2020-2021石家庄市精英中学高一数学上期中一模试卷(带答案)

合集下载

2020-2021石家庄市高三数学上期中模拟试卷(含答案)

2020-2021石家庄市高三数学上期中模拟试卷(含答案)

2020-2021石家庄市高三数学上期中模拟试卷(含答案)一、选择题1.朱载堉(1536~1611),是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中制成了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”.即一个八度13个音,相邻两个音之间的频率之比相等,且最后一个音是最初那个音的频率的2倍.设第三个音的频率为1f ,第七个音的频率为2f ,则21f f = A.BCD2.数列{}n a 的前n 项和为21n S n n =++,()()1N*nn n b a n =-∈,则数列{}n b 的前50项和为( ) A .49B .50C .99D .1003.已知关于x 的不等式()224300x ax a a -+<<的解集为()12,x x ,则1212a x x x x ++的最大值是( ) ABCD.3-4.已知等差数列{}n a 的前n 项为n S ,且1514a a +=-,927S =-,则使得n S 取最小值时的n 为( ). A .1B .6C .7D .6或75.若关于x 的不等式220x ax +->在区间[]1,5上有解,则a 的取值范围是( ) A .23,5⎛⎫-+∞ ⎪⎝⎭B .23,15⎡⎤-⎢⎥⎣⎦C .()1,+∞D .23,5⎛⎤-∞ ⎥⎝⎦6.在ABC ∆中,,,a b c 分别是角,,A B C 的对边,若sin cos 0b A B -=,且2b ac =,则a cb+的值为( ) A .2BC.2D .47.,x y 满足约束条件362000x y x y x y -≤⎧⎪-+≥⎪⎨≥⎪⎪≥⎩,若目标函数(0,0)z ax by a b =+>>的最大值为12,则23a b+的最小值为 ( ) A .256B .25C .253D .58.如图,有四座城市A 、B 、C 、D ,其中B 在A 的正东方向,且与A 相距120km ,D 在A 的北偏东30°方向,且与A 相距60km ;C 在B 的北偏东30°方向,且与B 相距6013km ,一架飞机从城市D 出发以360/km h 的速度向城市C 飞行,飞行了15min ,接到命令改变航向,飞向城市B ,此时飞机距离城市B 有( )A .120kmB .606kmC .605kmD .3km9.数列{}n a 中,()1121nn n a a n ++-=-,则数列{}n a 的前8项和等于( ) A .32B .36C .38D .4010.设{}n a 是首项为1a ,公差为-2的等差数列,n S 为其前n 项和,若1S ,2S ,4S 成等比数列,则1a = ( ) A .8B .-8C .1D .-111.已知{}n a 是等比数列,22a =,514a =,则12231n n a a a a a a +++⋅⋅⋅+=( ) A .()1614n--B .()1612n--C .()32123n -- D .()32143n -- 12.若0,0x y >>,且211x y+=,227x y m m +>+恒成立,则实数m 的取值范围是( ) A .(8,1)-B .(,8)(1,)-∞-⋃+∞C .(,1)(8,)-∞-⋃+∞D .(1,8)-二、填空题13.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,2a =,且()()()2sin sin sin b A B c b C +-=-,则ABC ∆面积的最大值为______.14.在ABC V 中,角A B C ,,所对的边分别为,,a b c ,且满足222sin sin sin sin sin A B C A B +=+,若ABC V 3,则ab =__15.已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .16.已知等比数列{a n }的前n 项和为S n ,若a 3=32,S 3=92,则a 1的值为________. 17.已知ABC ∆的内角,,A B C 的对边分别为,,a b c .若1c =,ABC ∆的面积为2214a b +-,则ABC ∆面积的最大值为_____. 18.某公司租赁甲、乙两种设备生产A,B 两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元.19.点D 在ABC V 的边AC 上,且3CD AD =,2BD =,3sin2ABC ∠=,则3AB BC +的最大值为______.20.若已知数列的前四项是2112+、2124+、2136+、2148+,则数列前n 项和为______.三、解答题21.如图,A ,B 是海面上位于东西方向相距()533+海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间?22.已知向量113,sin 22x x a ⎛⎫ ⎝=⎪ ⎪⎭v 与()1,b y =v 共线,设函数()y f x =. (1)求函数()f x 的最小正周期及最大值.(2)已知锐角ABC ∆的三个内角分别为,,A B C ,若有33f A π⎛⎫-= ⎪⎝⎭,边217,sin 7BC B ==,求ABC ∆的面积. 23.设各项均为正数的数列{a n }的前n 项和为S n ,满足:对任意的n ∈N *,都有a n +1+S n +1=1,又a 112=. (1)求数列{a n }的通项公式; (2)令b n =log 2a n ,求12231111n n b b b b b b L ++++(n ∈N *) 24.在ABC V 中,角A ,B ,C 的对边分别是a ,b ,c ()3cos 23cos a C b c A =(Ⅰ)求角A 的大小;(Ⅱ)若2a =,求ABC V 面积的最大值.25.已知在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,且sin cos 0a B b A -=. (1)求角A 的大小:(2)若a =2b =.求ABC V 的面积.26.已知数列{}n a 是等差数列,数列{}n b 是公比大于零的等比数列,且112a b ==,338a b ==.(1)求数列{}n a 和{}n b 的通项公式; (2)记n n b c a =,求数列{}n c 的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】:先设第一个音的频率为a ,设相邻两个音之间的频率之比为q ,得出通项公式, 根据最后一个音是最初那个音的频率的2倍,得出公比,最后计算第三个音的频率与第七个音的频率的比值。

河北省2020-2021学年高一上学期期中考试数学试题含解析

河北省2020-2021学年高一上学期期中考试数学试题含解析

河北省2020-2021学年高一上学期期中考试数学试题含解析姓名:__________ 班级:__________考号:__________一、选择题(共26题)1、已知全集,,,,则A .B .C .D .2、不等式成立的一个充分不必要条件是()A .或B .C .或D .3、已知函数的定义域是,则的定义域为()A .B .C .D .4、命题“ 所有能被 2 整除的数都是偶数” 的否定是A .所有不能被2 整除的数都是偶数B .所有能被2 整除的数都不是偶数C .存在一个不能被2 整除的数是偶数D .存在一个能被2 整除的数不是偶数5、若正数x 、y 满足,则的最小值等于()A . 4B . 5C .9D .136、如果在区间上为减函数,则的取值范围()A .B .C .D .7、若不等式的解集为,则的解集为()A .B .C .D .8、函数定义域和值域分别为、,则= ()A .[-1 ,3]B .[-1 ,4]C .[0 ,3]D .[0 ,2]9、已知是定义在上的偶函数,且在上为增函数,则的解集为A .B .C .D .10、设函数,则的值域是()A .B .C .D .11、已知集合,则=()A .{ x |1 <x ≤4}B .{ x |0 <x ≤6}C .{ x |0 <x < 1}D .{ x |4≤ x ≤6}12、“ ,” 的否定是()A .,B .,C .,D .,13、已知那么()A .B .C .D .14、下列函数中,与函数是相等函数的是()A .B .C .D .15、已知;;,则()A .B .C .D .16、“ ” 是“ 关于x 的方程有实数根” 的()A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充要条件17、函数的单调递增区间为()A .B .C .D .18、已知是定义在上的奇函数,当时,,函数,如果对于任意,存在,使得,则实数的取值范围是()A .B .C .D .19、下列四个命题:其中不正确命题的是()A .函数在上单调递增,在上单调递增,则在R 上是增函数B .若函数与轴没有交点,则且C .当时,则有成立D .和表示同一个函数20、下列说法正确的是()A .若幂函数的图像经过点,则解析式为B .所有幂函数的图象均过点C .幂函数一定具有奇偶性D .任何幂函数的图象都不经过第四象限21、已知函数在区间上有最小值,则函数在区间上一定()A .是奇函数B .是增函数C .无最值D .有最大值22、关于函数的性质描述,正确的是()A .的定义域为B .的值域为C .在定义域上是增函数D .的图象关于原点对称23、(多选题)已知,,为实数,且,则下列不等式正确的是()A .B .C .D .24、(多选题)下列计算正确的是()A .B .C .D .已知,则25、(多选)设,且,那么()A .有最小值B .有最大值C .ab 有最大值D .ab 有最小值26、(多选)定义在R 上的函数满足,当时,,则函数满足()A .B .是奇函数C .在上有最大值D .的解集为二、填空题(共8题)1、已知函数, 若f(-2)=2 ,求f(2)= ________ .2、若集合,,其中,,,,是从定义域A 到值域B 的一个函数,则_____ .3、已知函数的值域为,则实数的取值范围是 ____________.4、下列几个命题:① 方程若有一个正实根,一个负实根,则;② 函数是偶函数,但不是奇函数;③ 函数的值域是,则函数的值域为;④ 一条曲线和直线的公共点个数是,则的值不可能是.其中正确的有 __________.5、若函数的定义域是,则函数的定义域是 ______ .6、已知幂函数的图象过点,则=__________.7、已知函数,若,则________.8、若函数为定义在上的奇函数,且在为减函数,若,则不等式的解集为 ______ .三、解答题(共11题)1、已知函数的定义域,的值域为,.( 1 )求;( 2 )若,求实数的取值范围 .2、已知f ( x ) 是R 上的奇函数,当x > 0 时,解析式为f ( x ) =.(1) 求f ( x ) 在R 上的解析式;(2) 用定义证明f ( x ) 在(0 ,+∞) 上为减函数.3、设:实数满足,:实数x 满足.( 1 )若,若命题和命题都是真命题,求实数的取值范围;( 2 )若且是的充分不必要条件,求实数的取值范围.4、已知函数,.( 1 )若时,当时,求的最小值 .( 2 )求关于的不等式的解集 .5、定义域在R 的单调增函数满足恒等式(x ,),且.(1) 求,;(2) 判断函数的奇偶性,并证明;(3) 若对于任意,都有成立,求实数k 的取值范围 . 6、已知全集,集合,集合.( 1 )求及;( 2 )若集合,,求实数的取值范围.7、已知二次函数.( 1 )若在区间上单调递增,求实数的取值范围;( 2 )若在上恒成立,求实数的取值范围.8、已知函数f ( x ) =,a 为常数,且函数的图象过点 ( - 1 ,2).( 1 )求a 的值;( 2 )若g ( x ) = 4 -x - 2 ,且g ( x ) =f ( x ) ,求满足条件的x 的值 .9、已知幂函数(实数)的图像关于轴对称,且.( 1 )求的值及函数的解析式;( 2 )若,求实数的取值范围 .10、已知函数,,从下面三个条件中任选一个条件,求出的值,并解答后面的问题 .① 已知函数,满足;② 已知函数在上的值域为③ 已知函数,若在定义域上为偶函数 .( 1 )证明在上的单调性;( 2 )解不等式.11、现对一块边长 8 米的正方形场地ABCD 进行改造,点E 为线段BC 的中点,点F 在线段CD 或AD 上(异于A ,C ),设(米),的面积记为(平方米),其余部分面积记为(平方米) .( 1 )当(米)时,求的值;( 2 )求函数的最大值;( 3 )该场地中部分改造费用为(万元),其余部分改造费用为(万元),记总的改造费用为W (万元),求W 取最小值时x 的值 .============参考答案============一、选择题1、 B【详解】试题分析:由题意得,,所以画出集合运算的韦恩图可知,集合.考点:集合的运算与集合的表示.【思路点晴】本题主要考查了集合的运算与集合的表示,属于基础题,解答本题的关键在于正确采用集合的韦恩图法作出运算,是题目的一个难点.2、 D【分析】求出不等式解集,根据充分不必要条件,找其解集的真子集即可 .【详解】解不等式,解集为,不等式成立的充分不必要条件,即为集合的真子集,只有选项 D 符合.故选 :D .【点睛】本题考查分式不等式的求解,考查充分不必要条件的判断,是基础题 .3、 B【分析】先根据的定义域求出的定义域,进而可求出的定义域 . 【详解】由题可知在中,,则,所有的定义域为,则在中,,则,即的定义域为.故选: B.【点睛】本题考查复合函数的定义域的求法,属于基础题 .4、 D【详解】试题分析:命题“ 所有能被 2 整除的整数都是偶数” 的否定是“ 存在一个能被 2 整除的数不是偶数” .故选 D .考点:命题的否定.5、 C【分析】由得(),代入后变形,换元后用对勾函数的单调性求解.【详解】因为正数x 、y 满足,所以(),所以,令,,,由对勾函数在上单调递减,在上单调递增,所以,所以的最小值为 9 ,此时.故选: C .【点睛】本题考查用对勾函数的单调性求最值,解题关键是用代入法化二元函数为一元函数,构造对勾函数.变形时一定注意新元取值范围.6、 B【分析】当= 时,= ,符合题意 . 当时,由题意可得,求得的范围 . 综合可得的取值范围 .【详解】当时,,满足在区间上为减函数;当时,由于的对称轴为,且函数在区间上为减函数,则,解得.综上可得,.故选: B【点睛】要研究二次型函数单调区间有关问题,首先要注意二次项系数是否为零 . 当二次项系数不为零时,利用二次函数的对称轴来研究单调区间.7、 D【分析】由不等式的解集为可得,,,代入化简即可求解 .【详解】不等式的解集为,,且是方程的两根,,即,,则化为,,,解得或.故选: D.【点睛】本题考查一元二次不等式的解集与系数的关系,考查一元二次不等式的求解,属于基础题 .8、 D【分析】先求出函数的定义域和值域 , 得到集合、,再求交集即可 .【详解】解 : 要使函数有意义 ,则解得,故;由,所以. 故.则选 : D【点睛】本题考查函数的定义域和值域的求法 , 考查集合的交集运算, 是简单题.9、 B【分析】先由偶函数的定义得出定义域关于原点对称,可得出,由偶函数的性质,将不等式化为,再利用函数在上的单调性列出不等式组可解出实数的取值范围 .【详解】由于函数是定义在上的偶函数,则定义域关于原点对称,,得,所以,函数的定义域为,由于函数在区间上单调递增,则该函数在区间上单调递减,由于函数为偶函数,则,由,可得,则,解得.因此,不等式的解集为,故选 B.【点睛】本题考查函数不等式的求解,解题时要充分利用函数的奇偶性与单调性求解,同时要将自变量置于定义域内,考查分析问题和运算求解能力,属于中等题 .10、 D【详解】当, 即时 , 或,,其最小值为,无最大值 ,因此这个区间的值域为;当时 , , ,其最小值为,其最大值为,因此这区间的值域为,综合得函数值域为,故选 D .11、 A【分析】化简集合,按照补集定义求出,再按交集定义,即可求解 .【详解】,或,,.故选 :A.【点睛】本题考查集合的混合运算,解题要注意正确化简集合,属于基础题 .12、 B【分析】特称命题的否定是全称命题【详解】因为特称命题的否定是全称命题所以“ ,” 的否定是“ ,”故选: B【点睛】本题考查的是命题的相关知识,较简单 .13、 A【分析】根据分段函数的解析式代入求值即可 .【详解】∵ 函数f ( x )= ,∴∴ = = +1= ,故选: A .【点睛】本题考查的知识点是分段函数的应用,函数求值,基础题.14、 B【分析】依次判断各个选项的解析式和定义域是否和相同,二者皆相同即为同一函数,由此得到结果 .【详解】的定义域为;对于 A ,定义域为,与定义域不同,不是同一函数, A 错误;对于 B ,,与定义域相同,解析式相同,是同一函数, B 正确;对于 C ,定义域为,与定义域不同,不是同一函数, C 错误;对于 D ,,与解析式不同,不是同一函数, D 错误.故选: B.15、 D【分析】由指数函数的性质可得,即可得解 .函数为减函数,,故,又函数为增函数,,故,故.故选: D .16、 A【分析】根据一元二次方程有实数根可得,从而解得的取值范围;由推出关系可确定结果 .【详解】当方程有实数根可得:,解得:,“ ” 是“ 关于的方程有实数根” 的充分不必要条件故选【点睛】本题考查充分条件、必要条件的判定,关键是能够根据一元二次方程有实数根求得的取值范围 .17、 A【分析】由二次函数、指数函数的单调性结合复合函数的单调性运算即可得解 .令可得或,所以函数的定义域为或,因为函数在上单调递减,所以函数在上单调递减,又函数在R 上单调递减,所以函数的单调递增区间为.故选: A.18、 B【分析】利用的奇偶性及指数函数的单调性求出当时的值域A ,由二次函数的单调性求出在上的值域B ,由题意知,列出不等式组求解即可 .【详解】当时,,因为是定义在上的奇函数,所以,当时,,记,,对称轴为,函数在上单调递减,在上单调递增,所以,,即当时,,记,对于任意,存在,使得等价于,所以,解得.故选:B【点睛】本题考查函数的奇偶性与值域,指数函数、二次函数的单调性,属于中档题 .19、 ABCD【分析】根据函数的性质,不等式的性质,函数的定义对各个选项进行判断,错误命题也可通过举反例说明.【详解】,满足在上单调递增,在上单调递增,但在R 上不是增函数, A 错;时,,它的图象与轴无交点,不满足且, B 错;当,但时,,不等式不成立, C 错;,与的对应法则不相同,值域也不相同,不是同一函数, D 错.故选: ABCD .【点睛】本题考查判断命题的真假,考查函数的性质,不等式的性质,函数的定义等,对一个假命题可以通过举反例说明其为假.20、 AD【分析】根据幂函数的解析式,研究幂函数的性质,依次分析,得到结果 .【详解】若幂函数的图象经过点,则解析式为,所以A 正确;函数的图象不经过点,所以B 不正确;为奇函数,是偶函数,是非奇非偶函数,所以幂函数不一定具有奇偶性,所以C 不正确;因为对于幂函数,当时,一定成立,所以任何幂函数的图象都不经过第四象限,所以D 正确;故选: AD.【点睛】方法点睛:该题考查的是有关幂函数的问题,解题方法如下:( 1 )明确幂函数的解析式的形式,利用待定系数法求得函数解析式,对命题判断正误;( 2 )明确随着幂指数的变化,图象走向以及函数的定义域要明确,进而清楚函数的奇偶性以及图象所过的象限,从而判断命题的正误.21、 BC【分析】由函数在区间上有最小值求出的取值范围,表示出,进一步应用的范围对的单调性、最值作出判断.函数在区间上有最小值,函数的对称轴应当位于区间内,有,则,当时,在区间上为增函数,此时,( 1 );当时,在区间上为增函数,此时,( 1 );当时,,根据对勾函数的性质,其在上单调递增,在上单调递增,此时( 1 );综上,在区间上单调递增,并且是开区间,所以函数在上没有最值,故选: BC.【点睛】思路点睛:该题考查的是有关函数的问题,解题思路如下:( 1 )由函数在区间上有最小值求出的取值范围;( 2 )根据所求的的范围,分类讨论,得到其在上是增函数;( 3 )根据区间为开区间,所以没有最值,得到结果.22、 ABD由被开方式非负和分母不为,解不等式可得的定义域,可判断 A ;化简,讨论,,分别求得的范围,求并集可得的值域,可判断 B ;由,可判断 C ;由奇偶性的定义可判断为奇函数,可判断 D ;【详解】对于 A ,由,解得且,可得函数的定义域为,故 A 正确;对于 B ,由A 可得,即,当可得,当可得,可得函数的值域为,故 B 正确;对于 C ,由,则在定义域上是增函数,故 C 错误;对于 D ,由的定义域为,关于原点对称,,则为奇函数,故 D 正确;故选: ABD【点睛】本题考查了求函数的定义域、值域、奇偶性、单调性,属于中档题 .23、 AD根据所给条件,结合不等式的性质,判断选项 .【详解】A. 在上单调递减,所以当时,,故 A 正确;B. 当时,不成立,故 B 不正确;C. 当时,,两边同时除以得,,故 C 不正确;D. 当时,两边同时乘以得,,或两边同时乘以得,,所以,故 D 正确.故选: AD24、 BC【分析】根据根式运算和指数幂的运算法则求解判断 .【详解】A. ,故错误;B. ,故正确;C. ,故正确;D. 因为,所以,则,故错误;故选: BC25、 AD【分析】先利用可求出有最小值,再可得有最小值.【详解】由得:(当且仅当时取等号),即且,解得:,有最小值,知 A 正确;由得:(当且仅当时取等号),即且,解得:,有最小值,知正确 .故选: AD.【点睛】本题考查基本基本不等式的应用,属于中档题 .26、 ABD【分析】先研究函数的奇偶性,可以先令x = y =0 求得f (0) 的值,再令y =- x ,代入原式,可得奇偶性;然后结合单调性的定义判断单调性,最后判断函数在上的最值情况以及根据单调性求解不等式即可 .【详解】令x = y =0 ,则f (0)= f (0)+ f (0) ,所以f (0)=0 ,故A 正确;再令y =- x ,代入原式得f (0)= f ( x )+ f (- x )=0 ,所以f (- x )=- f ( x ) ,故该函数为奇函数,故 B 正确;由f ( x + y )= f ( x )+ f ( y ) 得f ( x + y )- f ( x )= f ( y ) ,令x< x 2 ,再令x 1 = x + y ,x 2 = x ,则y = x 1 - x 2 <0 ,结合x <0 时,1f ( x )>0 ,所以f ( x)- f ( x 2 )= f ( x 1 - x 2 )>0 ,所以f ( x 1 )> f ( x 2 ) ,1所以原函数在定义域内是减函数,所以函数f ( x ) 在上递减,故f ( n ) 是最小值,f ( m ) 是最大值,故 C 错误;又,即,结合原函数在定义域内是减函数可得,,解得,故 D 正确.故选 ABD.【点睛】本题考查了抽象函数的奇偶性和单调性以及利用单调性求最值和解函数不等式的方法,综合性较强,合理赋值是解决抽象函数问题的常用手段,属中档题 .二、填空题1、【分析】利用函数的解析式,结合已知条件直接求解函数值即可.【详解】函数 f (x )=ax 5 ﹣ bx+|x| ﹣ 1 ,若 f (﹣ 2 )=2 ,可得:﹣ 32a+2b+1=2 ,即32a ﹣2b= ﹣ 1f ( 2 )=32a ﹣2b+1= ﹣1+1=0故答案为 0.【点睛】本题考查函数的解析式以及函数的奇偶性的应用,考查计算能力.2、 7【分析】,,是从定义域A 到值域B 的一个函数,所以中的每一个元素在的作用下,在集合B 中都有唯一的元素与之对应,故与或相等,然后结合其他条件,分情况讨论进行求解.【详解】解:由对应法则知,,,,又,∴ ,∴解得或( 舍)所以于是,∴ ,∴ .【点睛】本题考查了函数的定义,函数定义的本质是集合之间的对应关系,即一一对应或多对一的对应关系,掌握好函数的定义是解决本题的关键.3、【分析】求出函数在区间上的值域为,再结合函数的值域为,得出函数在上单调递增,可得出函数在区间上的值域,再由两段值域并集为,可得出关于实数的不等式(组),解出即可 .【详解】当时,,则,则函数在区间上的值域为. 又函数的值域为,则函数在上单调递增,当时,,所以,函数在区间上的值域为,由题意可得,,解得.因此,实数的取值范围是.故答案为:.【点睛】本题考查利用分段函数的值域求参数,在解题时不要忽略对函数单调性的分析,考查分析问题和解决问题的能力,属于中等题 .4、①④【分析】① 根据一元二次方程根与系数的关系,直接判断;②根据函数的定义域,化简函数,判断选项;③根据图象平移,判断选项;④画出函数的图象,判断交点个数 . 【详解】① 由一元二次方程根与系数的关系,得,故① 正确;② 根据函数的定义域可知,解得:,此时,所以(),所以函数既是奇函数,又是偶函数;故② 不正确;③ 由的图象向左平移一个单位而得,所以两个函数的值域相同,即函数的值域为,故③ 不正确;④ 是偶函数,并且图象如下图所示,与图象的交点是 2 个,3 个,或 4 个,不可能有 1 个的时候,故④正确.5、【分析】根据抽象函数的定义域的求法,结合函数,列出不等式组,即可求解 . 【详解】由题意,函数的定义域是,即,则函数满足,解得,即函数的定义域是.故答案为:.【点睛】求抽象函数定义域的方法:1 、已知函数的定义域为,求复合函数的定义域时:可根据不等式解得,则的取值范围即为所求定义域;2 、已知复合函数的定义域为,求函数的定义域,求出函数的值域,即为的定义域 .6、 3【分析】先由幂函数定义,再代入点的坐标即可求解 .【详解】解:由幂函数定义知,,又过,所以,,故答案为: 3【点睛】考查幂函数定义的应用,基础题 .7、 2【分析】得出即可【详解】因为所以即,因为,所以故答案为: 2【点睛】若是奇函数,则的图象关于对称,满足.8、【分析】由函数的单调性和奇偶性可得、的解,转化不等式为或,即可得解 .【详解】由题意,函数为定义在上的奇函数,且在为减函数,,所以函数在上是减函数,且,则当时,;当时,;所以时,;当时,;不等式等价于或,解得.所以不等式的解集为.故答案为:.三、解答题1、( 1 );( 2 )或.【分析】( 1 )根据题意可得,解不等式求出集合,再利用二次函数的性质求出集合,根据集合的交运算即可求解 .( 2 )由知,分类讨论或,列不等式即可求解 .【详解】解:( 1 )由题可得,解得且,所以函数的定义域且,因为对任意,,所以,所以函数的值域,∴ .( 2 )由知,当时,则,解得;当时,则,解得.综上,或.2、 (1) f ( x ) =(2) 见解析【解析】试题分析:( 1 )分别求出当x < 0 和x=0 时的解析式,写成分段函数的形式;( 2 )设∀x 1 ,x 2 ∈(0 ,+∞) ,且x 1 <x 2 ,通过作差证明f ( x 1 ) >f ( x 2 ) 即可.试题解析: (1) 设x < 0 ,则-x > 0 ,∴ f ( -x ) =.又∵ f ( x ) 是R 上的奇函数,∴ f ( -x ) =-f ( x ) =,∴ f ( x ) =.又∵ 奇函数在x=0 时有意义,∴ f (0) =0 ,∴ 函数的解析式为f ( x ) =(2) 证明:设∀x 1 ,x 2 ∈(0 ,+∞) ,且x 1 <x 2 ,则f ( x 1 ) -f ( x 2 ) =-==.∵ x 1 ,x 2 ∈(0 ,+∞) ,x 1 <x 2 ,∴ x 1 + 1 >0 ,x 2 + 1 >0 ,x 2 -x 1 > 0 ,∴ f ( x 1 ) -f ( x 2 ) >0 ,∴ f ( x 1 ) >f ( x 2 ) ,∴ 函数f ( x ) 在(0 ,+∞) 上为减函数.点睛:用定义法证明函数单调性的步骤:取值—作差—变形—确定符号—下结论,注意取值时要取所给区间上的任意两数x 1 ,x 2 ,变形是解题的重点,目的使所做的差变成成绩的形式.3、( 1 );( 2 ).【分析】( 1 )解一元二次不等式求得中的取值范围,解绝对值不等式求得中的取值范围,根据为真,即都为真命题,求得的取值范围 .( 2 )解一元二次不等式求得中的取值范围,根据是的充分不必要条件列不等式组,解不等式组求得实数的取值范围 .【详解】对于:由得,解( 1 )当时,对于:,解得,由于为真,所以都为真命题,所以解得,所以实数的取值范围是.( 2 )当时,对于:,解得. 由于是的充分不必要条件,所以是的必要不充分条件,所以,解得. 所以实数的取值范围是.【点睛】本小题主要考查一元二次不等式的解法,考查根据含有逻辑连接词命题真假性求参数的取值范围,考查根据充分、必要条件求参数的取值范围,属于中档题 .4、( 1 ) 4 ;( 2 )答案见解析.【分析】( 1 )将代入函数解析式,得到,之后结合,利用基本不等式求得结果;( 2 )首先求时,不等式的解集,之后时,求得方程的根为,,分类讨论求得其解集 .【详解】( 1 )若时,,当且仅当,即时取得等号 .故的最小值为 4.( 2 )①当时,不等式的解为.② 当时,令解得,.当时,,解得.当时,若,即解原不等式得或.若,即解原不等式得或.若,即解原不等式得.综上:当时,不等式解集为;当时,不等式解集为;时,不等式解集为或. 时,不等式解集为. 时,不等式解集为.【点睛】方法点睛:该题考查的是有关不等式的问题,解题方法如下:( 1 )将参数值代入函数解析式,对式子进行变形,结合自变量的范围,利用基本不等式求得结果;( 2 )首先求方程的根,对参数进行讨论,讨论的标准就是根的大小,最后求得不等式的解集;( 3 )要用好分类讨论思想.5、 (1) ,; (2) 是奇函数,证明见解析; (3) .【分析】(1) 运用赋值法, 代入求出的值 , 代入, 结合已知条件求出的值 .(2) 令代入已知的恒等式中 , 结合函数奇偶性的定义判断出函数的奇偶性 .(3) 由(2) 知函数为奇函数, 运用奇函数性质进行化简, 再结合函数的单调性求解不等式, 解出实数k 的取值范围 .【详解】(1) 令可得,令, ∴ ∴ ∴ ;(2) 令∴ ∴ , 即∴ 函数是奇函数 .(3)∵ 是奇函数 , 且在时恒成立 ,∴ 在时恒成立 ,又∵ 是R 上的增函数 .∴ 即在时恒成立 .∴ 在时恒成立 .令,∵ ∴ . 由抛物线图象可得∴ .则实数k 的取值范围为.【点睛】本题考查了抽象函数求值及性质问题 , 关键在于利用已知条件中的恒等式, 采用赋值法求解, 结合函数奇偶性和单调性解答不等式恒成立问题, 可以采用分离参数的方法处理, 此题较为综合, 需要掌握解题方法.6、( 1 ),;( 2 ).【分析】( 1 )解出集合中的不等式,化简集合即可 .( 2 )由条件建立不等式即可 .【详解】( 1 )由得,所以,由所以所以( 2 )因为,且所以,所以的取值范围为:【点睛】本题为基础题,考查集合的运算 .7、( 1 );( 2 ).【分析】( 1 )解不等式即得解;( 2 )化为在恒成立,令,求出函数的最小值即可 . 【详解】( 1 )若在单调递增,则,所以;( 2 )因为在上恒成立,所以在恒成立,即在恒成立令,则,当且仅当时等号成立所以.【点睛】方法点睛:处理参数的问题常用的方法有:( 1 )分离参数法(先分离参数转化为函数的最值);( 2 )分类讨论法(对参数分类讨论求解).8、( 1 );( 2 ).【分析】( 1 )直接代入求值即可;( 2 )由( 1 )知,又g ( x ) =f ( x ) ,代入整理可得,令,求即可得出结果 .【详解】( 1 )由已知得,解得a = 1.( 2 )由(1 )知,又g ( x ) =f ( x ) ,则 4 -x - 2 =,,令,则t >0 ,t 2 -t - 2 =0 ,即 ( t - 2)( t + 1) =0 ,又t >0 ,故t = 2 ,即,解得x =- 1 ,故满足条件的x 的值为- 1.【点睛】本题主要考查了指数与指数函数和函数与方程 . 属于较易题.9、( 1 ),;( 2 ).【分析】( 1 )由,得到,从而得到,又由,得出的值和幂函数的解析式;( 2 )由已知得到且,由此即可求解实数的取值范围 . 【详解】( 1 )由题意,函数(实数)的图像关于轴对称,且,所以在区间为单调递减函数,所以,解得,又由,且函数(实数)的图像关于轴对称,所以为偶数,所以,所以.( 2 )因为函数图象关于轴对称,且在区间为单调递减函数,所以不等式,等价于且,解得或,所以实数的取值范围是.【点睛】本题主要考查了幂函数的解析式的求解,以及幂函数的图象与性质的应用,其中解答中认真审题,熟练应用幂函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题 .10、选法见解析;,;( 1 )证明见解析;( 2 ).【分析】( 1 )根据函数的对称性,定义域和值域,奇偶性计算得到,,再求导证明单调性 .( 2 )利用函数的奇偶性和单调性解不等式得到答案.【详解】( 1 )①由得对称中心为即得,;②( i ) 当时,在上单调递增,则有得,得,;( ii ) 当时,在上单调递减,则得,无解,所以,;③ 由得,因为在上是偶函数,则,且,所以,;由① 或②或③得,,,由得,则在上单调递增 .( 2 )因为,则为奇函数 .由即又因为在上单调递增,则解得.【点睛】本题考查了函数对称性,奇偶性,单调性,函数的定义域和值域,解不等式,意在考查学生对于函数知识的综合应用 .11、( 1 )( 2 )32 ( 3 )或【分析】( 1 )当米时,点F 在线段CD 上,利用算出即可( 2 )分两种情况讨论,分别求出最大值,再作比较( 3 ),利用基本不等式可求出其取得最小值时,然后再分两种情况讨论【详解】( 1 )由题知:当米时,点F 在线段CD 上,所以所以(平方米)( 2 )由题知,当(米)时,点F 在线段AD 上此时:(平方米)当(米)时,点F 在线段CD 上,,令所以所以因为,所以,等号当且仅当时,即时取得所以最大值为 32( 3 )因为,所以:。

2020-2021高一数学上期中一模试卷(及答案)(4)

2020-2021高一数学上期中一模试卷(及答案)(4)

