2018年高考文科数学考试大纲
近5年高考文科数学考试细目表(含2020年)
题号16年全国I卷17年全国I卷18年全国I卷19年全国I卷1集合交运算集合运算、解一次不等式集合交集复数2复数四则运算样本的数字特征复数运算及模集合运算3古典概型复数四则运算及概念统计饼图信息指对数比较大小4解三角形几何概型、对称椭圆的离心率数学审美文化5椭圆的离心率双曲线、面积计算圆柱截面表面积函数图像6三角函数性质线面平行的判断函数切线方程统计(系统抽样)7三视图球表面积线性规划平面向量的线性运算三角函数8指对数比较大小函数图像三角函数性质平面向量9函数图像函数的单调性、对称三视图最短距离等差数列10程序框图程序框图立几线面角、体积双曲线11立几异面直线的夹角解三角形三角函数定义应用解三角形12导数已知单调性求参数范围椭圆、参数的取值范围分段函数解不等式直线与椭圆13平面向量的运算平面向量坐标运算函数求参数问题曲线的切线方程14三角函数求值求曲线的切线方程线性规划等比数列15直线与圆的位置关系三角恒等变换直线与圆求弦长三角函数16线性规划三棱锥的外接球,球表面积解三角形求面积立体几何(点面距离)17等差数列通项,等比数列证明并求和等比数列、等差数列等比数列、通项概率与统计18垂直等价证明,作正投影,求体积立几面面垂直、体积与侧面积立几翻折、面面垂直、体积等差数列19函数解析式、概率统计相关系数、均值与标准差概率统计分布直方图立体几何(线面平行、点面距离)20直线与抛物线直线与抛物线综合问题直线与抛物线、证角导数、零点21函数与导数的应用函数与导数的应用单调性、由不等式成立求参数范围函数与导数极值、单调区间、证明不等式直线与圆2016-2020年高考全国I卷数学试题考点细目表20年全国I卷集合交集复数运算求模四棱锥排列组合对数函数图像直线与圆的相交弦长三角函数图像指对数运算程序框图等比数列双曲线三棱锥外接球问题线性规划平面向量坐标运算曲线的切线方程数列频率、平均值的计算解三角形面面垂直、三棱锥的体积函数与导数的应用单调性、利用零点求参数范围椭圆的方程、直线与椭圆综合问题。
2018年高考新课标全国卷Ⅰ文科数学考试内容及范围
2018年高考新课标全国卷Ⅰ文科数学考试范围与要求本部份包括必考内容和选考内容两部份.必考内容为《课程标准》的必修内容和选修系列1的内容;选考内容为《课程标准》的选修系列4的“坐标系与参数方程”、“不等式选讲”等2个专题。
必考内容(一)集合1.集合的含义与表示(1)了解集合的含义、元素与集合的属于关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的大体关系(1)明白得集合之间包括与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的大体运算(1)明白得两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)明白得在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能利用韦恩(Venn)图表达集合的关系及运算.(二)函数概念与大体初等函数I(指数函数、对数函数、幂函数)1.函数(1)了解组成函数的要素,会求一些简单函数的概念域和值域;了解映射的概念.(2)在实际情境中,会依照不同的需要选择适当的方式(如图象法、列表法、解析法)表示函数.(3)了解简单的分段函数,并能简单应用.(4)明白得函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.(5)会运用函数图象明白得和研究函数的性质.2.指数函数(1)了解指数函数模型的实际背景.(2)明白得有理指数幂的含义,了解实数指数幂的意义,把握幂的运算.(3)明白得指数函数的概念,明白得指数函数的单调性,把握指数函数图象通过的特殊点.(4)明白指数函数是一类重要的函数模型.3.对数函数(1)明白得对数的概念及其运算性质,明白用换底公式能将一样对数转化成自然对数或经常使用对数;了解对数在简化运算中的作用.(2)明白得对数函数的概念,明白得对数函数的单调性,把握对数函数图象通过的特殊点.(3)明白对数函数是一类重要的函数模型.(4)了解指数函数x a y =与对数函数x y a log =互为反函数(0>a ,且1≠a ).4.幂函数(1)了解幂函数的概念.(2)结合函数12132,,,,-=====x y x y x y x y x y 的图象,了解它们的转变情形.5.函数与方程(1)结合二次函数的图象,了解函数的零点与方程根的联系,判定一元二次方程根的存在性及根的个数.(2)依照具体函数的图象,能够用二分法求相应方程的近似解.6.函数模型及其应用(1)了解指数函数、对数函数和幂函数的增加特点,明白直线上升、指数增加、对数增加等不同函数类型增加的含义.(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍利用的函数模型)的普遍应用.(三)立体几何初步1.空间几何体(1)熟悉柱、锥、台、球及其简单组合体的结构特点,并能运用这些特点描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.(3)会用平行投影与中心投影两种方式画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.(4)会画某些建筑物的视图与直观图(在不阻碍图形特点的基础上,尺寸、线条等不做严格要求).(5)了解球、棱柱、棱锥、台的表面积和体积的计算公式.2.点、直线、平面之间的位置关系(1)明白得空间直线、平面位置关系的概念,并了解如下能够作为推理依据的公理和定理. ·公理1:若是一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内. ·公理2:过不在同一条直线上的三点,有且只有一个平面.·公理3:若是两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. ·公理4:平行于同一条直线的两条直线相互平行.·定理:空间中若是一个角的两边与另一个角的两边别离平行,那么这两个角相等或互补.(2)以立体几何的上述概念、公理和定理为起点,熟悉和明白得空间中线面平行、垂直的有关性质与判定定理.明白得以下判定定理:·若是平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.·若是一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.·若是一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.·若是一个平面通过另一个平面的垂线,那么这两个平面相互垂直.明白得以下性质定理,并能够证明:·若是一条直线与一个平面平行,那么通过该直线的任一个平面与此平面的交线和该直线平行.·若是两个平行平面同时和第三个平面相交,那么它们的交线彼此平行.·垂直于同一个平面的两条直线平行.·若是两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.(3)能运用公理、定理和已取得的结论证明一些空间图形的位置关系的简单命题.(四)平面解析几何初步1.直线与方程(1)在平面直角坐标系中,结合具体图形,确信直线位置的几何要素.(2)明白得直线的倾斜角和斜率的概念,把握过两点的直线斜率的计算公式.(3)能依照两条直线的斜率判定这两条直线平行或垂直.(4)把握确信直线位置的几何要素,把握直线方程的几种形式(点斜式、两点式及一样式),了解斜截式与一次函数的关系.(5)能用解方程组的方式求两条相交直线的交点坐标.(6)把握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.2.圆与方程(1)把握确信圆的几何要素,把握圆的标准方程与一样方程.(2)能依照给定直线、圆的方程判定直线与圆的位置关系;能依照给定两个圆的方程判定两圆的位置关系.(3)能用直线和圆的方程解决一些简单的问题.(4)初步了解用代数方式处置几何问题的思想.3.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会推导空间两点间的距离公式.(五)算法初步1.算法的含义、程序框图(1)了解算法的含义,了解算法的思想.(2)明白得程序框图的三种大体逻辑结构:顺序、条件分支、循环.2.大体算法语句明白得几种大体算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.(六)统计1.随机抽样(1)明白得随机抽样的必要性和重要性.(2)会用简单随机抽样方式从整体中抽取样本;了解分层抽样和系统抽样方式.2.用样本估量整体(1)了解散布的意义和作用,会列频率散布表,会画频率散布直方图、频率折线图、茎叶图,明白得它们各自的特点.(2)明白得样本数据标准差的意义和作用,会计算数据标准差.