函数:入队、出队、获取队头元素和判断队列是否为空。
步骤4:进行队列的相关测试。
5.实验结果与分析5.1 栈的测试结果●压栈操作测试:将若干元素压入栈中。
●弹栈操作测试:依次弹出栈中的元素。
●获取栈顶元素测试:输出栈顶元素。
●判断栈是否为空测试:输出栈是否为空的结果。
5.2 队列的测试结果●入队操作测试:将若干元素入队。
●出队操作测试:依次出队元素。
●获取队头元素测试:输出队头元素。
●判断队列是否为空测试:输出队列是否为空的结果。
6.结论通过本次实验,我们掌握了栈和队列的基本概念和操作。
数据结构栈和队列实验报告简版
数据结构栈和队列实验报告数据结构栈和队列实验报告1. 实验目的本实验的主要目的是通过实践的方式理解并掌握数据结构中栈和队列的概念、特点和基本操作。
通过实验,我们可以加深对栈和队列的理解,掌握栈和队列的应用方法,并能够设计和实现基于栈和队列的算法。
2. 实验内容本实验分为两个部分:栈的应用和队列的应用。
2.1 栈的应用栈是一种具有特定限制的线性表,它只允许在表的一端进行插入和删除操作,该端被称为栈顶。
栈的特点是“后进先出”(Last In First Out, LIFO),即最后进栈的元素最先出栈。
在本实验中,我们将实现一个简单的栈类,并应用栈来解决一个问题。
假设有一个字符串,其中包含了括号(圆括号、方括号和花括号),我们需要判断该字符串中的括号是否匹配。
为了达到这个目的,我们可以使用栈来辅助实现。
在实现过程中,我们可以定义一个栈来存储左括号,然后依次遍历字符串的每个字符。
当遇到左括号时,将其入栈;当遇到右括号时,判断栈顶是否是对应的左括号,如果是,则将栈顶元素出栈,否则说明括号不匹配。
最后,当栈为空时,表明所有的括号都匹配,否则说明括号不匹配。
2.2 队列的应用队列是一种具有特定限制的线性表,它只允许在表的一端进行插入操作(队尾),在表的另一端进行删除操作(队头)。
队列的特点是“先进先出”(First In First Out, FIFO),即最早进队列的元素最先出队列。
在本实验中,我们将实现一个简单的队列类,并应用队列来解决一个问题。
假设有一群人在排队等候,我们需要按照一定规则进行排队并输出结果。
为了达到这个目的,我们可以使用队列来进行模拟。
在实现过程中,我们可以定义一个队列来存储等候的人,然后依次将人入队列。
当需要输出结果时,我们可以通过队列的出队列操作,按照先后顺序依次输出到达队头的人。
通过使用队列,我们可以模拟人们排队等候的实际情况,并能够按照一定规则输出结果。
3. 实验过程本实验的实验过程如下:1. 首先,我们需要实现一个栈类。
数据结构栈和队列实验报告
数据结构栈和队列实验报告数据结构栈和队列实验报告引言:数据结构是计算机科学中非常重要的一个概念,它用于组织和存储数据,以便于程序的运行和管理。
栈和队列是数据结构中最基本的两种形式之一,它们在实际应用中有着广泛的应用。
本实验旨在通过实际操作和观察,深入理解栈和队列的特性和应用。
一、实验目的:1. 了解栈和队列的基本概念和特性;2. 掌握栈和队列的基本操作;3. 理解栈和队列在实际应用中的作用。
二、实验过程:本次实验我们使用Python语言来实现栈和队列的操作。
首先,我们定义了栈和队列的类,并编写了相应的操作方法。
1. 栈的实现:栈是一种后进先出(LIFO)的数据结构,类似于我们日常生活中的弹簧簿记本。
我们首先定义了一个栈类,其中包括了栈的初始化、入栈、出栈、获取栈顶元素等方法。
通过这些方法,我们可以对栈进行各种操作。
2. 队列的实现:队列是一种先进先出(FIFO)的数据结构,类似于我们日常生活中的排队。
我们同样定义了一个队列类,其中包括了队列的初始化、入队、出队、获取队首元素等方法。
通过这些方法,我们可以对队列进行各种操作。
三、实验结果:我们通过实验,成功实现了栈和队列的基本操作。
在测试过程中,我们发现栈和队列在实际应用中有着广泛的用途。
1. 栈的应用:栈在计算机系统中有着重要的作用,例如在函数调用中,每次函数调用时都会将返回地址和局部变量等信息存储在栈中,以便于函数执行完毕后能够正确返回。
此外,栈还可以用于表达式求值、括号匹配等场景。
2. 队列的应用:队列在操作系统中常用于进程调度,通过维护一个就绪队列,操作系统可以按照一定的策略选择下一个要执行的进程。
此外,队列还可以用于消息传递、缓冲区管理等场景。
四、实验总结:通过本次实验,我们深入了解了栈和队列的特性和应用。
栈和队列作为数据结构中最基本的两种形式,它们在计算机科学中有着广泛的应用。
在实际编程中,我们可以根据具体的需求选择合适的数据结构,以提高程序的效率和可读性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
printf("插入失败!\n");
}
时间复杂度:
10)写出从循环链队中删除一个结点算法,时间复杂度是多少?
void delet(Queue *Q,DNode *Head)
{
DNode *p;
if(Q->rear==Head && n==0)
printf("队空!\n");
else
scanf("%d",&x);
while(n)
{ Dnode *p=0;
p=(Dnode*)malloc(sizeof(Dnode));//指向结点的指针
push(S,p,n%x); //将余数进栈
n=n/x; //将商做为新的被除数
}
pop(S);
}
答:在算法中,考虑到十进制数转换成十六进制数,在模余数大于10时要将其转换成大写字母,又由大写字母与数字间的转换关系来进行判断输出。
4)在数据转换中,你使用的测试数据有哪些?测试了哪几种进位制?结果是什么?