2020-2021高一数学上期中一模试卷(及答案)(4)一、选择题1.设集合{1,2,3,4}A =,{}1,0,2,3B =-,{|12}C x R x =∈-≤<,则()A B C =U IA .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}2.若集合{}|1,A x x x R =≤∈,{}2|,B y y x x R ==∈,则A B =I A .{}|11x x -≤≤B .{}|0x x ≥C .{}|01x x ≤≤D .∅3.不等式()2log 231a x x -+≤-在x ∈R 上恒成立,则实数a 的取值范围是( ) A .[)2,+∞B .(]1,2C .1,12⎡⎫⎪⎢⎣⎭D .10,2⎛⎤ ⎥⎝⎦4.已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨≥⎩是(,)-∞+∞上的减函数,那么a 的取值范围是( ) A .(0,1)B .1(0,)3C .11[,)73D .1[,1)75.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②④C .①④D .①③6.设log 3a π=,0.32b =,21log 3c =,则( ) A .a c b >>B .c a b >>C .b a c >>D .a b c >>7.若函数()(),1231,1x a x f x a x x ⎧>⎪=⎨-+≤⎪⎩是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤⎥⎝⎦D .2,3⎛⎫+∞⎪⎝⎭8.已知函数224()(log )log (4)1f x x x =++,则函数()f x 的最小值是A .2B .3116C .158D .19.已知定义在R 上的函数()f x 是奇函数且满足,3()(2)32f x f x f ⎛⎫-=-=- ⎪⎝⎭,,数列{}n a 满足11a =-,且2n n S a n =+,(其中n S 为{}n a 的前n 项和).则()()56f a f a +=() A .3B .2-C .3-D .210.定义在R 上的奇函数()f x 满足()1(2)f x f x +=-,且在()0,1上()3xf x =,则()3log 54f =( )A .32B .23-C .23D .32-11.已知定义在R 上的函数()21()x m f x m -=-为实数为偶函数,记0.5(log 3),a f =2b (log 5),c (2)f f m ==,则,,a b c ,的大小关系为( )A .a b c <<B .c a b <<C .a c b <<D .c b a <<12.函数()2log ,0,2,0,xx x f x x ⎧>=⎨≤⎩则函数()()()2384g x fx f x =-+的零点个数是( )A .5B .4C .3D .6二、填空题13.给出下列四个命题:(1)函数()f x x x bx c =++为奇函数的充要条件是0c =; (2)函数()20xy x -=>的反函数是()2log 01y x x =-<<;(3)若函数()()2lg f x x ax a =+-的值域是R ,则4a ≤-或0a ≥;(4)若函数()1y f x =-是偶函数,则函数()y f x =的图像关于直线0x =对称. 其中所有正确命题的序号是______. 14.设函数21()ln(1||)1f x x x=+-+,则使得()(21)f x f x >-成立的x 的取值范围是_____.15.已知函数()()22log f x x a =+,若()31f =,则a =________.16.设函数()f x 是定义在R 上的偶函数,记2()()g x f x x =-,且函数()g x 在区间[0,)+∞上是增函数,则不等式2(2)(2)4f x f x x +->+的解集为_____17.已知偶函数()f x 满足3()8(0)f x x x =-≥,则(2)0f x ->的解集为___ ___18.已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________.19.某班有36名同学参加数学、物理、化学竞赛小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有__________人.20.函数()f x =________.三、解答题21.某企业生产A ,B 两种产品,根据市场调查与预测,A 产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2,(注:利润与投资单位:万元)(1)分别将A ,B 两种产品的利润表示为投资的函数关系,并写出它们的函数关系式; (2)该企业已筹集到10万元资金,全部投入到A ,B 两种产品的生产,怎样分配资金,才能使企业获得最大利润,其最大利润约为多少万元(精确到1万元). 22.已知函数())22log f x x a x =+是R 上的奇函数,()2g x t x a =--.(1)求a 的值;(2)记()f x 在3,24⎡⎤-⎢⎥⎣⎦上的最大值为M ,若对任意的3,24x ⎡⎤∈-⎢⎥⎣⎦,()M g x ≤恒成立,求t 的取值范围.23.食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收益P 、种黄瓜的年收益Q 与投入a(单位:万元)满足P =80+142,a 4a Q =+120.设甲大棚的投入为x(单位:万元),每年两个大棚的总收益为f(x)(单位:万元). (1)求f(50)的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益f(x)最大?24.已知定义域为R 的函数()1221x a f x =-++是奇函数. (1)求a 的值;(2)判断函数()f x 的单调性并证明;(2)若关于m 的不等式()()222120f m m f m mt -+++-≤在()1,2m ∈有解,求实数t 的取值范围.25.已知集合{}24xA x R =∈<,(){}lg 4B x R y x =∈=-.(1)求集合,A B ;(2)已知集合{}11C x m x m =-≤≤-,若集合()C A B ⊆⋃,求实数m 的取值范围.26.国庆期间,某旅行社组团去风景区旅游,若旅行团人数在30人或30人以下,每人需交费用为900元;若旅行团人数多于30人,则给予优惠:每多1人,人均费用减少10元,直到达到规定人数75人为止.旅行社需支付各种费用共计15000元. (1)写出每人需交费用y 关于人数x 的函数; (2)旅行团人数为多少时,旅行社可获得最大利润?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果. 详解:由并集的定义可得:{}1,0,1,2,3,4A B ⋃=-, 结合交集的定义可知:(){}1,0,1A B C ⋃⋂=-. 本题选择C 选项.点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.2.C解析:C 【解析】 【分析】求出集合B 后可得A B I . 【详解】因为集合{}|1,{|11}A x x x R x x =≤∈=-≤≤,{}2|,{|0}B y y x x R y y ==∈=≥则A B =I {}|01x x ≤≤,选C【点睛】本题考查集合的交,注意集合意义的理解,如(){}|,x y f x x D =∈表示函数的定义域,而(){}|,y y f x x D =∈表示函数的值域,()(){},|,x y y f x x D =∈表示函数的图像.3.C解析:C 【解析】 【分析】由()2223122-+=-+≥x x x 以及题中的条件,根据对数函数的单调性性,对a 讨论求解即可.由()2log 231a x x -+≤-可得()21log 23log -+≤a ax x a, 当1a >时,由()2223122-+=-+≥x x x 可知2123-+≤x x a无实数解,故舍去; 当01a <<时,()2212312-+=-+≥x x x a在x ∈R 上恒成立,所以12a ≤,解得112a ≤<. 故选:C 【点睛】本题主要考查对数函数的单调性,涉及到复合函数问题,属于中档题.4.C解析:C 【解析】 【分析】要使函数()f x 在(,)-∞+∞上为减函数,则要求①当1x <,()(31)4f x a x a =-+在区间(,1)-∞为减函数,②当1x ≥时,()log a f x x =在区间[1,)+∞为减函数,③当1x =时,(31)14log 1a a a -⨯+≥,综上①②③解方程即可.【详解】令()(31)4g x a x =-+,()log a h x x =.要使函数()f x 在(,)-∞+∞上为减函数,则有()(31)4g x a x =-+在区间(,1)-∞上为减函数,()log a h x x =在区间[1,)+∞上为减函数且(1)(1)g h ≥,∴31001(1)(31)14log 1(1)a a a g a a h -<⎧⎪<<⎨⎪=-⨯+≥=⎩,解得1173a ≤<. 故选:C. 【点睛】考查分段函数求参数的问题.其中一次函数y ax b =+,当0a <时,函数y ax b =+在R 上为减函数,对数函数log ,(0)a y x x =>,当01a <<时,对数函数log ay x =在区间(0,)+∞上为减函数.5.C解析:C 【解析】 【分析】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案.()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴Q 为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④ 正确,故选C .【点睛】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .6.C解析:C 【解析】 【分析】先证明c<0,a>0,b>0,再证明b>1,a<1,即得解. 【详解】 由题得21log 3c =2log 10<=,a>0,b>0. 0.30log 3log 1,22 1.a b πππ====所以b a c >>.故答案为C 【点睛】(1)本题主要考查指数函数对数函数的单调性,考查实数大小的比较,意在考查学生对这些知识的掌握水平和分析推理能力.(2)实数比较大小,一般先和“0”比,再和“±1”比.7.C解析:C 【解析】 【分析】由题意结合分段函数的解析式分类讨论即可求得实数a 的取值范围. 【详解】当1x >时,x a 为减函数,则01a <<,当1x ≤时,一次函数()231a x -+为减函数,则230a -<,解得:23a >, 且在1x =处,有:()12311a a -⨯+≥,解得:34a ≤, 综上可得,实数a 的取值范围是23,34⎛⎤ ⎥⎝⎦. 本题选择C 选项. 【点睛】对于分段函数的单调性,有两种基本的判断方法:一保证各段上同增(减)时,要注意上、下段间端点值间的大小关系;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断.8.B解析:B 【解析】 【分析】利用对数的运算法则将函数()()()224log log 41f x x x =++化为()2221log 1log 12x x +++,利用配方法可得结果.【详解】化简()()()224log log 41f x x x =++()2221log 1log 12x x =+++22211131log log 224161616x x ⎛⎫=++-≥-= ⎪⎝⎭,即()f x 的最小值为3116,故选B.【点睛】本题主要考查对数的运算法则以及二次函数配方法求最值,属于中档题. 求函数最值常见方法有,①配方法:若函数为一元二次函数,常采用配方法求函数求值域,其关键在于正确化成完全平方式,并且一定要先确定其定义域;②换元法;③不等式法;④单调性法;⑤图象法.9.A解析:A 【解析】 由奇函数满足()32f x f x ⎛⎫-=⎪⎝⎭可知该函数是周期为3T =的奇函数,由递推关系可得:112,21n n n n S a n S a n +-=+=+-, 两式做差有:1221n n n a a a -=--,即()()1121n n a a --=-, 即数列{}1n a -构成首项为112a -=-,公比为2q =的等比数列, 故:()1122,21n n n n a a --=-⨯∴=-+,综上有:()()()()()552131223f a f f f f =-+=-==--=,()()()()66216300f a f f f =-+=-==,则:()()563f a f a +=. 本题选择A 选项.10.D解析:D 【解析】 【分析】由题意结合函数的性质整理计算即可求得最终结果. 【详解】由题意可得:()354f log =()3log 23f +, 则()354f log =()31log 21f -+,且()()331log 21log 21f f +=--, 由于()3log 211,0-∈-,故()()31log 2333log 211log 232f f --=--=-=-,据此可得:()()3312log 21log 213f f +=-=-,()354f log =32-.本题选择D 选项. 【点睛】本题主要考查函数的奇偶性,函数的周期性及其应用等知识,意在考查学生的转化能力和计算求解能力.11.B解析:B 【解析】由()f x 为偶函数得0m =,所以0,52log 3log 32121312,a =-=-=-=2log 521514b =-=-=,0210c =-=,所以c a b <<,故选B.考点:本题主要考查函数奇偶性及对数运算.12.A解析:A 【解析】【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数. 【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0x x x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A . 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.二、填空题13.(1)(2)(3)【解析】【分析】根据奇函数的定义得到(1)正确根据反函数的求法以及定义域值域得到(2)正确由函数的值域是得出其真数可以取到所有的正数由二次函数判别式大于等于0求解可判断出(3)正确解析:(1)(2)(3) 【解析】 【分析】根据奇函数的定义得到(1)正确,根据反函数的求法以及定义域值域得到(2)正确, 由函数()()2lg f x x ax a =+-的值域是R ,得出其真数可以取到所有的正数,由二次函数判别式大于等于0求解,可判断出(3)正确,根据函数图像平移可判断(4)不正确. 【详解】解:(1)当0c =时,()=+f x x x bx ,()()()-=---=-+=-f x x x bx x x bx f x ,当函数为奇函数时()()f x f x -=-,即()++=----+=+-x x bx c x x bx c x x bx c ,解得0c =,所以0c =是函数()f x x x bx c =++为奇函数的充要条件,所以(1)正确;(2)由反函数的定义可知函数()20xy x -=>的反函数是()2log 01y x x =-<<,所以(2)正确;(3)因为函数()()2lg f x x ax a =+-的值域是R ,所以2y x ax a =+-能取遍(0,)+∞的所有实数,所以240a a =+≥△,解得0a ≥或4a ≤-,所以(3)正确; (4)函数()1y f x =-是偶函数,所以()1y f x =-图像关于y 轴对称,函数()y f x =的图像是由()1y f x =-向左平移一个单位得到的,所以函数()y f x =的图像关于直线1x =-对称,故(4)不正确. 故答案为:(1)(2)(3) 【点睛】本题主要考查对函数的理解,涉及到函数的奇偶性、值域、反函数等问题.14.【解析】试题分析:由题意得函数的定义域为因为所以函数为偶函数当时为单调递增函数所以根据偶函数的性质可知:使得成立则解得考点:函数的图象与性质【方法点晴】本题主要考查了函数的图象与性质解答中涉及到函数解析:1(1)3, 【解析】试题分析:由题意得,函数21()ln(1)1f x x x =+-+的定义域为R ,因为()()f x f x -=,所以函数()f x 为偶函数,当0x >时,21()ln(1)1f x x x =+-+为单调递增函数,所以根据偶函数的性质可知:使得()(21)f x f x >-成立,则21x x >-,解得113x <<. 考点:函数的图象与性质.【方法点晴】本题主要考查了函数的图象与性质,解答中涉及到函数的单调性和函数的奇偶性及其简单的应用,解答中根据函数的单调性与奇偶性,结合函数的图象,把不等式()(21)f x f x >-成立,转化为21x x >-,即可求解,其中得出函数的单调性是解答问题的关键,着重考查了学生转化与化归思想和推理与运算能力,属于中档试题.15.-7【解析】分析:首先利用题的条件将其代入解析式得到从而得到从而求得得到答案详解:根据题意有可得所以故答案是点睛:该题考查的是有关已知某个自变量对应函数值的大小来确定有关参数值的问题在求解的过程中需解析:-7 【解析】分析:首先利用题的条件()31f =,将其代入解析式,得到()()2391f log a =+=,从而得到92a +=,从而求得7a =-,得到答案.详解:根据题意有()()2391f log a =+=,可得92a +=,所以7a =-,故答案是7-. 点睛:该题考查的是有关已知某个自变量对应函数值的大小,来确定有关参数值的问题,在求解的过程中,需要将自变量代入函数解析式,求解即可得结果,属于基础题目.16.【解析】【分析】根据题意分析可得为偶函数进而分析可得原不等式转化为结合函数的奇偶性与单调性分析可得解可得的取值范围【详解】根据题意且是定义在上的偶函数则则函数为偶函数又由为增函数且在区间上是增函数则 解析:()(),40,-∞-+∞U【解析】 【分析】根据题意,分析可得()g x 为偶函数,进而分析可得原不等式转化为()()22g x g +>,结合函数的奇偶性与单调性分析可得22x +>,解可得x 的取值范围. 【详解】根据题意()()2g x f x x =-,且()f x 是定义在R 上的偶函数,则()()()()()22g x f x x f x x g x -=---=-=,则函数()g x 为偶函数,()()()()()()()22224222422f x f x x f x x f g x g +->+⇒+--⇒+>>+,又由()g x 为增函数且在区间[0,)+∞上是增函数,则22x +>, 解可得:4x <-或0x >,即x 的取值范围为()(),40,-∞-+∞U , 故答案为()(),40,-∞-+∞U ; 【点睛】本题考查函数的奇偶性与单调性的综合应用,注意分析()g x 的奇偶性与单调性,属于中档题.17.【解析】【分析】通过判断函数的奇偶性增减性就可以解不等式【详解】根据题意可知令则转化为由于偶函数在上为增函数则即即或即或【点睛】本题主要考查利用函数的性质(奇偶性增减性)解不等式意在考查学生的转化能 解析:{|40}x x x ><或【解析】 【分析】通过判断函数的奇偶性,增减性就可以解不等式. 【详解】根据题意可知(2)0f =,令2x t -=,则转化为()(2)f t f >,由于偶函数()f x 在()0,∞+上为增函数,则()(2)f t f >,即2t>,即22x -<-或22x ->,即0x <或4x >.【点睛】本题主要考查利用函数的性质(奇偶性,增减性)解不等式,意在考查学生的转化能力,分析能力及计算能力.18.6【解析】【分析】先求函数周期再根据周期以及偶函数性质化简再代入求值【详解】由f(x+4)=f(x-2)可知是周期函数且所以【点睛】本题考查函数周期及其应用考查基本求解能力解析:6 【解析】 【分析】先求函数周期,再根据周期以及偶函数性质化简()()9191f f =-,再代入求值. 【详解】由f (x +4)=f (x -2)可知,()f x 是周期函数,且6T =,所以()()()919615311f f f =⨯+=()16f =-=.【点睛】本题考查函数周期及其应用,考查基本求解能力.19.8【解析】【分析】画出表示参加数学物理化学竞赛小组集合的图结合图形进行分析求解即可【详解】由条件知每名同学至多参加两个小组故不可能出现一名同学同时参加数学物理化学竞赛小组设参加数学物理化学竞赛小组的解析:8 【解析】 【分析】画出表示参加数学、物理、化学竞赛小组集合的Venn 图,结合图形进行分析求解即可. 【详解】由条件知,每名同学至多参加两个小组,故不可能出现一名同学同时参加数学、物理、化学竞赛小组,设参加数学、物理、化学竞赛小组的人数构成的集合分别为A ,B ,C , 则()0card A B C ⋂⋂=,()6card A B ⋂=,()4card B C ⋂=, 由公式()card A B C ⋃⋃()()()()()()card A card B card C card A B card A C card B C =++-⋂-⋂-⋂知()3626151364card A C =++---⋂,故()8card A C ⋂=即同时参加数学和化学小组的有8人, 故答案为8.【点睛】本小题主要考查Venn 图表达集合的关系及运算、Venn 图的应用、集合中元素的个数等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想,属于基础题.20.2+∞)【解析】分析:根据偶次根式下被开方数非负列不等式解对数不等式得函数定义域详解:要使函数有意义则解得即函数的定义域为点睛:求给定函数的定义域往往需转化为解不等式(组)的问题解析:[2,+∞) 【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数()f x 有意义,则2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[2,)+∞.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.三、解答题21.(1)A 为()()104f x x x =≥,B 为())504g x x x =≥;(2)A 产品投入3.75万元,B 产品投入6.25万元,最大利润为4万元 【解析】 【分析】(1)根据题意给出的函数模型,设()1f x k x =;()g x k x =代入图中数据求得12,k k 既得,注意自变量0x ≥;(2)设A 产品投入x 万元,则B 产品投入()10x -万元,设企业利润为y 万元.,列出利润函数为()()5101044x y f x g x x =+-=-,用换元法,设10t x =-函数可求得利润的最大值. 【详解】解:(1)设投资为x 万元,A 产品的利润为()f x 万元,B 产品的利润为()g x 万元 由题设知()1f x k x =;()g x k x =由图1知()114f =,114k =由图2知()542g =,254k =则()()104f x x x =≥,())0g x x =≥. (2)设A 产品投入x 万元,则B 产品投入()10x -万元,设企业利润为y 万元.()()104x y f x g x =+-=, 010x ∴≤≤t =,则0t ≤≤则(2210515650444216t t y t t -⎛⎫=+=--+≤≤ ⎪⎝⎭当52t =时,max 65416y =≈, 此时2510 3.754x =-= 所以当A 产品投入3.75万元,B 产品投入6.25万元,企业获得最大利润为4万元. 【点睛】本题考查函数的应用,在已知函数模型时直接设出函数表达式,代入已知条件可得函数解析式.22.(1) 1a = (2) [)4,+∞ 【解析】 【分析】(1)根据函数()f x 是R 上的奇函数,得到()00f = ,即可求得a 的值;(2)由(1)可得函数()g x 的解析式,分别求得函数()f x 和()g x 的单调性与最值,进而得出关于t 的不等式,即可求解. 【详解】(1)因为())2log f x x =是R 上的奇函数,所以()00f = ,即log 0=,解得1a =. (2)由(1)可得())2log f x x =,()212121x t g x t x x t -++⎧=--=⎨+-⎩ 1,21,2x x ≥< .因为奇函数()()22221log 1log 1f x x x x x =+-=++,所以()f x 在3,24⎡⎤-⎢⎥⎣⎦上是减函数,则()f x 在3,24⎡⎤-⎢⎥⎣⎦上的最大值为22333log 11444M f ⎛⎫⎛⎫⎛⎫⎛⎫⎪=-=-+--= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,因为()2121x t g x x t -++⎧=⎨+-⎩ 1,21,2x x ≥<,所以()g x 在31,42⎡⎫-⎪⎢⎣⎭上是增函数,在1,22⎡⎤⎢⎥⎣⎦上是减函数,则()g x 的最小值为34g ⎛⎫- ⎪⎝⎭和()2g 中的较小的一个. 因为33521442g t t ⎛⎫⎛⎫-=⨯-+-=- ⎪ ⎪⎝⎭⎝⎭,()22213g t t =-⨯++=-, 所以()()min 23g x g t ==-,因为对任意的3,24x ⎡⎤∈-⎢⎥⎣⎦,()M g x ≤恒成立,所以13t ≤-, 解得4t ≥.故t 的取值范围为[)4,+∞. 【点睛】本题主要考查了函数的基本性质的综合应用,以及恒成立问题的求解,其中解答中熟记函数的基本性质,合理应用奇偶性、单调性和最值列出相应的方程或不等式是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 23.(1);(2)甲大棚128万元,乙大棚72万元时,总收益最大, 且最大收益为282万元.【解析】试题分析:(1)当甲大棚投入50万元,则乙大棚投入150万元,此时直接计算1(50)804250150120277.54f =+⨯+⨯+=即可;(2)列出总收益的函数式得1()422504f x x x =-++,令,换元将函数转换为关于t 的二次函数,由二次函数知识可求其最大值及相应的x 值.试题解析: (1)∵甲大棚投入50万元,则乙大棚投入150万元, ∴1(50)804250150120277.54f =+⨯⨯+=(2),依题得,即,故.令,则,当时,即时,,∴甲大棚投入128万元,乙大棚投入72万元时,总收益最大,且最大收益为282万元. 考点:1.函数建模;2.二次函数. 24.(1)1a =(2)见解析(3)1,2⎛⎫-∞ ⎪⎝⎭【解析】试题分析:(1)由()f x 为奇函数可知,()()f x f x -=--,即可得解;(2)由21xy =+递增可知()11221x f x =-++在R 上为减函数,对于任意实数12,x x ,不妨设12x x <,化简()()12f x f x -判断正负即可证得; (3)不等式()()222120f m m f m mt -+++-≤,等价于()()22212f m m f m mt -++≤-+,即22212m m mmt -++≥-+,原问题转化为121t m m ≤-++在()1,2m ∈上有解,求解11y m m=-++的最大值即可. 试题解析解:(1)由()f x 为奇函数可知,()()f x f x -=--,解得1a =.(2)由21xy =+递增可知()11221x f x =-++在R 上为减函数, 证明:对于任意实数12,x x ,不妨设12x x <,()()()()21121212112221212121x x x x x x f x f x --=-=++++∵2xy =递增,且12x x <,∴1222x x <,∴()()120f x f x ->,∴()()12f x f x >,故()f x 在R 上为减函数.(3)关于m 的不等式()()222120f m m f m mt -+++-≤, 等价于()()22212f m m f mmt -++≤-+,即22212m m mmt -++≥-+,因为()1,2m ∈,所以121t m m≤-++, 原问题转化为121t m m≤-++在()1,2m ∈上有解, ∵11y m m=-++在区间()1,2上为减函数, ∴11y m m =-++,()1,2m ∈的值域为1,12⎛⎫- ⎪⎝⎭, ∴21t <,解得12t <, ∴t 的取值范围是1,2⎛⎫-∞ ⎪⎝⎭. 点晴:本题属于对函数单调性应用的考察,若函数()f x 在区间上单调递增,则()()1212,,x x D f x f x ∈>且时,有12x x >,事实上,若12x x ≤,则()()12f x f x ≤,这与()()12f x f x >矛盾,类似地,若()f x 在区间上单调递减,则当()()1212,,x x D f x f x ∈>且时有12x x <;据此可以解不等式,由函数值的大小,根据单调性就可以得自变量的大小关系.本题中可以利用对称性数形结合即可.25.(1) ()4,B =+∞(),2A =-∞;(2) m 的取值范围是()-3∞,. 【解析】试题分析:(1)由题意,根据指数幂的运算性质,可得(),2A =-∞,根据函数()lg 4y x =- 可解得4x >,得到集合B ;(2)由(1)可得()()(),24,A B =-∞+∞U U ,根据()C A B ⊆⋃,再分C =∅和C ≠∅两种情况分类讨论,即可求得实数m 的取值范围.试题解析: (1)∵x 222<∴()A ,2∞=-又∵()y lg x 4=-可知x 4> ∴()B 4,∞=+(2)∵()()()A B ,24,∞∞⋃=-⋃+,又∵()C A B ⊆⋃ (i )若C ∅=,即1m m 1->-, 解得m 1<,满足:()C A B ⊆⋃ ∴m 1<符合条件(ii )若C ∅≠,即m m 1-≤-, 解得m 1≥,要保证:()C A B ⊆⋃1m 4->或m 12-<,解得m 3<-(舍)或m 12-<解得[)m 1,3∈,综上:m 的取值范围是()-3∞,. 26.(1)900,030,120010,3075,x x N y x x x N ++<≤∈⎧=⎨-<≤∈⎩;(2)当人数为60时,旅行社可获最大利润. 【解析】 【分析】(1)当030x <≤时,900y =;当3075x <≤,用900减去优惠费用,求得y 的表达.由此求得每人需交费用y 关于人数x 的分段函数解析式.(2)用收取的总费用,减去15000,求得旅行社获得利润的分段函数表达式,利用一次函数和二次函数最值的求法,求得当人数为60时,旅行社可获得最大利润. 【详解】(1)当030x <≤时,900y =;当3075x <≤,90010(30)120010y x x =--=-即900,030,120010,3075,x x N y x x x N ++<≤∈⎧=⎨-<≤∈⎩; (2)设旅行社所获利润为S 元,则 当030x <≤时,90015000S x =-;当3075x <≤时,2(120010)1500010120015000S x x x x =--=-+- 即290015000,030,10120015000,3075,x x x N S x x x x N ++-<≤∈⎧=⎨-+-<≤∈⎩Q 当030x <≤时,900 15000S x =-为增函数30x ∴=时,max 12000S =,当3075x <≤时,210(60)21000S x =--+,60x =,max 2100012000S =>.∴当人数为60时,旅行社可获最大利润.【点睛】本小题主要考查分段函数模型在实际生活中的运用,考查一次函数、二次函数的值域的求法,属于中档题.。

2020-2021高中必修一数学上期中一模试卷(及答案)(2)

2020-2021高中必修一数学上期中一模试卷(及答案)(2)

2020-2021高中必修一数学上期中一模试卷(及答案)(2)一、选择题1.函数()2312x f x x -⎛⎫=- ⎪⎝⎭的零点所在的区间为( )A .()0,1B .()1,2C .()2,3D .()3,42.已知(31)4,1()log ,1aa x a x f x x x -+<⎧=⎨≥⎩是(,)-∞+∞上的减函数,那么a 的取值范围是( ) A .(0,1)B .1(0,)3C .11[,)73D .1[,1)73.对于实数x ,规定[]x 表示不大于x 的最大整数,那么不等式[][]2436450x x -+<成立的x 的取值范围是( ) A .315,22⎛⎫⎪⎝⎭B .[]28,C .[)2,8D .[]2,74.函数()sin lg f x x x =-的零点个数为( ) A .0B .1C .2D .35.已知全集U =R ,集合A ={x |x 2-x -6≤0},B ={x |14x x +->0},那么集合A ∩(∁U B )=( )A .{x |-2≤x <4}B .{x |x ≤3或x ≥4}C .{x |-2≤x <-1}D .{x |-1≤x ≤3}6.已知定义在R 上的函数()f x 是奇函数且满足,3()(2)32f x f x f ⎛⎫-=-=-⎪⎝⎭,,数列{}n a 满足11a =-,且2n n S a n =+,(其中n S 为{}n a 的前n 项和).则()()56f a f a +=() A .3B .2-C .3-D .27.已知函数e 0()ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)8.已知定义在R 上的函数()21()x mf x m -=-为实数为偶函数,记0.5(log 3),a f =2b (log 5),c (2)f f m ==,则,,a b c ,的大小关系为( )A .a b c <<B .c a b <<C .a c b <<D .c b a <<9.设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B =I ( )A .3(3,)2--B .3(3,)2-C .3(1,)2D .3(,3)210.三个数0.377,0.3,ln 0.3a b c ===大小的顺序是( ) A .a c b >>B .a b c >>C .b a c >>D .c a b >>11.已知()()2,11,1x x f x f x x ⎧<⎪=⎨-≥⎪⎩,则()2log 7f =( )A .7B .72C .74D .7812.函数2xy x =⋅的图象是( )A .B .C .D .二、填空题13.下列各式: (1)122[(2)]2--= (2)已知2log 13a〈 ,则23a 〉 . (3)函数2xy =的图象与函数2x y -=-的图象关于原点对称;(4)函数()f x 21mx mx ++的定义域是R ,则m 的取值范围是04m <≤;(5)函数2ln()y x x =-+的递增区间为1,2⎛⎤-∞ ⎥⎝⎦.正确的...有________.(把你认为正确的序号全部写上) 14.已知函数()(0,1)x f x a b a a =+>≠的定义域和值域都是[]1,0-,则a b += . 15.已知函数2()121()f x ax x ax a R =+++-∈的最小值为0,则实数a =_________.16.设函数10()20xx x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是____________.17.设函数21()ln(1||)1f x x x=+-+,则使得()(21)f x f x >-成立的x 的取值范围是_____.18.己知函数()f x 是定义在R 上的周期为2的奇函数,01x <<时,()4xf x =,5()(2019)2f f -+的值是____.19.已知函数()f x 是定义在 R 上的奇函数,且当0x >时,()21xf x =-,则()()1f f -的值为______.20.已知()21f x x -=,则()f x = ____.三、解答题21.设函数()(0.af x x x x=+≠且x ,)a R ∈. (1)判断()f x 的奇偶性,并用定义证明; (2)若不等式()12262xx x f <-++在[]0,2上恒成立,试求实数a 的取值范围; (3)()11,0,12x g x x x -⎡⎤=∈⎢⎥+⎣⎦的值域为.A 函数()f x 在x A ∈上的最大值为M ,最小值为m ,若2m M >成立,求正数a 的取值范围. 22.设()4f x x x=-(1)讨论()f x 的奇偶性;(2)判断函数()f x 在()0,∞+上的单调性并用定义证明. 23.已知3a ≥,函数F (x )=min{2|x −1|,x 2−2ax+4a−2},其中min{p ,q}={,.p p q q p q ,,≤>(Ⅰ)求使得等式F (x )=x 2−2ax+4a−2成立的x 的取值范围; (Ⅱ)(ⅰ)求F (x )的最小值m (a );(ⅱ)求F (x )在区间[0,6]上的最大值M (a ).24.设函数()()()22log 4log 2f x x x =⋅的定义域为1,44⎡⎤⎢⎥⎣⎦.(1)若2log t x =,求t 的取值范围;(2)求()y f x =的最大值与最小值,并求出最值时对应的x 的值.25.已知函数()f x A ,函数()0(11)2xg x x ⎫-⎛=⎪⎭≤ ≤⎝的值域为集合B . (1)求A B I ;(2)若集合{}21C x a x a =≤≤-,且C B B =U ,求实数a 的取值范围.26.已知函数()f x 的定义域是(0,)+∞,且满足()()()f xy f x f y =+,1()12f =,如果对于0x y <<,都有()()f x f y >. (1)求()1f 的值;(2)解不等式()(3)2f x f x -+-≥-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】判断函数()2312x f x x -⎛⎫=- ⎪⎝⎭单调递增,求出f (0)=-4,f (1)=-1,f (2)=3>0,即可判断. 【详解】∵函数()2312x f x x -⎛⎫=- ⎪⎝⎭单调递增,∴f(0)=-4,f (1)=-1,f (2)=7>0,根据零点的存在性定理可得出零点所在的区间是()1,2, 故选B .本题考查了函数的单调性,零点的存在性定理的运用,属于容易题.2.C解析:C 【解析】 【分析】要使函数()f x 在(,)-∞+∞上为减函数,则要求①当1x <,()(31)4f x a x a =-+在区间(,1)-∞为减函数,②当1x ≥时,()log a f x x =在区间[1,)+∞为减函数,③当1x =时,(31)14log 1a a a -⨯+≥,综上①②③解方程即可.【详解】令()(31)4g x a x =-+,()log a h x x =.要使函数()f x 在(,)-∞+∞上为减函数,则有()(31)4g x a x =-+在区间(,1)-∞上为减函数,()log a h x x =在区间[1,)+∞上为减函数且(1)(1)g h ≥,∴31001(1)(31)14log 1(1)a a a g a a h -<⎧⎪<<⎨⎪=-⨯+≥=⎩,解得1173a ≤<. 故选:C. 【点睛】考查分段函数求参数的问题.其中一次函数y ax b =+,当0a <时,函数y ax b =+在R 上为减函数,对数函数log ,(0)a y x x =>,当01a <<时,对数函数log ay x =在区间(0,)+∞上为减函数.3.C解析:C 【解析】 【分析】 【详解】分析:先解一元二次不等式得315[]22x <<,再根据[]x 定义求结果. 详解:因为[][]2436450x x -+<,所以315[]22x << 因为[][]2436450x x -+<,所以28x ≤<, 选C.点睛:本题考查一元二次不等式解法以及取整定义的理解,考查基本求解能力.4.D解析:D 【解析】画出函数图像,根据函数图像得到答案. 【详解】如图所示:画出函数sin y x =和lg y x =的图像,共有3个交点. 当10x >时,lg 1sin x x >≥,故不存在交点. 故选:D .【点睛】本题考查了函数的零点问题,画出函数图像是解题的关键.5.D解析:D 【解析】依题意A ={x |-2≤x ≤3},B ={x |x <-1或x >4},故∁U B ={x |-1≤x ≤4},故A ∩(∁U B )={x |-1≤x ≤3},故选D.6.A解析:A 【解析】 由奇函数满足()32f x f x ⎛⎫-=⎪⎝⎭可知该函数是周期为3T =的奇函数, 由递推关系可得:112,21n n n n S a n S a n +-=+=+-, 两式做差有:1221n n n a a a -=--,即()()1121n n a a --=-, 即数列{}1n a -构成首项为112a -=-,公比为2q =的等比数列, 故:()1122,21n n n n a a --=-⨯∴=-+,综上有:()()()()()552131223f a f f f f =-+=-==--=,()()()()66216300f a f f f =-+=-==,则:()()563f a f a +=. 本题选择A 选项.7.C解析:C分析:首先根据g (x )存在2个零点,得到方程()0f x x a ++=有两个解,将其转化为()f x x a =--有两个解,即直线y x a =--与曲线()y f x =有两个交点,根据题中所给的函数解析式,画出函数()f x 的图像(将(0)xe x >去掉),再画出直线y x =-,并将其上下移动,从图中可以发现,当1a -≤时,满足y x a =--与曲线()y f x =有两个交点,从而求得结果.详解:画出函数()f x 的图像,xy e =在y 轴右侧的去掉,再画出直线y x =-,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点, 即方程()f x x a =--有两个解, 也就是函数()g x 有两个零点, 此时满足1a -≤,即1a ≥-,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.8.B解析:B 【解析】由()f x 为偶函数得0m =,所以0,52log 3log 32121312,a =-=-=-=2log 521514b =-=-=,0210c =-=,所以c a b <<,故选B.考点:本题主要考查函数奇偶性及对数运算.9.D解析:D 【解析】试题分析:集合()(){}{}|130|13A x x x x x =--<=<<,集合,所以3|32A B x x ⎧⎫⋂=<<⎨⎬⎩⎭,故选D.考点:1、一元二次不等式;2、集合的运算.10.B解析:B 【解析】试题分析:根据指数函数和对数函数的单调性知:0.30771a =>=,即1a >;7000.30.31b <=<=,即01b <<;ln0.3ln10c =<=,即0c <;所以a b c >>,故正确答案为选项B .考点:指数函数和对数函数的单调性;间接比较法.11.C解析:C 【解析】 【分析】根据函数的周期性以及分段函数的表达式,结合对数的运算法则,代入即可得到结论. 【详解】2222log 4log 7log 83=<<=Q ,20log 721∴<-<,()()2log 72227log 7log 7224f f -∴=-==. 故选:C . 【点睛】本题主要考查函数值的计算,根据分段函数的表达式以及函数的周期性进行转化是解决本题的关键.12.A解析:A 【解析】 【分析】先根据奇偶性舍去C,D,再根据函数值确定选A. 【详解】因为2xy x =⋅为奇函数,所以舍去C,D; 因为0x >时0y >,所以舍去B ,选A. 【点睛】有关函数图象识别问题的常见题型及解题思路(1)由解析式确定函数图象的判断技巧:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.(2)由实际情景探究函数图象.关键是将问题转化为熟悉的数学问题求解,要注意实际问题中的定义域问题.二、填空题13.(3)【解析】(1)所以错误;(2)当时恒成立;当时综上或所以错误;(3)函数上任取一点则点落在函数上所以两个函数关于原点对称正确;(4)定义域为当时成立;当时得综上所以错误;(5)定义域为由复合函解析:(3) 【解析】 (1)(1122212---⎛⎫⎡⎤== ⎪⎢⎥⎣⎦⎝⎭,所以错误;(2)2log 1log 3aa a <=,当1a >时,恒成立;当01a <<时,023a <<,综上,023a <<或1a >,所以错误; (3)函数2xy =上任取一点(),x y ,则点(),x y --落在函数2x y -=-上,所以两个函数关于原点对称,正确;(4)定义域为R ,当0m =时,成立;当0m >时,240m m ∆=-≤,得04m <≤,综上,04m ≤≤,所以错误;(5)定义域为()0,1,由复合函数的单调性性质可知,所求增区间为10,2⎛⎫ ⎪⎝⎭,所以错误; 所以正确的有(3)。