(3)能从样本数据中提取大体的数字特点(如平均数、标准差),并给出合理的说明.(4)会用样本的频率散布估量整体散布,会用样本的大体数字特点估量整体的大体数字特点,明白得用样本估量整体的思想.(5)会用随机抽样的大体方式和样本估量整体的思想解决一些简单的实际问题.3.变量的相关性(1)会作两个有关联变量的数据的散点图,会利用散点图熟悉变量间的相关关系.(2)了解最小二乘法的思想,能依照给出的线性回归方程系数公式成立线性回归方程.(七)概率1.事件与概率(1)了解随机事件发生的不确信性和频率的稳固性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.2.古典概型(1)明白得古典概型及其概率计算公式.(2)会用列举法计算一些随机事件所含的大体事件数及事件发生的概率.3.随机数与几何概型(1)了解随机数的意义,能运用模拟方式估量概率.(2)了解几何概型的意义.(八)大体初等函数Ⅱ(三角函数)1.任意角的概念、弧度制(1)了解任意角的概念.(2)了解弧度制的概念,能进行弧度与角度的互化.2.三角函数(1)明白得任意角三角函数(正弦、余弦、正切)的概念.(2)能利用单位圆中的三角函数线推导出απ±2、απ±的正弦、余弦、正切的诱导公式,能画出x y sin =、x y cos =、x y tan =的图象,了解三角函数的周期性.(3)明白得正弦函数、余弦函数在区间]2,0[π上的性质(如单调性、最大值和最小值和与x 轴的交点等),明白得正切函数在区间)2,2(ππ-内的单调性. (4)明白得同角三角函数的大体关系式:1cos sin 22=+αα,αααcos sin tan =. (5)了解函数)sin(ϕω+=x A y 的物理意义;能画出)sin(ϕω+=x A y 的图象,了解参数ϕω、、A 对函数图象转变的阻碍.(6)了解三角函数是描述周期转变现象的重要函数模型,会用三角函数解决一些简单实际问题.(九)平面向量1.平面向量的实际背景及大体概念(1)了解向量的实际背景.(2)明白得平面向量的概念,明白得两个向量相等的含义.(3)明白得向量的几何表示.2.向量的线性运算(1)把握向量加法、减法的运算,并明白得其几何意义.(2)把握向量数乘的运算及其几何意义,明白得两个向量共线的含义.(3)了解向量线性运算的性质及其几何意义.3.平面向量的大体定理及坐标表示(1)了解平面向量的大体定理及其意义.(2)把握平面向量的正交分解及其坐标表示.(3)会用坐标表示平面向量的加法、减法与数乘运算.(4)明白得用坐标表示的平面向量共线的条件.4.平面向量的数量积(1)明白得平面向量数量积的含义及其物理意义.(2)了解平面向量的数量积与向量投影的关系.(3)把握数量积的坐标表达式,会进行平面向量数量积的运算.(4)能运用数量积表示两个向量的夹角,会用数量积判定两个平面向量的垂直关系.5.向量的应用(1)会用向量方式解决某些简单的平面几何问题.(2)会用向量方式解决简单的力学问题与其他一些实际问题.(十)三角恒等变换1.和与差的三角函数公式(1)会用向量的数量积推导出两角差的余弦公式.(2)能利用两角差的余弦公式导出两角差的正弦、正切公式.(3)能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.2.简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求经历).(十一)解三角形1.正弦定理和余弦定理把握正弦定理、余弦定理,并能解决一些简单的三角形气宇问题.2.应用能够运用正弦定理、余弦定理等知识和方式解决一些与测量和几何计算有关的实际问题.(十二)数列1.数列的概念和简单表示法(1)了解数列的概念和几种简单的表示方式(列表、图象、通项公式).(2)了解数列是自变量为正整数的一类函数.2.等差数列、等比数列(1)明白得等差数列、等比数列的概念.(2)把握等差数列、等比数列的通项公式与前n 项和公式.(3)能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.(4)了解等差数列与一次函数、等比数列与指数函数的关系.(十三)不等式1.不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.2.一元二次不等式(1)会从实际情境中抽象出一元二次不等式模型.(2)通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.3.二元一次不等式组与简单线性计划问题(1)会从实际情境中抽象出二元一次不等式组.(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.(3)会从实际情境中抽象出一些简单的二元线性计划问题,并能加以解决.4.大体不等式:ab b a 2≥+(00≥≥b a ,)(1)了解大体不等式的证明进程.(2)会用大体不等式解决简单的最大(小)值问题.(十四)经常使用逻辑用语1.命题及其关系(1)明白得命题的概念.(2)了解“若p ,那么q ”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的彼此关系.(3)明白得必要条件、充分条件与充要条件的意义.2.简单的逻辑联结词了解逻辑联结词“或”、“且”、“非”的含义.3.全称量词与存在量词(1)明白得全称量词与存在量词的意义.(2)能正确地对含有一个量词的命题进行否定.(十五)圆锥曲线与方程(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.(2)把握椭圆的概念、几何图形、标准方程及简单几何性质.(3)了解双曲线、抛物线的概念、几何图形和标准方程,明白它们的简单几何性质.(4)明白得数形结合的思想.(5)了解圆锥曲线的简单应用.(十六)导数及其应用1.导数概念及其几何意义(1)了解导数概念的实际背景.(2)明白得导数的几何意义.2.导数的运算(1)能依照导数概念求函数C y =(C 为常数),xy x y x y 12===,,的导数. (2)能利用下面给出的大体初等函数的导数公式和导数的四那么运算法那么求简单函数的导数.·常见大体初等函数的导数公式:0='C (C 为常数) ;1)(-='m m mx x x x cos )(sin =';x x sin )(cos -=' a a a x x ln )(='(0>a ,且1≠a ); x x e e =')( a x x a ln 1)(log ='(0>a ,且1≠a ); xx 1)(ln ='. ·经常使用的导数运算法那么:法那么1:)()(])()([x g x f x g x f '±'='±法那么2:)()()()(])()([x g x f x g x f x g x f '⋅+⋅'='⋅法那么3:)()()()()(])()([2x g x g x f x g x f x g x f '⋅-⋅'=' 3.导数在研究函数中的应用(1)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一样不超过三次).(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一样不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一样不超过三次).4.生活中的优化问题.会利用导数解决某些实际问题.(十七)统计案例了解以下一些常见的统计方式,并能应用这些方式解决一些实际问题.1.独立性查验了解独立性查验(只要求2×2列联表)的大体思想、方式及其简单应用.2.回归分析了解回归分析的大体思想、方式及其简单应用.(十八)推理与证明1.合情推理与演绎推理(1)了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发觉中的作用.(2)了解演绎推理的重要性,把握演绎推理的大体模式,并能运用它们进行一些简单推理.(3)了解合情推理和演绎推理之间的联系和不同.2.直接证明与间接证明(1)了解直接证明的两种大体方式——分析法和综合法;了解分析法和综合法的试探进程、特点.(2)了解间接证明的一种大体方式——反证法;了解反证法的试探进程、特点.(十九)数系的扩充与复数的引入1.复数的概念(1)明白得复数的大体概念.(2)明白得复数相等的充要条件.(3)了解复数的代数表示法及其几何意义.2.复数的四那么运算(1)会进行复数代数形式的四那么运算.(2)了解复数代数形式的加、减运算的几何意义.(二十)框图1.流程图(1)了解程序框图.(2)了解工序流程图(即统筹图).(3)能绘制简单实际问题的流程图,了解流程图在解决实际问题中的作用.2.结构图(1)了解结构图.(2)会运用结构图梳理已学过的知识,整理搜集到的资料信息.选考内容(一)坐标系与参数方程1.坐标系(1)明白得坐标系的作用.(2)了解在平面直角坐标系伸缩变换作用下平面图形的转变情形.