负反馈放大电路设计

合集下载

两级阻容耦合级间电压串联负反馈放大电路设计

两级阻容耦合级间电压串联负反馈放大电路设计

课程设计题目:两级阻容耦合级间电压串联负反馈放大电路设计学生姓名:学号:院系:专业班级:指导教师姓名及职称:起止时间:课程设计评分:两级阻容耦合级间电压串联负反馈放大电路设计1.两级阻容耦合级间电压串联负反馈放大电路概述:把几个单级放大电路连接起来,使信号逐级得到放大,在输出获得必要的电压幅值或足够的功率。

由几个单级放大电路连接起来的电路称为多级放大电路。

在多级放大电路中,每两个单级放大电路之间的连接方式叫耦合;如耦合电路是采用电阻、电容进行耦合,则叫做“阻容耦合”。

阻容耦合交流放大电路是低频放大电路中应用得最多、最为常见的电路。

其特点是各级静态工作点互不影响,不适合传送缓慢变化信号。

而在两级阻容耦合放大器电路的基础上,加接一个反馈电阻,使得负反馈电路中的反馈量取自输出电压,若反馈信号为电压量,与输入电压求差而获得净输入电压,则引入电压串联负反馈。

2.两级阻容耦合级间电压串联负反馈放大电路设计2.1两级阻容耦合级间电压串联负反馈放大电路原理图图1两级阻容耦合级间电压串联负反馈放大电路原理图2.2静态工作点设置分析两级阻容耦合放大电路的总电压放大倍数为21u u u A A A =其中,第一级放大电路的电压放大倍数为11121)1(E be i CSu R r R R A +++-=ββ可作为第一级放大电路的外接负载,第二级放大电路的输入电阻为])1(//[//R 222W 627E be i R r R R R β+++=)(设V U BEQ 7.0=,所以第一级放大电路中,KR R r R R R R r R R A V R R R I U U AI R U U I U R R R R U be W i beLu C c CEQ C BEB EQ cc W BQ 8.1302)1(32.10)543(m 14v4.2212c =≈+=-==++-==≈-==++≈β所以晶体管V 1和V 2的输入电阻分别为11126)1(300EQ be I r β++≈ 22226)1(300EQ be Ir β++=10uF图2 仿真电路图在Ui=0的情况,接上电源,调节电位器R13和R12,使得Ic1=1.0mA ,Ic2=1.5mA图3 Ic1电流值 图4 Ic2电流值然后用万用表测量各级的电位图5 1C 极电位 1B 极电位 1E 电位图6 2C 极电位 2B 极电位 2E 极电位2.3 测量基本放大器的性能指标和动态分析(1)不连接反馈网络,输入kHz f 1=、mV U i 5=的正弦信号,并且接入负载Ω=k R L .5,测量输出电压Uo ,计算u A 、i R 、o R图7输入kHz f 1=、mV U i 5=的正弦信号仿真电路数据如图8图8输入与输出电压的有效值如图9所示图9 输入电压Ui 输出电压Uo Us所以放大的倍数533003.0≈==i o u U A 输入电阻=-=s is ii R u u u R 9.27Ωk 输出电阻Ω==k R R o 3.38 (2)接入R c =12k 电阻和C=10uf 电容的负反馈后,输入kHz f 1=、mV U i 5=的正弦信号,并且接入负载Ω=k R L .5,测量输出电压Uo ,计算u AR110k¦¸R220k¦¸R31.8k¦¸R4100¦¸R51k¦¸R610k¦¸R715k¦¸R83.3k¦¸R91.2k¦¸R1112k¦¸V112 V 0XMM1XMM3XSC1ABExt Trig++__+_XFG1R105.1k¦¸J2AKey = A 12Q12N3904Q22N3904R1250k¦¸Key=A 83%1R13100k¦¸Key=A 94%7R1451¦¸C610uF C7100uFC810uFC910uF C10100uF9C110uFXMM2XMM41113R151k¦¸XMM6205XMM715XMM88XMM910XMM1018XMM111917XMM124XMM531422图10 接入负反馈的仿真电路图输入与输出的有效值如图11所示图11 输入电压Ui 输出电压Uo所以放大的倍数933.3≈==i o u U A 同过仿真数据得出,当接入反馈网络后,电压的放大倍数减小,但放大倍数的稳定性得到提高,波形失真程度小。

负反馈放大电路实验报告

负反馈放大电路实验报告

实验二 由分立元件构成的负反馈放大电路一、实验目的1.了解N 沟道结型场效应管的特性和工作原理; 2.熟悉两级放大电路的设计和调试方法; 3.理解负反馈对放大电路性能的影响。

二、实验任务设计和实现一个由N 沟道结型场效应管和NPN 型晶体管组成的两级负反馈放大电路。

结型场效应管的型号是2N5486,晶体管的型号是9011。

三、实验内容1. 基本要求:利用两级放大电路构成电压并联负反馈放大电路。

(1)静态和动态参数要求1)放大电路的静态电流I DQ 和I CQ 均约为2mA ;结型场效应管的管压降U GDQ < - 4V ,晶体管的管压降U CEQ = 2~3V ;2)开环时,两级放大电路的输入电阻要大于90kΩ,以反馈电阻作为负载时的电压放大倍数的数值 ≥ 120;3)闭环电压放大倍数为10so sf -≈=U U A u 。

(2)参考电路1)电压并联负反馈放大电路方框图如图1所示,R 模拟信号源的内阻;R f 为反馈电阻,取值为100 kΩ。

图1 电压并联负反馈放大电路方框图2)两级放大电路的参考电路如图2所示。

图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C 1~C 3容量为10μF ,C e 容量为47μF 。

考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f ,见图2,理由详见“五 附录-2”。

图2 两级放大电路实验时也可以采用其它电路形式构成两级放大电路。

3.3k Ω(3)实验方法与步骤 1)两级放大电路的调试a. 电路图:(具体参数已标明)¸b. 静态工作点的调试实验方法:用数字万用表进行测量相应的静态工作点,基本的直流电路原理。

第一级电路:调整电阻参数, 4.2s R k ≈Ω,使得静态工作点满足:I DQ 约为2mA ,U GDQ< - 4V 。

记录并计算电路参数及静态工作点的相关数据(I DQ ,U GSQ ,U A ,U S 、U GDQ )。

负反馈放大电路实验报告

负反馈放大电路实验报告

负反馈放大电路实验报告3)闭环电压放大倍数为10so sf-≈=U U Au 。

(2)参考电路1)电压并联负反馈放大电路方框图如图1所示,R 模拟信号源的内阻;R f 为反馈电阻,取值为100 kΩ。

图1 电压并联负反馈放大电路方框图2)两级放大电路的参考电路如图2所示。

图中R g3选择910kΩ,R g1、R g2应大于100kΩ;C 1~C 3容量为10μF ,C e 容量为47μF 。

考虑到引入电压负反馈后反馈网络的负载效应,应在放大电路的输入端和输出端分别并联反馈电阻R f ,见图2,理由详见“五 附录-2”。

图2 两级放大电路实验时也可以采用其它电路形式构成两级放大电路。

3.3k Ω(3)实验方法与步骤1)两级放大电路的调试a. 电路图:(具体参数已标明)¸b. 静态工作点的调试实验方法:用数字万用表进行测量相应的静态工作点,基本的直流电路原理。