2020-2021高一数学上期中一模试题(附答案)(1)

2020-2021高一数学上期中一模试题(附答案)(1)

2020-2021高一数学上期中一模试题(附答案)(1)一、选择题1.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A CB ⊆⊆的集合C 的个数为( )A .1B .2C .3D .4 2.f (x)=-x 2+4x +a ,x∈[0,1],若f (x)有最小值-2,则f (x)的最大值( ) A .-1B .0C .1D .23.三个数0.32,20.3,0.32log 的大小关系为( ).A .20.30.3log 20.32<<B .0.320.3log 220.3<<C .20.30.30.3log 22<< D .20.30.30.32log 2<<4.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④ B .②④ C .①④ D .①③5.1()xf x e x=-的零点所在的区间是( ) A .1(0,)2B .1(,1)2C .3(1,)2D .3(,2)26.设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,7.如图,U 为全集,M 、P 、S 是U 的三个子集,则阴影部分所表示的集合是( )A .()M P S ⋂⋂B .()M P S ⋂⋃C .()()U M P S ⋂⋂ðD .()()U M P S ⋂⋃ð8.函数f(x)=23x x +的零点所在的一个区间是 A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)9.已知()lg(10)lg(10)f x x x =++-,则()f x 是( ) A .偶函数,且在(0,10)是增函数B .奇函数,且在(0,10)是增函数C .偶函数,且在(0,10)是减函数D .奇函数,且在(0,10)是减函数10.设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则( )A .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11.函数()(1)f x x x =-在[,]m n 上的最小值为14-,最大值为2,则n m -的最大值为( ) A .52B .522+C .32D .212.函数2xy x =⋅的图象是( )A .B .C .D .二、填空题13.幂函数y=x α,当α取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y=x α,y=x β的图像三等分,即有BM=MN=NA ,那么,αβ等于_____.14.已知函数()f x 是定义在 R 上的奇函数,且当0x >时,()21xf x =-,则()()1f f -的值为______.15.已知f (x )是定义在R 上的偶函数,且f (x +4)=f (x -2).若当x ∈[-3,0]时,f (x )=6-x ,则f (919)=________. 16.函数的定义域为______________.17.关于下列命题:①若函数2xy =的定义域是{|0}x x ≤,则它的值域是{|1}y y ≤;② 若函数1y x =的定义域是{|2}x x >,则它的值域是1|2y y ⎧⎫≤⎨⎬⎩⎭; ③若函数2y x =的值域是{|04}y y ≤≤,则它的定义域一定是{|22}x x -≤≤;④若函数2log y x =的值域是{|3}y y ≤,则它的定义域是{|08}x x <≤.其中不正确的命题的序号是_____________( 注:把你认为不正确的命题的序号都填上).18.定义在[3,3]-上的奇函数()f x ,已知当[0,3]x ∈时,()34()x xf x a a R =+⋅∈,则()f x 在[3,0]-上的解析式为______.19.已知函数42()(0)f x x ax bx c c =+++<,若函数是偶函数,且4((0))f f c c =+,则函数()f x 的零点共有________个. 20.已知函数())2ln11f x x x =++,()4f a =,则()f a -=________.三、解答题21.已知二次函数()f x 满足(1)()2f x f x x +-=(x ∈R ),且(0)1f =. (1)求()f x 的解析式;(2)若函数()()2g x f x tx =-在区间[1,5]-上是单调函数,求实数t 的取值范围; (3)若关于x 的方程()f x x m =+有区间(1,2)-上有一个零点,求实数m 的取值范围. 22.如图所示,某街道居委会拟在EF 地段的居民楼正南方向的空白地段AE 上建一个活动中心,其中30AE =米.活动中心东西走向,与居民楼平行. 从东向西看活动中心的截面图的下部分是长方形ABCD ,上部分是以DC 为直径的半圆. 为了保证居民楼住户的采光要求,活动中心在与半圆相切的太阳光线照射下落在居民楼上的影长GE 不超过2.5米,其中该太阳光线与水平线的夹角θ满足3tan 4θ=.(1)若设计18AB =米,6AD =米,问能否保证上述采光要求?(2)在保证上述采光要求的前提下,如何设计AB 与AD 的长度,可使得活动中心的截面面积最大?(注:计算中π取3)23.某企业生产A ,B 两种产品,根据市场调查与预测,A 产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2,(注:利润与投资单位:万元)(1)分别将A ,B 两种产品的利润表示为投资的函数关系,并写出它们的函数关系式; (2)该企业已筹集到10万元资金,全部投入到A ,B 两种产品的生产,怎样分配资金,才能使企业获得最大利润,其最大利润约为多少万元(精确到1万元).24.已知函数()f x 是定义R 的奇函数,当0x >时,2()2f x x x =-.(1)求函数()f x 的解析式;(2)画出函数()f x 的简图(不需要作图步骤),并求其单调递增区间 (3)当[]1,1x ∈-时,求关于m 的不等式2(1)(1)0f m f m -+-< 的解集. 25.已知函数()22f x ax ax b =-+()0a >在[]2,3上的值域为[]1,4.(1)求a ,b 的值; (2)设函数()()f xg x x=,若存在[]2,4x ∈,使得不等式()22log 2log 0g x k x -≥成立,求k 的取值范围.26.已知函数24,02()(2)2,2x x f x x x a x a x ⎧-<≤⎪=⎨⎪-++->⎩,其中a 为实数.(1)若函数()f x 为定义域上的单调函数,求a 的取值范围.(2)若7a <,满足不等式()0f x a ->成立的正整数解有且仅有一个,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义, 集合C 必须含有元素1,2,且可能含有元素3,4, 原题即求集合{}3,4的子集个数,即有224=个,故选D. 【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.2.C解析:C【解析】因为对称轴2[0,1]x =∉,所以min max ()(0)2()(1)31f x f a f x f a ===-∴==+= 选C.3.A解析:A 【解析】 【分析】利用指数函数与对数函数的单调性即可得出. 【详解】∵0<0.32<1,20.3>1,log 0.32<0, ∴20.3>0.32>log 0.32. 故选A . 【点睛】本题考查了指数函数与对数函数的单调性,属于基础题.4.C解析:C 【解析】 【分析】化简函数()sin sin f x x x =+,研究它的性质从而得出正确答案. 【详解】()()()()sin sin sin sin ,f x x x x x f x f x -=-+-=+=∴Q 为偶函数,故①正确.当2x ππ<<时,()2sin f x x =,它在区间,2π⎛⎫π ⎪⎝⎭单调递减,故②错误.当0x π≤≤时,()2sin f x x =,它有两个零点:0,π;当0x π-≤<时,()()sin sin 2sin f x x x x =--=-,它有一个零点:π-,故()f x 在[],-ππ有3个零点:0-π,,π,故③错误.当[]()2,2x k k k *∈ππ+π∈N时,()2sin f x x =;当[]()2,22x k k k *∈π+ππ+π∈N 时,()sin sin 0f x x x =-=,又()f x 为偶函数,()f x ∴的最大值为2,故④正确.综上所述,①④ 正确,故选C .【点睛】画出函数()sin sin f x x x =+的图象,由图象可得①④正确,故选C .5.B解析:B 【解析】 函数f (x )=e x ﹣1x 是(0,+∞)上的增函数,再根据f (12)=e ﹣2<0,f (1)=e ﹣1>0,可得f (12)f (1)<0,∴函数f (x )=e x ﹣1x 的零点所在的区间是(12,1),故选B .点睛:判定函数的零点所在区间,只需计算区间端点处的函数值,并判断是否异号,只要异号,则区间内至少有一个零点存在.6.D解析:D 【解析】分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果.详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .点睛:该题考查的是有关通过函数值的大小来推断自变量的大小关系,从而求得相关的参数的值的问题,在求解的过程中,需要利用函数解析式画出函数图像,从而得到要出现函数值的大小,绝对不是常函数,从而确定出自变量的所处的位置,结合函数值的大小,确定出自变量的大小,从而得到其等价的不等式组,从而求得结果.7.C解析:C 【解析】 【分析】先根据图中的阴影部分是M∩P 的子集,但不属于集合S ,属于集合S 的补集,然后用关系式表示出来即可. 【详解】图中的阴影部分是: M∩P 的子集,不属于集合S ,属于集合S 的补集,即是C U S 的子集则阴影部分所表示的集合是(M∩P )∩(∁U S). 故选C . 【点睛】本题主要考查了Venn 图表达集合的关系及运算,同时考查了识图能力,属于基础题.8.B解析:B 【解析】试题分析:因为函数f(x)=2x +3x 在其定义域内是递增的,那么根据f(-1)=153022-=-<,f (0)=1+0=1>0,那么函数的零点存在性定理可知,函数的零点的区间为(-1,0),选B . 考点:本试题主要考查了函数零点的问题的运用.点评:解决该试题的关键是利用零点存在性定理,根据区间端点值的乘积小于零,得到函数的零点的区间.9.C解析:C 【解析】 【分析】先判断函数的定义域关于原点对称,再由奇偶性的定义判断奇偶性,根据复合函数的单调判断其单调性,从而可得结论. 【详解】由100100x x +>⎧⎨->⎩,得(10,10)x ∈-, 故函数()f x 的定义域为()10,10-,关于原点对称,又()()lg 10lg(10)()f x x x f x -=-++=,故函数()f x 为偶函数, 而()()2lg(10)lg(10)lg 100f x x x x=++-=-,因为函数2100y x =-在()0,10上单调递减,lg y x =在()0,∞+上单调递增, 故函数()f x 在()0,10上单调递减,故选C. 【点睛】本题主要考查函数的奇偶性与单调性,属于中档题. 判断函数的奇偶性首先要看函数的定义域是否关于原点对称,如果不对称,既不是奇函数又不是偶函数,如果对称常见方法有:(1)直接法, ()()f x f x -=±(正为偶函数,负为减函数);(2)和差法,()()0f x f x -±=(和为零奇函数,差为零偶函数);(3)作商法,()()1f x f x -=±(1 为偶函数,1- 为奇函数) .10.C解析:C 【解析】 【分析】由已知函数为偶函数,把233231log ,2,24f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,转化为同一个单调区间上,再比较大小. 【详解】()f x Q 是R 的偶函数,()331log log 44f f ⎛⎫∴= ⎪⎝⎭.223303322333log 4log 31,1222,log 422---->==>>∴>>Q ,又()f x 在(0,+∞)单调递减,∴()23323log 422f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,23323122log 4f f f --⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C .【点睛】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值.11.B解析:B 【解析】 【分析】根据二次函数的图象和性质,求出最大值和最小值对应的x 的取值,然后利用数形结合即可得到结论. 【详解】当x≥0时,f (x )=x (|x|﹣1)=x 2﹣x=(x ﹣12)2﹣1144≥-, 当x <0时,f (x )=x (|x|﹣1)=﹣x 2﹣x=﹣(x+12)2+14, 作出函数f (x )的图象如图:当x≥0时,由f (x )=x 2﹣x=2,解得x=2. 当x=12时,f (12)=14-. 当x <0时,由f (x )=)=﹣x 2﹣x=14-.即4x 2+4x ﹣1=0,解得x=24444432-±+⨯-±==4421282-±-±=, ∴此时x=122--, ∵[m,n]上的最小值为14-,最大值为2, ∴n=2,12122m --≤≤, ∴n﹣m 的最大值为2﹣12--=522+, 故选:B .【点睛】本题主要考查函数最值的应用,利用二次函数的图象和性质是解决本题的关键,利用数形结合是解决本题的基本数学思想.12.A解析:A 【解析】 【分析】先根据奇偶性舍去C,D,再根据函数值确定选A. 【详解】因为2xy x =⋅为奇函数,所以舍去C,D; 因为0x >时0y >,所以舍去B ,选A. 【点睛】有关函数图象识别问题的常见题型及解题思路(1)由解析式确定函数图象的判断技巧:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.(2)由实际情景探究函数图象.关键是将问题转化为熟悉的数学问题求解,要注意实际问题中的定义域问题.二、填空题13.【解析】【分析】由条件得MN 则结合对数的运算法则可得αβ=1【详解】由条件得MN 可得即α=loβ=lo 所以αβ=lo·lo=1【点睛】本题主要考查幂函数的性质对数的运算法则及其应用等知识意在考查学生解析:【解析】 【分析】由条件,得M 12,33⎛⎫ ⎪⎝⎭,N 21,33⎛⎫ ⎪⎝⎭,则1221,3333αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,结合对数的运算法则可得αβ=1.【详解】 由条件,得M 12,33⎛⎫ ⎪⎝⎭,N 21,33⎛⎫⎪⎝⎭, 可得1221,3333αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,即α=lo 2313g ,β=lo 1323g . 所以αβ=lo 2313g ·lo 1312233·21333lglg g lg lg ==1. 【点睛】本题主要考查幂函数的性质,对数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.14.【解析】由题意可得: 解析:1-【解析】由题意可得:()()()()()111,111f f ff f -=-=--=-=-15.6【解析】【分析】先求函数周期再根据周期以及偶函数性质化简再代入求值【详解】由f(x+4)=f(x-2)可知是周期函数且所以【点睛】本题考查函数周期及其应用考查基本求解能力解析:6 【解析】 【分析】先求函数周期,再根据周期以及偶函数性质化简()()9191f f =-,再代入求值. 【详解】由f (x +4)=f (x -2)可知,()f x 是周期函数,且6T =,所以()()()919615311f f f =⨯+=()16f =-=.【点睛】本题考查函数周期及其应用,考查基本求解能力.16.-11【解析】【分析】根据定义域基本要求可得不等式组解不等式组取交集得到结果【详解】由题意得:1-x2≥02cosx -1>0⇒-1≤x≤1cosx>12cosx>12⇒x ∈-π3+2kππ3+2kπ 解析:【解析】 【分析】根据定义域基本要求可得不等式组,解不等式组取交集得到结果. 【详解】 由题意得:,函数定义域为:【点睛】本题考查具体函数定义域的求解问题,关键是根据定义域的基本要求得到不等式组.17.①②③【解析】【分析】通过定义域和值域的相关定义及函数的增减性即可判断①②③④的正误【详解】对于①当时故①不正确;对于②当时则故②不正确;对于③当时也可能故③不正确;对于④即则故④正确【点睛】本题主解析:①②③ 【解析】 【分析】通过定义域和值域的相关定义,及函数的增减性即可判断①②③④的正误. 【详解】对于①,当0x ≤时,01y <≤,故①不正确;对于②,当2x >时,则1102x <<,故②不正确;对于③,当04y ≤≤时,也可能02x ≤≤,故③不正确;对于④,即2log 3x ≤,则08x <≤,故④正确.【点睛】本题主要考查定义域和值域的相关计算,利用函数的性质解不等式是解决本题的关键,意在考查学生的计算能力.18.f (x )=4﹣x ﹣3﹣x 【解析】【分析】先根据计算再设代入函数利用函数的奇偶性得到答案【详解】定义在﹣33上的奇函数f (x )已知当x ∈03时f (x )=3x+a4x (a ∈R )当x =0时f (0)=0解得解析:f (x )=4﹣x ﹣3﹣x【解析】 【分析】先根据()00f =计算1a =-,再设30x ≤≤﹣ ,代入函数利用函数的奇偶性得到答案. 【详解】定义在[﹣3,3]上的奇函数f (x ),已知当x ∈[0,3]时,f (x )=3x +a 4x (a ∈R ), 当x =0时,f (0)=0,解得1+a =0,所以a =﹣1. 故当x ∈[0,3]时,f (x )=3x ﹣4x .当﹣3≤x ≤0时,0≤﹣x ≤3,所以f (﹣x )=3﹣x ﹣4﹣x ,由于函数为奇函数,故f (﹣x )=﹣f (x ),所以f (x )=4﹣x ﹣3﹣x .故答案为:f (x )=4﹣x ﹣3﹣x【点睛】本题考查了利用函数的奇偶性求函数解析式,属于常考题型.19.2【解析】因为是偶函数则解得又所以故令所以故有2个零点点睛:本题涉及函数零点方程图像等概念和知识综合性较强属于中档题一般讨论函数零点个数问题都要转化为方程根的个数问题或两个函数图像交点的个数问题本题解析:2 【解析】因为()42(0)f x x ax bx c c =+++<是偶函数,则()()f x f x -=,解得0b =,又()()4240()f f f c c ac c c c ==++=+,所以0a =,故4()f x x c =+,令4()0f x x c =+=,40x c =->,所以x =2个零点.点睛:本题涉及函数零点,方程,图像等概念和知识,综合性较强,属于中档题.一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑方程来解决,转化为方程根的个数,同时注意偶函数性质在本题中的应用.20.【解析】【分析】发现计算可得结果【详解】因为且则故答案为-2【点睛】本题主要考查函数的性质由函数解析式计算发现是关键属于中档题 解析:2-【解析】 【分析】发现()()f x f x 2+-=,计算可得结果. 【详解】因为()()))()22f x f x lnx 1lnx 1ln 122x x +-=+++=+-+=,()()f a f a 2∴+-=,且()f a 4=,则()f a 2-=-.故答案为-2【点睛】本题主要考查函数的性质,由函数解析式,计算发现()()f x f x 2+-=是关键,属于中档题.三、解答题21.(1)2()1f x x x =-+;(2)39,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭;(3){}0[1,4)⋃.【解析】试题分析:(1)设2()f x ax bx c =++(0a ≠)代入(1)()2f x f x x +-=得22ax a b x ++=对于x ∈R 恒成立,列出方程,求得,,a b c 的值,即可求解函数的解析式;(2)由()g x ,根据函数()g x 在[1,5]-上是单调函数,列出不等式组,即可求解实数t 的取值范围;(3)由方程()f x x m =+得2210x x m -+-=,令2()21h x x x m =-+-,即要求函数()h x 在(1,2)-上有唯一的零点,分类讨论即可求解实数m 的取值范围.试题解析:(1)设2()f x ax bx c =++(0a ≠)代入(1)()2f x f x x +-=得22ax a b x ++=对于x ∈R 恒成立,故22a ab =⎧⎨+=⎩, 又由(0)1f =得1c =,解得1a =,1b =-,1c =,所以2()1f x x x =-+;(2)因为22221(21)()()2(21)1124t t g x f x tx x t x ++⎛⎫=-=-++=-+-⎪⎝⎭, 又函数()g x 在[1,5]-上是单调函数,故2111t +≤-或2151t +≥, 解得32t ≤-或92t ≥,故实数t 的取值范围是39,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭; (3)由方程()f x x m =+得2210x x m -+-=,令2()21h x x x m =-+-,(1,2)x ∈-,即要求函数()h x 在(1,2)-上有唯一的零点, ①(1)0h -=,则4m =,代入原方程得1x =-或3,不合题意;②若(2)0h =,则1m =,代入原方程得0x =或2,满足题意,故1m =成立; ③若0∆=,则0m =,代入原方程得1x =,满足题意,故0m =成立; ④若4m ≠且1m ≠且0m ≠时,由(1)40{(2)10h m h m -=->=-<得14m <<,综上,实数m 的取值范围是{}0[1,4)⋃. 考点:函数的解析式;函数的单调性及其应用. 22.(Ⅰ)能(Ⅱ)20AB =米且5AD =米 【解析】 【分析】(1)以点A 为坐标原点,AB 所在直线为x 轴,建立平面直角坐标系.设太阳光线所在直线方程为y=34x+b ,利用直线与圆相切,求出直线方程,令x=30,得EG=1.5米<2.5米,即可得出结论;(2)欲使活动中心内部空间尽可能大,则影长EG 恰为2.5米,即可求出截面面积最大. 【详解】解:如图,以A 为坐标原点,AB 所在直线为x 轴,建立平面直角坐标系.(1)因为AB =18米,AD =6米, 所以半圆的圆心为H (9,6),半径r =9. 设太阳光线所在直线方程为y =-34x +b , 即3x +4y -4b =02227+24-4b 3+4=9,解得b =24或b =32(舍). 故太阳光线所在直线方程为y =-34x +24, 令x =30,得EG =1.5<2.5. 所以此时能保证上述采光要求. (2)设AD =h 米,AB =2r 米,则半圆的圆心为H (r ,h ),半径为r . 方法一 设太阳光线所在直线方程为y =-34x +b , 即3x +4y -4b =0, 223r+4h-4b 3+4r ,解得b =h +2r 或b =h -r2(舍). 故太阳光线所在直线方程为y =-34x +h +2r , 令x =30,得EG =2r +h -452, 由EG ≤52,得h ≤25-2r .所以S =2rh +12πr 2=2rh +32×r 2≤2r (25-2r )+32×r 2 =-52r 2+50r =-52(r -10)2+250≤250. 当且仅当r =10时取等号. 所以当AB =20米且AD =5米时, 可使得活动中心的截面面积最大. 方法二 欲使活动中心内部空间尽可能大, 则影长EG 恰为2.5米,则此时点G 为(30,2.5), 设过点G 的上述太阳光线为l 1, 则l 1所在直线方程为y -52=-34(x -30), 即3x +4y -100=0.由直线l 1与半圆H 相切,得r =3r+4h-1005.而点H (r ,h )在直线l 1的下方,则3r +4h -100<0, 即r =-3r+4h-1005,从而h =25-2r . 又S =2rh +12πr 2=2r (25-2r )+32×r 2=-52r 2+50r =-52(r -10)2+250≤250.当且仅当r =10时取等号.所以当AB =20米且AD =5米时, 可使得活动中心的截面面积最大. 【点睛】本题考查利用数学知识直线与圆的相切位置关系解决实际问题,考查二次函数配方法的运用和分析解决实际问题的能力,属于中档题.23.(1)A 为()()104f x x x =≥,B 为())0g x x =≥;(2)A 产品投入3.75万元,B 产品投入6.25万元,最大利润为4万元 【解析】 【分析】(1)根据题意给出的函数模型,设()1f x k x =;()g x k =代入图中数据求得12,k k 既得,注意自变量0x ≥;(2)设A 产品投入x 万元,则B 产品投入()10x -万元,设企业利润为y 万元.,列出利润函数为()()104x y f x g x =+-=,用换元法,设t =函数可求得利润的最大值. 【详解】解:(1)设投资为x 万元,A 产品的利润为()f x 万元,B 产品的利润为()g x 万元 由题设知()1f x k x =;()g x k =由图1知()114f =,114k =由图2知()542g =,254k =则()()104f x x x =≥,())0g x x =≥. (2)设A 产品投入x 万元,则B 产品投入()10x -万元,设企业利润为y 万元.()()104x y f x g x =+-=, 010x ∴≤≤t =,则0t ≤≤则(2210515650444216t t y t t -⎛⎫=+=--+≤≤ ⎪⎝⎭当52t =时,max 65416y =≈, 此时2510 3.754x =-= 所以当A 产品投入3.75万元,B 产品投入6.25万元,企业获得最大利润为4万元. 【点睛】本题考查函数的应用,在已知函数模型时直接设出函数表达式,代入已知条件可得函数解析式.24.(1)222,0()2,0x x x f x x x x ⎧-≥=⎨--<⎩;(2)图象见解析,(],1-∞-和 [)1,+∞;(3)[)0,1.【解析】 【分析】(1)由函数的奇偶性可求得函数()f x 的解析式;(2)利用二次函数图像可作法可得函数()f x 的图像及单调增区间;(3)利用函数在[]1,1-为减函数且为奇函数,可得22111111(1)(1)0m m m m -≤-≤⎧⎪-≤-≤⎨⎪-+->⎩,再求解即可.【详解】解:(1)由函数()f x 是定义R 的奇函数,则(0)0f =, 设0x >,则0x ->,因为函数()f x 是定义R 的奇函数, 所以22()()()2)2(f x f x x x x x ⎡⎤=--=---=-⎦--⎣,综上可得:222,0()2,0x x x f x x x x ⎧-≥=⎨--<⎩;(2)函数()f x 的图像如图所示,由图可得函数()f x 单调递增区间为(],1-∞-和[)1,+∞;(3)由(2)可知,函数()f x 在[]1,1-为减函数且为奇函数,当[]1,1x ∈-时,关于m 的不等式2(1)(1)0f m f m -+-<,即2(1)(1)f m f m -<-,则22111111(1)(1)0m m m m -≤-≤⎧⎪-≤-≤⎨⎪-+->⎩,即20202(2)(1)0m m m m ≤≤⎧⎪≤≤⎨⎪+-<⎩, 解得01m ≤<,故关于m 的不等式的解集为[)0,1.【点睛】本题考查了利用函数的奇偶性求函数解析式及利用函数的性质求解不等式,重点考查了数形结合的数学思想方法,属中档题. 25.(1)1,1a b == (2) 1,8⎛⎤-∞ ⎥⎝⎦【解析】 【分析】(1)先求得函数()f x 的对称轴,然后根据函数()f x 在[]2,3上的单调性列方程组,解方程组求得,a b 的值.(2)由(1)求得函数()f x 的解析式,进而求得()g x 的解析式,将不等式()22log 2log 0g x k x -≥分离常数2k ,利用换元法,结合二次函数的性质,求得k 的取值范围. 【详解】(1)由已知可得()()21f x a x b a =-+-,对称轴为1x =.因为0a >,所以()f x 在[]2,3上单调递增, 所以()()21,34,f f ⎧=⎪⎨=⎪⎩即1,44,a b a a b a +-=⎧⎨+-=⎩解得1,1,a b =⎧⎨=⎩(2)由(1)可得()221f x x x =-+,则()()12f x g x x x x==+-. 因为()22log 2log 0g x k x -≥,所以2221log 22log log x k x x+-≥. 又[]2,4x ∈,所以()2221221log log k xx ≤-+. 令21log t x=,则2221k t t ≤-+. 因为[]2,4x ∈,所以1,12x ⎡⎤∈⎢⎥⎣⎦.记()221h t t t =-+,1,12t ⎡⎤∈⎢⎥⎣⎦,所以当12t =时,()max 14h t =,所以124k ≤,解得18k ≤,故k 的取值范围是1,8⎛⎤-∞ ⎥⎝⎦.【点睛】本小题主要考查根据二次函数的对称轴、单调性和值域求解析式,考查存在性问题的求解策略,考查化归与转化的数学思想方法,属于中档题. 26.(1)2a ≤(2)03a ≤< 【解析】 【分析】(1)分析当02x <≤时的单调性,可得2x >的单调性,由二次函数的单调性,可得a 的范围;(2)分别讨论当0a <,当02a ≤≤时,当23a <<时,当37a ≤<,结合函数的单调性和最值,即可得到所求范围. 【详解】(1)由题意,当02x <≤时,4()f x x x=-为减函数, 当2x >时,()()222f x x a x a =-++-,若2a ≤时,()()222f x x a x a =-++-也为减函数,且()()20f x f <=,此时函数()f x 为定义域上的减函数,满足条件;若2a >时,()()222f x x a x a =-++-在22,2a +⎛⎫⎪⎝⎭上单调递增,则不满足条件. 综上所述,2a ≤.(2)由函数的解析式,可得()()13, 20f f ==, 当0a <时,()()20, 13f a f a =>=>,不满足条件;当02a ≤≤时,()f x 为定义域上的减函数,仅有()13f a =>成立,满足条件; 当23a <<时,在02x <≤上,仅有()13f a =>,对于2x >上,()f x 的最大值为22(2)1244a a f a +-⎛⎫=≤< ⎪⎝⎭, 不存在x 满足()0f x a ->,满足条件;当37a ≤<时,在02x <≤上,不存在整数x 满足()0f x a ->,对于2x >上,22(2)(4)123444a a a ----=<-,不存在x 满足()0f x a ->,不满足条件; 综上所述,03a ≤<. 【点睛】本题主要考查了分段函数的运用,以及函数的单调性的判断和不等式有解问题,其中解答中熟练应用函数的单调性,以及把函数的有解问题转化为函数的最值问题是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于中档题.。