(3)能在极坐标系顶用极坐标表示点的位置,明白得在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.(4)能在极坐标系中给出简单图形的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,明白得用方程表示平面图形时选择适当坐标系的意义.(5)了解柱坐标系、球坐标系中表示空间中点的位置的方式,并与空间直角坐标系中表示点的位置的方式相较较,了解它们的区别.2.参数方程(1)了解参数方程,了解参数的意义.(2)能选择适当的参数写出直线、圆和圆锥曲线的参数方程.(3)了解平摆线、渐开线的生成进程,并能推导出它们的参数方程.(4)了解其他摆线的生成进程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用.(二)不等式选讲1.明白得绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:(1)||||||b a b a +≤+.(2)||||||b c c a b a -+-≤-.(3)会利用绝对值的几何意义求解以下类型的不等式:c b ax ≤+||;c b ax ≥+||;c b x a x ≥-+-||||.2.了解以下柯西不等式的几种不同形式,明白得它们的几何意义,并会证明.(1)柯西不等式的向量形式:||||||βαβα⋅≥⋅.(2)22222)())((bd ac d c b a +≥++.(3)231231232232221221)()()()()()(y y x x y y x x y y x x -+-≥-+-+-+-.(此不等式通常称为平面三角不等式.)3.会用参数配方式讨论柯西不等式的一样情形:211212)(i n i i n i i n i ib a b a ∑∑∑===≥⋅. 4.会用向量递归方式讨论排序不等式.5.了解数学归纳法的原理及其利用范围,会用数学归纳法证明一些简单问题.6.会用数学归纳法证明伯努利不等式:nx x n +>+1)1((1->x ,0≠x ,n 为大于1的正整数).了解当n 为大于1的实数时伯努利不等式也成立.7.会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式求一些特定函数的极值.8.了解证明不等式的大体方式:比较法、综合法、分析法、反证法、放缩法.。
(完整版)2018年上海高考考纲数学学科
2018年普通高等学校招生全国统一考试(上海卷)数学科目考试说明一、考试性质、目的和对象普通高等学校招生数学科目全国统一考试(上海卷)是为普通高等学校招生提供依据的选拔性考试。
选拔性考试是高利害考试,考试结果应该具有高信度,考试结果的解释和使用应该具有高效度。
考试命题的指导思想是坚持立德树人,有利于促进每一个学生的终身发展,有利于科学选拔和培养人才,有利于维护社会公平、公正。
考试对象是符合2018年上海市高考报名条件的考生。
二、考试目标依据《上海市中小学数学课程标准(试行稿)»及其调整意见和高校人才选拔要求,结合中学教学实际,本考试旨在考查考生的数学素养,包括数学基础知识与基本技能、逻辑推理能力、运算能力、空间想象能力、数学应用与探完能力。
具体为:I .数学基础知识与基本技能I. 1理解或掌握初等数学中有关数与运算、方程与代数、函数与分析、数据整理与概率统计、图形与几何的基础知识。
1,2理解集合、对应、函数、算法、数学建模、极限、概率、统计、化归、数形结合、分类讨论、分解与组合等基本数学思想;掌握比较、分析、类比、归纳、坐标法、参数法、逻辑划分、等价转换等基本数学方法。
I. 3能按照一定的规则和步骤进行计算、作图和推理;掌握数学阅读、表达以及文字语言、图形语言、符号语言之间进行转换的基本技能;会使用函数型计算器进行有关计算。
II. 逻辑推理能力II. 1能正确判断因果关系。
III. 2会进行演绎、归纳和类比推理,并能正确而简明地表述推理过程。
III.运算能力IV. . 1能根据要求处理、解释数据。
ni. 2能根据条件,寻找与设计合理、简捷的运算途径。
IV.空I砌笳卧3IV. 1 正确地分析图形中的基本元素及其相互关系。
IV. 2能对图形进行分解、组合和变形。
V.数学应用与探究能力V. 1能运用基础知识、基本技能、数学思想方法和适当的解题策略,解决有关数学问题。
V.2能通过建立数学模型,解决有关社会生活、生产实际中的问题,并能解释其实际意义。
(完整版)2018年高考文科数学(全国I卷)试题及答案(最新整理)
23.[选修 4-5:不等式选讲](10 分) 已知 f (x) | x 1| | ax 1| . (1)当 a 1时,求不等式 f (x) 1 的解集; (2)若 x (0, 1) 时不等式 f (x) x 成立,求 a 的取值范围.
所以直线 BM 的方程为 y 1 x 1或 y 1 x 1.
2
2
(2)当 l 与 x 轴垂直时,AB 为 MN 的垂直平分线,所以 ABM ABN .
当 l 与 x 轴不垂直时,设 l 的方程为 y k(x 2) (k 0) , M (x1, y1) , N (x2 , y2 ) ,则 x1 0, x2 0 .
(一)必考题:共 60 分。 文科数学试题 第 2 页(共 10 页)
17.(12 分)
已知数列{an} 满足 a1 1 , nan1 2(n 1)an .
设 bn
an n
.
(1)求 b1 , b2 , b3 ;
(2)判断数列{bn} 是否为等比数列,并说明理由;
(3)求{an} 的通项公式.
C.新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
4.已知椭圆
C:x a
2 2
y2 4
1 的一个焦点为 (2,0) ,则 C
的离心率为
A. 1 3
B. 1 2
C. 2 2
D. 2 2 3
5.已知圆柱的上、下底面的中心分别为 O1 , O2 ,过直线 O1O2 的平面截该圆柱所得的截面是面积为 8 的正方形,
因此,三棱锥 Q ABP 的体积为
高考数学(文科)考试大纲
高考数学(文科)考试大纲以下是高考数学(文科)考试大纲:一、考试内容本科目考试内容分为数与式、函数与方程、三角函数与解三角形、解析几何、数列与数学归纳法、概率与统计和数学思想方法等七个部分。
二、考试形式本科目考试采取笔试形式。
三、考试时间考试时间为 120 分钟。
四、知识点1.数与式1.1 数的基本概念1.2 数的运算与性质1.3 数的应用1.4 算式的基本概念1.5 算式的运算1.6 算式的应用2.函数与方程2.1 函数的基本概念2.2 常用函数的性质2.3 函数的图像与性质2.4 函数的应用2.5 方程的基本概念2.6 一元一次方程及应用2.7 一元二次方程及应用2.8 二元一次方程组及图像2.9 其他代数方程及应用3.三角函数与解三角形3.1 角的基本概念3.2 三角函数的定义与性质3.3 三角函数的图像与性质3.4 解三角形4.解析几何4.1 解析几何基本概念4.2 二维坐标系与图形4.3 三维坐标系与图形4.4 平面解析几何4.5 空间解析几何5.数列与数学归纳法5.1 数列的基本概念5.2 数列的通项公式和递推公式5.3 数列的分类5.4 数学归纳法6.概率与统计6.1 概率的基本概念6.2 概率的计算方法6.3 统计的基本概念6.4 统计的数据处理方法7.数学思想方法7.1 数学证明的基本方法7.2 数学建模的基本方法7.3 数学探究的基本方法7.4 数学推理的基本方法以上是高考数学(文科)考试大纲的全文。
2018年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)
关注公众号”一个高中僧“获取更多高中资料
第 3 页(共 28 页)
18.(12 分)如图,在平行四边形 ABCM 中,AB=AC=3,∠ACM=90°,以 AC 为 折痕将△ACM 折起,使点 M 到达点 D 的位置,且 AB⊥DA.
(1)证明:平面 ACD⊥平面 ABC; (2)Q 为线段 AD 上一点,P 为线段 BC 上一点,且 BP=DQ= DA,求三棱锥
A.12 π
B.12π
C.8 π
D.10π
【考点】LE:棱柱、棱锥、棱台的侧面积和表面积. 菁优网版权所有
【专题】11:计算题;35:转化思想;49:综合法;5F:空间位置关系与距离.
【分析】利用圆柱的截面是面积为 8 的正方形,求出圆柱的底面直径与高,然后
求解圆柱的表面积.
【解答】解:设圆柱的底面直径为 2R,则高为 2R,
(2)估计该家庭使用节水龙头后,日用水量小于 0.35m3 的概率; (3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按 365 天计算,
同一组中的数据以这组数据所在区间中点的值作代表)
20.(12 分)设抛物线 C:y2=2x,点 A(2,0),B(﹣2,0),过点 A 的直线 l 与 C 交于 M,N 两点.