第一级电路:调整电阻参数, 4.2sR k≈Ω,使得静态工作点满足:I DQ约为2mA,U GDQ < - 4V。

记录并计算电路参数及静态工作点的相关数据(I DQ,U GSQ,U A,U S、U GDQ)。

实验中,静态工作点调整,实际4sR k=Ω第二级电路:通过调节R b2,240b R k ≈Ω,使得静态工作点满足:I CQ 约为2mA ,U CEQ = 2~3V 。

记录电路参数及静态工作点的相关数据(I CQ ,U CEQ )。

实验中,静态工作点调整,实际241b R k =Ωc. 动态参数的调试输入正弦信号U s ,幅度为10mV ,频率为10kHz ,测量并记录电路的电压放大倍数so11U U A u =、so U U Au=、输入电阻R i 和输出电阻R o 。

电压放大倍数:(直接用示波器测量输入输出电压幅值)o1UsUoU1u A输入电阻: 测试电路:¸开关闭合、打开,分别测输出电压1oV和2oV,代入表达式:2112oio oVR RV V=-输出电阻:测试电路:¸记录此时的输出:0.79V olV=1.57(1)=32.960.79o o L o V R R k V '=-⨯Ω=Ω(-1)k2)两级放大电路闭环测试在上述两级放大电路中,引入电压并联负反馈。

EDA设计实验二 负反馈放大器设计与仿真

EDA设计实验二 负反馈放大器设计与仿真

实验二负反馈放大器设计与仿真1.实验目的(1)熟悉两级放大电路设计方法。

(2)掌握在放大电路中引入负反馈的方法。

(3)掌握放大器性能指标的测量方法。

(4)加深理解负反馈对电路性能的影响(5)进一步熟悉利用Multisim仿真软件辅助电路设计的过程。

2.实验要求1)设计一个阻容耦合两极电压放大电路,要求信号源频率10kHz(峰值1mv),负载电阻1kΩ,电压增益大于100。

2)给电路引入电压串联负反馈:①测试负反馈接入前后电路的放大倍数,输入输出电阻和频率特性。

②改变输入信号幅度,观察负反馈对电路非线性失真的影响。

3.实验内容反馈接入前的实验原理图:1.放大倍数:Au=0.075V/0.707mV=106.0822.输入电阻:Ri=0.707mV/94.48nA=7.483kΩ3.输出电阻:Ro=0.707V/143.311nA=4.934kΩ4.频率特性:fL=357.094Hz,fH=529.108kHz输出开始出现失真时的输入信号幅度:19.807mV反馈接入后的实验电路:开关闭合之后:1.放大倍数:Af=7.005mV/0.707mV=9.9082.输入电阻:Ri=0.707mV/0.198uA=3.57kΩ3.输出电阻:Ro=0.707mV/0.096mA=7.364Ω4.频率特性:fL=67.134Hz,fH=6.212MHz输出开始出现失真时的输入信号幅度≈197mV4.理论值分析由于三极管2N2222A的β=220,所以反馈接入前第一级rbe1=rb+βVT/Ic=6.7kΩ第二级rbe2=rb+βVT/Ic=6.5kΩ第二级输入电阻Ri’=R8||(R7+40%R13)||rbe2=3.65kΩ放大倍数Au=βR4||Ri’*R9||R12/([rbe1+(1+β)R1]rbe2)=107.034输入电阻Ri=R3||(R2+30%R5)||[rbe1+(1+β)R1]=7.484kΩ输出电阻Ro=R9=5.1kΩ反馈接入后:F=0.101放大倍数Af=Au/(1+AuF)=9.056输入电阻Rif=R3||(R2+30%R5)||(1+AuF)Ri=3.621kΩ输出电阻Rof=Ro/(1+AoF)=7.425Ω所以可以得出结论Af≈1/F5.实验结果分析由仿真结果以及理论计算值可以看出,接入负反馈后,放大倍数明显下降,输入电阻变化不明显,输出电阻明显下降,原因是接入电压并联负反馈之后,输出电压基本稳定而输出电流由于负反馈的增加而变大,导致输出电阻变小。

负反馈放大电路实验设计

负反馈放大电路实验设计

题目:负反馈放大电路实验设计高宏涛兰州城市学院培黎工程技术学院物理072班,电子信息科学与技术专业,甘肃兰州730070 摘要:此课题的设计是根据技术要求来确定放大电路的结构,级数,电路元器件的参数机型号,然后通过I<<1MA的小电流和输入电阻Ro>>20K的大电阻,所以我实验调试调试来实现的,并且由技术输出电流om采用的是电压串联负反馈,我设计的放大电路主要是为了提高增益的稳定性,减小电路引起的非线性失真,放大倍数的稳定性提高,通频带展宽,内部噪声减小。

负反馈放大电路在实际应用中极为广泛,电路形式繁多,根据反馈电路与输出电路,输入电路的连接方式不同,稳定的对象和稳定的程度也有所不同,需要进行具体分析。

一般来说要稳定直流量,应引入直流负反馈;要改善交流特性,应引入交流负反馈;在负载变化时,若想使输出电压稳定,应引入电压负反馈;若想使输出电流稳定,应引入电流负反馈。

而放大器中的反馈就是将输出信号取出一部分或全部送回到放大电路的输入回路,与原输入信号相加或相减后再作用到放大电路的输入端。

反馈信号的传输是反向传输。

所以,放大电路无反馈也称开环,放大电路有反馈也称闭环。

特别是放大电路引入负反馈可大大改善放大倍数的稳定性。

关键词:基本放大电路;负反馈;输入阻抗;输出阻抗;1、引言反馈也称为“回授”,广泛应用于各个领域。

例如,在行政管理中,通过对执行部门工作效果(输出)的调研,以便修订政策(输入);在商业活动中,通过对商品销售(输出)的调研进货渠道及进货数量(输入);在控制系统中,通过对执行机构偏移量(输出量)的监测来修正系统的输入量;等等。

上述例子表明,反馈的目的是通过对输入的影响来改善系统的运行状况及控制效果。

负反馈在电子线路中有着非常广泛的应用,采用负反馈是以降低放大倍数为代价的,目的是为了改善放大电路的工作性能,如稳定放大倍数、改变输入和输出电阻、减少非线性失真、展宽通频带等,所以在实用放大器中几乎都引入负反馈。