石家庄高一数学期中试题及答案

石家庄高一数学期中试题及答案

高一第一学期期中考试数学试卷姓名:_________班级:________ 得分:_______第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={-1,1},B ={x |ax +1=0},若B ⊆A ,则实数a 的所有可能取值的集合为( )A .{-1}B .{1}C .{-1,1}D .{-1,0,1} 2.函数y =1ln (x -1)的定义域为( )A .(1,+∞)B .[1,+∞)C .(1,2)∪(2,+∞)D .(1,2)∪[3,+∞)3.已知f (x )=⎩⎨⎧f (x -5),x ≥0,log 2(-x ),x <0,则f (2 016)等于( )A .-1B .0C .1D .24、若α与β的终边关于x 轴对称,则有( )A .α+β=90°B .α+β=90°+k ·360°,k ∈ZC .α+β=2k ·180°,k ∈ZD .α+β=180°+k ·360°,k ∈Z 5、设y 1=40.9,y 2=80.48,y 3=(12)-1.5,则( ) A .y 3>y 1>y 2 B .y 2>y 1>y 3 C .y 1>y 2>y 3D .y 1>y 3>y 26.在一次数学试验中,运用图形计算器采集到如下一组数据:x -2.0 -1.0 0 1.00 2.00 3.00 y0.240.5112.023.988.02则x ,y 的函数关系与下列哪类函数最接近?(其中a ,b 为待定系数)( ) A .y =a +bx B .y =a +b x C .y =ax 2+bD .y =a +bx7.定义运算a ⊕b =⎩⎨⎧a ,a ≤b ,b ,a >b则函数f (x )=1⊕2x 的图象是( )8、设偶函数f(x)满足f(x)=2x-4(x≥0),则不等式f(x-2)>0的解集为() A.{x|x<-2,或x>4} B.{x|x<0,或x>4}C.{x|x<0,或x>6} D.{x|x<-2,或x>2}9.函数y=log12(x2-kx+3)在[1,2]上的值恒为正数,则k的取值范围是()A.22<k<2 3 B.22<k<7 2C.3<k<72D.3<k<2 310. 已知1+sin xcos x=-12,那么cos xsin x-1的值是()A.12B.-12C.2 D.-211.设m∈R,f(x)=x2-x+a(a>0),且f(m)<0,则f(m+1)的值() A.大于0 B.小于0 C.等于0 D.不确定12、已知函数f(x)=1ln(x+1)-x,则y=f(x)的图象大致为() 第Ⅱ卷(非选择题共90分)二、填空题:本大题4小题,每小题5分,共20分.13.已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},且A∩B=(-1,n),则m+n=________.14 . 函数f(x)=x+2x在区间[0,4]上的最大值M与最小值N的和为__.15.若一系列函数解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,那么函数解析式为y=x2,值域为{1,4}的“同族函数”共有________个.16. 已知f(x)=ax2+bx+3a+b是偶函数,且其定义域为[a-1,2a],则y=f(x)的值域为________.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题10分)已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},若A∪B=A,求实数a的值.18.(本小题满分12分)已知扇形的圆心角是α,半径为R,弧长为l.(1)若α=60°,R=10 cm,求扇形的弧长l.(2)若扇形的周长是20 cm,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?(3)若α=π3,R=2 cm,求扇形的弧所在的弓形的面积.19.(本小题满分12分)已知定义域为R的函数f(x)=-2x+b2x+1+a是奇函数.(1)求a,b的值;(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.20、(本小题满分12分)已知函数f(x)=4x+m·2x+1有且仅有一个零点,求m的取值范围,并求出该零点.21.(本小题满分12分)如图,建立平面直角坐标系xOy,x轴在地平面上,y轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y=kx-120(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.22.(本小题满分12分)设函数f(x)=ka x-a-x(a>0且a≠1)是定义域为R的奇函数.(1)若f(1)>0,试求不等式f(x2+2x)+f(x-4)>0的解集;(2)若f(1)=32,且g(x)=a2x+a-2x-4f(x),求g(x)在[1,+∞)上的最小值.(完)高一数学期中测试卷参考答案1.解析:由题意知集合B 的元素为1或-1或者B 为空集,故a =0或1或-1,选D. 答案:D2. 解析 由ln(x -1)≠0,得x -1>0且x -1≠1.由此解得x >1且x ≠2,即函数y =1ln (x -1)的定义域是(1,2)∪(2,+∞).答案 C3. 解析 f (2 016)=f (1)=f (1-5)=f (-4)=log 24=2. 答案 D4. 解析:根据终边对称,将一个角用另一个角表示,然后再找两角关系. 因为α与β的终边关于x 轴对称,所以β=2k ·180°-α,k ∈Z ,故选C. 答案:C5. 解析:y 1=40.9=21.8,y 2=80.48=21.44,y 3=(12)-1.5=21.5.由于指数函数f (x )=2x 在R 上是增函数,且1.8>1.5>1.44,所以y 1>y 3>y 2,选D.答案:D6. 解析:在坐标系中将点(-2,0.24),(-1,0.51),(0,1),(1,2.02),(2,3.98),(3,8.02)画出,观察可以发现这些点大约在一个指数型函数的图象上,因此x 与y 的函数关系与y =a +b x 最接近.答案:B7. 解析:f (x )=1⊕2x=⎩⎪⎨⎪⎧1,x ≥0,2x ,x <0故选A.答案:A8. 解析:当x ≥0时,令f (x )=2x -4>0,所以x >2.又因为函数f (x )为偶函数,所以函数f (x )>0的解集为{x |x <-2,或x >2}.将函数y =f (x )的图象向右平移2个单位即得函数y =f (x -2)的图象,故f (x -2)>0的解集为{x |x <0,或x >4}.答案:B9. 解析:∵log 12(x 2-kx +3)>0在[1,2]上恒成立,∴0<x 2-kx +3<1在[1,2]上恒成立,∴⎩⎨⎧k <x +3xk >x +2x在[1,2]上恒成立又当1≤x ≤2时,y =x +3x ∈[23,4],y =x +2x ∈[22,3].∴3<k <2 3. 答案:D10. 解析:设cos x sin x -1=t ,则1+sin x cos x ·1t =1+sin x cos x ·sin x -1cos x =sin 2x -1cos 2x =-1,而1+sin x cos x =-12,所以t =12.故选A.答案:A数f (x )=x 2-x +a 的对称轴为x =12,f (0)=a ,11. 解析:函∵a >0,∴f (0)>0,由二次函数的对称性可知f (1)=f (0)>0.∵抛物线的开口向上,∴由图象可知当x >1时,恒有f (x )>0. ∵f (m )<0,∴0<m <1. ∴m >0,∴m +1>1, ∴f (m +1)>0. 答案:A12. 解析:(特殊值检验法)当x =0时,函数无意义,排除选项D 中的图象,当x =1e -1时,f (1e -1)=1ln (1e -1+1)-(1e -1)=-e<0,排除选项A 、C 中的图象,故只能是选项B 中的图象.(注:这里选取特殊值x =(1e -1)∈(-1,0),这个值可以直接排除选项A 、C ,这种取特值的技巧在解题中很有用处)答案:B13. 答案 0 解析 由|x +2|<3,得-3<x +2<3,即-5<x <1.又A ∩B =(-1,n ),则(x -m )(x -2)<0时必有m <x <2,从而A ∩B =(-1,1),∴m =-1,n =1,∴m +n =0.14. 解析:令t =x ,则t ∈[0,2],于是y =t 2+2t =(t +1)2-1,显然它在t ∈[0,2]上是增函数,故t =2时,M =8;t =0时N =0,∴M +N =8.答案:815. 解析:值域为{1,4},则定义域中必须至少含有1,-1中的一个且至少含有2,-2中的一个. 当定义域含有两个元素时,可以为{-1,-2},或{-1,2},或{1,-2},或{1,2};当定义域中含有三个元素时,可以为{-1,1,-2},或{-1,1,2},或{1,-2,2},或{-1,-2,2}; 当定义域含有四个元素时,为{-1,1,-2,2}. 所以同族函数共有9个. 答案:916. 解析:∵f (x )=ax 2+bx +3a +b 是偶函数, ∴其定义域[a -1,2a ]关于原点对称, 即a -1=-2a ,∴a =13.∵f (x )=ax 2+bx +3a +b 是偶函数, 即f (-x )=f (x ),∴b =0, ∴f (x )=13x 2+1,x ∈[-23,23],其值域为{y |1≤y ≤3127}.答案:{y |1≤y ≤3127}17. 答案 a =2或a =3解析 A ={1,2},∵A ∪B =A ,∴B ⊆A ,∴B =∅或{1}或{2}或{1,2}. 当B =∅时,无解;当B ={1}时,⎩⎪⎨⎪⎧1+1=a ,1×1=a -1,得a =2;当B ={2}时,⎩⎪⎨⎪⎧2+2=a ,2×2=a -1,无解;当B ={1,2}时,⎩⎪⎨⎪⎧1+2=a ,1×2=a -1,得a =3.综上:a =2或a =3.18. 【解析】 (1)α=60°=π3,l =10×π3=10π3 cm.(2)由已知得,l +2R =20,所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25.所以当R =5时,S 取得最大值25, 此时l =10,α=2.(3)设弓形面积为S 弓.由题知l =2π3cm.S 弓=S 扇形-S 三角形=12×2π3×2-12×22×sin π3=(2π3-3) cm 2.【答案】 (1)10π3 cm (2)α=2时,S 最大为25(3)2π3- 3 cm 2 19. 解:(1)因为f (x )是定义在R 上的奇函数, 所以f (0)=0, 即b -1a +2=0⇒b =1, 所以f (x )=1-2xa +2x +1,又由f (1)=-f (-1) 知1-2a +4=-1-12a +1⇒a =2. (2)由(1)知f (x )=1-2x 2+2x +1=-12+12x+1, 易知f (x )在(-∞,+∞)上为减函数. 又因f (x )是奇函数,从而不等式:f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (k -2t 2), 因f (x )为减函数,由上式推得:t 2-2t >k -2t 2, 即对t ∈R 有:3t 2-2t -k >0,从而Δ=4+12k <0⇒k <-13.20. 解:∵f (x )=4x +m ·2x +1有且仅有一个零点, 即方程(2x )2+m ·2x +1=0仅有一个实根. 设2x =t (t >0),则t 2+mt +1=0. 当Δ=0时,即m 2-4=0.∴m =-2时,t =1;m =2时,t =-1(不合题意,舍去), ∴2x =1,x =0符合题意.当Δ>0时,即m >2或m <-2时, t 2+mt +1=0有两正或两负根, 即f (x )有两个零点或没有零点. ∴这种情况不符合题意.综上可知:m =-2时,f (x )有唯一零点,该零点为x =0. 21. 解:(1)令y =0,得kx -120(1+k 2)x 2=0,由实际意义和题设条件知x >0,k >0,故x =20k 1+k 2=20k +1k ≤202=10,当且仅当k =1时取等号.所以炮的最大射程为10千米.(2)因为a >0,所以炮弹可击中目标 ⇔存在k >0,使3.2=ka -120(1+k 2)a 2成立⇔关于k 的方程a 2k 2-20ak +a 2+64=0有正根 ⇔判别式Δ=(-20a )2-4a 2(a 2+64)≥0 ⇔a ≤6.所以当a 不超过6(千米)时,可击中目标. 22. 答案 (1){x |x >1或x <-4} (2)-2 解析 ∵f (x )是定义域为R 的奇函数, ∴f (0)=0,∴k -1=0,∴k =1. (1)∵f (1)>0,∴a -1a >0.又a >0且a ≠1,∴a >1. ∵k =1,∴f (x )=a x -a -x .当a >1时,y =a x 和y =-a -x 在R 上均为增函数, ∴f (x )在R 上为增函数.原不等式可化为f (x 2+2x )>f (4-x ), ∴x 2+2x >4-x ,即x 2+3x -4>0.∴x >1或x <-4.∴不等式的解集为{x |x >1或x <-4}. (2)∵f (1)=32,∴a -1a =32,即2a 2-3a -2=0.∴a =2或a =-12(舍去).∴g (x )=22x +2-2x-4(2x -2-x )=(2x -2-x )2-4(2x -2-x )+2.令t =h (x )=2x -2-x (x ≥1), 则g (t )=t 2-4t +2.∵t =h (x )在[1,+∞)上为增函数(由(1)可知), ∴h (x )≥h (1)=32,即t ≥32.∵g (t )=t 2-4t +2=(t -2)2-2,t ∈[32,+∞),∴当t =2时,g (t )取得最小值-2,即g (x )取得最小值-2,此时x =log 2(1+2). 故当x =log 2(1+2)时,g (x )有最小值-2.(完)。

2020-2021石家庄市高中必修一数学上期中模拟试卷附答案

2020-2021石家庄市高中必修一数学上期中模拟试卷附答案

2020-2021石家庄市高中必修一数学上期中模拟试卷附答案一、选择题1.函数tan sin tan sin y x x x x =+--在区间(2π,32π)内的图象是( ) A . B .C .D .2.在ABC ∆中,内角A 、B 、C 所对应的边分别为a 、b 、c ,则“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的( ). A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分也非必要条件3.设()f x 是定义在R 上的偶函数,且当0x ≥时,()21,0122,1xx x f x x ⎧-+≤<=⎨-≥⎩,若对任意的[],1x m m ∈+,不等式()()1f x f x m -≤+恒成立,则实数m 的最大值是( )A .1-B .13-C .12-D .134.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=L ( )A .50-B .0C .2D .505.如图,U 为全集,M 、P 、S 是U 的三个子集,则阴影部分所表示的集合是( )A .()M P S ⋂⋂B .()M P S ⋂⋃C .()()U M P S ⋂⋂ðD .()()U M P S ⋂⋃ð6.设集合{1,2,3},{2,3,4}A B ==,则A B =UA .{}123,4,, B .{}123,, C .{}234,, D .{}134,, 7.函数()111f x x =--的图象是( ) A . B .C .D .8.三个数20.420.4,log 0.4,2a b c ===之间的大小关系是( )A .a c b <<B .b a c <<C .a b c <<D .b c a <<9.设函数22,()6,x x x af x ax x a⎧--≥⎪=⎨-<⎪⎩是定义在R 上的增函数,则实数a 取值范围( )A .[)2,+∞B .[]0,3C .[]2,3D .[]2,410.已知定义在R 上的函数()f x 是奇函数且满足,3()(2)32f x f x f ⎛⎫-=-=-⎪⎝⎭,,数列{}n a 满足11a =-,且2n n S a n =+,(其中n S 为{}n a 的前n 项和).则()()56f a f a +=() A .3B .2-C .3-D .211.已知函数2()log (23)(01)a f x x x a a =--+>≠,,若(0)0f <,则此函数的单调减区间是() A .(,1]-∞- B .[1)-+∞, C .[1,1)- D .(3,1]-- 12.若a >b >0,0<c <1,则A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b二、填空题13.已知函数21,1()()1a x x f x x a x ⎧-+≤=⎨->⎩,函数()2()g x f x =-,若函数()()y f x g x =-恰有4个不同的零点,则实数a 的取值范围为______.14.函数()f x =________. 15.设函数10()20xx x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是____________.16.某在校大学生提前创业,想开一家服装专卖店,经过预算,店面装修费为10000元,每天需要房租水电等费用100元,受营销方法、经营信誉度等因素的影响,专卖店销售总收入P 与店面经营天数x 的关系是P(x)=21300,0300245000,300x x x x ⎧-≤<⎪⎨⎪≥⎩则总利润最大时店面经营天数是___.17.函数f(x)为奇函数,且x>0时,f(x)+1,则当x<0时,f(x)=________. 18.已知f (x )是定义在[-2,2]上的奇函数,当x ∈(0,2]时,f (x )=2x-1,函数g (x )=x 2-2x +m .如果∀x 1∈[-2,2],∃x 2∈[-2,2],使得g (x 2)=f (x 1),则实数m 的取值范围是______________.19.设()f x 是定义在R 上的奇函数,且()y f x =的图像关于直线12x =对称,则(1)(2)(3)(4)(5)f f f f f ++++= .20.某企业去年的年产量为a ,计划从今年起,每年的年产量比上年增加b ﹪,则第x ()x N *∈年的年产量为y =______.三、解答题21.已知函数f (x )是定义域为R 的奇函数,当x <0时,()111f x x =+-. (1)求f (2)的值;(2)用定义法判断y =f (x )在区间(-∞,0)上的单调性. (3)求0()x f x >时,的解析式22.已知函数()()log 0,1a f x x a a =>≠,且()()321f f -=. (1)若()()3225f m f m -<+,求实数m 的取值范围;(2)求使3227log 2f x x ⎛⎫-= ⎪⎝⎭成立的x 的值. 23.已知定义域为R 的函数12()22x x bf x +-+=+是奇函数. (1)求b 的值;(2)判断函数()f x 的单调性,并用定义证明;(3)当1,32x ⎡⎤∈⎢⎥⎣⎦时,()2(21)0f kx f x +->恒成立,求实数k 的取值范围.24.已知函数()1ln1xf x x+=-的定义域为集合A ,集合(),1B a a =+,且B A ⊆. (1)求实数a 的取值范围;(2)求证:函数()f x 是奇函数但不是偶函数.25.2019年,随着中国第一款5G 手机投入市场,5G 技术已经进入高速发展阶段.已知某5G 手机生产厂家通过数据分析,得到如下规律:每生产手机()010x x ≤≤万台,其总成本为()G x ,其中固定成本为800万元,并且每生产1万台的生产成本为1000万元(总成本=固定成本+生产成本),销售收入()R x 万元满足()24004200,05,20003800,510.x x x R x x x ⎧-+≤≤=⎨-<≤⎩(1)将利润()f x 表示为产量x 万台的函数;(2)当产量x 为何值时,公司所获利润最大?最大利润为多少万元? 26.已知函数()lg(2)lg(2)f x x x =++-. (1)求函数()y f x =的定义域; (2)判断函数()y f x =的奇偶性; (3)若(2)()f m f m -<,求m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】解:函数y=tanx+sinx-|tanx-sinx|=2tan ,tan sin {2sin ,tan sin x x xx x x<≥分段画出函数图象如D 图示, 故选D .2.B解析:B 【解析】 【分析】化简cos cos a A b B =得到A B =或2A B π+=,再判断充分必要性.【详解】cos cos a A b B =,根据正弦定理得到:sin cos sin cos sin 2sin 2A A B B A B =∴=故22A B A B =∴=或222A B A B ππ=-∴+=,ABC ∆为等腰或者直角三角形.所以“cos cos a A b B =”是“ABC ∆是以A 、B 为底角的等腰三角形”的必要非充分条件 故选B 【点睛】本题考查了必要非充分条件,化简得到A B =或2A B π+=是解题的关键,漏解是容易发生的错误.3.B解析:B 【解析】 【分析】由题意,函数()f x 在[0,)+∞上单调递减,又由函数()f x 是定义上的偶函数,得到函数()f x 在(,0)-∞单调递增,把不等式(1)()f x f x m -≤+转化为1x x m -≤+,即可求解. 【详解】易知函数()f x 在[)0,+∞上单调递减, 又函数()f x 是定义在R 上的偶函数, 所以函数()f x 在(),0-∞上单调递增, 则由()()1f x f x m -≤+,得1x x m -≥+,即()()221x x m -≥+,即()()22210g x m x m =++-≤在[],1x m m ∈+上恒成立,则()()()()()()3110121310g m m m g m m m ⎧=-+≤⎪⎨+=++≤⎪⎩,解得113m -≤≤-, 即m 的最大值为13-. 【点睛】本题主要考查了函数的基本性质的应用,其中解答中利用函数的基本性质,把不等式转化为1x x m -≤+ 求解是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力,属于中档试题.4.C解析:C分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 详解:因为()f x 是定义域为(,)-∞+∞的奇函数,且(1)(1)f x f x -=+, 所以(1)(1)(3)(1)(1)4f x f x f x f x f x T +=--∴+=-+=-∴=,因此(1)(2)(3)(50)12[(1)(2)(3)(4)](1)(2)f f f f f f f f f f ++++=+++++L , 因为(3)(1)(4)(2)f f f f =-=-,,所以(1)(2)(3)(4)0f f f f +++=,(2)(2)(2)(2)0f f f f =-=-∴=Q ,从而(1)(2)(3)(50)(1)2f f f f f ++++==L ,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.5.C解析:C 【解析】 【分析】先根据图中的阴影部分是M∩P 的子集,但不属于集合S ,属于集合S 的补集,然后用关系式表示出来即可. 【详解】图中的阴影部分是: M∩P 的子集,不属于集合S ,属于集合S 的补集,即是C U S 的子集则阴影部分所表示的集合是(M∩P )∩(∁U S). 故选C . 【点睛】本题主要考查了Venn 图表达集合的关系及运算,同时考查了识图能力,属于基础题.6.A解析:A 【解析】由题意{1,2,3,4}A B =U ,故选A. 点睛:集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图.7.B解析:B 【解析】 【分析】 把函数1y x=先向右平移一个单位,再关于x 轴对称,再向上平移一个单位即可.把1yx=的图象向右平移一个单位得到11yx=-的图象,把11yx=-的图象关于x轴对称得到11yx=--的图象,把11yx=--的图象向上平移一个单位得到()111f xx=--的图象,故选:B.【点睛】本题主要考查函数图象的平移,对称,以及学生的作图能力,属于中档题. 8.B解析:B【解析】20.4200.41,log0.40,21<<Q,01,0,1,a b c b a c∴<<∴<<,故选B. 9.D解析:D【解析】【分析】画出函数22y x x=--的图象,结合图象及题意分析可得所求范围.【详解】画出函数22y x x=--的图象如下图所示,结合图象可得,要使函数()22,,6,,x x x axax x a⎧--≥⎪=⎨-<⎪⎩是在R上的增函数,需满足22226aa a a≥⎧⎨--≥-⎩,解得24x≤≤.所以实数a取值范围是[]2,4.故选D.【点睛】解答本题的关键有两个:(1)画出函数的图象,结合图象求解,增强了解题的直观性和形象性;(2)讨论函数在实数集上的单调性时,除了考虑每个段上的单调性之外,还要考虑在分界点处的函数值的大小关系.10.A解析:A 【解析】 由奇函数满足()32f x f x ⎛⎫-=⎪⎝⎭可知该函数是周期为3T =的奇函数, 由递推关系可得:112,21n n n n S a n S a n +-=+=+-, 两式做差有:1221n n n a a a -=--,即()()1121n n a a --=-, 即数列{}1n a -构成首项为112a -=-,公比为2q =的等比数列, 故:()1122,21n n n n a a --=-⨯∴=-+,综上有:()()()()()552131223f a f f f f =-+=-==--=,()()()()66216300f a f f f =-+=-==,则:()()563f a f a +=. 本题选择A 选项.11.D解析:D 【解析】 【分析】求得函数()f x 的定义域为(3,1)-,根据二次函数的性质,求得()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,再由(0)0f <,得到01a <<,利用复合函数的单调性,即可求解. 【详解】由题意,函数2()log (23)a f x x x =--+满足2230x x --+>,解得31x -<<,即函数()f x 的定义域为(3,1)-,又由函数()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,因为(0)0f <,即(0)log 30a f =<,所以01a <<,根据复合函数的单调性可得,函数()f x 的单调递减区间为(3,1]--, 故选D. 【点睛】本题主要考查了对数函数的图象与性质,以及复合函数的单调性的判定,着重考查了推理与运算能力,属于基础题.12.B解析:B 【解析】试题分析:对于选项A ,a b 1gc 1gclog c ,log c lg a lg b==,01c <<Q ,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用cy x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.二、填空题13.【解析】【分析】由函数把函数恰有个不同的零点转化为恰有4个实数根列出相应的条件即可求解【详解】由题意函数且函数恰有个不同的零点即恰有4个实数根当时由即解得或所以解得;当时由解得或所以解得综上可得:实 解析:(]2,3【解析】 【分析】由函数()2()g x f x =-,把函数()()y f x g x =-恰有4个不同的零点,转化为()1f x =恰有4个实数根,列出相应的条件,即可求解. 【详解】由题意,函数()2()g x f x =-,且函数()()y f x g x =-恰有4个不同的零点, 即()1f x =恰有4个实数根,当1x ≤时,由11a x -+=,即110x a +=-≥,解得2=-x a 或x a =-,所以2112a a a a -≤⎧⎪-≤⎨⎪-≠-⎩,解得13a <?;当1x >时,由2()1x a -=,解得1x a =-或1x a =+,所以1111a a ->⎧⎨+>⎩,解得2a >,综上可得:实数a 的取值范围为(]2,3. 【点睛】本题主要考查了函数与方程的应用,其中解答中利用条件转化为()1f x =,绝对值的定义,以及二次函数的性质求解是解答的关键,着重考查了数形结合思想,以及推理与计算能力,属于中档试题.14.2+∞)【解析】分析:根据偶次根式下被开方数非负列不等式解对数不等式得函数定义域详解:要使函数有意义则解得即函数的定义域为点睛:求给定函数的定义域往往需转化为解不等式(组)的问题解析:[2,+∞) 【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数()f x 有意义,则2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[2,)+∞.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.15.【解析】由题意得:当时恒成立即;当时恒成立即;当时即综上x 的取值范围是【名师点睛】分段函数的考查方向注重对应性即必须明确不同的自变量所对应的函数解析式是什么然后代入该段的解析式求值解决此类问题时要注解析:1(,)4-+∞ 【解析】 由题意得: 当12x >时,12221x x -+>恒成立,即12x >;当102x <≤时,12112x x +-+> 恒成立,即102x <≤;当0x ≤时,1111124x x x ++-+>⇒>-,即014x -<≤.综上,x 的取值范围是1(,)4-+∞. 【名师点睛】分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么,然后代入该段的解析式求值.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处的函数值.16.200【解析】【分析】根据题意列出总利润L(x)的分段函数然后在各个部分算出最大值比较大小就能确定函数的最大值进而可求出总利润最大时对应的店面经营天数【详解】设总利润为L(x)则L(x)=则L(x)解析:200 【解析】 【分析】根据题意,列出总利润L(x)的分段函数,然后在各个部分算出最大值,比较大小,就能确定函数的最大值,进而可求出总利润最大时对应的店面经营天数. 【详解】 设总利润为L(x),则L(x)=2120010000,0300210035000,300x x x x x ⎧-+-≤<⎪⎨⎪-+≥⎩则L(x)=21(200)10000,0300210035000,300x x x x ⎧--+≤<⎪⎨⎪-+≥⎩当0≤x<300时,L(x)max =10000,当x ≥300时,L(x)max =5000,所以总利润最大时店面经营天数是200.【点睛】本题主要考查分段函数的实际应用,准确的写出各个部分的函数关系式是解决本题的关键. 17.【解析】当x<0时-x>0∴f(-x)=+1又f(-x)=-f(x)∴f(x)=故填 解析:1x ---【解析】当x <0时,-x >0,∴f (-x )= x -+1,又f (-x )=-f (x ),∴f (x )=1x ---,故填1x ---.18.-5-2【解析】分析:求出函数的值域根据条件确定两个函数的最值之间的关系即可得到结论详解:由题意得:在-22上f(x)的值域A 为g(x)的值域B 的子集易得A =-33B =m -18+m 从而解得-5≤m≤解析:[-5,-2].【解析】分析:求出函数()f x 的值域,根据条件,确定两个函数的最值之间的关系即可得到结论. 详解:由题意得:在[-2,2]上f (x )的值域A 为g (x )的值域B 的子集.易得A =[-3,3],B =[m -1,8+m ],从而解得-5≤m ≤-2.点睛:本题主要考查函数奇偶性的应用,以及函数最值之间的关系,综合性较强.19.0【解析】试题分析:的图像关于直线对称所以又是定义在上的奇函数所以所以考点:函数图象的中心对称和轴对称解析:0【解析】试题分析:()y f x =的图像关于直线12x =对称,所以()(1)f x f x =-,又()f x 是定义在R 上的奇函数,所以(5)(15)(4)(4)f f f f =-=-=-,(3)(13)(2)(2)f f f f =-=-=-,(1)(11)(0)0f f f =-==,所以(1)(2)(3)(4)(5)0f f f f f ++++=.考点:函数图象的中心对称和轴对称.20.y =a (1+b )x (x ∈N*)【解析】【分析】根据条件计算第一年产量第二年产量…根据规律得到答案【详解】设年产量经过x 年增加到y 件第一年为y =a (1+b )第二年为y =a (1+b )(1+b )=a (1+解析:y =a (1+b %)x (x ∈N *)【解析】【分析】根据条件计算第一年产量,第二年产量…根据规律得到答案.【详解】设年产量经过x 年增加到y 件,第一年为 y =a (1+b %)第二年为 y =a (1+b %)(1+b %)=a (1+b %)2,第三年为 y =a (1+b %)(1+b %)(1+b %)=a (1+b %)3,…∴y =a (1+b %)x (x ∈N *).故答案为:y =a (1+b %)x (x ∈N *)【点睛】本题考查了指数型函数的应用,意在考查学生的应用能力.三、解答题21.(1)23-;(2)见解析;(3)()1x f x x -=+ 【解析】【分析】(1)利用函数的奇偶性求解.(2)函数单调性定义,通过化解判断函数值差的正负;(3)函数为R 奇函数,x 〈0的解析式已知,利用奇函数图像关于原点对称,即可求出x 〉0的解析式.【详解】(1)由函数f (x )为奇函数,知f (2)=-f (-2)=23-· (2)在(-∞,0)上任取x 1,x 2,且x 1<x 2, 则()()1212121111111111f x f x x x x x ⎛⎫⎛⎫-=+-+=- ⎪ ⎪----⎝⎭⎝⎭ ()()211211x x x x -=-- 由x 1-1<0,x 2-1<0,x 2-x 1>0,知f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).由定义可知,函数y =f (x )在区间(-∞,0]上单调递减.·(3)当x >0时,-x <0,()111f x x -=-+ 由函数f (x )为奇函数知f (x )=-f (-x ),()1111x f x x x -∴=-+=++【点睛】本题考查了函数奇偶性的应用和单调性的定义,利用奇偶性求函数值和解析式主要应用奇偶性定义和图像的对称性;利用定义法证明函数单调性关键是作差后式子的化解,因为需要判断结果的正负,所以通常需要将式子化成乘积的形式.22.(1)2,73⎛⎫⎪⎝⎭;(2)12-或4. 【解析】【分析】(1)先利用对数运算求出32a =,可得出函数()y f x =在其定义域上是增函数,由()()3225f m f m -<+得出25320m m +>->,解出即可;(2)由题意得出272x x -=,解该方程即可. 【详解】(1)()log a f x x =Q ,则()()332log 3log 2log 12a a a f f -=-==,解得32a =, ()32log f x x ∴=是()0,∞+上的增函数,由()()3225f m f m -<+,得25320m m +>->,解得273m <<. 因此,实数m 的取值范围是2,73⎛⎫⎪⎝⎭; (2)()332227log log 2f x x x ⎛⎫=-= ⎪⎝⎭Q ,得272x x -=,化简得22740x x --=, 解得4x =或12x =-. 【点睛】本题考查对数运算以及利用对数函数的单调性解不等式,在底数范围不确定的情况下还需对底数的范围进行分类讨论,同时在解题时还应注意真数大于零,考查运算求解能力,属于中等题.23.(1) 1b = (2) 减函数,证明见解析;(3) (,1)-∞-.【解析】【分析】(1)利用奇函数的性质令(0)0f =,求解b 即可.(2)利用函数的单调性的定义证明即可.(3)利用函数是奇函数以及函数的单调性转化不等式为代数形式的不等式,求解即可.【详解】(1)∵()f x 在定义域R 上是奇函数,所以(0)0f =,即102b a-+=+,∴1b =, 经检验,当1b =时,原函数是奇函数.(2)()f x 在R 上是减函数,证明如下:由(1)知11211()22221x x x f x +-==-+++, 任取12,x x R ∈,设12x x <,则()()()()12211221112221212121x x x x x x f x f x --=-=++++, ∵函数2x y =在R 上是增函数,且12x x <,∴12220x x -<,又()()1221210x x ++>,∴()()210f x f x -<,即()()21f x f x <,∴函数()f x 在R 上是减函数.(3)因()f x 是奇函数,从而不等式()2(21)0f kx f x +->等价于()2(21)f kx f x >--,由(2)知()f x 在R 上是减函数,由上式推得212kx x <-, 即对任意1,32x ⎡⎤∈⎢⎥⎣⎦,有212x k x-<恒成立, 由2212112x x x x -⎛⎫=-⋅ ⎪⎝⎭, 令1t x =,1,23t ⎡⎤∈⎢⎥⎣⎦,则可设2()2g t t t =-,1,23t ⎡⎤∈⎢⎥⎣⎦, ∴min ()(1)1g t g ==-,∴1k <-,即k 的取值范围为(,1)-∞-.【点睛】本题考查函数的单调性以及函数的奇偶性的应用,考查函数与方程的思想,是中档题.24.(1)[1,0]- ;(2)见解析.【解析】试题分析:(1)由对数的真数大于0,可得集合A ,再由集合的包含关系,可得a 的不等式组,解不等式即可得到所求范围;(2)求得()f x 的定义域,计算()f x -与()f x 比较,即可得到所求结论.试题解析:(1)令101x x+>-,解得11x -<<,所以()1,1A =-,因为B A ⊆,所以111a a ≥-⎧⎨+≤⎩,解得10a -≤≤,即实数a 的取值范围是[]1,0- (2)函数()f x 的定义域()1,1A =-,定义域关于原点对称()()()1ln 1x f x x ---=+- ()1111ln ln ln 111x x x f x x x x -+--⎛⎫===-=- ⎪-++⎝⎭而1ln32f ⎛⎫= ⎪⎝⎭,11ln 23f ⎛⎫-= ⎪⎝⎭,所以1122f f ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭ 所以函数()f x 是奇函数但不是偶函数.25.(1) ()24003200800,05,10004600,510.x x x f x x x ⎧-+-≤≤=⎨-<≤⎩(2) 当产量为4万台时,公司所获利润最大,最大利润为5600万元.【解析】【分析】(1)先求得总成本函数()G x ,然后用()()()f x R x G x =-求得利润()f x 的函数表达式.(2)用二次函数的最值的求法,一次函数最值的求法,求得当产量x 为何值时,公司所获利润最大,且求得最大利润.【详解】(1)由题意得()8001000G x x =+.因为()24004200,05,20003800,510.x x x R x x x ⎧-+≤≤=⎨-<≤⎩所以()()()24003200800,05,10004600,510.x x x f x R x G x x x ⎧-+-≤≤=-=⎨-<≤⎩ (2)由(1)可得,当05x ≤≤时,()()240045600f x x =--+.所以当4x =时,()max 5600f x =(万元)当510x <≤时,()10004600f x x =-,()f x 单调递增,所以()()105400f x f ≤=(万元).综上,当4x =时,()max 5600f x =(万元).所以当产量为4万台时,公司所获利润最大,最大利润为5600万元.【点睛】本小题主要考查分段函数模型在实际生活中的运用,考查二次函数、一次函数最值有关问题的求解,属于基础题.26.(1){|22}x x -<<(2)偶函数(3)01m <<【解析】【分析】【详解】(Ⅰ)要使函数有意义,则,得.函数的定义域为.(Ⅱ)由(Ⅰ)可知,函数的定义域为,关于原点对称,对任意,.由函数奇偶性可知,函数为偶函数.(Ⅲ)函数由复合函数单调性判断法则知,当时,函数为减函数又函数为偶函数,不等式等价于,得.。

2020-2021高中必修一数学上期中一模试卷(含答案)

2020-2021高中必修一数学上期中一模试卷(含答案)