参考答案与试题解析
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选 项中,只有一项是符合题目要求的。
1.(5 分)已知集合 A={0,2},B={﹣2,﹣1,0,1,2},则 A∩B=( )
A.{0,2}
B.{1,2}
C.{0}
D.{﹣2,﹣1,0,1,2}
【考点】1E:交集及其运算. 菁优网版权所有
问题解决问题的能力.
2018高考文科数学考试大纲解析
2018高考文科数学考试大纲解析在最新的高考大纲公布之后,研读了2018 高考文科数学大纲,在将新高考大纲与近两年高考大纲进行对比之后发现2018 高考数学大纲与2017 高考数学大纲相比,无论是从考核目标与要求还是从考试范围与要求来看,大纲均无变化,这完全体现了教育改革循序渐进的理念。
另外新大纲没有变化对于考生复习来说也是一件好事,因为同学们可以参考2017 年的高考试题,制定备考策略。
但这并不意味着考试大纲不重要了,相对于2016 年考试大纲而言,近两年大纲有明显变化,这就意味着变化的部分仍会在考卷中体现。
具体如下:在考核目标与要求方面考纲对能力要求内涵进行了修改,增加了基础性、综合性、应用性、创新性的要求,增加了数学文化的要求,同时对能力要求进行了加细说明,使能力要求更加明确具体。
在整个考纲的修改部分,特别强调了要增加对于数学文化的考查,实际上在近年的高考新课标卷中对于这一点的考查已明显加强,2016 年全国新课标卷文科卷2 中选择题部分对于程序框图的考查就引入了中国古代计算多项式值的秦韶算法,2017 年全国新课标卷文科卷1 中选择题部分对于概率的考查就引入了中国古代的太极图,这就很好的说明了全国新课标卷对于这种题型的命题意图是通过解题让学生感受中国的传统文化之美并予以传承。
有关中华优秀的传统数学文化已在现行的《普通高中课程标准试验教科书.数学》教材中多处体现,例如教科书中的多处阅读材料。
在考试范围与要求方面删去了选修4-1 里的“几何证明选讲”。
删去的理由:几何证明选讲考察的是初中平面几何的知识,作为基础知识,可以在立体几何、解析几何知识中考察,不需要再单独设置专题考察。
针对以上近两年考纲变化,我提出以下备考建议,供广大师生参考:1.回归课本全国高考考试大纲修改内容中对于数学的修改部分中指出在能力的考查上增加了基础性的要求,这就提示我们所有的考生在一轮复习时,应该将重点放在基础上,适当降低复习难度,抓好抓牢基础题,夯实基础,拿严拿准拿稳基础分,以一般题为主,狠抓通性通法的训练,少练或者不练偏题、难题、怪题。
2018年高考数学大纲
咼考数学018年的高考中,核心考点仍然是函数与导数、三角函数、解三角形、数列、立体几何、解析几何、概率与统计、选考内容等•在选择题或填空题中,集合、复数、程序框图、三视图、三角函数的图象和性质、线性规划、平面向量、数列的概念与性质、圆锥曲线的简单几何性质、解三角形、导数与不等式的结合、函数的性质仍然是高频考点.在解答题中,除数列和三角函数轮流命题外,立体几何、概率与统计、解析几何、函数导数与不等式、选考内容仍然是必考内容数学考点(一)函数和导数函数是高中数学内容的主干知识,是高考考查的重点•高考中主要考查函数的概念与表示、函数的奇偶性、单调性、极大(小)值、最大(小)值和周期性;考查幕函数、指数函数、对数函数的图像和性质以及函数的应用;考查导数的概念、导数的几何意义、导数的运算以及导数的应用;重点考查利用导数的方法研究函数的单调性、极大(小)值、最大(小)值,研究方程和不等式.对函数和导数的考查侧重于理解和应用,试题有一定的综合性,并与数学思想方法紧密结合,对函数与方程思想、数形结合思想、分类讨论思想等都进行深入的考查,体现能力立意的命题原则. (二)数列数列是高中数学的重要内容,高考主要考查数列的概念以及等差数列、等比数列的概念、性质、通项公式与前n项和公式.其中,等差数列、等比数列的通项公式与求和公式是考查的重点. 数列试题的考查突出基础性,重点考查考生对数列通性通法的理解与应用;数列试题也具有一定的综合性,将对基础知识的考查和对能力的考查有机结合.(三)不等式不等式是高中数学的基本内容,高考主要考查不等式的性质、简单不等式的解法、基本不等式的应用以及二元一次不等式组与简单线性规划问题•对不等式的考查体现综合性和应用性,与其他知识综合,与数学思想方法紧密结合.(四)三角函数三角函数是高中数学的重要内容.高考主要考查任意角三角函数的概念和正弦函数、余弦函数、正切函数的图像和性质,突出考查形如的函数的图像与性质,考查两角和与差的三角函数公式及简单的三角恒等变换,重点考查正弦定理和余弦定理及其应用.对三角函数的考查重点是基本概念、基本公式的理解和应用以及运算求解能力.(五)平面向量平面向量具有几何形式和代数形式,是中学数学知识的一个交汇点.高考主要考查平面向量的概念、线性运算、平面向量基本定理、坐标表示、数量积及其应用.平面向量的考查重点是基础知识、基本技能和数形结合的思想方法,考查中将几何知识和代数知识有机结合,体现思维的灵活性. (六)立体几何立体几何是高中数学的重点内容,是考查空间想象能力的重要载体.高考主要考查三视图,柱、锥、球的表面积和体积,直线与直线、直线与平面、平面与平面的位置关系,其中,几何元素间的位置关系和度量关系是考查重点.立体几何试题突出综合性,综合考查考生的空间想象能力、推理论证能力和运算求解能力.(七)解析几何解析几何是高中数学的重要内容.高考主要考查直线与圆、椭圆、抛物线、双曲线的定义、标准方程和简单的几何性质.其中,直线与圆、直线与圆锥曲线的位置关系是考查重点.运动与变化是研究几何问题的基本观点,利用代数方法研究几何问题是基本方法.试题强调综合性,综合考查数形结合的思想、函数与方程的思想、特殊与一般的思想等思想方法,突出考查考生的推理论证能力和运算求解能力.(八)统计与概率统计与概率是高中数学的重要内容.高考主要考查随机抽样、用样本估计总体、变量的相关性、随机事件的概率、古典概型、几何概型、回归分析、独立性检验.其中,用样本估计总体、古典概率的计算、应用回归分析与独立性检验思想方法解决简单实际问题的能力是考查的重点.试题强调应用性,以实际问题为背景,构建数学模型,突出考查统计与概率的思想及考生的数据处理能力和应用意识.(九)算法算法是高中数学的基本内容,高考主要考查算法的含义、程序框图、基本算法语句.理科数学1・考核目标与要求根据音通吝寻学校对新主文化亲质的要求,依据中华人民共和国救育部2003年预布的《普通高中课程方案〔实验D和《普通高中数学课程标准(实验)》的必修漂程、:i三逞巨壬列2和系列4的内容,确定理工类高考数学科考试内容.一、知识要求知识是指《習通吝中数学谍谨标崔(实验”(以下简称:课豆标准O=P所刼定的必修澡程、选修课移妄列2和系列4中的数学槪念、性更、法则、公弍、公理、定理以及由其内容反咬的数学思想方法,还包括按照一定隹序与步骤进行运算、处理数据、绘削图表寻基本技能・各部分知识的整体要求及其定位参照《课移标准》柜应填块的有关说明.对知识的要求依次是了解.理解.拿夷三个层次・1.了禅:要求对所列気识的含文有初步的.感性的认识,知道这一丹识内容是尸么,按黑一定的穫序和步骥照样模仿,并能(或会)在有关的问题中识别和认识它.这一层次所涉及的主要行为动词有:了解,丸道、识别,模仿,会求.会解等・2.亘蒔:要求对所列知识内容有絞深刻的理性认识,知道知识闾的逻辑关系,能够对所列知识做正魂的玮述说明并用数学语言表达,能務利用所学的知识内容对有关问题进行比较. 判别、讨论,具备利用所学知识解决简单问題的能力.这一昙次所涉及的主要行为动诃有:描述,说退表达,推孤想象•比较、判别,初步应用等.3.拿捏:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问題进行分析. 研究.讨论,并且加以解决.这一层次所涉及的主要行为动词有:事握.昌出■分析,推导、证明,研究.讨论、运用、解决问題等.二.能力要求能力是指空间想鉄能力、抬象槻括能力.推進论证能力、运算求解能力、数捋处理能力以及应用意识和创靳意识.1.空间炬象能力:能很捋条件作出正确的图形,很据茎形想象出宜观形象:能正确地分析出图形中的基去元袁及其相互关丢:能对茎形进行分解、组台:会运乏图形与匿表等手段形象地掲示问題的本质.空伺姬象能力是对空间形式的观察.分析、主象的能力,主要表现为识荃、亘图和对图形的想象能力.识匡杲指观察餅究所给图形中几何元素之伺的相互关丢:画丕是指将文字语言和符号语言转化为国形语言以及对因形添加辅助国形或对国形进行各种变按;对图形的想象主要色括有国想图和无图想图两种,是空伺想象能力高层次的标志.2•希象槻括能力:抽象是指舍弃事物非本质的属性,捲示其本质的属性:奄括是指狂仅仅爱于某一类对象的共同壤性区分出来的思维过程.生皺和概括是鹉互联系的,没有社欽零不可能有概括,而概括必须在把象的基础上得出某种观点或某个结论.抽彖概括能力是对具体的•生动的实例,经过分析提炼-•发现窃究对象的本眞:从给是的犬量信息材料中概括出一些结论,并能埒其应用亍解决问題或傲出新的判鲂.3•生理论证能力:推理是思维的基本形式之一,它主前提和结论两歆分组成;论证是由己有的正确的前提到祓论证的结论的一连串的推理过程.推理啜色括演绎推理,也包括舍情圣理:论证方法既色話按形式划分的演经法和归纳法,徑色括按患考方法划分的宜接迁法和面接证法一般运用合倩推理迸行猜鶴再运用演绎推理进行证明.中学数学的推逢论还能力是根捋己知的事实和己获得的正縫数学命題,论证某一数学命题真实性的初步的推理能力.4.