负反馈放大电路设计

负反馈放大电路设计

负反馈放大电路设计摘要:电子技术是一门实践性很强的课程,加强工程训练,特别是技能的培养,对于培养工程人员的素质和能力具有十分重要的作用。

电子技术课程设计是一个重要的实践环节,它包括选择课题、电子电路设计、组装、调试和编写总结报告等实践内容。

负反馈在电子线路中有着非常广泛的应用,采用负反馈是以降低放大倍数为代价的,目的是为了改善放大电路的工作性能,如稳定放大倍数、改变输入和输出电阻、减少非线性失真、扩展通频带等,所以在实用放大器中几乎都引入负反馈。

负反馈放大电路是由基本放大电路和负反馈网络组成。

由电阻、电容、二极管、三极管等分立元件构成共基极、共发射极、公集电极等基本放大电路。

将输出信号的一部分或全部引回到输入端并使输入信号减小的某种电路称为负反馈网络。

经过布线、焊接、调试等工作后负反馈放大电路成形。

一、设计任务与要求用分离元器件设计一个交流放大电路,用于只是仪表中放大弱信号,具体指标如下:(1)工作频率:(2)信号源:Ui≥10mV(有效值),内阻Rs=50Ω。

(3)输出要求:U0≥1V(有效值),输出电阻小于10Ω,输出电流I0≤1mA(有效值)。

(4)输入要求:输入电阻大于20KΩ。

(5)工作稳定性:当电路元器件改变时,若ΔAu/Au=10%,则ΔAuf<1%。

二.设计图文论证一、设计框图图中X表示电压或电流信号;箭头表示信号传输的方向;符号¤表示输入求和,+、–表示输入信号与反馈信号是相减关系(负反馈),即放大电路的净输入信号为(1)基本放大电路的增益(开环增益)为(2)反馈系数为(3)负反馈放大电路的增益(闭环增益)为(4)二、反馈的方式选择根据负载的要求及信号情况来选择反馈方式.在负载变化的情况下.要求放大电路定压输出时,就需要电压负反馈:在负载变化的情况下,要求放大电路恒流输出时,就要采用电流负反馈。

至于输入端采用串联还是并联方式,主要根据对放大电路输出电阻而定。

当要求放大电路具有高的输入电阻是,宜采用串联反馈:当要求放大电路具有底的输入电阻是,宜采用并联反馈。

4负反馈放大电路的设计和调试

4负反馈放大电路的设计和调试

设计要求Avf ≥50, 取Avf =60
Fv≈0.015
②电阻Rf1确定
• 射极电阻Rf1不能太大,否则负反馈太强,使得放大器增益 很FV小,Rf一RF1般RF1取30~100ΩR间f=。4.7现k以Ω Rf1=56Ω。
②电阻Rf1确定
Fv≈0.015 Av ≈600
rif(1A vF)ri110 K 0
X Xdf
X f、Xd 同相,所以 AvFv 0
则有: Avf Av 负反馈使放大倍数下降。

Avf
Av 1 AvFv
d Avf d Av 1
Avf
Av 1 AvFv
引入负反馈使电路放大倍数的稳定性提高。
③若
AvFv 1称为深度负反馈,此时 Avf
1 F
在深度负反馈的情况下,放大倍数只与反馈
网络有关。
io
iE
RL
vo RL
采样电阻很大
io
RL
iE
Rf
采样电阻很小
(2)串联反馈和并联反馈
根据反馈信号在输入端与输入信号比较形式 的不同,可以分为串联反馈和并联反馈。
串联反馈:反馈信号与输入信号串联,即反馈 电压信号与输入信号电压比较。
并联反馈:反馈信号与输入信号并联,即反馈 信号电流与输入信号电流比较。
串联反馈使电路的输入电阻增大; 并联反馈使电路的输入电阻减小。
并联反馈
if i
ib
ib=i-if
串联反馈
vi
vbe vf
vbe=vi-vf
(3)交流反馈与直流反馈
交流反馈:反馈只对交流信号起作用。
直流反馈:反馈只对直流起作用。
有的反馈只对交流信号起作用;有的反 馈只对直流信号起作用;有的反馈对交、 直流信号均起作用。

负反馈放大电路

负反馈放大电路

交流负反馈
无论交流信号还是直流信号都会产生负反馈作用,主要用于稳定放大器的静态工作点、扩展放大器的工作范围等。
直流负反馈
02
负反馈放大电路的性能指标
电压增益
负反馈放大电路的电压增益主要受到反馈网络的影响,它可以通过反馈网络进行精确控制。电压增益越大,放大电路的放大能力越强。
电流增益
负反馈放大电路的电流增益同样受到反馈网络的影响,它也可以通过反馈网络进行精确控制。电流增益越大,放大电路的放大能力越强。
设计步骤与策略
调整元件参数
根据测试结果,调整电阻、电容等元件的数值,优化电路性能。
检查电路性能
通过测试电路的性能指标,如增益、带宽、相位裕度等,确保电路达到预期效果。
确保稳定性
确保负反馈放大电路的稳定性,避免自激振荡等问题。
电路调试与优化
分析设计实例
通过分析实际应用场景中的负反馈放大电路设计,如音频放大器、传感器放大器等,了解不同应用场景下的设计特点和要求。
负反馈放大电路在音频放大器中的另一种应用是实现多级放大,将微弱的音频信号逐级放大,最终输出足够大的声音。这种应用中,负反馈放大电路可以减小各级放大器之间的耦合阻抗,提高信号的传递效率和稳定性。
音频放大器
视频放大器是一种用于放大视频信号的电子设备,通常用于电视、电影、视频监控等场合。在视频放大器中,负反馈放大电路可以提高视频信号的质量和稳定性,减小失真和噪声,同时提高设备的增益和带宽。
非线性失真
负反馈放大电路的谐波失真主要受到放大器和反馈网络的影响。在负反馈的情况下,放大器和反馈网络会对不同频率的信号进行不同程度的衰减,从而导致谐波失真。
谐波失真
失真
热噪声
负反馈放大电路的热噪声主要受到放大器和反馈网络的影响。在负反馈的情况下,放大器和反馈网络会对不同频率的信号进行不同程度的衰减,从而导致热噪声。

负反馈放大电路的设计

负反馈放大电路的设计

负反馈放大电路的设计航天职业技术学院负反馈放大电路的设计一、设计任务及要求:见《模拟电子技术课程设计》任务书。

二、负反馈放大电路设计的一般原则:1、反馈方式的选择:采用什么反馈方式,主要根据负载的要求及信号源内阻的情况来考虑,在负载变化的情况下,要求放大电路定压输出时,就需要采用电压负反馈;在负载变化的情况下,要求放大电路恒流输出时,就要求采用电流负反馈。