2020-2021高中必修一数学上期中一模试卷(含答案)一、选择题1.1()xf x e x=-的零点所在的区间是( ) A .1(0,)2B .1(,1)2C .3(1,)2D .3(,2)22.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=L ( )A .50-B .0C .2D .503.设集合{1,2,3},{2,3,4}A B ==,则A B =UA .{}123,4,, B .{}123,, C .{}234,, D .{}134,, 4.函数()111f x x =--的图象是( ) A . B .C .D .5.设x 、y 、z 为正数,且235x y z ==,则 A .2x <3y <5z B .5z <2x <3y C .3y <5z <2xD .3y <2x <5z6.已知函数y=f (x )定义域是[-2,3],则y=f (2x-1)的定义域是( ) A .50,2⎡⎤⎢⎥⎣⎦B .[]1,4-C .1,22⎡⎤-⎢⎥⎣⎦D .[]5,5-7.已知定义在R 上的函数()f x 是奇函数且满足,3()(2)32f x f x f ⎛⎫-=-=-⎪⎝⎭,,数列{}n a 满足11a =-,且2n n S a n =+,(其中n S 为{}n a 的前n 项和).则()()56f a f a +=() A .3B .2-C .3-D .28.已知函数()y f x =在区间(),0-∞内单调递增,且()()f x f x -=,若12log 3a f ⎛⎫= ⎪⎝⎭,()1.22b f -=,12c f ⎛⎫= ⎪⎝⎭,则a 、b 、c 的大小关系为( )A .a c b >>B .b c a >>C .b a c >>D .a b c >>9.已知函数2()log (23)(01)a f x x x a a =--+>≠,,若(0)0f <,则此函数的单调减区间是() A .(,1]-∞-B .[1)-+∞,C .[1,1)-D .(3,1]--10.函数()245f x x x =-+在区间[]0,m 上的最大值为5,最小值为1,则实数m 的取值范围是( ) A .[)2,+∞B .[]2,4C .[]0,4D .(]2,411.已知函数()f x =2log (1),(1,3)4,[3,)1x x x x ⎧+∈-⎪⎨∈+∞⎪-⎩,则函数[]()()1g x f f x =-的零点个数为( ) A .1 B .3C .4D .612.已知函数在上单调递减,则实数a 的取值范围是( ) A .B .C .D .二、填空题13.已知()2x a x af x ++-=,g(x)=ax+1 ,其中0a >,若()f x 与()g x 的图象有两个不同的交点,则a 的取值范围是______________. 14.给出下列四个命题:(1)函数()f x x x bx c =++为奇函数的充要条件是0c =; (2)函数()20xy x -=>的反函数是()2log 01y x x =-<<;(3)若函数()()2lg f x x ax a =+-的值域是R ,则4a ≤-或0a ≥;(4)若函数()1y f x =-是偶函数,则函数()y f x =的图像关于直线0x =对称. 其中所有正确命题的序号是______.15.设函数()212log ,0log (),0x x f x x x >⎧⎪=⎨-<⎪⎩ ,若()()f a f a >-,则实数a 的取值范围是__________.16.已知函数()()22log f x x a =+,若()31f =,则a =________.17.若函数()6,23log ,2a x x f x x x -+≤⎧=⎨+>⎩(0a >且1a ≠)的值域是[)4,+∞,则实数a 的取值范围是__________.18.已知1240x x a ++⋅>对一切(],1x ∞∈-上恒成立,则实数a 的取值范围是______. 19.如果关于x 的方程x 2+(m -1)x -m =0有两个大于12的正根,则实数m 的取值范围为____________. 20.函数的定义域为___.三、解答题21.已知满足(1)求的取值范围; (2)求函数的值域.22.近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike ”计划在甲、乙两座城市共投资160万元,根据行业规定,每个城市至少要投资30万元,由前期市场调研可知:甲城市收益P 与投入(a 单位:万元)满足426P a =-,乙城市收益Q 与投入(b 单位:万元)满足124Q b =+,设甲城市的投入为(x 单位:万元),两个城市的总收益为()(f x 单位:万元).(1)写出两个城市的总收益()(f x 万元)关于甲城市的投入(x 万元)的函数解析式,并求出当甲城市投资72万元时公司的总收益;(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大? 23.一种放射性元素,最初的质量为500g ,按每年10﹪衰减. (Ⅰ)求t 年后,这种放射性元素质量ω的表达式;(Ⅱ)由求出的函数表达式,求这种放射性元素的半衰期(剩留量为原来的一半所需要的时间).(精确到0.1;参考数据:)24.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x (x N *∈)件.当20x ≤时,年销售总收人为(233x x -)万元;当20x >时,年销售总收人为260万元.记该工厂生产并销售这种产品所得的年利润为y 万元.(年利润=年销售总收入一年总投资) (1)求y (万元)与x (件)的函数关系式;(2)当该工厂的年产量为多少件时,所得年利润最大?最大年利润是多少?25.已知()42log ,[116]f x x x =+∈,,函数()()()22[]g x f x f x =+.(1)求函数()g x 的定义域;(2)求函数()g x 的最大值及此时x 的值.26.设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,tan a b A =,且B 为钝角. (1)证明:2B A π-=; (2)求sin sin A C +的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】函数f (x )=e x ﹣1x 是(0,+∞)上的增函数,再根据f (12)2<0,f (1)=e ﹣1>0,可得f (12)f (1)<0,∴函数f (x )=e x ﹣1x 的零点所在的区间是(12,1),故选B .点睛:判定函数的零点所在区间,只需计算区间端点处的函数值,并判断是否异号,只要异号,则区间内至少有一个零点存在.2.C解析:C 【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 详解:因为()f x 是定义域为(,)-∞+∞的奇函数,且(1)(1)f x f x -=+, 所以(1)(1)(3)(1)(1)4f x f x f x f x f x T +=--∴+=-+=-∴=,因此(1)(2)(3)(50)12[(1)(2)(3)(4)](1)(2)f f f f f f f f f f ++++=+++++L , 因为(3)(1)(4)(2)f f f f =-=-,,所以(1)(2)(3)(4)0f f f f +++=,(2)(2)(2)(2)0f f f f =-=-∴=Q ,从而(1)(2)(3)(50)(1)2f f f f f ++++==L ,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.3.A解析:A 【解析】由题意{1,2,3,4}A B =U ,故选A. 点睛:集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图.4.B解析:B 【解析】 【分析】 把函数1y x=先向右平移一个单位,再关于x 轴对称,再向上平移一个单位即可. 【详解】 把1y x = 的图象向右平移一个单位得到11y x =-的图象, 把11y x =-的图象关于x 轴对称得到11y x =--的图象, 把11y x =--的图象向上平移一个单位得到()111f x x =--的图象, 故选:B . 【点睛】本题主要考查函数图象的平移,对称,以及学生的作图能力,属于中档题.5.D解析:D 【解析】令235(1)x y zk k ===>,则2log x k =,3log =y k ,5log =z k∴22lg lg 3lg 913lg 23lg lg8x k y k =⋅=>,则23x y >, 22lg lg5lg 2515lg 25lg lg32x k z k =⋅=<,则25x z <,故选D. 点睛:对于连等问题,常规的方法是令该连等为同一个常数,再用这个常数表示出对应的,,x y z ,通过作差或作商进行比较大小.对数运算要记住对数运算中常见的运算法则,尤其是换底公式以及0与1的对数表示.6.C解析:C 【解析】∵函数y =f (x )定义域是[−2,3], ∴由−2⩽2x −1⩽3, 解得−12⩽x ⩽2, 即函数的定义域为1,22⎡⎤-⎢⎥⎣⎦,本题选择C 选项.7.A解析:A 【解析】由奇函数满足()32f x f x ⎛⎫-=⎪⎝⎭可知该函数是周期为3T =的奇函数, 由递推关系可得:112,21n n n n S a n S a n +-=+=+-, 两式做差有:1221n n n a a a -=--,即()()1121n n a a --=-, 即数列{}1n a -构成首项为112a -=-,公比为2q =的等比数列, 故:()1122,21n n n n a a --=-⨯∴=-+,综上有:()()()()()552131223f a f f f f =-+=-==--=,()()()()66216300f a f f f =-+=-==,则:()()563f a f a +=. 本题选择A 选项.8.B解析:B 【解析】 【分析】由偶函数的性质可得出函数()y f x =在区间()0,∞+上为减函数,由对数的性质可得出12log 30<,由偶函数的性质得出()2log 3a f =,比较出2log 3、 1.22-、12的大小关系,再利用函数()y f x =在区间()0,∞+上的单调性可得出a 、b 、c 的大小关系. 【详解】()()f x f x -=Q ,则函数()y f x =为偶函数,Q 函数()y f x =在区间(),0-∞内单调递增,在该函数在区间()0,∞+上为减函数,1122log 3log 10<=Q ,由换底公式得122log 3log 3=-,由函数的性质可得()2log 3a f =,对数函数2log y x =在()0,∞+上为增函数,则22log 3log 21>=, 指数函数2xy =为增函数,则 1.2100222--<<<,即 1.210212-<<<, 1.22102log 32-∴<<<,因此,b c a >>. 【点睛】本题考查利用函数的奇偶性与单调性比较函数值的大小关系,同时也考查了利用中间值法比较指数式和代数式的大小关系,涉及指数函数与对数函数的单调性,考查分析问题和解决问题的能力,属于中等题.9.D【解析】 【分析】求得函数()f x 的定义域为(3,1)-,根据二次函数的性质,求得()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,再由(0)0f <,得到01a <<,利用复合函数的单调性,即可求解. 【详解】由题意,函数2()log (23)a f x x x =--+满足2230x x --+>,解得31x -<<,即函数()f x 的定义域为(3,1)-,又由函数()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,因为(0)0f <,即(0)log 30a f =<,所以01a <<,根据复合函数的单调性可得,函数()f x 的单调递减区间为(3,1]--, 故选D. 【点睛】本题主要考查了对数函数的图象与性质,以及复合函数的单调性的判定,着重考查了推理与运算能力,属于基础题.10.B解析:B 【解析】 【分析】由函数的解析式可得函数f (x )=x 2﹣4x +5=(x ﹣2)2+1的对称轴为x =2,此时,函数取得最小值为1,当x =0或x =4时,函数值等于5,结合题意求得m 的范围. 【详解】∵函数f (x )=x 2﹣4x +5=(x ﹣2)2+1的对称轴为x =2,此时,函数取得最小值为1, 当x =0或x =4时,函数值等于5.且f (x )=x 2﹣4x +5在区间[0,m ]上的最大值为5,最小值为1, ∴实数m 的取值范围是[2,4], 故选:B . 【点睛】本题主要考查二次函数的性质应用,利用函数图像解题是关键,属于中档题.11.C解析:C 【解析】 【分析】令[]()()10g x f f x =-=,可得[]()1f f x =,解方程()1f x =,结合函数()f x 的图象,可求出答案.令[]()()10g x f f x =-=,则[]()1f f x =,令()1f x =,若2log (1)1x +=,解得1x =或12x =-,符合(1,3)x ∈-;若411x =-,解得5x =,符合[3,)x ∈+∞.作出函数()f x 的图象,如下图,(]1,0x ∈-时,[)()0,f x ∈+∞;()0,3x ∈时,()()0,2f x ∈;[3,)x ∈+∞时,(]()0,2f x ∈. 结合图象,若()1f x =,有3个解;若1()2f x =-,无解;若()5f x =,有1个解. 所以函数[]()()1g x f f x =-的零点个数为4个. 故选:C.【点睛】本题考查分段函数的性质,考查了函数的零点,考查了学生的推理能力,属于中档题.12.C解析:C 【解析】 【分析】由函数单调性的定义,若函数在上单调递减,可以得到函数在每一个子区间上都是单调递减的,且当时,,求解即可.【详解】 若函数在上单调递减,则,解得. 故选C. 【点睛】本题考查分段函数的单调性.严格根据定义解答,本题保证随的增大而减小,故解答本题的关键是的最小值大于等于的最大值. 二、填空题13.(01)【解析】结合与的图象可得点睛:数形结合是数学解题中常用的思想方法数形结合的思想可以使某些抽象的数学问题直观化生动化能够变抽象思维为形象思维有助于把握数学问题的本质在运用数形结合思想分析和解决解析:(0,1), 【解析】(),,2x x a x a x af x a x a ≥++-⎧==⎨<⎩, 结合()f x 与()g x 的图象可得()0,1.a ∈点睛:数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质. 在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念及其几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围14.(1)(2)(3)【解析】【分析】根据奇函数的定义得到(1)正确根据反函数的求法以及定义域值域得到(2)正确由函数的值域是得出其真数可以取到所有的正数由二次函数判别式大于等于0求解可判断出(3)正确解析:(1)(2)(3) 【解析】 【分析】根据奇函数的定义得到(1)正确,根据反函数的求法以及定义域值域得到(2)正确, 由函数()()2lg f x x ax a =+-的值域是R ,得出其真数可以取到所有的正数,由二次函数判别式大于等于0求解,可判断出(3)正确,根据函数图像平移可判断(4)不正确. 【详解】解:(1)当0c =时,()=+f x x x bx ,()()()-=---=-+=-f x x x bx x x bx f x ,当函数为奇函数时()()f x f x -=-,即()++=----+=+-x x bx c x x bx c x x bx c ,解得0c =,所以0c =是函数()f x x x bx c =++为奇函数的充要条件,所以(1)正确;(2)由反函数的定义可知函数()20xy x -=>的反函数是()2log 01y x x =-<<,所以(2)正确;(3)因为函数()()2lg f x x ax a =+-的值域是R ,所以2y x ax a =+-能取遍(0,)+∞的所有实数,所以240a a =+≥△,解得0a ≥或4a ≤-,所以(3)正确; (4)函数()1y f x =-是偶函数,所以()1y f x =-图像关于y 轴对称,函数()y f x =的图像是由()1y f x =-向左平移一个单位得到的,所以函数()y f x =的图像关于直线1x =-对称,故(4)不正确. 故答案为:(1)(2)(3) 【点睛】本题主要考查对函数的理解,涉及到函数的奇偶性、值域、反函数等问题.15.【解析】【分析】【详解】由题意或或或则实数的取值范围是故答案为 解析:(1,0)(1,)-??【解析】 【分析】 【详解】由题意()()f a f a >-⇒2120 log log a a a >⎧⎪⎨>⎪⎩或()()1220log log a a a <⎧⎪⎨->-⎪⎩01a a a >⎧⎪⇒⎨>⎪⎩或11a a a a<⎧⎪⇒>⎨->-⎪⎩或10a -<<,则实数a 的取值范围是()()1,01,-⋃+∞,故答案为()()1,01,-⋃+∞.16.-7【解析】分析:首先利用题的条件将其代入解析式得到从而得到从而求得得到答案详解:根据题意有可得所以故答案是点睛:该题考查的是有关已知某个自变量对应函数值的大小来确定有关参数值的问题在求解的过程中需解析:-7 【解析】分析:首先利用题的条件()31f =,将其代入解析式,得到()()2391f log a =+=,从而得到92a +=,从而求得7a =-,得到答案.详解:根据题意有()()2391f log a =+=,可得92a +=,所以7a =-,故答案是7-. 点睛:该题考查的是有关已知某个自变量对应函数值的大小,来确定有关参数值的问题,在求解的过程中,需要将自变量代入函数解析式,求解即可得结果,属于基础题目.17.【解析】试题分析:由于函数的值域是故当时满足当时由所以所以所以实数的取值范围考点:对数函数的性质及函数的值域【方法点晴】本题以分段为背景主要考查了对数的图象与性质及函数的值域问题解答时要牢记对数函数 解析:(]1,2【解析】试题分析:由于函数()()6,2{0,13log ,2a x x f x a a x x -+≤=>≠+>的值域是[)4,+∞,故当2x ≤时,满足()64f x x =-≥,当2x >时,由()3log 4a f x x =+≥,所以log 1a x ≥,所以log 2112a a ≥⇒<<,所以实数a 的取值范围12a <≤. 考点:对数函数的性质及函数的值域.【方法点晴】本题以分段为背景主要考查了对数的图象与性质及函数的值域问题,解答时要牢记对数函数的单调性及对数函数的特殊点的应用是解答的关键,属于基础题,着重考查了分类讨论的思想方法的应用,本题的解答中,当2x >时,由()4f x ≥,得log 1a x ≥,即log 21a ≥,即可求解实数a 的取值范围.18.【解析】【分析】根据题意分离出参数a 后转化为求函数的最值即可通过换元后利用二次函数的性质可求得最大值【详解】可化为令由得则在上递减当时取得最大值为所以故答案为【点睛】本题考查二次函数的性质函数恒成立解析:3,4∞⎛⎫-+ ⎪⎝⎭【解析】 【分析】根据题意分离出参数a 后转化为求函数的最值即可,通过换元后利用二次函数的性质可求得最大值. 【详解】1240xxa ++⋅>可化为212224xx x x a --+>-=--,令2x t -=,由(],1x ∈-∞,得1,2t ⎡⎫∈+∞⎪⎢⎣⎭, 则2a t t >--,2213()24t t t --=-++在1,2⎡⎫+∞⎪⎢⎣⎭上递减,当12t =时2t t --取得最大值为34-,所以34a >-. 故答案为3,4⎛⎫-+∞ ⎪⎝⎭.【点睛】本题考查二次函数的性质、函数恒成立问题,考查转化思想,考查学生解决问题的能力.属中档题.19.(-∞-)【解析】【分析】方程有两个大于的根据此可以列出不等式组求得m 的取值范围即可【详解】解:根据题意m 应当满足条件即:解得:实数m 的取值范围:(-∞-)故答案为:(-∞-)【点睛】本题考查根的判解析:(-∞,-12) 【解析】 【分析】 方程有两个大于12的根,据此可以列出不等式组求得m 的取值范围即可. 【详解】解:根据题意,m 应当满足条件2(1)40112211(1)042m m m m m ⎧⎪∆=-+>⎪-⎪->⎨⎪⎪+-->⎪⎩即:2210012m m m m ⎧⎪++>⎪<⎨⎪⎪<-⎩,解得:12m <-, 实数m 的取值范围:(-∞,-12). 故答案为:(-∞,-12). 【点睛】本题考查根的判别式及根与系数的关系,解题的关键是正确的运用判别式及韦达定理,是中档题.20.(-12)∪(2+∞)【解析】【分析】根据式子成立的条件对数式要求真数大于零分式要求分母不等于零即可求得函数的定义域【详解】要使函数有意义则x+1>012-x≠0解得x>-1且x≠2所以函数的定义域 解析:【解析】 【分析】根据式子成立的条件,对数式要求真数大于零,分式要求分母不等于零,即可求得函数的定义域. 【详解】要使函数有意义,则,解得且,所以函数的定义域为:,故答案是:.【点睛】该题考查的是有关函数的定义域的求解问题,在求解的过程中,注意对数式和分式成立的条件即可,属于简单题目.三、解答题21.(1) (2)【解析】试题分析(1)先将不等式化成底相同的指数,再根据指数函数单调性解不等式(2)令,则函数转化为关于的二次函数,再根据对称轴与定义区间位置关系确定最值,得到值域.试题解析:解:(1) 因为由于指数函数在上单调递增(2) 由(1)得令,则,其中因为函数开口向上,且对称轴为函数在上单调递增的最大值为,最小值为函数的值域为.22.(1)()14236 4f x x x=-+,30130x≤≤,66万元(2)甲城市投资128万元,乙城市投资32万元【解析】【分析】()1由题知,甲城市投资x万元,乙城市投资160x-万元,求出函数的解析式,利用当甲城市投资72万元时公司的总收益;()()12364f x x =-+,30130x ≤≤,令t =,则t ∈,转化为求函数2,6143y t t ∈=-++最值,即可得出结论.【详解】()1由题知,甲城市投资x 万元,乙城市投资160x -万元,所以()()11616023644f x x x =+-+=-+, 依题意得3016030x x ≥⎧⎨-≥⎩,解得30130x ≤≤,故()1364f x x =-+,30130x ≤≤, 当72x =时,此时甲城市投资72万元,乙城市投资88万元,所以总收益()136664f x x =-+=. ()()12364f x x =-+,30130x ≤≤令t =t ∈.2,6143y t t ∈=-++当t =,即128x =万元时,y 的最大值为68万元, 故当甲城市投资128万元,乙城市投资32万元时, 总收益最大,且最大收益为68万元. 【点睛】本题考查实际问题的应用,二次函数的性质以及换元法的应用,考查转化思想以及计算能力,属于中档题.23.(Ⅰ)ω=500×0.9t . (Ⅱ)6.6年 【解析】 【分析】 【详解】试题分析:(Ⅰ)最初的质量为500g , 经过1年,ω=500(1-10﹪)=500×10.9, 经过2年,ω=500×20.9, ……,由此推出,t 年后,ω=500×0.9t . (Ⅱ)解方程500×0.9t =250.0.9t =0.5, lg 0.9lg 0.5t =,lg 0.56.6lg 0.9t =≈, 所以,这种放射性元素的半衰期约为6.6年. 考点:指数函数应用题及只属于对数的互化点评:本题第一问由经过一年,二年……的剩余质量归纳出t 年后的剩余含量,第二问涉及到指数式与对数式的转化x a b =转化为log a x b =24.(1)232100,020160,20x x x y x x ⎧-+-<≤=⎨->⎩(x N *∈);(2)当年产量为16件时,所得年利润最大,最大年利润为156万元. 【解析】 【分析】(1)根据已知条件,分当20x ≤时和当20x >时两种情况,分别求出年利润的表达式,综合可得答案;(2)根据(1)中函数的解析式,求出最大值点和最大值即可. 【详解】(1)由题意得:当20x ≤时,()223310032100y x xx xx =---=-+-,当20x >时,260100160y x x =--=-,故232100,020160,20x x x y x x ⎧-+-<≤=⎨->⎩(x N *∈);(2)当020x <≤时,()223210016156y x x x =-+-=--+, 当16x =时,156max y =, 而当20x >时,160140x -<,故当年产量为16件时,所得年利润最大,最大年利润为156万元. 【点睛】本题主要考查函数模型及最值的求法,正确建立函数关系是解题的关键,属于常考题.25.(1)[1]4,;(2)4x =时,函数有最大值13. 【解析】 【分析】(1)由已知()f x 的定义域及复合函数的定义域的求解可知,2116116x x ≤≤⎧⎨≤≤⎩,解不等式可求(2)由已知可求()()()22[]g x f x f x +=,结合二次函数的性质可求函数g x ()的最值及相应的x .【详解】解:(1)()42log [116]f x x x =+∈Q ,,,()()()22[]g x f x f x +=.由题意可得,2116116x x ≤≤⎧⎨≤≤⎩, 解可得,14x ≤≤即函数()g x 的定义域[1]4,; (2)()42log ,[116]f x x x =+∈Q ,, ()()()()222224444[]2log 2log log 6log 6g x f x f x x x x x ∴=+=+++=++设4log t x =,则[01]t ∈,, 而()()226633g t t t t =++=+-在[0]1,单调递增, 当1t =,即4x =时,函数有最大值13. 【点睛】本题主要考查了对数函数的性质,二次函数闭区间上的最值求解,及复合函数的定义域的求解,本题中的函数()g x 的定义域是容易出错点. 26.(1)见解析;(2)29(,]8. 【解析】试题分析:(Ⅰ)运用正弦定理将化简变形,再解三角方程即可获解;(Ⅱ)将角用表示,换元法求函数的值域即可.试题解析:(Ⅰ)由tan a b A =及正弦定理,得sin sin cos sin A a AA b B==,∴sin cos B A =, 即sin sin()2B A π=+,又B 为钝角,因此(,)22A πππ+∈, 故2B A π=+,即2B A π-=;(Ⅱ)由(1)知,()C A B π=-+(2)2022A A πππ-+=->,∴(0,)4A π∈,于是sin sin sin sin(2)2A C A A π+=+-2219sin cos 22sin sin 12(sin )48A A A A A =+=-++=--+,∵04A π<<,∴20sin 2A <<,因此221992(sin )2488A <--+≤,由此可知sin sinA C的取值范围是9] 28.考点:正弦定理、三角变换,二次函数的有关知识和公式的应用.。

2020-2021高中必修一数学上期中一模试卷(及答案)

2020-2021高中必修一数学上期中一模试卷(及答案)

2020-2021高中必修一数学上期中一模试卷(及答案)一、选择题1.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B =( ) A .{}1,3-B .{}1,0C .{}1,3D .{}1,52.函数()2312x f x x -⎛⎫=- ⎪⎝⎭的零点所在的区间为( )A .()0,1B .()1,2C .()2,3D .()3,43.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-≤≤⋂=Z ,则A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 4.已知定义域为R 的函数()f x 在[1,)+∞单调递增,且(1)f x +为偶函数,若(3)1f =,则不等式(21)1f x +<的解集为( ) A .(1,1)- B .(1,)-+∞ C .(,1)-∞D .(,1)(1,)-∞-+∞U5.已知全集U =R ,集合A ={x |x 2-x -6≤0},B ={x |14x x +->0},那么集合A ∩(∁U B )=( )A .{x |-2≤x <4}B .{x |x ≤3或x ≥4}C .{x |-2≤x <-1}D .{x |-1≤x ≤3}6.定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos x f x x =-,则下列结论正确的是( )A .()20202019201832f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭7.已知定义在R 上的函数()21()x mf x m -=-为实数为偶函数,记0.5(log 3),a f =2b (log 5),c (2)f f m ==,则,,a b c ,的大小关系为( )A .a b c <<B .c a b <<C .a c b <<D .c b a <<8.函数()245f x x x =-+在区间[]0,m 上的最大值为5,最小值为1,则实数m 的取值范围是( ) A .[)2,+∞ B .[]2,4C .[]0,4D .(]2,49.函数y =)A .(41)--,B .(41)-,C .(11)-,D .(11]-, 10.已知函数()f x 的定义域为R .当0x <时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=-.则(6)f =( ) A .2-B .1-C .0D .211.三个数20.420.4,log 0.4,2a b c ===之间的大小关系是( ) A .a c b <<B .b a c <<C .a b c <<D .b c a <<12.已知函数()y f x =在区间(),0-∞内单调递增,且()()f x f x -=,若12log 3a f ⎛⎫= ⎪⎝⎭,()1.22b f -=,12c f ⎛⎫= ⎪⎝⎭,则a 、b 、c 的大小关系为( )A .a c b >>B .b c a >>C .b a c >>D .a b c >> 二、填空题13.1232e 2(){log (1)2x x f x x x ,,-<=-≥,则f (f (2))的值为____________.14.已知定义在实数集R 上的偶函数()f x 在区间(],0-∞上是减函数,则不等式()()1ln f f x <的解集是________.15.设,则________16.函数()()log 2a f x ax =-在[]0,1上是x 的减函数,则实数a 的取值范围是______. 17.2017年国庆期间,一个小朋友买了一个体积为a 的彩色大气球,放在自己房间内,由于气球密封不好,经过t 天后气球体积变为kt V a e -=⋅.若经过25天后,气球体积变为原来的23,则至少经过__________天后,气球体积小于原来的13. (lg30.477,lg 20.301≈≈,结果保留整数)18.函数()221,0ln 2,0x x f x x x x x ⎧+-≤=⎨-+>⎩的零点的个数是______. 19.己知函数()f x =x a b +的图象经过点(1,3),其反函数()1fx -的图象经过点(2.0),则()1f x -=___________.20.给出下列结论: ①已知函数是定义在上的奇函数,若,则;②函数的单调递减区间是; ③已知函数是奇函数,当时,,则当时,;④若函数的图象与函数的图象关于直线对称,则对任意实数都有.则正确结论的序号是_______________________(请将所有正确结论的序号填在横线上).三、解答题21.已知函数()222,00,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩是奇函数.(1)求实数m 的值;(2)若函数()f x 在区间[]1,2a --上单调递增,求实数a 的取值范围. 22.已知幂函数2242()(22)m m f x m m x -+=--在(0,)+∞上单调递减.(1)求m 的值并写出()f x 的解析式;(2)试判断是否存在0a >,使得函数()(21)1()ag x a x f x =--+在[1,2]-上的值域为 [4,11]-?若存在,求出a 的值;若不存在,请说明理由.23.已知集合{|3A x x =≤-或2}x ≥,{|15}B x x =<<,{|12}C x m x m =-≤≤ (1)求A B I ,()R C A B ⋃;(2)若B C C ⋂=,求实数m 的取值范围.24.为了研究某种微生物的生长规律,研究小组在实验室对该种微生物进行培育实验.前三天观测的该微生物的群落单位数量分别为12,16,24.根据实验数据,用y 表示第()*x x ∈N 天的群落单位数量,某研究员提出了两种函数模型;①2y ax bx c =++;②x y p q r =⋅+,其中a ,b ,c ,p ,q ,r 都是常数.(1)根据实验数据,分别求出这两种函数模型的解析式;(2)若第4天和第5天观测的群落单位数量分别为40和72,请从这两个函数模型中选出更合适的一个,并计算从第几天开始该微生物群落的单位数量超过1000. 25.近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司“Mobike”计划在甲、乙两座城市共投资120万元,根据行业规定,每个城市至少要投资40万元,由前期市场调研可知:甲城市收益P 与投入a (单位:万元)满足6P =,乙城市收益Q 与投入b (单位:万元)满足124Q b =+,设甲城市的投入为x (单位:万元),两个城市的总收益为()f x (单位:万元).(1)当甲城市投资50万元时,求此时公司总收益;(2)试问如何安排甲、乙两个城市的投资,才能使总收益最大?26.某辆汽车以x 千米/小时的速度在高速公路上匀速行驶(考虑到高速公路行车安全要求60120)x 剟时,每小时的油耗(所需要的汽油量)为14500()5x k x-+升,其中k 为常数,且60100k 剟. (1)若汽车以120千米/小时的速度行驶时,每小时的油耗为11.5升,欲使每小时的油耗不超过9升,求x 的取值范围;(2)求该汽车行驶100千米的油耗的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】∵ 集合{}124A ,,=,{}2|40B x x x m =-+=,{}1A B ⋂= ∴1x =是方程240x x m -+=的解,即140m -+= ∴3m =∴{}{}{}22|40|43013B x x x m x x x =-+==-+==,,故选C2.B解析:B 【解析】 【分析】判断函数()2312x f x x -⎛⎫=- ⎪⎝⎭单调递增,求出f (0)=-4,f (1)=-1,f (2)=3>0,即可判断. 【详解】∵函数()2312x f x x -⎛⎫=- ⎪⎝⎭单调递增,∴f(0)=-4,f (1)=-1,f (2)=7>0,根据零点的存在性定理可得出零点所在的区间是()1,2, 故选B . 【点睛】本题考查了函数的单调性,零点的存在性定理的运用,属于容易题.3.B解析:B 【解析】试题分析:依题意{}{}2,1,0,1,1,0,1,2,3,M N =--=-∴{}1,0,1M N ⋂=-. 考点:集合的运算4.A解析:A 【解析】 【分析】由函数y =f (x +1)是定义域为R 的偶函数,可知f (x )的对称轴x =1,再利用函数的单调性,即可求出不等式的解集. 【详解】由函数y =f (x +1)是定义域为R 的偶函数,可知f (x )的对称轴x =1,且在[1,+∞)上单调递增,所以不等式f (2x+1)<1=f (3)⇔ |2x+1﹣1|)<|3﹣1|, 即|2x |<2⇔|x |<1,解得-11x << 所以所求不等式的解集为:()1,1-. 故选A . 【点睛】本题考查了函数的平移及函数的奇偶性与单调性的应用,考查了含绝对值的不等式的求解,属于综合题.5.D解析:D 【解析】依题意A ={x |-2≤x ≤3},B ={x |x <-1或x >4},故∁U B ={x |-1≤x ≤4},故A ∩(∁U B )={x |-1≤x ≤3},故选D.6.C解析:C 【解析】 【分析】根据f (x )是奇函数,以及f (x+2)=f (-x )即可得出f (x+4)=f (x ),即得出f (x )的周期为4,从而可得出f (2018)=f (0),2019122f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,20207312f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭然后可根据f (x )在[0,1]上的解析式可判断f (x )在[0,1]上单调递增,从而可得出结果. 【详解】∵f(x )是奇函数;∴f(x+2)=f (-x )=-f (x );∴f(x+4)=-f (x+2)=f (x ); ∴f(x )的周期为4;∴f(2018)=f (2+4×504)=f (2)=f (0),2019122f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,20207 312f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭∵x∈[0,1]时,f (x )=2x -cosx 单调递增;∴f(0)<12f ⎛⎫⎪⎝⎭ <712f ⎛⎫ ⎪⎝⎭ ∴()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,故选C. 【点睛】本题考查奇函数,周期函数的定义,指数函数和余弦函数的单调性,以及增函数的定义,属于中档题.7.B解析:B 【解析】由()f x 为偶函数得0m =,所以0,52log 3log 32121312,a =-=-=-=2log 521514b =-=-=,0210c =-=,所以c a b <<,故选B.考点:本题主要考查函数奇偶性及对数运算.8.B解析:B 【解析】 【分析】由函数的解析式可得函数f (x )=x 2﹣4x +5=(x ﹣2)2+1的对称轴为x =2,此时,函数取得最小值为1,当x =0或x =4时,函数值等于5,结合题意求得m 的范围. 【详解】∵函数f (x )=x 2﹣4x +5=(x ﹣2)2+1的对称轴为x =2,此时,函数取得最小值为1, 当x =0或x =4时,函数值等于5.且f (x )=x 2﹣4x +5在区间[0,m ]上的最大值为5,最小值为1, ∴实数m 的取值范围是[2,4], 故选:B . 【点睛】本题主要考查二次函数的性质应用,利用函数图像解题是关键,属于中档题.9.C解析:C 【解析】要使函数有意义,需使210{340x x x +>--+>,即1{41x x >--<<,所以1 1.x -<<故选C10.D解析:D 【解析】 试题分析:当时,11()()22f x f x +=-,所以当时,函数是周期为的周期函数,所以,又函数是奇函数,所以,故选D .考点:函数的周期性和奇偶性.11.B解析:B 【解析】20.4200.41,log 0.40,21<<Q ,01,0,1,a b c b a c ∴<<∴<<,故选B.12.B解析:B 【解析】 【分析】由偶函数的性质可得出函数()y f x =在区间()0,∞+上为减函数,由对数的性质可得出12log 30<,由偶函数的性质得出()2log 3a f =,比较出2log 3、 1.22-、12的大小关系,再利用函数()y f x =在区间()0,∞+上的单调性可得出a 、b 、c 的大小关系. 【详解】()()f x f x -=Q ,则函数()y f x =为偶函数,Q 函数()y f x =在区间(),0-∞内单调递增,在该函数在区间()0,∞+上为减函数,1122log 3log 10<=Q ,由换底公式得122log 3log 3=-,由函数的性质可得()2log 3a f =,对数函数2log y x =在()0,∞+上为增函数,则22log 3log 21>=, 指数函数2xy =为增函数,则 1.2100222--<<<,即 1.210212-<<<, 1.22102log 32-∴<<<,因此,b c a >>. 【点睛】本题考查利用函数的奇偶性与单调性比较函数值的大小关系,同时也考查了利用中间值法比较指数式和代数式的大小关系,涉及指数函数与对数函数的单调性,考查分析问题和解决问题的能力,属于中等题.二、填空题13.2【解析】【分析】先求f (2)再根据f (2)值所在区间求f (f (2))【详解】由题意f (2)=log3(22–1)=1故f (f (2))=f (1)=2×e1–1=2故答案为:2【点睛】本题考查分段函数解析:2 【解析】 【分析】先求f (2),再根据f (2)值所在区间求f (f (2)). 【详解】由题意,f (2)=log 3(22–1)=1,故f (f (2))=f (1)=2×e 1–1=2,故答案为:2. 【点睛】本题考查分段函数求值,考查对应性以及基本求解能力.14.【解析】由定义在实数集上的偶函数在区间上是减函数可得函数在区间上是增函数所以由不等式得即或解得或即不等式的解集是;故答案为解析:()10,e,e ∞⎛⎫⋃+ ⎪⎝⎭【解析】由定义在实数集R 上的偶函数()f x 在区间(],0-∞上是减函数,可得函数()f x 在区间()0+∞,上是增函数,所以由不等式()()1ln f f x <得ln 1x >,即ln 1x >或ln 1x <-,解得x e >或10e x <<,即不等式()()1ln f f x <的解集是()10,e,e ∞⎛⎫⋃+ ⎪⎝⎭;故答案为()10,e,e ∞⎛⎫⋃+ ⎪⎝⎭. 15.-1【解析】【分析】由分段函数的解析式先求出f(-2)的值并判定符号从而可得f(f(-2))的值【详解】∵fx=1-xx≥0x2x<0-2<0∴f-2=-22=4>0所以f(f(-2))=f4=1- 解析:-1 【解析】 【分析】由分段函数的解析式先求出的值并判定符号,从而可得的值.【详解】, ,所以,故答案为-1. 【点睛】本题主要考查分段函数的解析式,属于简单题. 求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.16.【解析】【分析】首先保证真数位置在上恒成立得到的范围要求再分和进行讨论由复合函数的单调性得到关于的不等式得到答案【详解】函数所以真数位置上的在上恒成立由一次函数保号性可知当时外层函数为减函数要使为减 解析:()1,2【解析】 【分析】首先保证真数位置20ax ->在[]0,1x ∈上恒成立,得到a 的范围要求,再分01a <<和1a >进行讨论,由复合函数的单调性,得到关于a 的不等式,得到答案.【详解】函数()()log 2a f x ax =-,所以真数位置上的20ax ->在[]0,1x ∈上恒成立, 由一次函数保号性可知,2a <,当01a <<时,外层函数log a y t =为减函数,要使()()log 2a f x ax =-为减函数,则2t ax =-为增函数, 所以0a ->,即0a <,所以a ∈∅, 当1a >时,外层函数log a y t =为增函数,要使()()log 2a f x ax =-为减函数,则2t ax =-为减函数, 所以0a -<,即0a >,所以1a >, 综上可得a 的范围为()1,2. 故答案为()1,2. 【点睛】本题考查由复合函数的单调性,求参数的范围,属于中档题.17.68【解析】由题意得经过天后气球体积变为经过25天后气球体积变为原来的即则设天后体积变为原来的即即则两式相除可得即所以天点睛:本题主要考查了指数函数的综合问题考查了指数运算的综合应用求解本题的关键是解析:68 【解析】由题意得,经过t 天后气球体积变为kt V a e -=⋅,经过25天后,气球体积变为原来的23, 即25252233kk a ea e --⋅=⇒=,则225ln 3k -=, 设t 天后体积变为原来的13,即13kt V a e a -=⋅=,即13kte -=,则1ln 3kt -=两式相除可得2ln2531ln3k kt -=-,即2lg25lg 2lg30.3010.477130.3681lg30.4771lg 3t --===≈--, 所以68t ≈天点睛:本题主要考查了指数函数的综合问题,考查了指数运算的综合应用,求解本题的关键是先待定t 的值,建立方程,在比较已知条件,得出关于t 的方程,求解t 的值,本题解法比较巧妙,充分考虑了题设条件的特征,对观察判断能力要求较高,解题时根据题设条件选择恰当的方法可以降低运算量,试题有一定的难度,属于中档试题.18.4【解析】【分析】当时令即作和的图象判断交点个数即可当时令可解得零点从而得解【详解】方法一:当时令即作和的图象如图所示显然有两个交点当时令可得或综上函数的零点有4个方法二:当时令可得说明导函数有两个解析:4 【解析】 【分析】当0x >时,令()2ln 20f x x x x =-+=,即2ln 2x x x =-,作y ln x =和22y x x =-的图象,判断交点个数即可,当0x <时,令()210f x x =+-=,可解得零点,从而得解. 【详解】方法一:当0x >时,令()2ln 20f x x x x =-+=,即2ln 2x x x =-.作y ln x =和22y x x =-的图象,如图所示,显然有两个交点,当0x <时,令()210f x x =+-=,可得1x =-或3-. 综上函数的零点有4个.方法二:当0x >时,()2ln 2f x x x x =-+,()21221'22x x f x x x x-++=-+=,令()'0f x =可得()2'2210f x x x =-++=,()'01f =,()'230f =-<,说明导函数有两个零点,函数的()110f =>,()30f <,可得0x >时, 函数的零点由2个.0x <时,函数的图象如图:可知函数的零点有4个. 故答案为4.本题考查了对分段函数分类问题和利用构造函数,把方程问题转换为函数交点问题,函数()()y f x g x =-零点的个数即等价于函数()y f x =和()y g x =图象交点的个数,通过数形结合思想解决实际问题.19.【解析】∵函数=的图象经过点(13)∴∵反函数的图象经过点(20)∴函数=的图象经过点(02)∴∴∴==∴= 解析:()2log 1,1x x ->【解析】∵函数()f x =x a b +的图象经过点(1,3), ∴3a b +=, ∵反函数()1fx -的图象经过点(2,0),∴函数()f x =x a b +的图象经过点(0,2), ∴12b +=. ∴2, 1.a b == ∴()f x =x a b +=2 1.x + ∴()1fx -=()2log 1, 1.x x ->20.①③【解析】①正确根据函数是奇函数可得f(3)=-f(-3)=1而f(-1)=2所以f(3)<f(-1);②错根据复合函数的单调性可知函数的单调递减区间为(2+∞);③正确奇函数关于原点对称所以可根解析:①③ 【解析】①正确,根据函数是奇函数,可得,而,所以;②错,根据复合函数的单调性可知函数的单调递减区间为;③正确,奇函数关于原点对称,所以可根据的解析式,求得的解析式;④,根据对数函数的定义域,不能是任意实数,而需,由,所以正确的序号是①③.【点睛】本题以多项选择题的形式考查函数的某些性质,综合性比较高,选项②错的比较多,涉及复合函数单调区间的问题,谨记“同增异减”,同时函数的定义域,定义域是比较容易忽视的问题,做题时要重视.三、解答题21.(1)2;(2)(]1,3. 【解析】(1)设0x <,可得0x ->,求出()f x -的表达式,利用奇函数的定义可得出函数()y f x =在0x <时的解析式,由此可求出实数m 的值;(2)作出函数()y f x =的图象,可得出函数()y f x =的单调递增区间为[]1,1-,于是可得出[][]1,21,1a --⊆-,进而得出关于实数a 的不等式组,解出即可. 【详解】(1)()222,00,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩Q 为奇函数,当0x <时,0x ->,则()()()2222f x x x x x -=--+⨯-=--, 则()()22f x f x x x =--=+,2m ∴=;(2)由(1)可得()222,00,02,0x x x f x x x x x ⎧-+>⎪==⎨⎪+<⎩,作出函数()y f x =如下图所示:由图象可知,函数()y f x =的单调递增区间为[]1,1-,由题意可得[][]1,21,1a --⊆-,则121a -<-≤,解得13a <?. 因此,实数a 的取值范围是(]1,3. 【点睛】本题考查奇函数解析式的求解,同时也考查了利用函数在区间上的单调性求参数,考查运算求解能力,属于中等题.22.(1)1()f x x -=;(2)存在,6a =. 【解析】 【分析】(1)由幂函数的定义和单调性,可得关于m 的方程与不等式;(2)由(1)得1()f x x -=,从而得到()(1)1g x a x =-+,再对1a -的取值进行分类讨论. 【详解】(1)因为幂函数2242()(22)mm f x m m x -+=--在(0,)+∞上单调递减,所以22221,420,m m m m ⎧--=⎨-+<⎩解得:3m =或1m =-(舍去),所以1()f x x -=.(2)由(1)得1()f x x -=,所以()(1)1g x a x =-+, 假设存在0a >使得命题成立,则当10a ->时,即1a >,()g x 在[1,2]-单调递增,所以(1)4,114,6(2)11,22111,g a a g a -=--+=-⎧⎧⇒⇒=⎨⎨=-+=⎩⎩; 当10a -=,即1a =,()1g x =显然不成立;当10a -<,即1a <,()g x 在[1,2]-单调递减,所以(1)11,1111,(2)4,2214,g a g a -=-+=⎧⎧⇒⎨⎨=--+=-⎩⎩a 无解; 综上所述:存在6a =使命题成立. 【点睛】本题考查幂函数的概念及解析式、已知一次函数的定义域、值域求参数的取值范围,考查逻辑推理能力和运算求解能力,同时注意分类讨论思想的运用,讨论时要以一次函数的单调性为分类标准.23.(1) {|25}A B x x =≤<I (){|35}R C A B x x ⋃=-<< (2) 5(,1)(2,)2-∞-U 【解析】试题分析:(1)根据集合的交集的概念得到{|25}A B x x ⋂=≤<,{|32}R C A x x =-<<,进而得到结果;(2)∵B C C ⋂= ∴C B ⊆,分情况列出表达式即可. 解析:(1){|25}A B x x ⋂=≤<{|32}R C A x x =-<< (){|35}R C A B x x ⋃=-<<(2)∵B C C ⋂= ∴C B ⊆Ⅰ)当C =∅时,∴12m m ->即1m <-Ⅱ)当C ≠∅时,∴121125m m m m -≤⎧⎪->⎨⎪<⎩∴522m <<综上所述:m 的取值范围是()5,12,2⎛⎫-∞-⋃ ⎪⎝⎭24.(1)函数模型:①22212y x x =-+;函数模型②:128x y +=+(2)函数模型②更合适;从第9天开始该微生物群落的单位数量超过1000 【解析】 【分析】(1)由题意利用待定系数法求函数的解析式;(2)将4x =,5x =代入(1)中的两个函数解析式中,结合数据判断两个模型中那个更合适。