运算求解能力:会視捋法则、公式进行丘确运算、变形和数据处理,能根寿问题的条•牛寻接与设计合理、简捷的运算途径,能根据要求对数据进行估计和近似计算.运算求解能力是思维能力和运算技能的结合•运算包括对数字的计算、估值和近似计算,对弍子的坦合变形与分解变形,对几何国形各几何量的计算求解等.运算能力包矣分析运算条件、税究运算方向.选择运算公式、确定运算程序尊一系列过程中1的恿维能力,也包括在实施运算过程中遇到隨碍而调整运算的能力.5•魅捋处蚕能力:会收集、至理.分析麹氐能从大量数据中抽取对研兖叵题有审的信息,并做出判断・数务处妾能力主要是指针对研究对欽的特殊性,选择合蚕的牧集数空的方法,根空问题的具体情况,选择合适的统计方法整蚕数推,并构建模型对雄进行分析、推断,获得结论.6•应用怠识:能综合应用所学数学知识.思想和方法解决何题■包括解决相关学科、生产、生活中简单的数学问题:能理解对问題陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问題招彖为数学问題:能应巨相关的数学方法解决问题进而加以验证,并能用数学淆言正确地表达和说明.应臣的主要过程長依摊现实的兰活背長,実炼相关的数量关系,将现实问題扶化为数学问題,构造数学模型,并加以解决.7•创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思坦方法,选择有效的方法和手段分析信息,进行独立的思考、探素和研究,畫出解决问题的思躡创造性地解决问题.创蔚意识是理性思维的高层次表观.对数学问题的“观聚、猜测、毛象、槪君、证明”,杲发现问题和解决问題的重要送径,对数学知识的迁移、组台、融会的程更越哥,显示出的创新意识也就越程.三、个性品质要求个性品质是指考生个体的情超、态度和价值观•要求冬生具有一定的数学规野,认识数学的科学价值和人文价值,崇尚数学的理性緒格形成审慎的思维习惯,体会数学的美学意义.要求考生克服緊张情绻,以平和的心态参加考试,合理支配考试时闾,以实事求是的科学态度解答试题,钙立战往困难的信心,体现螟而不舍的靖禅.四、考査要求数学学科的系统性和严密性决定了数学気识之阖深刻的内在联系,包括各部分知识的纵向联系和模向联系••要善于从本质上抓住这些联系,进而通过分类、梳理.综合,构建数学试卷的框架结构.1.对数学荃碇知识的考奁,匪要全面文要突出垂点•对于支撞学科知识体来的垂点内容, 要占有较大的比例,构或数学试巻的主体.注更学科的内在醱系和辺识的综合性,不刻意追求知识的茨苣面•从学科的整体高度和思维价值的高度考虑问题,在知识网络的交汇点处设计试题,使对数学基础知识的考査达到必要的深度.2.对数学•更想方法的考查是对数学知识在更咅层次上的抽象和概括的考査,考査时必须要与数学矩识梅结台,通过对数学丸识的考查•反映考生对数学思炬方法的拿灸程度・23・对数学能力射考査•謝虎“以能力立意J就是以数学気识为载亦从问题入手••把徨学科的整体怠义,用统一的数学观•点组织材料,侧更体现对知识的亘蒔和应巨••尤其是淙合和灵活的应甩•以此来检滾考生将知识迁移到不同情境中去的能力,从而检测出考主个体理性思维的广度和深度以及进一步学习的潜能・对能力的考査要全面再茧谓综台性、应用性,并要切合考生实际•对推灸论证能力和拒叙覆括能力的考查英穿于全卷•,是考査的篡.钛再调其科学性、严谨性、抽象性:对空阿想象能力的考查主要竹现在对文字语言、符号语言及图形语言的互絹转化上:对运算求解能力的考査主要是对算法和走理的考査••考査以代数运算为主:对数据处理能力的考查主要是考查运用概率统计的基本方:去和思想解决实际问題的能力.4.对应用意识的考査主要采用解决应用问题的形式•金题时要坚持“贴近主活,背養公平,控创难度”的原则,试题设计要切合中学数学教学的实际和考生的年龄特点,并结合实践经验,便数学应用问题的难燮為合考生的水平.5.对创新言识的考査是对高层次理性思维的考奁•在考试中创设餉紙的问趣倩境,构這有一定浜度和广度的数学问题时,要注重问题的多样化,体现思维的发散性:猜心设计考查数学主体内容.体现数学袁质的试题:徑要有反咲数、形运动变化的试题以及硏究型、探素型、开放型等类型的试题.数学科的锂题佐考查基砒知识的基咄上注重对数学恿想方法的考查••注重对数学能力的考査婆现数学的科学价直和人文价值••同时兼颈试題的基咄性、综合性和应用性,亘观试題间的层次性,台理调M综合程度.坚持多角雯、多层次的冬查••努力实现全面考査综台数学素养的要求.DL考试范围与要求本部分包括必考内容和选考内容两部分•必考内容为《课程标進$的必修内容和选修系列2的内容:选考内容为:课隹标進》的选修系列4的“坐标系与参数方程”、“不等式选讲”等2个专题・必考内客(―)集合1.集合的含义与表示(D 了號集台的含义.元素与集合的履于关杀.(2)饋用自然语言、图形语言.裳合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系(1)理解集合之何包含与相等的含义,能识别给定集合的子笑.⑵在具体情境中,了解全集与空集的含义.3.集合的基本运算(D婕解两个集合的并集与交集的含义,会求两个简至集合的并集与交冥.⑵屋解在给定集合中一个子集的补笑的含义,会求给定子冥的补集.(3)能论用韦恩(Venn)冕表达集合的关系及运算.(二)函数概念与基本初等函数I (指数函数.对数函数.專函数)1 •函数(D了解构成函数的要素,会求一些简单函数的定文域和值域;了解鉄射的概念.⑵在实际倩境中,会根捋不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.(3)了解简单的分段函数,井能倚单应用.(4)理解函数的車谩性、最大值、冬小值及其几何意文:结合具体函数,了解函数奇偶性的含义(5)会运用函数图線理解和硏究函数的性氐2.指数函数(1)了解指数函数模型的实际背最.(2)理解肓亘务数驀的含义,了解实数指数幕的意义,掌握幕的运算.(3)瘻解指数函数的概念,雀解指数函数的单谓性,事再务数函数运像適过的特殊点.(4)知道指数函数是一类重要的函数模型.3.对数劇数(1)W 对数的概念及其运算性质,知道用換克公式能将一般对数銭化成自然对数或常用对数:了解对数在简化运算中的作用.⑵理解对数函数的概念,蚕幕对啟函数的单谓性,事捏对数函数匡像通过的粹殊点.(3)知道对数函数是一类里要的函数模翌.(4)7解指数函数J = a'与对数函数y = kg X互为反函数(a >0,且“ I)・4.慕函数(1)7解禧函数的概念.⑵结台函数尸小v = x2, y = x\ y = l,尸,的图缴,了籬它们的变化情込x5.函数与方程(1)结台二次函数的图爼了解函数的零点与方程根的联系,判新一元二次方移根的存在性及根的个数.(2)根毎具体函数的图嫁•,能够用二分法求相应方程的近似解.6.函数模型及其应用(1)了解指数函数、对数函数以及慕函数的增长特征,知道亘线上升、指数増冬、对数増长等不同函数类型增长的含义.(2)了解函数模型如指数逅数、对数西数、基函数、分段函数尊在社会生活中普這便乏的函数模型)的广泛应月.(三)立体几何初步1.空间几何体⑴认识柱、铿、台、球及其简单组合体的结构特征,并能运巨这些特征描述现实生活中简单物传的结构.⑵能画出简单空间图形(长方体、球、楚柱、圆链、棱柱等的简易组合)的三视国,能识别上述三视图所表示的立体模型,会用斜二画法画出它们的直观适.⑶会用平行投影与中心投影两种方法画出简单空间图形的三视图与亶观图,了解空间图形的不同表示形式.(4)会逼茶些建氏初的视国与宜观图(在不影旄图形特征的基础上,尺寸、钱冬寻不作严络要求).(5)7解球、棱性、棱链、台的表面积和体积的计算公式.2•点、直线、平面之间的位置关慕(D理輕空叵亘线、平面住宣关系的是文,并了解如下可以作为挂亘※掲的公理和定蚕.•公理1:妁果一条亘践上的两.点在一个平面内,那么这条豊线上所有的点都在此平面内.•公長2:过不在同一条言线上的三点,有且只有一个平面••公理3:妇果两个不重合的平面有一个公关,点,那么它们有且只有一条过该点的公共直线.・公理4:平行于同一条宜线的两条直线互相平行.•走理^空囱中如果一个角的两边与另一个角的两边分别宁行,那么这两个角相等或互补.(2)以立体几何的上述走义、公理和走理为出发点,认识和理解空伺中线面平行、垂宣的有关性质与判定走理.理解以下判定走理.4•妇果平肓外一条直线与此平面内的一条直线平行,那么该直找与此平页平行.•如果一个平面内的两*柜交直线与另一个平面茹平行,那么这两个平肓平行.•妁果一条苣践与一个平面内的两条相交直践至垂宣••茹么该直裟与此平面垂豊.•如果一个平面经过另一个平面的垂线,那么这两个平面互柜垂宜.理解以下性质定理,并能够证明.•如果一条宣践与一个平面平行,那么经过该直线的任一个平面与此平豆的交线和该直线平行.•如果两个平行平面同时和第三个平面柜交,那么它们的交线相互平行.•垂直于同一个平面的两条直线平行.•如果两个平面垂1L•那么一个平面内垂宜亍它们交线的直线与另一个平面垂建.3・能运甬公理.定理和己获得的结论证明一些空伺芟形的位宣关系的简单创题.(四)平面解析几何初步1.直线与方程(1)左平面直角坐标系中,结合具体图形,确是宜线位置的几何要素.(2)爰解直线的倾斜角和斜率的概念,拿握过:两•点的直线斜率的计算公式.(3)能根捋两条直线的斜率判走这两条直线孚行或垂直.(4)拿翼魂走直线泣置的几何姜素,拿握直线方程的几种形式(点斜式.两点式及一般弍), 了翘斜截式与一次函数的关系.(5)能用解方程组的方法求两冬相交直线的交点坐标.(6)事霆两点间的距离公式、点到直钱的距离公式,会求两*平行直践间的距複.2.