至于输入端采用串联还是并联方式,主要根据对放大电路输入电阻的要求而定。

当要求放大电路具有高的输入电阻时,宜采用串联反馈;当要求放大电路具有低的输入电阻时,宜采用并联反馈。

如仅仅为了提高输入电阻,降低输出电阻(即阻抗变换)时,宜采用射极输出器。

反馈深度主要根据放大电路的用途及指标要求而定。

对音频放大电路,主要是用负反馈减小非线性失真,设计时一般取1+AF=10左右。

对测量仪表中使用的放大电路,要求放大倍数要有较高的稳定性,而采用负反馈的目的主要是提高放大倍数的稳定性,因此可以根据不同的要求可取1+AF为几十至几百。

对高放大倍数宽频带放大电路,采用负反馈的目的主要是展宽频带,这时采用多级放大加深反馈容易产生自激,且在幅频特性的高、低频段容易产生凸起的现象。

因此首先要保证每一级有足够宽的频带,如在两级之间采用低输入电阻的接法(例如共射一共基的形式)去解决。

2、放大管的选择:如果放大电路的级数多,而输入信号很弱时(微伏级),必须考虑输入级放大管的噪声所产生的影响,为此,前置放大级应该选用低噪声的管子。

当要求放大电路的频带很宽时,应选用截止频带fT较高的管子。

从集电极损耗的角度出发,由于前几级放大的输出较小,可选用Pcm(管耗)小的管子,其静态工作点也要选得低一些(IE小),这样可减小噪声;但对输出级而言,因其输出电压和输出电流都较大,故需选用Pcm(管耗)大的管子。

3、级数的选择:放大电路的级数可根据无反馈时的放大倍数而定,而此放大倍数又要根据所要求的闭环放大倍数和反馈深度而定,因此在设计时首先要根据技术指标确定出它的闭环放大倍数Af及反馈深度1+AF,然后确定所需要的Af。

负反馈放大电路设计实验报告

负反馈放大电路设计实验报告

负反馈放大电路设计实验报告
负反馈放大电路设计实验报告
本次实验的目的是设计,组装,安装并测试具有负反馈的放大电路。

实验操作序号、实验操作的具体内容以及实验结果分别如下所示。

1.确定放大器的最小特性和参量灵敏度:从设计仿真程序中获取所需参数。

2.组装放大器:通过给定的电路原理图以及所需元件组装放大器。

3.安装放大器:将放大器安装到实验板上,并对连接线及板上元件进行连接。

4.建立反馈网络:将负反馈装置根据电路板上的原理图连接到输出和输入部分。

5.测试放大器:根据电路板上的参量灵敏度,使用台架仪器测试实际放大器的最小特性以及负反馈网络 .
实验结果表明,负反馈放大器的最小特性与预期一致,参量灵敏度也符合实验要求,可知该放大器正常运行并实现预期功能。

通过本次实验,使用者可以了解负反馈放大器的结构、特性及其灵敏度,从而掌握放大器的基础知识,能够用此技术来设计更多更复杂的电路以满足不同应用的要求。

负反馈放大电路的设计与仿真实验报告-V1

负反馈放大电路的设计与仿真实验报告-V1

负反馈放大电路的设计与仿真实验报告-V1【正文】负反馈放大电路的设计与仿真实验报告一、引言负反馈是现代电子学中常用的一种技术手段,可用于提高放大电路的稳定性、增加带宽、降低失真等。

本实验旨在通过设计和仿真一个负反馈放大电路,比较其与未加负反馈的放大电路的性能差异,并验证负反馈对电路的改善作用。

二、设计与仿真1.设计要求本实验设计的放大电路要求如下:①输入阻抗大于10kΩ;②输出阻抗小于1kΩ;③增益要求10倍左右;④带宽大于10kHz。

2.电路设计本实验采用非反相输入的共射极放大电路(图1),电路由电压放大和电流放大两部分构成。

图1 非反相输入共射极放大电路其中,Vi为输入信号,C1为耦合电容,R1为输入电阻,R2为电路的DC偏压电阻,Q1为NPN晶体管,Rc为集电极负载电阻,C2为旁路电容,Re为发射极电阻,VCC为电源电压,RL为输出负载电阻。

为了实现负反馈,本实验在放大电路中串联了一个反馈电阻Rf(图2)。

图2 负反馈放大电路3.电路仿真为了验证电路设计的正确性,本实验通过仿真软件Multisim对放大电路进行仿真。

结果显示,电路有很好的放大效果,输入输出波形相位相同,且波形幅值增益约为10倍。

经过仿真后,输出信号稳定,未出现失真等问题。

三、实验结果为了验证负反馈对电路的改善作用,本实验对比了带负反馈和不带负反馈两种放大电路的性能差异。

实验结果如下:1.带负反馈电路性能带入一个2V的正弦信号作为输入信号,测量输入电阻、输出电压、输出阻抗及增益等参数,结果如下:输入电阻:17.5kΩ输出电压:19.5V输出阻抗:751Ω增益:9.752.不带负反馈电路性能带入一个2V的正弦信号作为输入信号,测量输入电阻、输出电压、输出阻抗及增益等参数,结果如下:输入电阻:16.8kΩ输出电压:10.2V输出阻抗:3.04kΩ增益:5.1通过以上测量参数可知,带负反馈电路与不带负反馈电路相比,具有更高的增益、更低的输出阻抗和更好的稳定性。

mosfet负反馈放大电路(一)

mosfet负反馈放大电路(一)

MOSFET 负反馈放大电路1 设计主要内容及要求1.1 设计目的(1)掌握MOSFET 负反馈放大电路的构成、原理、与设计方法;(2)熟悉模拟元件的选择、使用方法。

1.2 基本要求(1)空载放大增益10倍,带宽>10kHz ;(2)输入电阻>ΩM 1,输出电阻Ω<16;(3)两级以上放大环节。

1.3 发挥部分(1)带宽>100kHz ;(2)差分式放大输入级;(3)其他。

2 设计过程及论文的基本要求2.1 设计过程的基本要求(1)基本部分必须完成,发挥部分可任选2 个方向;(2)符合设计要求的报告一份,其中包括逻辑电路图,实际接线图各一份;(3)设计过程的资料、草稿要求保留并随设计报告一起上交;报告的电子档需全班统一存盘上交。

2.2 课程设计论文的基本要求(1)参照毕业设计论文规范打印,文字中的小图需打印。

项目齐全、不许涂改,不少于3000 字。

图纸为A3,附录中的大图可以手绘,所有插图不允许复印。

(2)装订顺序:封面、任务书、成绩评审意见表、中文摘要、关键词、目录、 正文(设计题目、设计任务、设计思路、设计框图、各部分电路及参数计算(重 要)、工作过程分析、元器件清单、主要器件介绍)、小结、参考文献、附录(逻 辑电路图与实际接线图)。

摘要场效应管是一种利用电场效应来控制其电流大小的半导体器件。

这种器件不仅兼有体积小,重量轻,寿命长等特点,而且还有输入阻抗高,噪声低,热稳定性好等优点,因而获得广泛的应用,尤其是MOSFET在大规模和超大规模集成电路中占有重要地位。