高一上册数学期中试卷带答案

高一上册数学期中试卷带答案

2020-2021学年高一(上)期中数学试卷一、选择题(本大题共10小题,每小题5分,共50分)1. 已知集合A={x|−1≤x<4,x∈Z),则集合A中元素的个数为()A.3B.4C.5D.62. 设f(x)={x+3,x>10x2−x−2,x≤10,则f(5)的值为()A.16B.18C.21D.243. 函数y=−x2+2x−3(x<0)的单调增区间是()A.(0, +∞)B.(−∞, 0)C.(−∞, 1]D.(−∞, −1]4. f(x)是定义在R上的奇函数,f(−3)=2,则下列各点在函数f(x)图象上的是( )A.(3, −2)B.(3, 2)C.(−3, −2)D.(2, −3)5. 设y1=40.9,y2=log124.3,y3=(13)1.5,则()A.y3>y1>y2B.y2>y1>y3C.y1>y2>y3D.y1>y3>y26. 已知集合A={y|y=2x, x<0},B={y|y=log2x},则A∩B=()A.{y|y>0}B.{y|y>1}C.{y|0<y<1}D.⌀7. 下列函数中,既是奇函数又是增函数的为()A.y=x+1B.y=x|x|C.y=1x D.y=x+1x8. 函数y=x+a与函数y=log a x的图象可能是()A. B.C.D.9. 已知函数f(x)=e x −x 2+8x ,则在下列区间中f(x)必有零点的是( )A.(−2, −1)B.(−1, 0)C.(0, 1)D.(1, 2)10. 定义在R 上的奇函数f(x)在[0, +∞)是减函数,且f(−2)=1,则满足−1≤f(x −1)≤1的x 的取值范围是( )A.[−2, 2]B.[−2, 1]C.[−1, 3]D.[0, 2] 二、解答题(本大题共5小题,每小题10分,共50分.写出必要的文字说明、证明过程或演算步骤)已知函数f(x)=log 2(ax +b),若f(2)=1,f(3)=2,求f(5).计算下列各题:①0.008114+(4−34)2+(√8)−43−16−0.75 ②lg 25+lg 21g50+21+12log 25已知集合A ={x|2≤x ≤8},B ={x|1<x <6},C ={x|x >a},U =R .(1)求A ∪B ,(∁U A)∩B ;(2)若A ∩C ≠⌀,求a 的取值范围.已知二次函数f(x)图象过点(0, 3),它的图象的对称轴为x =2,且f(x)的两个零点的平方和为10,求f(x)的解析式.已知函数f(x)=x 2+2ax +2,x ∈[−5, 5].(1)当a =−1时,求函数的最大值和最小值;(2)求实数a 的取值范围,使y =f(x)在区间[−5, 5]上是单调函数.三、填空题(本大题共5小题,每小题5分,共25分)函数f(x)=√x+1x的定义域是________.函数f(x)=a x−1+1(a >0且a ≠1)恒过定点________.已知函数f(x)={x 2+1(x ≤0)−2x(x >0),若f(x)=10,则x =________.函数f(x)=log 2(8x +1)的值域为________.若函数f(x)=ax +b 的零点是2,则函数g(x)=bx 2−ax 的零点是________=0,或________=−12 . 四、解答题(本大题共2小题,共25分.写出必要的文字说明、证明过程或演算步骤.)设函数f(x)=1+x 21−x 2.(1)求f(x)的定义域;(2)判断f(x)的奇偶性;(3)求f(12)+f(13)+f(14)+...+f(12019)+f(2)+f(3)+f(4)+...+f(2019)的值.已知f(x)为R 上的偶函数,当x ≥0时,f(x)=ln (3x +2).(1)证明y =f(x)在[0, +∞)单调递增;(2)求f(x)的解析式;(3)求不等式f(x +2)≤f(2x)的解集.参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分)1.【答案】C【解析】将符合−1≤x<4,x∈Z的条件带入求出x值即可.2.【答案】B【解析】根据题意,由函数的解析式,直接计算可得答案.3.【答案】B【解析】根据所给的二次函数的二次项系数小于零,得到二次函数的图象是一个开口向下的抛物线,根据对称轴,可得结论,注意定义域.4.【答案】A【解析】根据f(x)是定义在R上的奇函数,f(−3)=2,可得:f(3)=−2,进而得到答案.5.【答案】D【解析】根据指数函数和对数函数的性质,分别判断三个式子值的范围,可得答案.6.【答案】C【解析】先分别求出集合A,B,由此求出A∩B.7.【答案】B【解析】根据函数的单调性和奇偶性的性质判断即可.8.【答案】C【解析】由a在对数函数及y=x+a中的意义,通过分析可得结果.9.【答案】B【解析】构造函数g(x)=e x ,ℎ(x)=x 2−8x ,画出图象判断,交点个数,运用特殊函数值判断区间.10.【答案】C【解析】由已知可得,可得,f(x)在R 上单调递减,然后结合f(−2)=1,f(2)=−1,从而可求.二、解答题(本大题共5小题,每小题10分,共50分.写出必要的文字说明、证明过程或演算步骤)【答案】由f(2)=1,f(3)=2,得{log 2(2a +b)=1log 2(3a +b)=2, 即{2a +b =23a +b =4, ∴ {a =2b =−2, ∴ f(x)=log 2(2x −2),∴ f(5)=log 28=3.【解析】根据对数的基本运算,联立方程即可求出a ,b 的值.【答案】①原式=(0.3)4×14+(2−32)2+(232)−43−24×(−0.75)=0.3+2−3+2−2−2−3=0.3+0.25=0.55②原式=lg 25+21g21g5+lg 22+21⋅212log 25=(lg 5+lg 2)2+21⋅2log 2√5=1+2√5 所以①的值为:0.55.②的值为:1+2√5【解析】①利用幂指数的运算性质,有理指数幂的性质直接化简即可得到答案.②利用对数的运算性质,以及lg 2+lg 5=1,a log a N=N ,化简表达式,即可求出lg 25+lg 21g50+21+12log 25的值.【答案】∵ A ={x|2≤x ≤8},B ={x|1<x <6},U =R ,∴ A ∪B ={x|1<x ≤8},∁U A ={x|x <2或x >8},则(∁U A)∩B ={x|1<x <2},∵ A ={x|2≤x <8},C ={x|x >a},且A ∩C ≠⌀,∴ a <8.【解析】(1)由A 与B ,求出两集合的并集,求出A 的补集,找出A 补集与B 的交集即可;(2)根据A 与C 的交集不为空集,求出a 的范围即可.【答案】设f(x)=ax2+bx+c(a≠0)因为f(x)图象过点(0, 3),所以c=3又f(x)对称轴为x=2,∴−b=2即b=−4a2a所以f(x)=ax2−4ax+3(a≠0)设方程ax2−4ax+3=0(a≠0)的两个实根为x1,x2,,x12+x22=10则x1+x2=4,x1x2=3a∴x12+x22=(x1+x2)2−2x1x2=16−6,a=10所以16−6a得a=1,b=−4所以f(x)=x2−4x+3【解析】由已知中函数f(x)为二次函数,我们可以采用待定系数法求函数的解析式,根据函数f(x)图象过点(0, 3),图象的对称轴为x=2,两个零点的平方和为10,结合韦达定理(一元二次方程根与系数的关系),我们可以构造一个关于系数a,b,c的方程组,解方程组求出a,b,c的值后,即可得到f(x)的解析式.【答案】当a=−1时,函数f(x)=x2−2x+2=(x−1)2+1的对称轴为x=1,∴y=f(x)在区间[−5, 1]单调递减,在(1, 5]单调递增,且f(−5)=37,f(5)=17<37,∴f(x)min=f(1)=1,f(x)max=f(−5)=37;∵f(x)=x2+2ax+2在区间[−5, 5]上是单调函数,∴对称轴x=−a≥5或−a≤−5,解得:a≥5或a≤−5.【解析】(1)直接将a=−1代入函数解析式,求出最大最小值.(2)先求f(x)的对称轴x=−a,所以若y=f(x)在区间[−5, 5]上是单调函数,则区间[−5, 5]在对称轴的一边,所以得到−a≤−5,或−a≥5,这样即得到了a的取值范围.三、填空题(本大题共5小题,每小题5分,共25分)【答案】[−1, 0)∪(0, +∞)【解析】由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x的取值集合得答案.【答案】(1, 2)【解析】令x−1=0,求得x和y的值,从而求得函数f(x)=a x−1+1(a>0且a≠1)恒过定点的坐标.【答案】−3【解析】当x≤0时,f(x)=x2+1=10;当x>0时,f(x)=−2x=10,由此能求出结果.【答案】(0, +∞)【解析】根据函数的定义域求出函数的值域即可.【答案】x ,x【解析】由函数f(x)=ax +b 的零点为x =2,可得 2a +b =0,令g(x)=0,可得 x =0,或x =12−,由此得出结论四、解答题(本大题共2小题,共25分.写出必要的文字说明、证明过程或演算步骤.)【答案】要使f(x)有意义,则x 2≠1,∴ x ≠±1,∴ f(x)的定义域为{x|x ≠±1};由(1)知定义域关于原点对称,f(−x)=1+x 21−x 2=f(x),∴ f(x)为偶函数,∵ f(1x )+f(x)=1+1x 21−1x 2+1+x 21−x 2=1+x 2x 2−1+1+x 21−x 2=0, ∴ f(12)+f(13)+f(14)+⋯+f(12019)+f(2)+f(3)+f(4)+...+f(2019)=0.【解析】(1)容易看出,要使得f(x)有意义,则需满足x 2≠1,从而求出f(x)的定义域为{x|x ≠±1};(2)根据(1)可知f(x)的定义域关于原点对称,并容易求出f(−x)=f(x),从而得出f(x)是偶函数;(3)容易求出f(1x )+f(x)=0,从而求出原式=0.【答案】证明:任取0≤x 1≤x 2,f(x 1)−f(x 2)=ln (3x 1+2)−ln (3x 2+2)=ln 3x 1+23x 2+2, ∵ 0≤x 1≤x 2,∴ 3x 1+23x 2+2<1,即ln 3x 1+23x 2+2<0, ∴ f(x 1)−f(x 2)<0,即f(x 1)<f(x 2),∴ y =f(x)在[0, +∞)单调递增.设x <0,则−x >0,∵ f(x)为偶函数,∴ f(−x)=ln (−3x +2)=f(x),故f(x)的解析式为f(x)={ln (3x +2),x ≥0ln (−3x +2),x <0. ∵ f(x)为R 上的偶函数,∴ 原不等式等价于f(|x +2|)≤f(|2x|),又y =f(x)在[0, +∞)单调递增,∴ |x +2|≤|2x|,解得x ≤−23或x ≥2,或x≥2}.故不等式的解集为{x|x≤−23【解析】(1)根据函数单调性的定义,运用“五步法”:任取、作差、变形、定号、下结论,进行证明即可;(2)设x<0,则−x>0,将−x代入f(x)的解析式中,并利用f(x)为偶函数即可得解;(3)原不等式等价于f(|x+2|)≤f(|2x|),再由f(x)的单调性得|x+2|≤|2x|,解之即可.。

2020-2021石家庄市高中必修一数学上期中一模试卷带答案

2020-2021石家庄市高中必修一数学上期中一模试卷带答案
6.D
解析:D 【解析】 【分析】
画出函数 y x2 x 2 的图象,结合图象及题意分析可得所求范围.
【详解】
画出函数 y x2 x 2 的图象如下图所示,
结合图象可得,要使函数
x
x2
x
2
,
x
a,
是在
R
上的增函数,
ax 6, x a,
a2 需满足 a2 a 2 a2 6 ,解得 2 x 4 .
考点:本试题主要考查了函数零点的问题的运用.
点评:解决该试题的关键是利用零点存在性定理,根据区间端点值的乘积小于零,得到函
数的零点的区间.
10.B
解析:B
【解析】
【分析】
由分子、分母的奇偶性,易于确定函数为奇函数,由 f (4) 的近似值即可得出结果.
【详解】

y
f (x)
2x3 2x 2x
,则
那么 f ( f (1)) 的值为(
)
log2 x, x 0
8
A.27
B. 1 27
C.-27
3.若偶函数 f x 在区间 (,1] 上是增函数,则( )
D.4
D.- 1 27
A.
f
3 2
f
(1)
f
(2)
B.
f
(1)
f
3 2
f
(2)
C.
f
(2)
f
(1)
f
3 2
D.
f
(2)
f
3 2
m
x0
m(b) b
m(a) a
,则称函数
m
x 是区间

a, b
上的“平均值函数”, x0 是它的一个

2020-2021高一数学上期中一模试卷(含答案)(4)

2020-2021高一数学上期中一模试卷(含答案)(4)

2020-2021高一数学上期中一模试卷(含答案)(4) 一、选择题1.函数()2 312xf x x-⎛⎫=- ⎪⎝⎭的零点所在的区间为()A.()0,1B.()1,2C.()2,3D.()3,42.f (x)=-x2+4x+a,x∈[0,1],若f (x)有最小值-2,则f (x)的最大值( ) A.-1B.0C.1D.23.不等式()2log231ax x-+≤-在x∈R上恒成立,则实数a的取值范围是()A.[)2,+∞B.(]1,2C.1,12⎡⎫⎪⎢⎣⎭D.10,2⎛⎤⎥⎝⎦4.已知函数()25,1,,1,x ax xf x axx⎧---≤⎪=⎨>⎪⎩是R上的增函数,则a的取值范围是()A.30a-≤<B.0a<C.2a≤-D.32a--≤≤5.1()xf x ex=-的零点所在的区间是()A.1(0,)2B.1(,1)2C.3(1,)2D.3(,2)26.已知0.6log0.5a=,ln0.5b=,0.50.6c=,则()A.a c b>>B.a b c>>C.c a b>>D.c b a>>7.如图,U为全集,M、P、S是U的三个子集,则阴影部分所表示的集合是()A.()M P S⋂⋂B.()M P S⋂⋃C.()()UM P S⋂⋂ðD.()()UM P S⋂⋃ð8.设函数22,()6,x x x af xax x a⎧--≥⎪=⎨-<⎪⎩是定义在R上的增函数,则实数a取值范围()A.[)2,+∞B.[]0,3C.[]2,3D.[]2,49.已知函数2221,2,()2,2,xx x xf xx-⎧-++<=⎨≥⎩且存在三个不同的实数123,,x x x,使得123()()()f x f x f x ==,则123x x x ++的取值范围为( )A .(4,5)B .[4,5)C .(4,5]D .[4,5] 10.若a >b >0,0<c <1,则A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b11.三个数0.377,0.3,ln 0.3a b c ===大小的顺序是( ) A .a c b >> B .a b c >>C .b a c >>D .c a b >> 12.已知函数在上单调递减,则实数a 的取值范围是( ) A .B .C .D .二、填空题13.若函数()24,43,x x f x x x x λλ-≥⎧=⎨-+<⎩恰有2个零点,则λ的取值范围是______.14.已知函数2()121()f x ax x ax a R =+++-∈的最小值为0,则实数a =_________. 15.若函数()y f x =的定义域是[0,2],则函数0.5(2)()log (43)f xg x x =-的定义域是__________.16.设函数()f x 是定义在R 上的偶函数,记2()()g x f x x =-,且函数()g x 在区间[0,)+∞上是增函数,则不等式2(2)(2)4f x f x x +->+的解集为_____17.函数的定义域为______________.18.已知函数()log ,03,40a x x f x x x >⎧=⎨+-≤<⎩,其中0a >且1a ≠,若函数()f x 的图象上有且只有一对点关于y 轴对称,则a 的取值范围是__________. 19.已知()f x 定义在R 上的奇函数,当0x ≥时,,则函数()()3g x f x x =-+的零点的集合为 .20.已知函数42()(0)f x x ax bx c c =+++<,若函数是偶函数,且4((0))f f c c =+,则函数()f x 的零点共有________个.三、解答题21.设函数()(0.af x x x x=+≠且x ,)a R ∈. (1)判断()f x 的奇偶性,并用定义证明; (2)若不等式()12262xx x f <-++在[]0,2上恒成立,试求实数a 的取值范围;(3)()11,0,12x g x x x -⎡⎤=∈⎢⎥+⎣⎦的值域为.A 函数()f x 在x A ∈上的最大值为M ,最小值为m ,若2m M >成立,求正数a 的取值范围.22.某企业生产A ,B 两种产品,根据市场调查与预测,A 产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2,(注:利润与投资单位:万元)(1)分别将A ,B 两种产品的利润表示为投资的函数关系,并写出它们的函数关系式; (2)该企业已筹集到10万元资金,全部投入到A ,B 两种产品的生产,怎样分配资金,才能使企业获得最大利润,其最大利润约为多少万元(精确到1万元). 23.已知函数())22log f x x a x =+是R 上的奇函数,()2g x t x a =--.(1)求a 的值;(2)记()f x 在3,24⎡⎤-⎢⎥⎣⎦上的最大值为M ,若对任意的3,24x ⎡⎤∈-⎢⎥⎣⎦,()M g x ≤恒成立,求t 的取值范围.24.已知函数f (x )=log a (x+1)-log a (1-x ),a>0且a ≠1. (1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明; (3)当a>1时,求使f (x )>0的解集.25.为了研究某种微生物的生长规律,研究小组在实验室对该种微生物进行培育实验.前三天观测的该微生物的群落单位数量分别为12,16,24.根据实验数据,用y 表示第()*x x ∈N 天的群落单位数量,某研究员提出了两种函数模型;①2y ax bx c =++;②x y p q r =⋅+,其中a ,b ,c ,p ,q ,r 都是常数.(1)根据实验数据,分别求出这两种函数模型的解析式;(2)若第4天和第5天观测的群落单位数量分别为40和72,请从这两个函数模型中选出更合适的一个,并计算从第几天开始该微生物群落的单位数量超过1000.26.已知函数()f x 是R 上的奇函数,且当0x >时,()f x =1()2x.①求函数()f x 的解析式;②画出函数的图象,根据图象写出函数()f x 的单调区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】判断函数()2312x f x x -⎛⎫=- ⎪⎝⎭单调递增,求出f (0)=-4,f (1)=-1,f (2)=3>0,即可判断.【详解】∵函数()2312x f x x -⎛⎫=- ⎪⎝⎭单调递增,∴f(0)=-4,f (1)=-1, f (2)=7>0,根据零点的存在性定理可得出零点所在的区间是()1,2, 故选B . 【点睛】本题考查了函数的单调性,零点的存在性定理的运用,属于容易题.2.C解析:C 【解析】因为对称轴2[0,1]x =∉,所以min max ()(0)2()(1)31f x f a f x f a ===-∴==+= 选C.3.C解析:C 【解析】 【分析】由()2223122-+=-+≥x x x 以及题中的条件,根据对数函数的单调性性,对a 讨论求解即可. 【详解】由()2log 231a x x -+≤-可得()21log 23log -+≤a ax x a, 当1a >时,由()2223122-+=-+≥x x x 可知2123-+≤x x a无实数解,故舍去;当01a <<时,()2212312-+=-+≥x x x a在x ∈R 上恒成立,所以12a ≤,解得112a ≤<. 故选:C 【点睛】本题主要考查对数函数的单调性,涉及到复合函数问题,属于中档题.4.D解析:D 【解析】 【分析】根据分段函数的单调性特点,两段函数在各自的定义域内均单调递增,同时要考虑端点处的函数值. 【详解】要使函数在R 上为增函数,须有()f x 在(,1]-∞上递增,在(1,)+∞上递增,所以21,20,115,1a a a a ⎧-≥⎪⎪<⎨⎪⎪--⨯-≤⎩,解得32a --≤≤.故选D. 【点睛】本题考查利用分段函数的单调性求参数的取值范围,考查数形结合思想、函数与方程思想的灵活运用,求解时不漏掉端点处函数值的考虑.5.B解析:B 【解析】 函数f (x )=e x ﹣1x 是(0,+∞)上的增函数,再根据f (12)2<0,f (1)=e ﹣1>0,可得f (12)f (1)<0,∴函数f (x )=e x ﹣1x 的零点所在的区间是(12,1),故选B .点睛:判定函数的零点所在区间,只需计算区间端点处的函数值,并判断是否异号,只要异号,则区间内至少有一个零点存在.6.A解析:A 【解析】由0.50.6log 0.51,ln 0.50,00.61><<<,所以1,0,01a b c ><<<,所以a c b >>,故选A .7.C解析:C 【解析】 【分析】先根据图中的阴影部分是M∩P 的子集,但不属于集合S ,属于集合S 的补集,然后用关系式表示出来即可. 【详解】图中的阴影部分是: M∩P 的子集,不属于集合S ,属于集合S 的补集,即是C U S 的子集则阴影部分所表示的集合是(M∩P )∩(∁U S). 故选C . 【点睛】本题主要考查了Venn 图表达集合的关系及运算,同时考查了识图能力,属于基础题.8.D解析:D 【解析】 【分析】画出函数22yx x =--的图象,结合图象及题意分析可得所求范围. 【详解】画出函数22y x x =--的图象如下图所示,结合图象可得,要使函数()22,,6,,x x x a x ax x a ⎧--≥⎪=⎨-<⎪⎩是在R 上的增函数,需满足22226a a a a ≥⎧⎨--≥-⎩,解得24x ≤≤. 所以实数a 取值范围是[]2,4. 故选D . 【点睛】解答本题的关键有两个:(1)画出函数的图象,结合图象求解,增强了解题的直观性和形象性;(2)讨论函数在实数集上的单调性时,除了考虑每个段上的单调性之外,还要考虑在分界点处的函数值的大小关系.9.A解析:A 【解析】不妨设123x x x <<,当2x <时,()()212f x x =--+,此时二次函数的对称轴为1x =,最大值为2,作出函数()f x 的图象如图,由222x -=得3x =,由()()()123f x f x f x ==,,且1212x x +=,即122x x +=,12332,x x x x ∴++=+ 由图可知3323,425x x <<∴<+<, 即123x x x ++的取值范围是()4,5,故选A.10.B解析:B 【解析】试题分析:对于选项A ,a b 1gc 1gclog c ,log c lg a lg b==,01c <<Q ,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用cy x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.11.B解析:B【解析】试题分析:根据指数函数和对数函数的单调性知:0.30771a =>=,即1a >;7000.30.31b <=<=,即01b <<;ln0.3ln10c =<=,即0c <;所以a b c >>,故正确答案为选项B .考点:指数函数和对数函数的单调性;间接比较法.12.C解析:C 【解析】 【分析】由函数单调性的定义,若函数在上单调递减,可以得到函数在每一个子区间上都是单调递减的,且当时,,求解即可.【详解】 若函数在上单调递减,则,解得. 故选C. 【点睛】本题考查分段函数的单调性.严格根据定义解答,本题保证随的增大而减小,故解答本题的关键是的最小值大于等于的最大值. 二、填空题13.【解析】【分析】根据题意在同一个坐标系中作出函数和的图象结合图象分析可得答案【详解】根据题意在同一个坐标系中作出函数和的图象如图:若函数恰有2个零点即函数图象与轴有且仅有2个交点则或即的取值范围是:解析:(1,3](4,)+∞U . 【解析】 【分析】根据题意,在同一个坐标系中作出函数4y x =-和243y x x =-+的图象,结合图象分析可得答案. 【详解】根据题意,在同一个坐标系中作出函数4y x =-和243y x x =-+的图象,如图:若函数()f x 恰有2个零点,即函数()f x 图象与x 轴有且仅有2个交点, 则13λ<…或4λ>,即λ的取值范围是:(1,3](4,)+∞U 故答案为:(1,3](4,)+∞U .【点睛】本题考查分段函数的图象和函数的零点,考查数形结合思想的运用,考查发现问题解决问题的能力.14.【解析】【分析】设计算可得再结合图象即可求出答案【详解】解:设则则由于函数的最小值为0作出函数的大致图象结合图象得所以故答案为:【点睛】本题主要考查分段函数的图象与性质考查转化思想考查数形结合思想属 解析:±1. 【解析】 【分析】设2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,计算可得2(),()()()2(),()()g x g x h x f x h x g x h x ≥⎧=⎨<⎩,再结合图象即可求出答案. 【详解】解:设2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,则22()()1g x x ax h x x⎧=+⎨=-⎩, 则()()()()()f x g x h x g x h x =++-2(),()()2(),()()g x g x h x h x g x h x ≥⎧=⎨<⎩,由于函数()f x 的最小值为0,作出函数()g x ,()h x 的大致图象,结合图象,210x -=,得1x =±, 所以1a =±, 故答案为:±1.【点睛】本题主要考查分段函数的图象与性质,考查转化思想,考查数形结合思想,属于中档题.15.【解析】首先要使有意义则其次∴解得综上点睛:对于抽象函数定义域的求解(1)若已知函数f(x)的定义域为ab 则复合函数f(g(x))的定义域由不等式a≤g(x)≤b 求出;(2)若已知函数f(g(x))解析:3,14⎛⎫⎪⎝⎭【解析】首先要使(2)f x 有意义,则2[0,2]x ∈, 其次0.5log 430x ->,∴0220431x x ≤≤⎧⎨<-<⎩,解得01314x x ≤≤⎧⎪⎨<<⎪⎩,综上3,14x ⎛⎫∈⎪⎝⎭. 点睛:对于抽象函数定义域的求解(1)若已知函数f(x)的定义域为[a ,b],则复合函数f(g(x))的定义域由不等式a≤g(x)≤b 求出;(2)若已知函数f(g(x))的定义域为[a ,b],则f(x)的定义域为g(x)在x∈[a,b]上的值域.16.【解析】【分析】根据题意分析可得为偶函数进而分析可得原不等式转化为结合函数的奇偶性与单调性分析可得解可得的取值范围【详解】根据题意且是定义在上的偶函数则则函数为偶函数又由为增函数且在区间上是增函数则 解析:()(),40,-∞-+∞U【解析】 【分析】根据题意,分析可得()g x 为偶函数,进而分析可得原不等式转化为()()22g x g +>,结合函数的奇偶性与单调性分析可得22x +>,解可得x 的取值范围. 【详解】根据题意()()2g x f x x =-,且()f x 是定义在R 上的偶函数,则()()()()()22g x f x x f x x g x -=---=-=,则函数()g x 为偶函数,()()()()()()()22224222422f x f x x f x x f g x g +->+⇒+--⇒+>>+,又由()g x 为增函数且在区间[0,)+∞上是增函数,则22x +>, 解可得:4x <-或0x >,即x 的取值范围为()(),40,-∞-+∞U , 故答案为()(),40,-∞-+∞U ; 【点睛】本题考查函数的奇偶性与单调性的综合应用,注意分析()g x 的奇偶性与单调性,属于中档题.17.-11【解析】【分析】根据定义域基本要求可得不等式组解不等式组取交集得到结果【详解】由题意得:1-x2≥02cosx -1>0⇒-1≤x≤1cosx>12cosx>12⇒x∈-π3+2kππ3+2kπ 解析:【解析】 【分析】根据定义域基本要求可得不等式组,解不等式组取交集得到结果. 【详解】 由题意得:,函数定义域为:【点睛】本题考查具体函数定义域的求解问题,关键是根据定义域的基本要求得到不等式组.18.【解析】将在轴左侧的图象关于轴对称到右边与在轴右侧的图象有且只有一个交点当时一定满足当时必须解得综上的取值范围是点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关解析:(0,1)1,4⋃() 【解析】将()f x 在y 轴左侧的图象关于y 轴对称到右边,与()f x 在y 轴右侧的图象有且只有一个交点.当01a <<时一定满足,当1a >时必须log 41a >,解得4a <.综上a 的取值范围是()0,11,4⋃().点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.19.【解析】试题分析:当时由于定义在上的奇函数则;因为时则若时令若时令因则的零点集合为考点:奇函数的定义与利用奇函数求解析式;2函数的零点;3分段函数分段处理原则; 解析:【解析】 试题分析:当时,,由于()f x 定义在R 上的奇函数,则;因为0x ≥时,,则若时,令若时,令,因,则,的零点集合为考点:奇函数的定义与利用奇函数求解析式;2.函数的零点;3.分段函数分段处理原则;20.2【解析】因为是偶函数则解得又所以故令所以故有2个零点点睛:本题涉及函数零点方程图像等概念和知识综合性较强属于中档题一般讨论函数零点个数问题都要转化为方程根的个数问题或两个函数图像交点的个数问题本题解析:2 【解析】因为()42(0)f x x ax bx c c =+++<是偶函数,则()()f x f x -=,解得0b =,又()()4240()f f f c c ac c c c ==++=+,所以0a =,故4()f x x c =+,令4()0f x x c =+=,40x c =->,所以4x c =-2个零点.点睛:本题涉及函数零点,方程,图像等概念和知识,综合性较强,属于中档题.一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑方程来解决,转化为方程根的个数,同时注意偶函数性质在本题中的应用.三、解答题21.(1)奇函数;见解析(2)7a <-;(3)15,153⎛⎫⎪⎝⎭ 【解析】【分析】(1)可看出()f x 是奇函数,根据奇函数的定义证明即可;(2)由题意可得出22(2)162x x a <-++⋅在[]0,2上恒成立,然后令2x t =,[]1,4t ∈,从而得出2261y t t =-++,只需min a y <,配方求出y 的最小值,即可求解;(3)容易求出1,13A ⎡⎤=⎢⎥⎣⎦,从而得出1,13x ⎡⎤∈⎢⎥⎣⎦时,2()()min max f x f x >,可讨论a :容易得出0a ≤时,不符合题意;0a >时,可知()f x 在(上是减函数,在)+∞上是增函数,从而可讨论109a <≤,1a ≥和119a <<,然后分别求出()f x 在1,13⎡⎤⎢⎥⎣⎦上的最小值和最大值,根据2m M >求出a 的范围即可. 【详解】()()1f x Q 的定义域为()(),00,-∞⋃+∞,且()()af x x f x x-=-+=--, ()f x ∴为奇函数;()2若不等式()12262x x x f <-++在[]0,2上恒成立, 即122622xxx xa +<-++在[]0,2上恒成立, 即22(2)162x xa <-++⋅在[]0,2上恒成立, 令2x t =,则[]1,4t ∈,223112612()22y t t t =-++=--+, ∴当4t =,即2x =时,函数取最小值7-,故7a <-;()()123111x g x x x -==-+++是10,2⎡⎤⎢⎥⎣⎦上的减函数, ()g x ∴在10,2x ⎡⎤∈⎢⎥⎣⎦上的值域为()][11,0,123A g g ⎡⎤⎛⎫== ⎪⎢⎥⎝⎭⎣⎦,()f x ∴在区间1,13⎡⎤⎢⎥⎣⎦上,恒有2()()min max f x f x >,0a <①时,()f x 在1,13⎡⎤⎢⎥⎣⎦上单调递增,()()11max f x f a ∴==+,11()333min f x f a ⎛⎫==+ ⎪⎝⎭,12313a a ⎛⎫∴+>+ ⎪⎝⎭,解得115a >,不满足0a <;0a =②时,()f x x =在1,13⎡⎤⎢⎥⎣⎦上是增函数,1()1,()3max min f x f x ∴==,1213⨯<,不满足题意;0a >③时,()f x 在(上单调递减,在)+∞上单调递增,13≤,即109a <≤时,()f x 在1,13⎡⎤⎢⎥⎣⎦上是增函数,11()333min f x f a ⎛⎫∴==+ ⎪⎝⎭,()()11max f x f a ==+,12313a a ⎛⎫∴+>+ ⎪⎝⎭,解得11159a <≤;1≥,即1a ≥时,()f x 在1,13⎡⎤⎢⎥⎣⎦上单调递减,()()11min f x f a ∴==+,11()333max f x f a ⎛⎫==+ ⎪⎝⎭,()12133a a ∴+>+,解得513a ≤<;13)13<<,即119a <<时,()f x 在13⎡⎢⎣上单调递减,在⎤⎦上单调递增,()min f x f∴==()113,1133f a f a ⎛⎫=+=+ ⎪⎝⎭,当1313a a +≥+,即113a ≤<时,133a >+,a <<,113a ∴≤<,当1313a a +<+,即1193a <<时,1a >+,解得77a -<<+1193a ∴<<, 综上,a 的取值范围是15,153⎛⎫ ⎪⎝⎭. 【点睛】本题考查了奇函数的定义及证明,指数函数的单调性,配方求二次函数最值的方法,换元法求函数最值的方法,函数()af x x x=+的单调性,根据函数单调性求函数在闭区间上的最值的方法,考查了计算和推理能力,属于中档题.22.(1)A 为()()104f x x x =≥,B 为())0g x x =≥;(2)A 产品投入3.75万元,B 产品投入6.25万元,最大利润为4万元 【解析】 【分析】(1)根据题意给出的函数模型,设()1f x k x =;()g x k =代入图中数据求得12,k k 既得,注意自变量0x ≥;(2)设A 产品投入x 万元,则B 产品投入()10x -万元,设企业利润为y 万元.,列出利润函数为()()104x y f x g x =+-=,用换元法,设t =函数可求得利润的最大值. 【详解】解:(1)设投资为x 万元,A 产品的利润为()f x 万元,B 产品的利润为()g x 万元由题设知()1f x k x =;()g x k =由图1知()114f =,114k =由图2知()542g =,254k =则()()104f x x x =≥,())0g x x =≥. (2)设A 产品投入x 万元,则B 产品投入()10x -万元,设企业利润为y 万元.()()104x y f x g x =+-=,010x ∴≤≤t =,则0t ≤≤则(2210515650444216t t y t t -⎛⎫=+=--+≤≤ ⎪⎝⎭当52t =时,max 65416y =≈, 此时2510 3.754x =-= 所以当A 产品投入3.75万元,B 产品投入6.25万元,企业获得最大利润为4万元. 【点睛】本题考查函数的应用,在已知函数模型时直接设出函数表达式,代入已知条件可得函数解析式.23.(1) 1a = (2) [)4,+∞ 【解析】【分析】(1)根据函数()f x 是R 上的奇函数,得到()00f = ,即可求得a 的值;(2)由(1)可得函数()g x 的解析式,分别求得函数()f x 和()g x 的单调性与最值,进而得出关于t 的不等式,即可求解. 【详解】(1)因为())2log f x x =是R 上的奇函数,所以()00f = ,即log 0=,解得1a =. (2)由(1)可得())2log f x x =,()212121x t g x t x x t -++⎧=--=⎨+-⎩ 1,21,2x x ≥< .因为奇函数())22log log f x x ==,所以()f x 在3,24⎡⎤-⎢⎥⎣⎦上是减函数,则()f x 在3,24⎡⎤-⎢⎥⎣⎦上的最大值为233log 144M f ⎫⎛⎫⎛⎫⎪=-=-= ⎪ ⎪⎪⎝⎭⎝⎭⎭,因为()2121x t g x x t -++⎧=⎨+-⎩ 1,21,2x x ≥<,所以()g x 在31,42⎡⎫-⎪⎢⎣⎭上是增函数,在1,22⎡⎤⎢⎥⎣⎦上是减函数,则()g x 的最小值为34g ⎛⎫- ⎪⎝⎭和()2g 中的较小的一个. 因为33521442g t t ⎛⎫⎛⎫-=⨯-+-=- ⎪ ⎪⎝⎭⎝⎭,()22213g t t =-⨯++=-, 所以()()min 23g x g t ==-, 因为对任意的3,24x ⎡⎤∈-⎢⎥⎣⎦,()M g x ≤恒成立,所以13t ≤-, 解得4t ≥.故t 的取值范围为[)4,+∞. 【点睛】本题主要考查了函数的基本性质的综合应用,以及恒成立问题的求解,其中解答中熟记函数的基本性质,合理应用奇偶性、单调性和最值列出相应的方程或不等式是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.24.(1){}11x x -<<(2)函数()f x 为奇函数,证明见解析(3){}01x x << 【解析】 【分析】(1)根据题意,求函数定义域结合对数函数真数大于零得到关于x 的不等式组,求解即可得出答案。