圆与方程(D事霆魂定圆的几何要素,拿提圆的标准方程与一般方程.(2)能很捋给定直缴更的方程判断宜线与圆的位置关系;能抿盘给走两个艾的方程判断两圆的位置关系(3)能用直践和圆的方隹解决一些简单的问题.(4)初步了解用代数方法处理几何问題的患想.3.空闾直角坐标系(D 了解空直宜角坐标来,会用空底亘角坐标表示点的住宣.⑵会生导空间两点阿的距离公式(五)算法初步1.算法的含义、程序框国(1)7解算法的含义,了解算法的恿想.(2)W程宇框国的三种基本逻辑结构:顺序、条件分支「繪环.2.基本算法语句56理解几种基本算法语句一复入语句、输出语句、赋直语句、黃件语句、循环语句的含 义.(六) 统计1. 随机抽样(D 理解随机抽样的必要性和重要性.(2) 会用简单随机抽样方法从总体中抽取样本:了解分层抽样和来统抽样方法.2. 用样本估计总体(D 了解分布的意义和作用,会列频坚分布表,会画频率分布直方罢、频率折线图、茎廿 图,笔解它们各自的特点.(2) 理解样本数据标進差的意JC 和作用,会计算数圣标進差.(3) 能从样本数据中提取基本的数孚特征(妁平均瓠 标准差),并给出台瘵的解轻.⑷会用样本的频率分布估计总体分杞会用样本的基本数字特征估计总体的基本数孚 特征,理鲜用样本估计总体的思花.(5) 会用随机推样的基本方法和样本估计总体的思想解决一些置单的实际问题.3. 变量的相关性⑴会作两个有关駐变量的数据的敢点園会利巨敢点国认识变量⑧的昭关关系.(2) 了解最小二乘法的恿想••能根捋给出的线性回归方隹系数公式建立线性回归方程.(七) 概率1. 事件与概率(1) 了解随机爭件发生的不确定性和頻率的稳定性,了解概率的意义,了解频率与概率的 区别.(2) 7解两个互丘事件的概率加法公式.2. 古典概型(D 理解古英概型及其概率计算公式.(2)会计算一些随机事件所含的基本爭件数及爭件发生的概率.3. 随机数与几何概型(1) 了解随机数的意义,能运用模拟方法估计概率.(2) 了解几何概型的意义.(八) 基本初等函数U(三角函数)1•任意角的概念.拆度測(1) 了解任意角的概念•(2) 7解弧受刨的概念,能进行弧燮与角度的互化•2. 三角函数(D 理解任意角三角函数(正弦、余弦、正切)的定文.(2)能利用单位圆中的三角更数线推导出彳士a, 的正弦、余弦、正切的诱导公式,能画出y-srnx, j = cosx, y = tanx 的国象了解三角更数的周期性・⑶理解正弦函数、余弦函数在区间[0.2K ]上的性质(妇单调性.最大值和最小疽以及⑷理解同角三角逐数的基本关系式:与:r 袖的交点尊),理解正切函数在区间 内的至谓性.sin 2x + cos 2x-L — tanx.COST 7⑸了解函数y = /15in(g・ + e)的物理意义:能画出,v = Jsin(^.v + ^)的匿爼了解参数・4, 孙卩对函数图像变化的影戦(6)了解三角函数是描述周期变化现象的重要函数模型,会乏三角函数解决一些筍单实际问题・(九)平面向量1.平面向量的实际背景及基本概念(1)7解向量的实际背最.(2)理解平面向量的概念,理解两个向量柜等的含义.(3)理解向量的几何表示.2.向量的线性运算⑴事湼向量加法、减法的运算,并理解其几何意文.(2)事涅向量软乘的运算及其几何意义,理解两个向量共线的含文.(3)了解向量线性运算的性质及其几何意义.3.平面向虽的基本定理及坐标表示(1)7解平面向量的基本定理及其意义.(2)事徨平面向量的正交分解及其坐标表示.(3)会用坐标表示平面向董的加法、减法与数乘运算.(4)長解用坐标表示的平面向量共线的条件.4・平面向童的数量积(1)長解平面向量敦量秩的含义及其初理意义.(2)了解平面向量的数量积与向量授影的关系.(3)拿霆数量积的坐标表达式,会送行平面向量数量积的运算.⑷能运足数量秩表示两个向量的夹角,会用数量秩裁断两个平面向莹的垂直关系.5.向量的应用(1)会用向量方法解决某些匱单的平页几何问題.(2)会用向量方法筋决简单的力学问题与其他一些实际何题.(十)三角恒铮变换1.和与誉的三角函数公式(1)会用向量的数量积推导出两角巻的余弦公式.(2)能利用两角蚤的余弦公式导出两角差的正弦、正切公式.(3)能利冃两角差的余弦公式导出两角和的正弦、余弦、正切公弍,导出二铠龟的正弦、余弦.正切公式,了解它们的内在联系.2.简单的三角這尊变涣髭运扁上述公式送行筍单的恒尊变换(包括导出积化和垒、和雀化积、半角公式,但对这三组公弍不要求记忆).(十一)解三角形1.正弦定理和余弦定理拿睜正弦定理、余弦是理,并能解决一些简单的三角形度重问题.2•应用能哆运用正弦是理.余弦定爰尊远识和方法解决一些与瀝量和几何计算有关的实际问题.(十二)数列1 •敢列的概念和简单表示法。
2018年高考文科数学全国卷3(含答案与解析)
2018年高考文科数学全国卷3(含答案与解析)2018年普通高等学校招生全国统一考试课标全国卷III数学(文科)本试卷满分150分,考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合$A=\{x|x-1\geq0\}$,$B=\{0,1,2\}$,则$AB=$A。
$\emptyset$ B。
$\{1\}$ C。
$\{1,2\}$ D。
$\{0,1,2\}$2.$(1+i)(2-i)=$A。
$-3-i$ B。
$-3+i$ C。
$3-i$ D。
$3+i$3.中国古建筑借助榫卯将木构件连接起来。
构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头。
若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是ABCD4.若$\sin\alpha=\frac{1}{3}$,则$\cos2\alpha=$A。
$\frac{8}{9}$ B。
$\frac{7}{99}$ C。
$-\frac{7}{9}$ D。
$-\frac{8}{9}$5.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A。
0.3 B。
0.4 C。
0.6 D。
0.76.函数$f(x)=\frac{\tan x}{1+\tan^2x}$的最小正周期为A。
$\frac{\pi}{4}$ B。
$\frac{\pi}{2}$ C。
$\pi$ D。
$2\pi$7.下列函数中,其图象与函数$y=\ln x$的图象关于直线$x=1$对称的是A。
$y=\ln(1-x)$ B。
$y=\ln(2-x)$ C。
$y=\ln(1+x)$ D。
$y=\ln(2+x)$成任务的时间,得到以下数据:第一组:12.15.13.14.16.18.17.14.16.15.13.12.14.15.13.16.17.14.15.13第二组:16.17.14.18.15.16.13.14.15.16.17.15.14.16.15.17.15.16.18.141)分别计算两组工人完成任务的平均时间和标准差;2)根据以上数据,判断两种生产方式哪一种更有效,并说明理由.19.(12分)已知函数f(x)在区间[0,1]上连续,且f(0)=f(1)=0.证明:对于任意正整数n。
2018年高考全国1卷文科数学(含答案)
将 n=1 代入得,a2=4a1,而 a1=1,所以,a2=4.
将 n=2 代入得,a3=3a2,所以,a3=12.
从而 b1=1,b2=2,b3=4.
(2){bn}是首项为 1,公比为 2 的等比数列.
由条件可得
an1 n 1
2an n
,即
bn+1=2bn,又
b1=1,所以{bn}是首项为
1,公比为
5/9
绝密★启用前
2018 年普通高等学校招生全国统一考试
文科数学试题参考答案
一、选择题
1.A
2.C
3.A
4.C
5.B
6.D
7.A
8.B
9.B
10.C
11.B
12.D
二、填空题
13.-7 三、解答题
14.6
15. 2 2
16. 2 3 3
17.解:(1)由条件可得
an+1=
2(n n
1)
an
.
A.0
B. 1 2
C.1
D. 2
3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村
的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:
则下面结论中不正确的是
A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
,x≤0 ,则满足 ,x 0
f
x
1
f
2x 的
x
的取值范围是
A. ,1