小信号MOSFET主要用于模拟电路的信号放大和阻抗变换,近年来,功率MOSFET广泛地应用于电源、计算机及外设(软、硬盘驱动器、打印机、扫描器等)、消费类电子产品、通信装置、汽车电子及工业控制等领域。

使净输入信号量比没有引入反馈是减小了,这种反馈叫做负反馈。

三极管是放大电路最重要的组成之一,为了增强微弱信号,几乎每个电子系统都要用到放大!关键词MOSFET,负反馈,三极管目录课程设计任务书................................................................................................ 错误!未定义书签。

负反馈放大电路的设计,测试与调试

负反馈放大电路的设计,测试与调试

实验项目名称:负反馈放大电路的设计、测试与调节一、实验目的1、掌握负反馈电路的设计原理、各性能指标的调试原理。

2、加深理解负反馈对电路性能指标的影响。

3、掌握用正弦测试方法对负反馈放大器性能的测量。

二、实验原理1、所谓负反馈放大器就是放大器的输出信号(输入电压或者输出电流)送入一个称为反馈网络的附加电路后在放大器的输入端产生反馈信号,该反馈信号与放大器原来的输入信号(如源电压、源电流)共同控制放大器的输入,这样就构成了反馈放大器。

单环的理想反馈模型如下图所示,它由理想基本放大器和理想反馈网络再加一个求和环节构成。

求和环节反馈信号使放大器的输入减弱称为负反馈,反馈信号使放大器的输入信号增强称为正反馈。

在上图所示的理想模型中,取样信号可以是电压,也可以是电流,所以有电压取样和电流取样两种方式。

在求和环节,X s,X f和X i既可以全为电压,也可以全为电流,所以又电压求和与电流求和两种方式。

将取样方式和求和方式组合便可构成四种负反馈类型:电压取样电压求和负反馈(电压串联负反馈)、电压取样电流求和负反馈(电压并联负反馈)、电流取样电压求和负反馈(电流串联负反馈)、以及电流取样电流求和负反馈(电流并联负反馈)。

2、实验电路三、实验内容1、设置静态工作点令V cc=+12V,调节R w,使放大器第一级工作点V E1=1.6V,用数字万用表测量各管脚电压并记录于表中。

静态工作点的测试2、放大倍数及反馈深度的测量调整函数发生器,输入正弦信号U m =5mV ,f=1kHz ,测量输出电压U of ,计算反馈深度。

负反馈放大倍数的分析3、 输入电阻和输出电阻的测量两次电压法测输入电阻:输出电阻的测量两次电压法测输出电阻:输出电阻的测量输入U i=1mV的交流小信号,进行测试如下:四、实验结论(1)对该电路进行静态工作点的测试,由测量数据可知:对于晶体管T1,V BE1=V B1-V E1=0.64V,V CE1=V C1V E1=6.95V;对于晶体管T2,V BE2=V B2V E2=0.65V,V CE2=V C2V E2=5.60V。

实验三负反馈放大电路

实验三负反馈放大电路
《电子技术实验》课程实验报告
实验三 负反馈放大电路
一、实验目的
1、研究负反馈对放大器性能的影响。
2、掌握反馈放大器性能的测试方法。
二、实验原理
反馈在电子技术中得到广泛应用。所谓反馈就是将放大器的输出信号(电压或电流)的一部分或全部,通过适当的电路(反馈网络)送回到放大电路的输入回路,使放大器获得某些性能的改善。在电子技术中,对反馈来说,有正反馈和负反馈两类。但如何判断电路的反馈是属哪一类呢?可以采用瞬时极性法。先假定输入信号处于某一个瞬时极性,然后逐级推出电路其他有关各点瞬时信号极性情况,最后判断反馈到输入端信号的瞬时极性是增强还是削弱了原来的输入信号。如果反馈回来的信号增强了原输入信号则为正反馈。相反,削弱了输入信号就是负反馈。
559
闭环

1
29.9
29.9
46.6
1.5K
1
29
29
Multisim仿真:
软件版本号:Multisim 14.2
三极管型号:2N1711
仿真步骤:
(1)开环电路
在Multisim中选择元器件,搭建图1所示电路,暂不接入反馈信号Rf与Cf,按照图1修改元器件参数,直流电压源为+12V。
选择交流电压源V1,频率设为10KHz,从R1处输入信号。在Vi处放置电压探针,调节V1幅值,直至Vi显示电压有效值为1mV.
图8反馈接入基极(仿真)
(4)总结反馈对失真改善的特点。
特点:引入电压串联负反馈后,电路在采集原始信号时其真度提高,与上一级电路的衔接性增强,可改善波形失真。对于同一放大电路,若引入负反馈,当输出波形刚出现失真时,对应的输入电压将远大于无负反馈时刚出现失真所对应的输入电压。
3.测放大器频率特性

负反馈放大电路设计实验报告

负反馈放大电路设计实验报告

负反馈放大电路设计实验报告无07 李杭 2010011147一.实验目的(1)通过实验,学习并初步掌握负反馈放大电路的设计及电路安装、调试方法。

(2)学习用CAD 工具PSpice (或EWB )设计较复杂电路的方法。

(3)深入理解负反馈对放大电路性能的影响。

(4)巩固放大电路主要性能指标的测度方法。

二.实验任务按实验室给定的晶体管型号、参数以及电阻、电容系列值,设计一个负反馈电压放大电 路。

其输入、输出采用电容耦合。

设负载电阻2.2 R L = k Ω ,信号源内阻50 R S = Ω。

主要性能要求如下:vf i o A 40(10%)10R 15k R 10010,?1L H f Hz f MHz =±≥Ω≤Ω≤ ≥,反馈深度不低于,频率响应。

三.实验原理(1)负反馈的类型根据输入端基本放大电路和反馈网络的连接方式有并联和串联2 种,输出端取样方式 有电压取样和电流取样2 种,所以负反馈放大电路有4 种类型,即:电压串联负反馈、电 压并联负反馈、电流串联负反馈、电流并联负反馈。

(2)负反馈对放大电路性能的影响①负反馈降低增益 ②负反馈提高增益稳定性 ③负反馈影响输入输出电阻④负反馈展宽频带⑤负反馈改善非线性失真(3)消除自激的方法①加入补偿电容。