2020-2021高中必修一数学上期中第一次模拟试卷(含答案)(6)

2020-2021高中必修一数学上期中第一次模拟试卷(含答案)(6)

2020-2021高中必修一数学上期中第一次模拟试卷(含答案)(6)一、选择题1.已知函数()1ln 1xf x x -=+,则不等式()()130f x f x +-≥的解集为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .11,32⎛⎤ ⎥⎝⎦C .12,43⎡⎫⎪⎢⎣⎭D .12,23⎡⎫⎪⎢⎣⎭2.已知函数()25,1,,1,x ax x f x a x x⎧---≤⎪=⎨>⎪⎩是R 上的增函数,则a 的取值范围是( )A .30a -≤<B .0a <C .2a ≤-D .32a --≤≤3.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-⋃+∞,, B .(1)(01)-∞-⋃,, C .(1)(1)-∞-⋃+∞,, D .(10)(01)-⋃,, 4.已知函数y=f (x )定义域是[-2,3],则y=f (2x-1)的定义域是( ) A .50,2⎡⎤⎢⎥⎣⎦B .[]1,4-C .1,22⎡⎤-⎢⎥⎣⎦D .[]5,5-5.已知函数2221,2,()2,2,x x x x f x x -⎧-++<=⎨≥⎩且存在三个不同的实数123,,x x x ,使得123()()()f x f x f x ==,则123x x x ++的取值范围为( )A .(4,5)B .[4,5)C .(4,5]D .[4,5]6.已知函数21(1)()2(1)a x x f x x x x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是 A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-7.若01a b <<<,则b a , a b , log b a ,1log ab 的大小关系为( )A .1log log b ab aa b a b >>> B .1log log a b b ab a b a >>> C .1log log b a b aa ab b >>> D .1log log a b b aa b a b >>> 8.定义在R 上的奇函数()f x 满足()1(2)f x f x +=-,且在()0,1上()3xf x =,则()3log 54f =( )A.32B.23-C.23D.32-9.三个数0.377,0.3,ln0.3a b c===大小的顺序是()A.a c b>>B.a b c>>C.b a c>>D.c a b>>10.设0.60.3a=,0.30.6b=,0.30.3c=,则a,b,c的大小关系为()A.b a c<<B.a c b<<C.b c a<<D.c b a<<11.函数()(1)f x x x=-在[,]m n上的最小值为14-,最大值为2,则n m-的最大值为()A.52B.5222+C.32D.212.已知函数()y f x=在区间(),0-∞内单调递增,且()()f x f x-=,若12log3a f⎛⎫= ⎪⎝⎭,()1.22b f-=,12c f⎛⎫= ⎪⎝⎭,则a、b、c的大小关系为()A.a c b>>B.b c a>>C.b a c>>D.a b c>>二、填空题13.已知函数21,1()()1a x xf xx a x⎧-+≤=⎨->⎩,函数()2()g x f x=-,若函数()()y f x g x=-恰有4个不同的零点,则实数a的取值范围为______.14.幂函数y=xα,当α取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如图).设点A(1,0),B(0,1),连接AB,线段AB恰好被其中的两个幂函数y=xα,y=xβ的图像三等分,即有BM=MN=NA,那么,αβ等于_____.15.方程组240x yx+=⎧⎨-=⎩的解组成的集合为_________.16.若函数()6,23log,2ax xf xx x-+≤⎧=⎨+>⎩(0a>且1a≠)的值域是[)4,+∞,则实数a的取值范围是__________.17.用max{,,}a b c表示,,a b c三个数中的最大值,设{}2()max ln,1,4(0)f x x x x x x=--->,则()f x的最小值为_______.18.已知()32,,x x af xx x a⎧≤=⎨>⎩,若存在实数b,使函数()()g x f x b=-有两个零点,则a 的取值范围是________.19.2017年国庆期间,一个小朋友买了一个体积为a 的彩色大气球,放在自己房间内,由于气球密封不好,经过t 天后气球体积变为kt V a e -=⋅.若经过25天后,气球体积变为原来的23,则至少经过__________天后,气球体积小于原来的13. (lg30.477,lg 20.301≈≈,结果保留整数) 20.给出下列结论: ①已知函数是定义在上的奇函数,若,则;②函数的单调递减区间是; ③已知函数是奇函数,当时,,则当时,;④若函数的图象与函数的图象关于直线对称,则对任意实数都有.则正确结论的序号是_______________________(请将所有正确结论的序号填在横线上).三、解答题21.设函数()(0.af x x x x=+≠且x ,)a R ∈. (1)判断()f x 的奇偶性,并用定义证明; (2)若不等式()12262xxxf <-++在[]0,2上恒成立,试求实数a 的取值范围; (3)()11,0,12x g x x x -⎡⎤=∈⎢⎥+⎣⎦的值域为.A 函数()f x 在x A ∈上的最大值为M ,最小值为m ,若2m M >成立,求正数a 的取值范围.22.已知函数()f x 是定义R 的奇函数,当0x >时,2()2f x x x =-.(1)求函数()f x 的解析式;(2)画出函数()f x 的简图(不需要作图步骤),并求其单调递增区间 (3)当[]1,1x ∈-时,求关于m 的不等式2(1)(1)0f m f m -+-< 的解集. 23.已知幂函数2242()(22)m m f x m m x -+=--在(0,)+∞上单调递减.(1)求m 的值并写出()f x 的解析式;(2)试判断是否存在0a >,使得函数()(21)1()ag x a x f x =--+在[1,2]-上的值域为 [4,11]-?若存在,求出a 的值;若不存在,请说明理由.24.设()()()log 1log (30,1)a a f x x x a a =++->≠,且()12f =. (1)求a 的值及()f x 的定义域; (2)求()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的最大值.25.设a 为实数,函数()()21f x x x a x R =+-+∈.(1)若函数()f x 是偶函数,求实数a 的值; (2)若2a =,求函数()f x 的最小值;(3)对于函数()y m x =,在定义域内给定区间[],a b ,如果存在()00x a x b <<,满足()0()()m b m a m x b a-=-,则称函数()m x 是区间[],a b 上的“平均值函数”,0x 是它的一个“均值点”.如函数2y x =是[]1,1-上的平均值函数,0就是它的均值点.现有函数()21g x x mx =-++是区间[]1,1-上的平均值函数,求实数m 的取值范围.26.计算下列各式的值:(1)()11102327102π20.25927--⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭.(2)()221log 3lg52lg2lg5lg2-++++⋅.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据题意可得函数()f x 的奇偶性以及单调性,据此原不等式转化为()()31f x f x ≥-,求解可得x 的取值范围,即可得出结论. 【详解】根据题意,函数()1ln 1xf x x-=+, 则有101xx->+,解可得11x -<<, 即函数的定义域为()1,1-,关于原点对称, 又由()()11lnln 11x xf x f x x x+--==-=--+, 即函数()f x 为奇函数, 设11xt x -=+,则y lnt =, 12111x t x x -==-++,在()1,1-上为减函数, 而y lnt =在()0,∞+上为增函数, 故()1ln1xf x x-=+在区间()1,1-上为减函数, ()()()()13013f x f x f x f x +-≥⇒≥-- ()()3131111311x x f x f x x x ≤-⎧⎪⇒≥-⇒-<<⎨⎪-<-<⎩,解可得:1223x ≤<,即不等式的解集为12,23⎡⎫⎪⎢⎣⎭; 故选:D . 【点睛】本题考查函数的奇偶性与单调性的综合应用,解题时不要忽略函数的定义域,属于中档题.2.D解析:D 【解析】 【分析】根据分段函数的单调性特点,两段函数在各自的定义域内均单调递增,同时要考虑端点处的函数值. 【详解】要使函数在R 上为增函数,须有()f x 在(,1]-∞上递增,在(1,)+∞上递增,所以21,20,115,1a a a a ⎧-≥⎪⎪<⎨⎪⎪--⨯-≤⎩,解得32a --≤≤.故选D. 【点睛】本题考查利用分段函数的单调性求参数的取值范围,考查数形结合思想、函数与方程思想的灵活运用,求解时不漏掉端点处函数值的考虑.3.D解析:D 【解析】由f (x )为奇函数可知,()()f x f x x--=()2f x x<0.而f (1)=0,则f (-1)=-f (1)=0. 当x >0时,f (x )<0=f (1); 当x <0时,f (x )>0=f (-1). 又∵f (x )在(0,+∞)上为增函数, ∴奇函数f (x )在(-∞,0)上为增函数. 所以0<x <1,或-1<x <0. 选D点睛:解函数不等式:首先根据函数的性质把不等式转化为(())(())f g x f h x >的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内4.C解析:C 【解析】∵函数y =f (x )定义域是[−2,3], ∴由−2⩽2x −1⩽3, 解得−12⩽x ⩽2, 即函数的定义域为1,22⎡⎤-⎢⎥⎣⎦,本题选择C 选项.5.A解析:A 【解析】不妨设123x x x <<,当2x <时,()()212f x x =--+,此时二次函数的对称轴为1x =,最大值为2,作出函数()f x 的图象如图,由222x -=得3x =,由()()()123f x f x f x ==,,且1212x x +=,即122x x +=,12332,x x x x ∴++=+ 由图可知3323,425x x <<∴<+<, 即123x x x ++的取值范围是()4,5,故选A.6.C解析:C 【解析】x ⩽1时,f (x )=−(x −1)2+1⩽1,x >1时,()()21,10a a f x x f x x x=++'=-…在(1,+∞)恒成立, 故a ⩽x 2在(1,+∞)恒成立, 故a ⩽1,而1+a +1⩾1,即a ⩾−1, 综上,a ∈[−1,1], 本题选择C 选项.点睛:利用单调性求参数的一般方法:一是求出函数的单调区间,然后使所给区间是这个单调区间的子区间,建立关于参数的不等式组即可求得参数范围;二是直接利用函数单调性的定义:作差、变形,由f (x 1)-f (x 2)的符号确定参数的范围,另外也可分离参数转化为不等式恒成立问题.7.D解析:D 【解析】因为01a b <<<,所以10a a b b a a >>>>, 因为log log 1b b a b >>,01a <<,所以11a>,1log 0a b <.综上1log log a bb aa b a b >>>;故选D. 8.D解析:D 【解析】 【分析】由题意结合函数的性质整理计算即可求得最终结果. 【详解】由题意可得:()354f log =()3log 23f +, 则()354f log =()31log 21f -+,且()()331log 21log 21f f +=--, 由于()3log 211,0-∈-,故()()31log 2333log 211log 232f f --=--=-=-,据此可得:()()3312log 21log 213f f +=-=-,()354f log =32-.本题选择D 选项. 【点睛】本题主要考查函数的奇偶性,函数的周期性及其应用等知识,意在考查学生的转化能力和计算求解能力.9.B解析:B 【解析】试题分析:根据指数函数和对数函数的单调性知:0.30771a =>=,即1a >;7000.30.31b <=<=,即01b <<;ln0.3ln10c =<=,即0c <;所以a b c >>,故正确答案为选项B .考点:指数函数和对数函数的单调性;间接比较法.10.B解析:B 【解析】 【分析】根据指数函数的单调性得出0.60.30.30.3<,而根据幂函数的单调性得出0.30.30.30.6<,从而得出a ,b ,c 的大小关系. 【详解】解:0.3xy =Q 在定义域上单调递减,且0.360.<,0.60.30.30.3∴<,又0.3y x∴=在定义域上单调递增,且0.360.<,0.30.30.30.6∴<,0.60.30.30.30.30.6∴<<,a cb ∴<<故选:B . 【点睛】考查指数函数和幂函数的单调性,以及增函数和减函数的定义.11.B解析:B 【解析】 【分析】根据二次函数的图象和性质,求出最大值和最小值对应的x 的取值,然后利用数形结合即可得到结论. 【详解】当x≥0时,f (x )=x (|x|﹣1)=x 2﹣x=(x ﹣12)2﹣1144≥-, 当x <0时,f (x )=x (|x|﹣1)=﹣x 2﹣x=﹣(x+12)2+14, 作出函数f (x )的图象如图:当x≥0时,由f (x )=x 2﹣x=2,解得x=2. 当x=12时,f (12)=14-. 当x <0时,由f (x )=)=﹣x 2﹣x=14-.即4x 2+4x ﹣1=0,解得x=424-±=⨯=,∴此时, ∵[m,n]上的最小值为14-,最大值为2,∴n=212m ≤≤,∴n﹣m 的最大值为2﹣12--=522+, 故选:B .【点睛】本题主要考查函数最值的应用,利用二次函数的图象和性质是解决本题的关键,利用数形结合是解决本题的基本数学思想.12.B解析:B 【解析】 【分析】由偶函数的性质可得出函数()y f x =在区间()0,∞+上为减函数,由对数的性质可得出12log 30<,由偶函数的性质得出()2log 3a f =,比较出2log 3、 1.22-、12的大小关系,再利用函数()y f x =在区间()0,∞+上的单调性可得出a 、b 、c 的大小关系. 【详解】()()f x f x -=Q ,则函数()y f x =为偶函数,Q 函数()y f x =在区间(),0-∞内单调递增,在该函数在区间()0,∞+上为减函数,1122log 3log 10<=Q ,由换底公式得122log 3log 3=-,由函数的性质可得()2log 3a f =,对数函数2log y x =在()0,∞+上为增函数,则22log 3log 21>=, 指数函数2xy =为增函数,则 1.2100222--<<<,即 1.210212-<<<, 1.22102log 32-∴<<<,因此,b c a >>. 【点睛】本题考查利用函数的奇偶性与单调性比较函数值的大小关系,同时也考查了利用中间值法比较指数式和代数式的大小关系,涉及指数函数与对数函数的单调性,考查分析问题和解决问题的能力,属于中等题.二、填空题13.【解析】【分析】由函数把函数恰有个不同的零点转化为恰有4个实数根列出相应的条件即可求解【详解】由题意函数且函数恰有个不同的零点即恰有4个实数根当时由即解得或所以解得;当时由解得或所以解得综上可得:实 解析:(]2,3【解析】 【分析】由函数()2()g x f x =-,把函数()()y f x g x =-恰有4个不同的零点,转化为()1f x =恰有4个实数根,列出相应的条件,即可求解. 【详解】由题意,函数()2()g x f x =-,且函数()()y f x g x =-恰有4个不同的零点, 即()1f x =恰有4个实数根,当1x ≤时,由11a x -+=,即110x a +=-≥,解得2=-x a 或x a =-,所以2112a a a a -≤⎧⎪-≤⎨⎪-≠-⎩,解得13a <?;当1x >时,由2()1x a -=,解得1x a =-或1x a =+,所以1111a a ->⎧⎨+>⎩,解得2a >,综上可得:实数a 的取值范围为(]2,3. 【点睛】本题主要考查了函数与方程的应用,其中解答中利用条件转化为()1f x =,绝对值的定义,以及二次函数的性质求解是解答的关键,着重考查了数形结合思想,以及推理与计算能力,属于中档试题.14.【解析】【分析】由条件得MN 则结合对数的运算法则可得αβ=1【详解】由条件得MN 可得即α=loβ=lo 所以αβ=lo·lo=1【点睛】本题主要考查幂函数的性质对数的运算法则及其应用等知识意在考查学生解析:【解析】 【分析】由条件,得M 12,33⎛⎫ ⎪⎝⎭,N 21,33⎛⎫ ⎪⎝⎭,则1221,3333αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,结合对数的运算法则可得αβ=1.【详解】 由条件,得M 12,33⎛⎫ ⎪⎝⎭,N 21,33⎛⎫⎪⎝⎭, 可得1221,3333αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,即α=lo 2313g ,β=lo 1323g . 所以αβ=lo 2313g ·lo 1312233·21333lglg g lg lg ==1. 【点睛】本题主要考查幂函数的性质,对数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.15.【解析】【分析】解方程组求出结果即可得答案【详解】由解得或代入解得或所以方程组的解组成的集合为故答案为【点睛】该题考查的是有关方程组解集的问题需要注意的问题是解是二维的再者就是需要写成集合的形式属于 解析:()(){}2,2,2,2--【解析】 【分析】 解方程组240x y x +=⎧⎨-=⎩,求出结果即可得答案. 【详解】由240x -=,解得2x =或2x =-,代入0x y +=,解得22x y =⎧⎨=-⎩或22x y =-⎧⎨=⎩,所以方程组2040x y x +=⎧⎨-=⎩的解组成的集合为{}(2,2),(2,2)--,故答案为{}(2,2),(2,2)--. 【点睛】该题考查的是有关方程组解集的问题,需要注意的问题是解是二维的,再者就是需要写成集合的形式,属于简单题目.16.【解析】试题分析:由于函数的值域是故当时满足当时由所以所以所以实数的取值范围考点:对数函数的性质及函数的值域【方法点晴】本题以分段为背景主要考查了对数的图象与性质及函数的值域问题解答时要牢记对数函数 解析:(]1,2【解析】试题分析:由于函数()()6,2{0,13log ,2a x x f x a a x x -+≤=>≠+>的值域是[)4,+∞,故当2x ≤时,满足()64f x x =-≥,当2x >时,由()3log 4a f x x =+≥,所以log 1a x ≥,所以log 2112a a ≥⇒<<,所以实数a 的取值范围12a <≤.考点:对数函数的性质及函数的值域.【方法点晴】本题以分段为背景主要考查了对数的图象与性质及函数的值域问题,解答时要牢记对数函数的单调性及对数函数的特殊点的应用是解答的关键,属于基础题,着重考查了分类讨论的思想方法的应用,本题的解答中,当2x >时,由()4f x ≥,得log 1a x ≥,即log 21a ≥,即可求解实数a 的取值范围.17.0【解析】【分析】将中三个函数的图像均画出来再分析取最大值的函数图像从而求得最小值【详解】分别画出的图象取它们中的最大部分得出的图象如图所示故最小值为0故答案为0【点睛】本题主要考查数形结合的思想与解析:0 【解析】 【分析】将{}2()max ln ,1,4(0)f x x x x x x =--->中三个函数的图像均画出来,再分析取最大值的函数图像,从而求得最小值. 【详解】分别画出ln y x =-,1y x =-,24y x x =-的图象,取它们中的最大部分,得出()f x 的图象如图所示,故最小值为0.故答案为0 【点睛】本题主要考查数形结合的思想与常见函数的图像等,需要注意的是在画图过程中需要求解函数之间的交点坐标从而画出准确的图像,属于中等题型.18.【解析】【分析】由有两个零点可得有两个零点即与的图象有两个交点则函数在定义域内不能是单调函数结合函数图象可求的范围【详解】有两个零点有两个零点即与的图象有两个交点由可得或①当时函数的图象如图所示此时 解析:()(),01,-∞⋃+∞【解析】 【分析】由()()g x f x b =-有两个零点可得()f x b =有两个零点,即()y f x =与y b =的图象有两个交点,则函数在定义域内不能是单调函数,结合函数图象可求a 的范围【详解】()()g x f x b =-Q 有两个零点,()f x b ∴=有两个零点,即()y f x =与y b =的图象有两个交点,由32x x =可得,0x =或1x =①当1a >时,函数()f x 的图象如图所示,此时存在b ,满足题意,故1a >满足题意②当1a =时,由于函数()f x 在定义域R 上单调递增,故不符合题意 ③当01a <<时,函数()f x 单调递增,故不符合题意④0a =时,()f x 单调递增,故不符合题意⑤当0a <时,函数()y f x =的图象如图所示,此时存在b 使得,()y f x =与y b =有两个交点综上可得,0a <或1a > 故答案为:()(),01,-∞⋃+∞ 【点睛】本题考察了函数的零点问题,渗透了转化思想,数形结合、分类讨论的数学思想.19.68【解析】由题意得经过天后气球体积变为经过25天后气球体积变为原来的即则设天后体积变为原来的即即则两式相除可得即所以天点睛:本题主要考查了指数函数的综合问题考查了指数运算的综合应用求解本题的关键是解析:68 【解析】由题意得,经过t 天后气球体积变为kt V a e -=⋅,经过25天后,气球体积变为原来的23, 即25252233kk a ea e --⋅=⇒=,则225ln 3k -=, 设t 天后体积变为原来的13,即13kt V a e a -=⋅=,即13kte -=,则1ln 3kt -=两式相除可得2ln2531ln3k kt -=-,即2lg25lg 2lg30.3010.477130.3681lg30.4771lg 3t --===≈--, 所以68t ≈天点睛:本题主要考查了指数函数的综合问题,考查了指数运算的综合应用,求解本题的关键是先待定t 的值,建立方程,在比较已知条件,得出关于t 的方程,求解t 的值,本题解法比较巧妙,充分考虑了题设条件的特征,对观察判断能力要求较高,解题时根据题设条件选择恰当的方法可以降低运算量,试题有一定的难度,属于中档试题.20.①③【解析】①正确根据函数是奇函数可得f(3)=-f(-3)=1而f(-1)=2所以f(3)<f(-1);②错根据复合函数的单调性可知函数的单调递减区间为(2+∞);③正确奇函数关于原点对称所以可根解析:①③ 【解析】①正确,根据函数是奇函数,可得,而,所以;②错,根据复合函数的单调性可知函数的单调递减区间为;③正确,奇函数关于原点对称,所以可根据的解析式,求得的解析式;④,根据对数函数的定义域,不能是任意实数,而需,由,所以正确的序号是①③.【点睛】本题以多项选择题的形式考查函数的某些性质,综合性比较高,选项②错的比较多,涉及复合函数单调区间的问题,谨记“同增异减”,同时函数的定义域,定义域是比较容易忽视的问题,做题时要重视.三、解答题21.(1)奇函数;见解析(2)7a <-;(3)15,153⎛⎫⎪⎝⎭【解析】 【分析】(1)可看出()f x 是奇函数,根据奇函数的定义证明即可;(2)由题意可得出22(2)162x xa <-++⋅在[]0,2上恒成立,然后令2x t =,[]1,4t ∈,从而得出2261y t t =-++,只需min a y <,配方求出y 的最小值,即可求解;(3)容易求出1,13A ⎡⎤=⎢⎥⎣⎦,从而得出1,13x ⎡⎤∈⎢⎥⎣⎦时,2()()min max f x f x >,可讨论a :容易得出0a ≤时,不符合题意;0a >时,可知()f x 在(a 上是减函数,在),a +∞上是增函数,从而可讨论109a <≤,1a ≥和119a <<,然后分别求出()f x 在1,13⎡⎤⎢⎥⎣⎦上的最小值和最大值,根据2m M >求出a 的范围即可. 【详解】()()1f x Q 的定义域为()(),00,-∞⋃+∞,且()()af x x f x x-=-+=--, ()f x ∴为奇函数;()2若不等式()12262x x xf <-++在[]0,2上恒成立, 即122622xxx x a +<-++在[]0,2上恒成立,即22(2)162x x a <-++⋅在[]0,2上恒成立, 令2x t =,则[]1,4t ∈,223112612()22y t t t =-++=--+, ∴当4t =,即2x =时,函数取最小值7-,故7a <-;()()123111x g x x x -==-+++是10,2⎡⎤⎢⎥⎣⎦上的减函数, ()g x ∴在10,2x ⎡⎤∈⎢⎥⎣⎦上的值域为()][11,0,123A g g ⎡⎤⎛⎫== ⎪⎢⎥⎝⎭⎣⎦,()f x ∴在区间1,13⎡⎤⎢⎥⎣⎦上,恒有2()()min max f x f x >,0a <①时,()f x 在1,13⎡⎤⎢⎥⎣⎦上单调递增,()()11max f x f a ∴==+,11()333min f x f a ⎛⎫==+ ⎪⎝⎭,12313a a ⎛⎫∴+>+ ⎪⎝⎭,解得115a >,不满足0a <;0a =②时,()f x x =在1,13⎡⎤⎢⎥⎣⎦上是增函数,1()1,()3max min f x f x ∴==,1213⨯<,不满足题意;0a >③时,()f x 在(上单调递减,在)+∞上单调递增,13≤,即109a <≤时,()f x 在1,13⎡⎤⎢⎥⎣⎦上是增函数,11()333min f x f a ⎛⎫∴==+ ⎪⎝⎭,()()11max f x f a ==+,12313a a ⎛⎫∴+>+ ⎪⎝⎭,解得11159a <≤;1≥,即1a ≥时,()f x 在1,13⎡⎤⎢⎥⎣⎦上单调递减,()()11min f x f a ∴==+,11()333max f x f a ⎛⎫==+ ⎪⎝⎭,()12133a a ∴+>+,解得513a ≤<;13)13<<,即119a <<时,()f x 在13⎡⎢⎣上单调递减,在⎤⎦上单调递增,()min f x f∴==()113,1133f a f a ⎛⎫=+=+ ⎪⎝⎭,当1313a a +≥+,即113a ≤<时,133a >+,a <<,113a ∴≤<, 当1313a a +<+,即1193a <<时,1a >+,解得77a -<<+1193a ∴<<, 综上,a 的取值范围是15,153⎛⎫ ⎪⎝⎭. 【点睛】本题考查了奇函数的定义及证明,指数函数的单调性,配方求二次函数最值的方法,换元法求函数最值的方法,函数()af x x x=+的单调性,根据函数单调性求函数在闭区间上的最值的方法,考查了计算和推理能力,属于中档题.22.(1)222,0()2,0x x x f x x x x ⎧-≥=⎨--<⎩;(2)图象见解析,(],1-∞-和 [)1,+∞;(3)[)0,1.【解析】 【分析】(1)由函数的奇偶性可求得函数()f x 的解析式;(2)利用二次函数图像可作法可得函数()f x 的图像及单调增区间;(3)利用函数在[]1,1-为减函数且为奇函数,可得22111111(1)(1)0m m m m -≤-≤⎧⎪-≤-≤⎨⎪-+->⎩,再求解即可.【详解】解:(1)由函数()f x 是定义R 的奇函数,则(0)0f =, 设0x >,则0x ->,因为函数()f x 是定义R 的奇函数, 所以22()()()2)2(f x f x x x x x ⎡⎤=--=---=-⎦--⎣,综上可得:222,0()2,0x x x f x x x x ⎧-≥=⎨--<⎩;(2)函数()f x 的图像如图所示,由图可得函数()f x 单调递增区间为(],1-∞-和[)1,+∞;(3)由(2)可知,函数()f x 在[]1,1-为减函数且为奇函数,当[]1,1x ∈-时,关于m 的不等式2(1)(1)0f m f m -+-<,即2(1)(1)f m f m -<-,则22111111(1)(1)0m m m m -≤-≤⎧⎪-≤-≤⎨⎪-+->⎩,即20202(2)(1)0m m m m ≤≤⎧⎪≤≤⎨⎪+-<⎩, 解得01m ≤<,故关于m 的不等式的解集为[)0,1.【点睛】本题考查了利用函数的奇偶性求函数解析式及利用函数的性质求解不等式,重点考查了数形结合的数学思想方法,属中档题. 23.(1)1()f x x -=;(2)存在,6a =. 【解析】 【分析】(1)由幂函数的定义和单调性,可得关于m 的方程与不等式;(2)由(1)得1()f x x -=,从而得到()(1)1g x a x =-+,再对1a -的取值进行分类讨论.【详解】(1)因为幂函数2242()(22)mm f x m m x -+=--在(0,)+∞上单调递减,所以22221,420,m m m m ⎧--=⎨-+<⎩解得:3m =或1m =-(舍去),所以1()f x x -=.(2)由(1)得1()f x x -=,所以()(1)1g x a x =-+,假设存在0a >使得命题成立,则当10a ->时,即1a >,()g x 在[1,2]-单调递增,所以(1)4,114,6(2)11,22111,g a a g a -=--+=-⎧⎧⇒⇒=⎨⎨=-+=⎩⎩; 当10a -=,即1a =,()1g x =显然不成立;当10a -<,即1a <,()g x 在[1,2]-单调递减,所以(1)11,1111,(2)4,2214,g a g a -=-+=⎧⎧⇒⎨⎨=--+=-⎩⎩a 无解; 综上所述:存在6a =使命题成立. 【点睛】本题考查幂函数的概念及解析式、已知一次函数的定义域、值域求参数的取值范围,考查逻辑推理能力和运算求解能力,同时注意分类讨论思想的运用,讨论时要以一次函数的单调性为分类标准.24.(1)2a =,定义域为()1,3-;(2)2 【解析】 【分析】(1)由()12f =,可求得a 的值,结合对数的性质,可求出()f x 的定义域; (2)先求得()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的单调性,进而可求得函数的最大值.【详解】(1)()1log 2log l 242og a a a f =+==,解得2a =. 故()()22log 1)g 3(lo f x x x =++-,则1030x x +>⎧⎨->⎩,解得13x -<<, 故()f x 的定义域为()1,3-.(2)函数()()()()()222log 1log 3log 31f x x x x x =++-=-+,定义域为()1,3-,()130,2,3⎡⎤⊆⎥-⎢⎣⎦,由函数2log y x =在()0,∞+上单调递增,函数()()31y x x =-+在[)0,1上单调递增,在31,2⎡⎤⎢⎥⎣⎦上单调递减,可得函数()f x 在[)0,1上单调递增,在31,2⎡⎤⎢⎥⎣⎦上单调递减. 故()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的最大值为()21log 42f ==.【点睛】本题考查了函数的定义域,考查了函数的单调性与最值,考查了学生的计算求解能力,属于基础题. 25.(1);(2);(3)()0,2【解析】试题分析:(1)考察偶函数的定义,利用通过整理即可得到;(2)此函数是一个含有绝对值的函数,解决此类问题的基本方法是写成分段函数的形式,()2221,221{3,2x x x f x x x x x x +-≥=+-+=-+<,要求函数的最小值,要分别在每一段上求出最小值,取这两段中的最小值;(3)此问题是一个新概念问题,这种类型都可转化为我们学过的问题,此题定义了一个均值点的概念,我们通过概念可把题目转化为“存在()01,1x ∈-,使得()0g x m =”从而转化为一元二次方程有解问题.试题解析:解:(1)()f x Q 是偶函数,()()f x f x ∴-=在R 上恒成立,即()2211x x a x x a -+--+=+-+,所以x a x a +=-得0ax = x R ∈Q 0a ∴=(2)当2a =时,()2221,221{3,2x x x f x x x x x x +-≥=+-+=-+< 所以()f x 在[)2,+∞上的最小值为()25f =, ()f x 在(),2-∞上的的最小值为f ()=, 因为<5,所以函数()f x 的最小值为. (3)因为函数()21g x x mx =-++是区间[]1,1-上的平均值函数,所以存在()01,1x ∈-,使()0(1)(1)1(1g g g x --=--)而(1)(1)1(1g g m --=--),存在()01,1x ∈-,使得()0g x m = 即关于x 的方程21x mx m -++=在()1,1-内有解;由21x mx m -++=得210x mx m -+-=解得121,1x x m ==-所以111m -<-<即02m <<故m 的取值范围是()0,2考点:函数奇偶性定义;分段函数求最值;含参一元二次方程有解问题.26.(1)9512;(2)3. 【解析】【分析】(1)利用指数的运算法则化简求值.(2)利用对数的运算法则化简求值.【详解】(1)原式113113232232232256415415395111892743323412----⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=--+=--+=--+=⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦(或写成11712). (2)原式()()2log 3111113lg522lg22lg55231322222lg lg lg -=++⋅++=+++⨯=++=. 【点睛】本题主要考查指数对数的运算法则,意在考查学生对这些知识的掌握水平和分析推理计算能力.。