B. 0,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文科数学Ⅰ.考核目标与要求根据普通高等学校对新生文化素质的要求,依据中华人民共和国教育部 2003 年颁布的《普通高中课程方案(实验)》和《普通高中数学课程标准(实验)》的必修课程、选修课程系列1 和系列 4 的内容,确定文史类高考数学科考试内容.一、知识要求知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列 1 和系列 4 中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能.各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明.对知识的要求依次是了解、理解、掌握三个层次.1.了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它.这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等. 2.理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,具备利用所学知识解决简单问题的能力.这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想象,比较、判别,初步应用等.3.掌握:要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决.这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.二、能力要求能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.1.空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.空间想象能力是对空间形式的观察、分析、抽象的能力,主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志.2.抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某种观点或某个结论.抽象概括能力是对具体的、生动的实例,经过分析提炼,发现研究对象的本质;从给定的大量信息材料中概括出一些结论,并能将其应用于解决问题或做出新的判断.3.推理论证能力:推理是思维的基本形式之一,它由前提和结论两部分组成;论证是由已有的正确的前提到被论证的结论的一连串的推理过程.推理既包括演绎推理,也包括合情推理;论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.中学数学的推理论证能力是根据已知的事实和已获得的正确数学命题,论证某一数学命题真实性的初步的推理能力.4.运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运算途径,能根据要求对数据进行估计和近似计算.运算求解能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力.5.数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并做出判断.数据处理能力主要是指针对研究对象的特殊性,选择合理的收集数据的方法,根据问题的具体情况,选择合适的统计方法整理数据,并构建模型对数据进行分析、推断,获得结论.6.应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题进而加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.7.创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.三、个性品质要求个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.四、考查要求数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识的纵向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构.1.对数学基础知识的考查,既要全面又要突出重点.对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体.注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络的交汇点处设计试题,使对数学基础知识的考查达到必要的深度. 2.对数学思想方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过对数学知识的考查,反映考生对数学思想方法的掌握程度.3.对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.对能力的考查要全面,强调综合性、应用性,并要切合考生实际.对推理论证能力和抽象概括能力的考查贯穿于全卷,是考查的重点,强调其科学性、严谨性、抽象性;对空间想象能力的考查主要体现在对文字语言、符号语言及图形语言的互相转化上;对运算求解能力的考查主要是对算法和推理的考查,考查以代数运算为主;对数据处理能力的考查主要是考查运用概率统计的基本方法和思想解决实际问题的能力.4.对应用意识的考查主要采用解决应用问题的形式.命题时要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合中学数学教学的实际和考生的年龄特点,并结合实践经验,使数学应用问题的难度符合考生的水平.5.对创新意识的考查是对高层次理性思维的考查.在考试中创设新颖的问题情境,构造有一定深度和广度的数学问题时,要注重问题的多样化,体现思维的发散性;精心设计考查数学主体内容,体现数学素质的试题;也要有反映数、形运动变化的试题以及研究型、探索型、开放型等类型的试题.数学科的命题,在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查,展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和应用性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求.Ⅱ.考试范围与要求本部分包括必考内容和选考内容两部分.必考内容为《课程标准》的必修内容和选修系列 1 的内容;选考内容为《课程标准》的选修系列 4 的“坐标系与参数方程”、“不等式选讲”等 2 个专题.必考内容(一)集合1.集合的含义与表示(1)了解集合的含义、元素与集合的属于关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用韦恩()图表达集合的关系及运算.(二)函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)1.函数(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.(3)了解简单的分段函数,并能简单应用.(4)理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.(5)会运用函数图像理解和研究函数的性质.2.指数函数(1)了解指数函数模型的实际背景.(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.(3)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点.(4)知道指数函数是一类重要的函数模型.3.对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.(2)理解对数函数的概念,理解对数函数的单调性,掌握对数函数图像通过的特殊点.(3)知道对数函数是一类重要的函数模型.x与对数函数y=x互为反函数(a>0,且a≠1).(4)了解指数函数y=a4.幂函数(1)了解幂函数的概念.(2)结合函数5.函数与方程yx,yx 2 ,yx 3 ,y1x,y1x2的图像,了解它们的变化情况.(1)结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.(2)根据具体函数的图像,能够用二分法求相应方程的近似解.6.函数模型及其应用(1)了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义.(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.(三) 立体几何初步1.空间几何体(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.(3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.(4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不做严格要求).(5)了解球、棱柱、棱锥、台的表面积和体积的计算公式.2.点、直线、平面之间的位置关系(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.• 公理 1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.• 公理 2:过不在同一条直线上的三点,有且只有一个平面.公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.•公理 4:平行于同一条直线的两条直线互相平行.•定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理.•如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.•如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.