答:测试数据有28,测试二进制:11100
测试数据有33,测试八进制:41
测试数据有95,测试十六进制:5F
6对于只设一个队尾指针的循环链队,你是如何初始的?写出代码。
DNode *InitQueue(Queue *Q)
{
DNode *Head;//头指针
{
p=Head->next;
printf("删除的元素是:");
printf("%d",p->data);
void DtoP(Sqstack &S)
{
S.base=S.top=(Dnode *)malloc(sizeof(Dnode));
S.base->next=0;
int n,i;
printf("请输入十进制数:");
scanf("%d",&n);
int x;
printf("请输入要转化成的进制:");
一、实验目的和要求
1)栈的顺序存储结构和链式存储结构;
2)掌握栈的先进后出的原则;
3)掌握栈的基本运算;加深理解顺序栈和链栈的意义,理解用栈的插入和删除操作算法。
4)掌握队列的顺序存储结构和链式存储结构;
5)掌握队列的先进先出的原则;
6)掌握队列的基本运算;加深理解顺序循环队列和链队列的意义,理解用顺序循环队列和链队列的入队和出队等基本操作算法。
实验要求:(1)理解栈初始化、判断栈是否空、入栈、出栈等算法;(2)理解队列入队、出队等算法。
二、实验环境(实验设备)
硬件: 微型计算机P4
软件: Windows XP+Microsoft Visual C++6.0
三、实验原理及内容
实验题目:
1.请使用链栈实现通用数制转换程序:将任意一个十进制数转换成p进制的数。(p分别取2,8,16)
p->data=e;
///链栈不存在空间不足
//链栈是用指针取数据,这是顺序栈的操作.指向下一个元素是通过->next
p->next=S.top;
S.top=p;//p始终指向最后结点
}
3)写出链栈的出栈算法?
void pop(Sqstack &S)
{
while(S.top!=S.base) //非空栈
{
struct dnode *next;//指针域
int data; //数据域
}Dnode; //置于Sqstack前,因为后面的用到了Dnode
2)写出链栈的入栈算法
void push(Sqstack &S,Dnode *p,int e)
{
p=(Dnode *)malloc(sizeof(Dnode));//定义结点,分配空间
数学与计算机学院
实验报告
( 2009 /2010 学年 第 2 学期)
课程名称
数据结构
实验名称
实验1 栈和队列的用
实验时间
2010
年
4
月
26
日
指导单位
软件工程系
指导教师
学生姓名
班级学号
学院(系)
数学与计算机
专 业
软件工程
实验名称
栈和队列的应用
指导教师
实验类型
验证
实验学时
3
实验时间
16:00-17:40
printf("插入数据:");
scanf("%d",&q->data);
p=Head->next;
int k=0;
while(p!=Head)
{k++;
if(k==x-1)
{q->next=p->next;
p->next=q;
printf("插入成功!\n");
break;
}
p=p->next;
}
{
if(S.top->data>=10)//大于10进行字母转换
printf("%c",(char)(S.top->data+55));
else
printf("%d",S.top->data);
S.top=S.top->next;
}
printf("\n");
}
4)写出利用链栈进行通用数制转换算法?在该算法中你是如何考虑进位制中数码转换和保存的?
typedef struct Dnode
{
int data;
struct Dnode *next;
}DNode;
9)写出向循环链队插入一个元素值为x的结点算法的代码。时间复杂是多少?
void Inseart(Queue *Q,DNode *Head,int x)
{
DNode *p,*q;
q=(DNode *)malloc(LEN);
(2)创建只有一个尾指针的单向循环队列的的结构体定义和初始化操作。
实验时完成1-2两题
实验后:考虑如果将2小题链队中的结点的数据类型改一个学生的通讯簿:姓名,手机号码、邮箱、QQ号。如何实现该题的相应算法 ,并要求上机验证通过。
实验解答:
1) 链栈中的结点是如何定义的?写出结构体描述。
typedef struct dnode
2.假定一个单向循环链表来表示队列(即循环链队),该队列只设一个队尾指针rear,不设队首指针,试编写下列各种运算的算法:
1)向循环链队插入一个元素值为x的结点;
2)从循环链队中删除一个结点;
3)输出队列中所有元素;
实验前准备:
(1)请实现链栈的基本操作:初始化、进栈、出栈、输出。并要求上机验证通过。
Head=(DNode *)malloc(LEN);//分配空间
if(Head)
{
Head->data=0; //头指针初始化
Head->next=Head; //循环
Q->rear=Head;
return (Head); //返回头指针
}
else
exit (0);
}
7)对于只设一个队尾指针的循环链队,其结点的结构是怎样定义的?写出C语言代码。