缺点:对放大电路的频率响应的影响很大。

只是要想实现放大电路的稳定,必然要牺牲一部分频带的指标。

②在射极跟随器的基极串入电阻抵消负阻效应。

对放大电路的频率特性有影响。

判断是否是由于负阻效应引起的振荡可以把示波器的探头的衰减器从´1档变为´10档,如果振荡减弱即是由于负阻引起的。

③电路要有良好的接地,尽量加粗接地线,消除干扰信号通过地线引起的影响。

这个方法只对设计印刷电路板有指导作用。

④插入电源去耦电路,抵消反馈的影响。

这种方法是最有效的,且是对放大电路的性能指标影响最小的。

⑤消除外界干扰。

如果前面的措施都解决不了的时候,就要考虑振荡的根源不是出自于自身,而是由外界传入的。

负反馈放大电路的计算及设计

负反馈放大电路的计算及设计

负反馈放⼤电路的计算及设计⼀般的放⼤电路,增益达到40-60dB就很不错了。

但是考虑到电路的稳定性,采⽤⼀只晶体管放⼤电路的增益⼀般希望在20dB,若要获得更⾼的电压增益,就需要考虑⼆级或者多级耦合放⼤电路了。

⼀.放⼤电路反馈的判断⽅法(1)正负反馈的判断:从输⼊级到输出级依次标出各级信号的瞬时极性,判断⽅法是:输⼊信号与反馈信号不在同⼀节点引⼊,若瞬时极性相同,则为负反馈,若两者的瞬时极性不同,则为正反馈。

(2)电压反馈和电流反馈的判断:通过判断反馈到输⼊端的反馈信号正⽐于输⼊电压还是输⼊电流来判断是电流反馈还是电压反馈。

判断⽅法是:除公共接地线外,输出信号与反馈信号从同⼀点接出,则为电压反馈,若输出信号与反馈信号从不同点接出,则为电流反馈。

(3)串联反馈和并联反馈的判断:以反馈信号与输⼊信号在电路输⼊端相⽐较的⽅式来区分,反馈信号与输⼊信号以电压的形式相⽐较,则为串联反馈,以电流的⽅式相⽐较,则为并联反馈。

判断⽅法:输⼊信号与反馈信号从同⼀点引⼊,为并联反馈,输⼊信号与反馈信号从不同点引⼊,则为串联反馈。

⼆.反馈对放⼤电路特性参数的影响(1)输⼊电阻串联负反馈增加输⼊电阻:并联负反馈减⼩输⼊电阻:(2)输出电阻电压负反馈减⼩输出电阻:电流负反馈增加输出电阻:(3)增益使电路的增益减⼩。

(4)带宽扩展为基本放⼤电路的倍。

(5)负反馈改善放⼤电路本⾝引起的⾮线性失真(6)负反馈放⼤电路抑制反馈环内的噪声,提⾼性能噪⽐。

三.负反馈放⼤电路的⼀般表达式及四种基本组态(1)负反馈放⼤电路的⼀般表达式:开环增益:,为净输⼊信号反馈系数:闭环增益:,为开环增益。

反馈深度:,称为环路增益。

当>>1时,反馈放⼤电路的闭环增益与基本放⼤电路⽆关,只与反馈⽹络有关,这种反馈称为深度负反馈。

深度负反馈下放⼤电路的近似计算:深度负反馈的实质是忽略净输⼊量;当电路引⼊串联负反馈时,当电路引⼊串联负反馈时,分析及设计及电路时,常⽤上⾯的定律计算⼀个反馈放⼤电路的增益。

实验一 两级负反馈放大电路设计

实验一  两级负反馈放大电路设计

实验一两级负反馈放大电路设计一、实验目的和任务1.观察负反馈对放大电路性能的影响;2.熟练运用放大电路增益、输入电阻、输出电阻、幅频特性的测量方法;3.加深对负反馈放大电路的原理和分析方法的理解。

二、实验原理介绍电路原理图如图1-1所示。

反馈网络由Rf、Cf、Ref构成, 在放大电路中引入了电压串联负反馈, 反馈信号是Uf 。

在实验四中已测量了基本放大电路的有关性能参数, 在本实验中将测量反馈放大电路的性能参数, 观察负反馈对放大电路性能的影响, 验证有关的电路理论。

图1-1图1-1中, 反馈系数为: (1-1)反馈放大电路的电压放大倍数Auuf、输入电阻Rif、输出电阻Rof、下限频率fLf、上限频率fHf与基本放大电路的有关参数的关系分别如下:uuuu uuuuf A F 1A A +=(1-2)i uu uu if R )A F 1(R += (1-3) )A F 1/(R R uu uu o of += (1-4) )A F 1/(f f uu uu L Lf += (1-5) H uu uu Hf f )A F 1(f += (1-6) 反馈深度为: 1+FuuAuu 对负反馈来说, (1+FuuAuu )>1其中, Auu 、Ri 、Ro 、fL 、fH 分别为基本放大电路(图1-1)的电压放大倍数、输入电阻、输出电阻、下限频率和上限频率。

可见, 电压串联负反馈使得放大电路的电压放大倍数的绝对值减小, 输入电阻增大, 输出电阻减小;负反馈还对放大电路的频率特性产生影响, 使得电路的下限频率降低、上限频率升高, 起到扩大通频带、改善频响特性的作用。

此外, 电压串联负反馈还能提高放大电路的电压放大倍数的稳定性、减小非线性失真。

这些都可以通过实验来验证。

基本放大电路的电压放大倍数的相对变化量与负反馈放大电路的电压放大倍数的相对变化量的关系可以用下式来表示: uuuu uu uu uuf uuf A dA A F 11A dA •+= (1-7)三、实验内容和数据记录1.设置静态工作点(1)按图连线, 注意接线尽可能短。

负反馈放大电路的设计与仿真实验报告

负反馈放大电路的设计与仿真实验报告

负反馈放大电路的设计与仿真实验报告一.实验报告1.掌握两种耦合方式的多级放大电路的静态工作点的调试方法。

2.掌握多级放大电路的电压放大倍数, 输入电阻, 输出电阻的测试方法。

3.掌握负反馈对放大电路动态参数的影响。

二.实验原理三.实际放大电路由多级组成, 构成多级放大电路。

多级放大电路级联而成时, 会互相产生影响。

故需要逐级调整, 使其发挥发挥放大功能。

四.实验步骤1.两级阻容耦合放大电路(无反馈)两级阻容耦合放大电路图(1)测输入电阻及放大倍数由图可得输入电流Ii=107.323nA输入电压Ui=1mA输出电压Uo=107.306mV.则由输入电阻Ri=Ui/Ii=9.318kOhm.放大倍数Au=Uo/Ui=107.306(2)测输出电阻输出电阻测试电路由图可得输出电流Io=330.635nA.则输出电阻Ro=Uo/Io=3.024kOhm.(3)频率响应幅频响应与相频响应由左图可知当放大倍数下降到中频的0.707倍对应的频率为上限频率或下限频率。

由下表可知, 中频对应的放大倍数是601.1943则上限频率或下限频率对应的放大倍数应为425.044左右。

故下限频率为f L=50.6330kHZ上限频率为f H=489.3901kHZ则频带宽度为438.7517kHZ(4)非线性失真当输入为10mA时开始出现明显失真, 输出波形如下图所示2.有串联电压负反馈的两级阻容耦合放大电路有串联电压负反馈的两级阻容耦合放大电路图(1)测输入电阻及放大倍数由图可得输入电流Ii=91.581nA.输入电压Ui=1mA.输出电压Uo=61.125mV. 则由输入电阻Ri=Ui/Ii=10.919kOhm.放大倍数Au=Uo/Ui=61.125(2)测输出电阻由图可得输出电流Io=1.636uA.则输出电阻Ro=Uo/Io=611.247Ohm(3)频率响应幅频相应与相频相应由图可知当放大倍数下降到中频的0.707倍对应的频率为上限频率或下限频率。