•如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.•如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明.•如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.•如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.•垂直于同一个平面的两条直线平行.•如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.(3)能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.(四)平面解析几何初步1.直线与方程(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.(3)能根据两条直线的斜率判定这两条直线平行或垂直.(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.(5)能用解方程组的方法求两条相交直线的交点坐标.(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.2.圆与方程(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程.(2)能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.(3)能用直线和圆的方程解决一些简单的问题.(4)初步了解用代数方法处理几何问题的思想.3.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会推导空间两点间的距离公式.(五)算法初步1.算法的含义、程序框图(1)了解算法的含义,了解算法的思想.(2)理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.2.基本算法语句理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.(六)统计1.随机抽样(1)理解随机抽样的必要性和重要性.(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.2.用样本估计总体(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.3.变量的相关性(1)会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.(七)概率1.事件与概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.2.古典概型(1)理解古典概型及其概率计算公式.(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.3.随机数与几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.(八)基本初等函数Ⅱ(三角函数)1.任意角的概念、弧度制(1)了解任意角的概念.(2)了解弧度制的概念,能进行弧度与角度的互化.2.三角函数(1)理解任意角三角函数(正弦、余弦、正切)的定义.(2)能利用单位圆中的三角函数线推导出 π2, π的正弦、余弦、正切的诱导公式,能画出 y x , y x , y x 的图像,了解三角函数的周期性. (3)理解正弦函数、余弦函数在区间[ 0, 2π ] 上的性质(如单调性、最大值和最小值以⎛ - π ,π ⎫ 及与 x 轴的交点等),理解正切函数在区间⎪⎝ 2 2 ⎭(4)理解同角三角函数的基本关系式: 2x 2x 1,内的单调性.xx .x(5)了解函数y A (x ) 的物理意义;能画出A ,,对函数图像变化的影响.yA(x)的图像,了解参数(6)了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.(九)平面向量1.平面向量的实际背景及基本概念(1)了解向量的实际背景.(2)理解平面向量的概念,理解两个向量相等的含义.(3)理解向量的几何表示.2.向量的线性运算(1)掌握向量加法、减法的运算,并理解其几何意义.(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.(3)了解向量线性运算的性质及其几何意义.3.平面向量的基本定理及坐标表示(1)了解平面向量的基本定理及其意义.(2)掌握平面向量的正交分解及其坐标表示.(3)会用坐标表示平面向量的加法、减法与数乘运算.(4)理解用坐标表示的平面向量共线的条件.4.平面向量的数量积(1)理解平面向量数量积的含义及其物理意义.(2)了解平面向量的数量积与向量投影的关系.(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算.(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.向量的应用(1)会用向量方法解决某些简单的平面几何问题.(2)会用向量方法解决简单的力学问题与其他一些实际问题.(十)三角恒等变换1.和与差的三角函数公式(1)会用向量的数量积推导出两角差的余弦公式.(2)能利用两角差的余弦公式导出两角差的正弦、正切公式.(3)能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.2.简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).(十一)解三角形1.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.(十二)数列1.数列的概念和简单表示法(1)了解数列的概念和几种简单的表示方法(列表、图像、通项公式).(2)了解数列是自变量为正整数的一类函数.2.等差数列、等比数列(1)理解等差数列、等比数列的概念.(2)掌握等差数列、等比数列的通项公式与前n项和公式.(3)能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.(4)了解等差数列与一次函数、等比数列与指数函数的关系.(十三)不等式1.不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.2.一元二次不等式(1)会从实际情境中抽象出一元二次不等式模型.(2)通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.3.二元一次不等式组与简单线性规划问题(1)会从实际情境中抽象出二元一次不等式组.(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.4.基本不等式:a b≥2( a≥0,b≥0)(1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题.(十四)常用逻辑用语1.命题及其关系(1)理解命题的概念.(2)了解“若p ,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.(3)理解必要条件、充分条件与充要条件的意义.2.简单的逻辑联结词了解逻辑联结词“或”、“且”、“非”的含义.3.全称量词与存在量词(1)理解全称量词与存在量词的意义.(2)能正确地对含有一个量词的命题进行否定.(十五)圆锥曲线与方程(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.(2)掌握椭圆的定义、几何图形、标准方程及简单几何性质.(3)了解双曲线、抛物线的定义、几何图形和标准方程,知道它们的简单几何性质.(4)理解数形结合的思想.(5)了解圆锥曲线的简单应用.(十六)导数及其应用1.导数概念及其几何意义(1)了解导数概念的实际背景.(2)理解导数的几何意义.2.导数的运算(1)能根据导数定义求函数 y C( C 为常数),y x , y x 2, y 1 x 的导数.(2)能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.• 常见基本初等函数的导数公式:( C ) 0 ' = ( x )( e x '= e x)( C 为常数); ( x ' = ; ( x ); ( a x '= a xa ) xn( ) 1, n N ;x ; a 0 ,且 a 1); ' = 1 ; ( ( x ) x • 常用的导数运算法则:' '法则 1: [ u ( x ) v ( x ) ] u ( x )法则 2: [ u ( x )v( x ) ] u( x )v ( x ) a x ) 1x a ev ( x ) . u ( x )v ( x ) . ( a 0 ,且 a 1 ). ⎡ u ( x ) ⎤ ' = u '( x ) v ( x ) - u ( x ) v '( x ) 法则 3: ⎢ ⎥2⎣ v ( x )⎦ v ( x )3.导数在研究函数中的应用(v ( x ) 0 ).(1)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三。