含负反馈的两级阻容耦合放大电路设计

含负反馈的两级阻容耦合放大电路设计

含负反馈的两级阻容耦合放大电路设计一实验目的:1.学习利用Electronics Workbench Multisim电子线路仿真软件构建自己的虚拟实验室。

2.学习多级共射极放大电路及其静态工作点、放大倍数的调节方法。

3.掌握多级放大电路的放大倍数、输入电阻、输出电阻、频率特性的测量方法。

4.加深对负反馈放大电路放大特性的理解。

5.研究负反馈对放大电路各项性能指标的影响。

二主要仪器设备:1. 虚拟实验设备⏹操作系统为Windows XP的计算机 1台⏹Electronics Workbench Multisim 8.x~9.x电子线路仿真软件1套.2. 实际工程实验设备⏹模拟实验箱 1台⏹函数信号发生器 1台⏹示波器 1台⏹数字万用表 1台三实验原理及实验电路通常放大电路的放大倍数都是很微弱的,一般为毫伏或微伏数量级.为了推动负载工作,因此要求把几个单级放大电路连接起来,使信号逐级得到放大.因此构成多极放大电路.级间的连接方式叫耦合,如耦合电路是采用电阻,电容耦合的叫阻容耦合放大电路.本试验采用的就是两极阻容耦合放大电路,如图1-1所示.其中两极之间是通过耦合电容C2及偏置电阻连接,由于电容隔直作用,所以两极放大电路的静态工作点可以单独调试测定.两极阻容耦合放大电路的电压放大倍数Au= Au1*Au2从表面看,通过对多个单级放大电路的适当级联,可以实现任意倍数的放大。

似乎放大电路已经没有什么可以研究的了。

但是,问题并不是这么简单。

首先静态工作点与放大倍数是互相影响的,其次,放大倍数与输出电阻也可能互相影响,第三,输入电阻与放大倍数也可能互相影响.在电路中引入负反馈,可以解决这个问题。

如电路图所示.负反馈对放大电路性能主要有五个方面的影响:1.降低放大倍数2.提高放大倍数的稳定性3.改善波形失真4.展宽通频带5.对放大电路的输入电阻和输出电阻的影响四实验预习内容:1预习实验电路的原理,明确实验目的及内容2掌握放大电路的静态和动态的测试方法.3了解实验所需仪器设备的结构性能及使用方法(特别是波特图示仪)4求电路图1-1的静态工作点和电压放大倍数五实验研究分析报告参照实验电路图1-1,完成测量电路的接线,断开反馈支路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

内容摘要反馈放大电路的设计一般是根据技术指标的要求来确定放大电路的结构、级数、电路元器件的参数及型号,然后通过实验调试来实现的。

负反馈放大电路能够有效的改善放大电路的性能,掌握反馈放大电路反馈组态的判断方法,可以了解放大电路的性能特点,提高分析问题、解决问题的能力,提高学习效率,为以后的学习打下坚实的基础。

负反馈在电子线路中有着非常广泛的应用,采用负反馈是以降低放大倍数为代价的,目的是为了改善放大电路的工作性能,如稳定放大倍数、改变输入和输出电阻、减少非线性失真、扩展通频带等,所以在实用放大器中几乎都引入负反馈。

在以往的教学中发现,即使教师对负反馈的概念、反馈的类型等都做了全面的分析。

将输出信号的一部分或全部通过某种电路引入到输入端的过程叫做反馈。

反馈主要有正负之分,在放大电路中主要引入负反馈。

关键词:负反馈三极管放大倍数通频带负载目录第一章性能指标 (4)第二章设计原理框图2.1框图及基本公式……………………………………………………………4-6 2.2引入串并联负反馈对电阻值的影响2.2.1.串联负反馈使输入电阻增大 (7)2.2.2.并联负反馈使输入电阻减小 (7)2.2.3.电压负反馈使输出电阻减小..........................................7-8 2.2.4.电流负反馈使输出电阻增加 (8)2.2.5.通频带 (8)3.负反馈放大电路设计的一般原则 (8)3.1反馈方式的选择 (9)3.2放大管的选择 (9)3.3级数的选择 (9)4.电路分析反馈放大电路的组成……………………………………………9-10 第三章计方案及选定………………………………………………………11-12 第四章单元电路设计多级放大电路设计4.1第一级…………………………………………………………………12-13 4.2 第二级…………………………………………………………………13-14 4.3 第三级…………………………………………………………………14-15第五章整体电路设计及工作原理…………………………………………15-16第六章多级放大电路的检测6.1.分析多级负反馈放大电路......................................................16-17 6.2.核算技术指标.....................................................................17-19 第七章元器件清单 (19)第八章心得体会........................................................................19-20 第九章参考文献 (20)附图……………………………………………………………………………21-23负反馈放大电路第一章性能指标用分离元器件设计一个交流放大电路,用于只是仪表中放大弱信号,具体指标如下:(1)工作频率:f=30HZ~30KHZ。

(2)信号源:Ui≥10mV(有效值),内阻Rs=50Ω。

(3)输出要求:U0≥1V(有效值),输出电阻小于10Ω,输出电流I≤1mA(有效值)。

(4)输入要求:输入电阻大于20KΩ。

(5)工作稳定性:当电路元器件改变时,若ΔAu/Au=10%,则ΔAuf<1%。

第二章设计原理框图2.1框图及基本公式图中X表示电压或电流信号;箭头表示信号传输的方向;符号¤表示输入求和,+、–表示输入信号与反馈信号是相减关系(负反馈),即放大电路的净输入信号为(1)基本放大电路的增益(开环增益)为(2)反馈系数为(3)负反馈放大电路的增益(闭环增益)为(4)将式(1)(2)(3)代入式(4),可得负反馈放大电路增益的一般表达式为(5)另外,图中是信号源,是信号源的输出信号,两者的关系是(6)所以,负反馈放大电路的源增益为(7)式(5)表明,引入负反馈后,放大电路的闭环增益为无反馈时的开环增益的(1+ )分之一。

(1+ )越大,闭环增益下降得越多,所以(1+ )是衡量反馈程度的重要指标。

负反馈放大电路所有性能的改善程度都与(1+)有关。

通常把称为反馈深度,将称为环路增益。

一般情况下,和都频率的函数,即它们的幅值和相位角都是频率的函数。

在中频段,、、均为实数,因此式(5)可以写成(8)在高频段或低频段,式(5)中各量均为相量,此时下面分几种情况对的表达式进行讨论:① 当时,,即引入反馈后,增益下降了,这种反馈是负反馈。

在,即时,,这是深度负反馈状态,此时闭环增益几乎只取决于反馈系数,而与开环增益的具体数值无关。

一般认为≥10就是深度负反馈。

② 当时,,这说明已从原来的负反馈变成了正反馈。

正反馈会使放大电路的性能不稳定,所以很少在放大电路中单独引入。

③ 当时,,这就是说,放大电路在没有输入信号时,也会有输出信号,产生了自激振荡。

使放大电路不能正常工作。

在负反馈放大电路中,自激振荡现象是要设法消除的。

必须指出,对于不同的反馈类型,、、及所代表的电量不同,因而,四种负反馈放大电路的、、相应地具有不同的含义和量纲。

现归纳如下表所示,其中、分别表示电压增益和电流增益(无量纲);、分别表示互阻增益(量纲为欧姆)和互导增益(量纳为西门子),相应的反馈系数、、、的量纲也各不相同,但环路增益总是无量纲的2.2.引入串并联负反馈对电阻值的影响2.2.1.串联负反馈使输入电阻增大引入串联负反馈后,输入电阻R if是开环输入电阻R i的(1+ )倍。

应当指出,在某些负反馈放大电路中,有些电阻并不在反馈环内,如共射电路中的基极电阻R b,反馈对它并不产生影响。

这类电路的方框图如图(b)所示,可以看出而整个电路的输入电阻因此,更确切地说,引入串联负反馈,使引入反馈的支路的等效电阻增大到基本放大电路输入电阻的(1+ )倍。

但不管哪种情况,引入串联负反馈都将输入电阻增大。

2.2 2.并联负反馈使输入电阻减小引入并联负反馈后,闭环输入电阻是开环输入电阻的1/(1+ )倍。

2.2 3 电压负反馈使输出电阻减小电压负反馈取样于输出电压,又能维持输出电压稳定,即是说,输入信号一定时,电压负反馈的输出趋于一恒压源,其输出电阻很小。

可以证明,有电压负反馈时的闭环输出电阻为无反馈时开环输出电阻的1/(1+ )①。

反馈愈深,R of 愈小。

2.2 4 电流负反馈使输出电阻增加电流反馈取样于输出电流,能维持输出电流稳定,就是说,输入信号一定时,电流负反馈的输出趋于一恒流源,其输出电阻很大。

可以证明,有电流负反馈时的闭环输出电阻为无反馈时开环输出电阻的1/(1+ )倍。

反馈愈深,R of愈大。

2.2 5 通频带通频带用于衡量放大电路对不同频率信号的放大能力。

由于放大电路中电容、电感及半导体器件结电容等电抗元件的存在,在输入信号频率较低或较高时,放大倍数的数值会下降并产生相移。

通常情况下,放大电路只适用于放大某一个特定频率范围内的信号。

如图所示为某放大电路的幅频特性曲线。

幅频特性曲线:放大倍数的数值与信号频率的关系曲线,称幅频特性曲线。

Am为中频放大倍数。

下限截止频率fL:在信号频率下降到一定程度时,放大倍数的数值明显下降,使放大倍数的数值等于0.707倍的|Am|频率称为下限截止频率fL。

上限截止频率fH:信号频率上升到一定程度时,放大倍数的数值也将下降,使放大倍数的数值等于0.707倍的|Am|频率称为上限截止频率fH。

通频带fbw :fL与fH之间形成的频带称中频段,或通频带fbw。

f bw =fH-fL最大不失真输出电压最大不失真输出电压定义为当输入电压再增大就会使输出波形产生非线性失真时的输出电压。

最大输出功率与效率最大输出功率Pom:在输出信号不失真的情况下,负载上能够获得的最大功率称为最大输出功率Pom。

此时,输出电压达到最大不失真电压。

效率n:直流电源能量的利用率。

Pom 最大输出功率,PV电源消耗功率。

n=Pom/Pv n越大,放大电路的效率越高,电源的利用率就越高。

3.1 负反馈放大电路设计的一般原则反馈方式的选择采用什么反馈方式,主要根据负载的要求及信号情况来考虑.在负载变化的情况下.要求放大电路定压输出时,就需要电压负反馈:在负载变化的情况下,要求放大电路恒流输出时,就要采用电流负反馈。

至于输入端采用串联还是并联方式,主要根据对放大电路输出电阻而定。

当要求放大电路具有高的输入电阻是,宜采用串联反馈:当要求放大电路具有底的输入电阻是,宜采用并联反馈。

如仅仅为了提高输入电阻,降低输出电阻(即阻抗变换)时,宜采用射极输出器。

反馈深度主要根据放大电路的用途及指标要求而定。

对音频放大电路,主要是用负反馈减小非线性失真,设计是一般取1+AF=10左右。

对测量仪表中使用的放大电路,要求放大倍数有较高的稳定度,而采用负反馈的目的主要是提高放大倍数的稳定度,因此根据不同的要求可取1=AF为几十至几百。

对高放大倍数宽频带放大电路,采用负反馈的目的要求是展宽频带,这时采用多极放大加深反馈容易产生自激,且在幅频特性的高,底频段易产生凸起的现象。

因此首先要保证每一极有足够宽的频带,如在两极之间采用底输入电阻的接法去解决。

3.2放大管的选择如果放大电路的极数多,而输入信号很弱是(微伏级),必须考虑输入几件放大管的噪音所产生的响,为此前置放大级应选用底噪声的管子。

当要求放大电路的频带很宽是,应选用截止频率较高的管子。

从集电级损耗的角度出发,由于前几级放大的输入较小,可选用pcm 小的管子,其静态工作点要选得底一些(IE小),这样可减小噪声;但对输出级而言,因其输出电压和输出电流都较大,故pcm大的管子。

3.3级数的选择放大电路级数可根据无反馈时的放大倍数而定,而此放大倍数又要根据所要求的闭环放大倍数和反馈深度而定,因此设计时首先要根据技术指标确定出它的闭环放大倍数Af 及反馈深度1+AF,然后确定所需的Af。

确定了A的数值,放大电路的级数大致可用下列原则来确定:几十至几百倍左右采用一级或两级,几百至千倍采用两级或三级,几千倍以上采用三级或四级(射极输出极不计,因其A约等于零一般情况下很少采用四级以上,因为这将给施加反馈后的补偿工作带来很大的困难,但反馈只加在两级之间也是可以的。

一般情况下很少采用四级以上,因为这将给施加反馈后的补偿工作带来很大的困难,但反馈只加在两级之间也是可以4.电路分析反馈放大电路的组成含有反馈网络的放大电路称反馈放大电路,其组成如下图所示。

图中,A称为基本放大电路,F表示反馈网络,反馈网络一般由线性元件组成。

由图可见,反馈放大电路由基本放大电路和反馈网络构成一个闭环系统,因此又把它称为闭环放大电路,而把基本放大电路称为开环放大电路。

相关文档
最新文档