2020-2021高一数学上期中一模试卷带答案

2020-2021高一数学上期中一模试卷带答案

2020-2021高一数学上期中一模试卷带答案一、选择题1.函数()2312x f x x -⎛⎫=- ⎪⎝⎭的零点所在的区间为( )A .()0,1B .()1,2C .()2,3D .()3,42.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( ) A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭3.函数tan sin tan sin y x x x x =+--在区间(2π,32π)内的图象是( ) A . B .C .D .4.函数()log a x x f x x=(01a <<)的图象大致形状是( )A .B .C .D .5.函数()111f x x =--的图象是( )A .B .C .D .6.设奇函数()f x 在[1,1]-上是增函数,且(1)1f -=-,若函数2()21f x t at ≤-+对所有的[1,1]x ∈-都成立,当[1,1]a ∈-时,则t 的取值范围是( ) A .1122t -≤≤ B .22t -≤≤C .12t ≥或12t ≤-或0t = D .2t ≥或2t ≤-或0t =7.已知函数21(1)()2(1)a x x f x xx x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是 A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-8.若01a b <<<,则b a , a b , log b a , 1log ab 的大小关系为( )A .1log log bab aa b a b >>>B .1log log abb ab a b a >>>C .1log log b ab aa ab b >>>D .1log log a bb aa b a b >>>9.定义在R 上的奇函数()f x 满足()()2f x f x +=-,且当[]0,1x ∈时,()2cos x f x x =-,则下列结论正确的是( )A .()20202019201832f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭B .()20202019201832f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()20192020201823f f f ⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭10.函数sin21cos xy x=-的部分图像大致为A .B .C .D .11.已知函数2()log (23)(01)a f x x x a a =--+>≠,,若(0)0f <,则此函数的单调减区间是() A .(,1]-∞- B .[1)-+∞, C .[1,1)- D .(3,1]--12.若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( ) A .9,34⎛⎫⎪⎝⎭ B .9,34⎡⎫⎪⎢⎣⎭C .()1,3D .()2,3二、填空题13.若函数()24,43,x x f x x x x λλ-≥⎧=⎨-+<⎩恰有2个零点,则λ的取值范围是______.14.如果定义在区间[3+a ,5]上的函数f(x)为奇函数,那么a 的值为________.15.幂函数y=x α,当α取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如图).设点A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数y=x α,y=x β的图像三等分,即有BM=MN=NA ,那么,αβ等于_____.16.方程组2040x y x +=⎧⎨-=⎩的解组成的集合为_________.17.已知集合{}{}1,1,2,4,1,0,2,A B =-=-则A B =I __________. 18.10343383log 27()()161255---+=__________.19.已知函数())2ln11f x x x =++,()4f a =,则()f a -=________.20.设函数()()()2,1{42, 1.x a x f x x a x a x -<=--≥①若1a =,则()f x 的最小值为 ;②若()f x 恰有2个零点,则实数a 的取值范围是 .三、解答题21.已知函数24()(0,1)2x xa af x a a a a-+=>≠+是定义在R 上的奇函数. (1)求a 的值:(2)求函数()f x 的值域;(3)当[]1,2x ∈时,()220xmf x +->恒成立,求实数m 的取值范围.22.已知函数22()f x x x=+. (1)求(1)f ,(2)f 的值;(2)设1a b >>,试比较()f a 、()f b 的大小,并说明理由; (3)若不等式2(1)2(1)1f x x m x -≥-++-对一切[1,6]x ∈恒成立,求实数m 的最大值. 23.已知幂函数2242()(22)m m f x m m x -+=--在(0,)+∞上单调递减.(1)求m 的值并写出()f x 的解析式;(2)试判断是否存在0a >,使得函数()(21)1()ag x a x f x =--+在[1,2]-上的值域为 [4,11]-?若存在,求出a 的值;若不存在,请说明理由.24.已知()y f x =是定义域为R 的奇函数,当[)0,x ∈+∞时,()22f x x x =-. (1)写出函数()y f x =的解析式;(2)若方程()f x a =恰3有个不同的解,求a 的取值范围.25.某厂生产某产品的年固定成本为250万元,每生产千件,需另投入成本(万元),若年产量不足千件,的图象是如图的抛物线,此时的解集为,且的最小值是,若年产量不小于千件,,每千件商品售价为50万元,通过市场分析,该厂生产的商品能全部售完.(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?26.已知函数()f x 是R 上的奇函数,且当0x >时,()f x =1()2x.①求函数()f x 的解析式;②画出函数的图象,根据图象写出函数()f x 的单调区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】判断函数()2312x f x x -⎛⎫=- ⎪⎝⎭单调递增,求出f (0)=-4,f (1)=-1,f (2)=3>0,即可判断.【详解】∵函数()2312x f x x -⎛⎫=- ⎪⎝⎭单调递增,∴f(0)=-4,f (1)=-1,f (2)=7>0,根据零点的存在性定理可得出零点所在的区间是()1,2, 故选B . 【点睛】本题考查了函数的单调性,零点的存在性定理的运用,属于容易题.2.C解析:C 【解析】 【分析】先判断函数()f x 在R 上单调递增,由104102f f ⎧⎛⎫< ⎪⎪⎪⎝⎭⎨⎛⎫⎪> ⎪⎪⎝⎭⎩,利用零点存在定理可得结果. 【详解】因为函数()43xf x e x =+-在R 上连续单调递增,且114411221143204411431022f e e f e e ⎧⎛⎫=+⨯-=-<⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+⨯-=-> ⎪⎪⎝⎭⎩,所以函数的零点在区间11,42⎛⎫⎪⎝⎭内,故选C.【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.3.D解析:D【解析】解:函数y=tanx+sinx-|tanx-sinx|=2tan,tan sin {2sin,tan sinx x xx x x<≥分段画出函数图象如D图示,故选D.4.C解析:C【解析】【分析】确定函数是奇函数,图象关于原点对称,x>0时,f(x)=log a x(0<a<1)是单调减函数,即可得出结论.【详解】由题意,f(﹣x)=﹣f(x),所以函数是奇函数,图象关于原点对称,排除B、D;x>0时,f(x)=log a x(0<a<1)是单调减函数,排除A.故选C.【点睛】本题考查函数的图象,考查函数的奇偶性、单调性,正确分析函数的性质是关键.5.B解析:B【解析】【分析】把函数1yx=先向右平移一个单位,再关于x轴对称,再向上平移一个单位即可.【详解】把1yx=的图象向右平移一个单位得到11yx=-的图象,把11yx=-的图象关于x轴对称得到11yx=--的图象,把11yx=--的图象向上平移一个单位得到()111f xx=--的图象,故选:B . 【点睛】本题主要考查函数图象的平移,对称,以及学生的作图能力,属于中档题.6.D解析:D 【解析】试题分析:奇函数()f x 在[]1,1-上是增函数, 且()11f -=-,在[]1,1-最大值是21,121t at ∴≤-+,当0t ≠时, 则220t at -≥成立, 又[]1,1a ∈-,令()[]22,1,1r a ta t a =-+∈-, 当0t >时,()r a 是减函数, 故令()10r ≥解得2t ≥, 当0t <时,()r a 是增函数, 故令()10r -≥,解得2t ≤-,综上知,2t ≥或2t ≤-或0t =,故选D. 考点:1、函数的奇偶性与单调性能;2、不等式恒成立问题.【方法点晴】本题主要考查函数的奇偶性与单调性能、不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合(()y f x =图象在()y g x =上方即可);③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数.本题是利用方法①求得t 的范围.7.C解析:C 【解析】x ⩽1时,f (x )=−(x −1)2+1⩽1, x >1时,()()21,10a a f x x f x x x=++'=-…在(1,+∞)恒成立, 故a ⩽x 2在(1,+∞)恒成立, 故a ⩽1,而1+a +1⩾1,即a ⩾−1, 综上,a ∈[−1,1], 本题选择C 选项.点睛:利用单调性求参数的一般方法:一是求出函数的单调区间,然后使所给区间是这个单调区间的子区间,建立关于参数的不等式组即可求得参数范围;二是直接利用函数单调性的定义:作差、变形,由f (x 1)-f (x 2)的符号确定参数的范围,另外也可分离参数转化为不等式恒成立问题.8.D解析:D 【解析】因为01a b <<<,所以10a a b b a a >>>>, 因为log log 1b b a b >>,01a <<,所以11a>,1log 0a b <.综上1log log a bb aa b a b >>>;故选D. 9.C解析:C 【解析】 【分析】根据f (x )是奇函数,以及f (x+2)=f (-x )即可得出f (x+4)=f (x ),即得出f (x )的周期为4,从而可得出f (2018)=f (0),2019122f f ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,20207312f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭然后可根据f (x )在[0,1]上的解析式可判断f (x )在[0,1]上单调递增,从而可得出结果. 【详解】∵f(x )是奇函数;∴f(x+2)=f (-x )=-f (x );∴f(x+4)=-f (x+2)=f (x ); ∴f(x )的周期为4;∴f(2018)=f (2+4×504)=f (2)=f (0),2019122f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,20207 312f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭∵x∈[0,1]时,f (x )=2x -cosx 单调递增;∴f(0)<12f ⎛⎫⎪⎝⎭ <712f ⎛⎫ ⎪⎝⎭ ∴()20192020201823f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,故选C. 【点睛】本题考查奇函数,周期函数的定义,指数函数和余弦函数的单调性,以及增函数的定义,属于中档题.10.C解析:C 【解析】 由题意知,函数sin 21cos xy x =-为奇函数,故排除B ;当πx =时,0y =,故排除D ;当1x =时,sin 201cos 2y =>-,故排除A .故选C . 点睛:函数图像问题首先关注定义域,从图像的对称性,分析函数的奇偶性,根据函数的奇偶性排除部分选择项,从图像的最高点、最低点,分析函数的最值、极值,利用特值检验,较难的需要研究单调性、极值等,从图像的走向趋势,分析函数的单调性、周期性等.11.D解析:D 【解析】 【分析】求得函数()f x 的定义域为(3,1)-,根据二次函数的性质,求得()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,再由(0)0f <,得到01a <<,利用复合函数的单调性,即可求解. 【详解】由题意,函数2()log (23)a f x x x =--+满足2230x x --+>,解得31x -<<,即函数()f x 的定义域为(3,1)-,又由函数()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,因为(0)0f <,即(0)log 30a f =<,所以01a <<,根据复合函数的单调性可得,函数()f x 的单调递减区间为(3,1]--, 故选D. 【点睛】本题主要考查了对数函数的图象与性质,以及复合函数的单调性的判定,着重考查了推理与运算能力,属于基础题.12.B解析:B 【解析】 【分析】利用函数的单调性,判断指数函数底数的取值范围,以及一次函数的单调性,及端点处函数值的大小关系列出不等式求解即可 【详解】解:Q 函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩…单调递增,()301373a a a a⎧->⎪∴>⎨⎪-⨯-≤⎩解得934a ≤<所以实数a 的取值范围是9,34⎡⎫⎪⎢⎣⎭. 故选:B . 【点睛】本题考查分段函数的应用,指数函数的性质,考查学生的计算能力,属于中档题.二、填空题13.【解析】【分析】根据题意在同一个坐标系中作出函数和的图象结合图象分析可得答案【详解】根据题意在同一个坐标系中作出函数和的图象如图:若函数恰有2个零点即函数图象与轴有且仅有2个交点则或即的取值范围是:解析:(1,3](4,)+∞U . 【解析】【分析】根据题意,在同一个坐标系中作出函数4y x =-和243y x x =-+的图象,结合图象分析可得答案. 【详解】根据题意,在同一个坐标系中作出函数4y x =-和243y x x =-+的图象,如图:若函数()f x 恰有2个零点,即函数()f x 图象与x 轴有且仅有2个交点, 则13λ<…或4λ>,即λ的取值范围是:(1,3](4,)+∞U 故答案为:(1,3](4,)+∞U .【点睛】本题考查分段函数的图象和函数的零点,考查数形结合思想的运用,考查发现问题解决问题的能力.14.-8【解析】∵f(x)定义域为3+a5且为奇函数∴3+a =-5∴a =-8点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值进而得解(2)求参数值:在定义域关于解析:-8【解析】 ∵f(x)定义域为[3+a ,5],且为奇函数, ∴3+a =-5,∴a=-8.点睛:利用奇偶性求值的类型及方法(1)求函数值:利用奇偶性将待求值转化到已知区间上的函数值,进而得解.(2)求参数值:在定义域关于原点对称的前提下,根据奇函数满足f(-x)=-f(x)或偶函数满足f(-x)=f(x)列等式,根据等式两侧对应相等确定参数的值.特别要注意的是:若能够确定奇函数的定义域中包含0,可以根据f(0)=0列式求解,若不能确定则不可用此法.15.【解析】【分析】由条件得MN 则结合对数的运算法则可得αβ=1【详解】由条件得MN 可得即α=loβ=lo 所以αβ=lo·lo=1【点睛】本题主要考查幂函数的性质对数的运算法则及其应用等知识意在考查学生解析:【解析】 【分析】由条件,得M 12,33⎛⎫ ⎪⎝⎭,N 21,33⎛⎫ ⎪⎝⎭,则1221,3333αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,结合对数的运算法则可得αβ=1. 【详解】由条件,得M 12,33⎛⎫ ⎪⎝⎭,N 21,33⎛⎫ ⎪⎝⎭, 可得1221,3333αβ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 即α=lo 2313g ,β=lo 1323g . 所以αβ=l o 2313g ·lo 1312233·21333lglg g lg lg ==1. 【点睛】 本题主要考查幂函数的性质,对数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.16.【解析】【分析】解方程组求出结果即可得答案【详解】由解得或代入解得或所以方程组的解组成的集合为故答案为【点睛】该题考查的是有关方程组解集的问题需要注意的问题是解是二维的再者就是需要写成集合的形式属于 解析:()(){}2,2,2,2--【解析】【分析】解方程组2040x y x +=⎧⎨-=⎩,求出结果即可得答案. 【详解】由240x -=,解得2x =或2x =-,代入0x y +=,解得22x y =⎧⎨=-⎩或22x y =-⎧⎨=⎩, 所以方程组2040x y x +=⎧⎨-=⎩的解组成的集合为{}(2,2),(2,2)--, 故答案为{}(2,2),(2,2)--.【点睛】该题考查的是有关方程组解集的问题,需要注意的问题是解是二维的,再者就是需要写成集合的形式,属于简单题目.17.【解析】【分析】直接利用集合交集的定义求解即可【详解】因为集合两个集合的公共元素为所以故答案为【点睛】研究集合问题一定要抓住元素看元素应满足的属性研究两集合的关系时关键是将两集合的关系转化为元素间的解析:{}12-,【解析】【分析】直接利用集合交集的定义求解即可.【详解】因为集合{}{}1,1,2,4,1,0,2,A B =-=-两个集合的公共元素为1,2-所以{}1,2A B =-I .故答案为{}1,2-.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A 且属于集合B 的元素的集合.18.【解析】19.【解析】【分析】发现计算可得结果【详解】因为且则故答案为-2【点睛】本题主要考查函数的性质由函数解析式计算发现是关键属于中档题 解析:2-【解析】【分析】发现()()f x f x 2+-=,计算可得结果.【详解】因为()()))()22f x f x ln x 1ln x 1ln 122x x +-=+++=+-+=, ()()f a f a 2∴+-=,且()f a 4=,则()f a 2-=-.故答案为-2【点睛】本题主要考查函数的性质,由函数解析式,计算发现()()f x f x 2+-=是关键,属于中档题.20.(1)-1(2)或【解析】【分析】【详解】①时函数在上为增函数且函数在为减函数在为增函数当时取得最小值为-1;(2)①若函数在时与轴有一个交点则则函数与轴有一个交点所以;②若函数与轴有无交点则函数与解析:(1)-1,(2)112a ≤<或2a ≥. 【解析】【分析】【详解】①1a =时,()()()2,1{42, 1.x a x f x x a x a x -<=--≥,函数()f x 在(,1)-∞上为增函数且()1f x >-,函数()f x 在3[1,]2为减函数,在3[,)2+∞为增函数,当32x =时,()f x 取得最小值为-1;(2)①若函数()2x g x a =-在1x <时与x 轴有一个交点,则0a >, (1)2g a =->0,则02a <<,函数()4()(2)h x x a x a =--与x 轴有一个交点,所以211a a ≥<⇒且112a ≤<; ②若函数()2x g x a =-与x 轴有无交点,则函数()4()(2)h x x a x a =--与x 轴有两个交点,当0a ≤时()g x 与x 轴有无交点,()4()(2)h x x a x a =--在1x ≥与x 轴有无交点,不合题意;当当2a ≥时()g x 与x 轴有无交点,()h x 与x 轴有两个交点,x a =和2x a =,由于2a ≥,两交点横坐标均满足1x ≥;综上所述a 的取值范围112a ≤<或2a ≥.考点:本题考点为函数的有关性质,涉及函数图象、函数的最值,函数的零点、分类讨论思想解题.利用函数图象研究函数的单调性,求出函数的最值,涉计参数问题,针对参数进行分类讨论.三、解答题21.(1)2a =(2)()1,1-(3)(10,3)+∞ 【解析】【分析】(1)利用函数是奇函数的定义求解a 即可(2)判断函数的单调性,求解函数的值域即可(3)利用函数恒成立,分离参数m ,利用换元法,结合函数的单调性求解最大值,推出结果即可.【详解】(1)∵()f x 是R 上的奇函数,∴()()f x f x -=- 即:242422x x x x a a a a a a a a---+-+=-++. 即2(4)2422x x x x a a a a a a a a+-+⋅-+-=+⋅+ 整理可得2a =.(2)222212()12222121x x x x x f x ⋅--===-⋅+++在R 上递增 ∵211x +>,22021x ∴-<-<+, 211121x ∴-<-<+ ∴函数()f x 的值域为()1,1-.(3)由()220xmf x +-> 可得,()2 2xmf x >-,21()2221x x x mf x m -=>-+. 当[]1,2x ∈时,(21)(22)21x x x m +->- 令(2113)x t t -=≤≤), 则有(2)(1)21t t m t t t+->=-+, 函数21y t t =-+在1≤t ≤3上为增函数, ∴max 210(1)3t t -+=, 103m ∴>, 故实数m 的取值范围为(10,3)+∞ 【点睛】 本题主要考查了函数恒成立条件的应用,函数的单调性以及函数的奇偶性的应用,属于中档题.22.(1)(1)3f =,(2)5f =;(2)()()f a f b >;详见解析(3)1-.【解析】【分析】(1)根据函数解析式,代入即可求值.(2)根据函数解析式,利用作差法即可比较()f a 、()f b 的大小.(3)将解析式代入,化简不等式,转化为关于二次函数的恒成立问题,即可求得实数m 的最大值.【详解】(1)因为函数()22f x x x=+ 所以()221131f =+= ()222252f =+=(2)()()f a f b >,理由如下:因为1a b >>则()()f a f b -2222a b a b=+-- ()()()2b a a b a b ab -=-++()2a b a b ab ⎛⎫=-+- ⎪⎝⎭ 因为1a b >>,则2a b +>,1ab >, 所以22ab<,即20a b ab +->,()0a b -> 所以()20a b a b ab ⎛⎫-+-> ⎪⎝⎭即()()f a f b > (3)因为函数()22f x x x=+ 则代入不等式可化为()()22212111x x m x x -+≥-++-- 化简可得243x x m -+≥,即()221x m --≥因为对于一切[]1,6x ∈恒成立所以()2min21x m ⎡⎤--≥⎣⎦ 当2x =时,二次函数取得最小值,即1m -≥所以实数m 的最大值为1-【点睛】本题考查了函数的求值,单调性的证明及不等式恒成立问题的综合应用,属于基础题.23.(1)1()f x x -=;(2)存在,6a =.【解析】【分析】(1)由幂函数的定义和单调性,可得关于m 的方程与不等式;(2)由(1)得1()f x x -=,从而得到()(1)1g x a x =-+,再对1a -的取值进行分类讨论. 【详解】(1)因为幂函数2242()(22)m m f x m m x -+=--在(0,)+∞上单调递减,所以22221,420,m m m m ⎧--=⎨-+<⎩解得:3m =或1m =-(舍去), 所以1()f x x -=.(2)由(1)得1()f x x -=,所以()(1)1g x a x =-+,假设存在0a >使得命题成立,则当10a ->时,即1a >,()g x 在[1,2]-单调递增,所以(1)4,114,6(2)11,22111,g a a g a -=--+=-⎧⎧⇒⇒=⎨⎨=-+=⎩⎩; 当10a -=,即1a =,()1g x =显然不成立;当10a -<,即1a <,()g x 在[1,2]-单调递减,所以(1)11,1111,(2)4,2214,g a g a -=-+=⎧⎧⇒⎨⎨=--+=-⎩⎩a 无解; 综上所述:存在6a =使命题成立.【点睛】本题考查幂函数的概念及解析式、已知一次函数的定义域、值域求参数的取值范围,考查逻辑推理能力和运算求解能力,同时注意分类讨论思想的运用,讨论时要以一次函数的单调性为分类标准.24.(1) ()222,02,0x x x f x x x x ⎧-≥=⎨--<⎩ (2) ()1,1- 【解析】【分析】(1)由奇函数的定义求解析式,即设0x <,则有x ->0,利用()f x -可求得()f x ,然后写出完整的函数式;(2)作出函数()f x 的图象,确定()f x 的极值和单调性,由图象与直线y a =有三个交点可得a 的范围.【详解】解:(1)当(),0x ∈-∞时,()0,x -∈+∞,()f x Q 是奇函数,()()f x f x ∴=--=-()()2222x x x x ⎡⎤---=--⎣⎦()222,02,0x x x f x x x x ⎧-≥∴=⎨--<⎩. (2)当[)0,x ∈+∞时,()()22211f x x x =-=--,最小值为1-; 当(),0x ∈-∞,()()22211f x x x x =--=-+,最大值为1. 据此可作出函数的图象,如图所示,根据图象得,若方程()f x a =恰有3个不同的解,则a 的取值范围是()1,1-.【点睛】本题考查函数奇偶性,考查函数零点与方程根的关系.在求函数零点个数(或方程解的个数)时,可把问题转化为一个的函数图象和一条直线的交点个数问题,这里函数通常是确定的函数,直线是动直线,由动直线的运动可得参数取值范围.25.(1) ;(2) 当年产量千件时,该厂在这一商品的生产中所获利润最大为万元.【解析】【分析】 (1)由题可知,利润=售价-成本,分别对年产量不足件,以及年产量不小于件计算,代入不同区间的解析式,化简求得;(2)分别计算年产量不足件,以及年产量不小于件的利润,当年产量不足80件时,由配方法解得利润的最大值为950万元,当年产量不小于件时,由均值不等式解得利润最大值为1000万元,故年产量为件时,利润最大为万元. 【详解】(1)当时,; 当时,, 所以().(2)当时, 此时,当时,取得最大值万元.当时,此时,当时,即时,取得最大值万元,, 所以年产量为件时,利润最大为万元. 考点:•配方法求最值 均值不等式26.①1)22,(0)()0,(0)(,(0)x x x f x x x ⎧-<⎪⎪==⎨⎪⎪>⎩n ;②单调递减区间为(,0),(0,)-∞+∞,无单调递增区间. 【解析】【分析】【详解】试题分析:①考察了利用函数的奇偶性求分段函数的解析式,根据求什么设什么所以设,那么,那么,求得的解析式,又因为,即求得函数的解析式;②根据上一问解析式,画出分段函数的图像,观察函数的单调区间.试题解析:解: ①∵函数()f x 是定义在R 上的奇函数,∴(0)0f =.当0x <时,0x ->,1()()()22x x f x f x -=--=-=-.∴函数()f x 的解析式为1)22,(0)()0,(0)(,(0)x x x f x x x ⎧-<⎪⎪==⎨⎪⎪>⎩n②函数图象如图所示:由图象可知,函数()f x 的单调递减区间为(,0),(0,)-∞+∞,无单调递增区间. 考点:1.分段函数的解析式;2.函数的图像.。

2020-2021高一数学上期中一模试卷及答案

2020-2021高一数学上期中一模试卷及答案

2020-2021高一数学上期中一模试卷及答案一、选择题1.函数()2312x f x x -⎛⎫=- ⎪⎝⎭的零点所在的区间为( )A .()0,1B .()1,2C .()2,3D .()3,42.已知函数()1ln 1xf x x -=+,则不等式()()130f x f x +-≥的解集为( ) A .1,2⎡⎫+∞⎪⎢⎣⎭B .11,32⎛⎤ ⎥⎝⎦C .12,43⎡⎫⎪⎢⎣⎭D .12,23⎡⎫⎪⎢⎣⎭3.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=L ( )A .50-B .0C .2D .504.已知函数2221,2,()2,2,x x x x f x x -⎧-++<=⎨≥⎩且存在三个不同的实数123,,x x x ,使得123()()()f x f x f x ==,则123x x x ++的取值范围为( )A .(4,5)B .[4,5)C .(4,5]D .[4,5]5.已知函数21(1)()2(1)a x x f x x x x x ⎧++>⎪=⎨⎪-+≤⎩在R 上单调递增,则实数a 的取值范围是 A .[]0,1B .(]0,1C .[]1,1-D .(]1,1-6.已知定义在R 上的函数()f x 是奇函数且满足,3()(2)32f x f x f ⎛⎫-=-=-⎪⎝⎭,,数列{}n a 满足11a =-,且2n n S a n =+,(其中n S 为{}n a 的前n 项和).则()()56f a f a +=() A .3 B .2-C .3-D .27.函数sin21cos xy x=-的部分图像大致为A .B .C .D .8.已知函数2()log (23)(01)a f x x x a a =--+>≠,,若(0)0f <,则此函数的单调减区间是() A .(,1]-∞-B .[1)-+∞,C .[1,1)-D .(3,1]--9.已知()lg(10)lg(10)f x x x =++-,则()f x 是( ) A .偶函数,且在(0,10)是增函数 B .奇函数,且在(0,10)是增函数 C .偶函数,且在(0,10)是减函数D .奇函数,且在(0,10)是减函数10.已知奇函数()f x 在R 上是增函数,若21log 5a f ⎛⎫=- ⎪⎝⎭,()2log 4.1b f =,()0.82c f =,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .c b a <<D .c a b <<11.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B I 中元素的个数为( ) A .3B .2C .1D .012.已知函数()f x 的定义域为R .当0x <时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=-.则(6)f =( ) A .2-B .1-C .0D .2二、填空题13.设,则________14.已知()21f x x -=,则()f x = ____.15.已知函数1)4f x x +=-,则()f x 的解析式为_________. 16.已知a >b >1.若log a b+log b a=52,a b =b a ,则a= ,b= . 17.已知函数()f x 是定义在R 上的偶函数,且当0x ≥时,2()2f x x x =-. 若关于x 的方程()0f x m -=有四个不同的实数解,则实数m 的取值范围是_____.18.已知函数(12)(1)()4(1)x a x f x ax x⎧-<⎪=⎨+≥⎪⎩,且对任意的12,x x R ∈,12x x ≠时,都有()()12120f x f x x x ->-,则a 的取值范围是________19.已知函数()()0f x ax b a =->,()()43ff x x =-,则()2f =_______.20.设函数()()()2,1{42, 1.x a x f x x a x a x -<=--≥①若1a =,则()f x 的最小值为 ;②若()f x 恰有2个零点,则实数a 的取值范围是 .三、解答题21.学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数y 与听课时间x (单位:分钟)之间的关系满足如图所示的图象,当(]0,12x ∈时,图象是二次函数图象的一部分,其中顶点()10,80A ,过点()12,78B ;当[]12,40x ∈时,图象是线段BC ,其中()40,50C .根据专家研究,当注意力指数大于62时,学习效果最佳.(Ⅰ)试求()y f x =的函数关系式;(Ⅱ)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由. 22.已知二次函数()f x 满足(0)2f =,且(1)()23f x f x x +-=+. (1)求()f x 的解析式;(2)设函数()()2h x f x tx =-,当[1,)x ∈+∞时,求()h x 的最小值;(3)设函数12()log g x x m =+,若对任意1[1,4]x ∈,总存在2[1,4]x ∈,使得()()12f x g x >成立,求m 的取值范围.23.设全集U=R ,集合A={x|1≤x <4},B={x|2a≤x <3-a}.(1)若a=-2,求B∩A ,B∩(∁U A);(2)若A∪B=A ,求实数a 的取值范围. 24.已知函数()()2210g x ax ax b a =-++>在区间[]2,3上有最大值4和最小值1,设()()g x f x x=. (1)求,a b 的值;(2)若不等式()220xxf k -⋅≥在区间[]1,1-上恒成立,求实数k 的取值范围.25.已知定义域为R 的函数()1221x a f x =-++是奇函数. (1)求a 的值;(2)判断函数()f x 的单调性并证明;(2)若关于m 的不等式()()222120f m m f m mt -+++-≤在()1,2m ∈有解,求实数t 的取值范围.26.已知函数()f x 是R 上的奇函数,且当0x >时,()f x =1()2x.①求函数()f x 的解析式;②画出函数的图象,根据图象写出函数()f x 的单调区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】判断函数()2312x f x x -⎛⎫=- ⎪⎝⎭单调递增,求出f (0)=-4,f (1)=-1,f (2)=3>0,即可判断.【详解】∵函数()2312x f x x -⎛⎫=- ⎪⎝⎭单调递增,∴f(0)=-4,f (1)=-1, f (2)=7>0,根据零点的存在性定理可得出零点所在的区间是()1,2, 故选B . 【点睛】本题考查了函数的单调性,零点的存在性定理的运用,属于容易题.2.D解析:D 【解析】 【分析】根据题意可得函数()f x 的奇偶性以及单调性,据此原不等式转化为()()31f x f x ≥-,求解可得x 的取值范围,即可得出结论. 【详解】根据题意,函数()1ln 1xf x x-=+, 则有101xx->+,解可得11x -<<, 即函数的定义域为()1,1-,关于原点对称, 又由()()11lnln 11x xf x f x x x+--==-=--+, 即函数()f x 为奇函数, 设11xt x -=+,则y lnt =, 12111x t x x -==-++,在()1,1-上为减函数, 而y lnt =在()0,∞+上为增函数, 故()1ln1xf x x-=+在区间()1,1-上为减函数, ()()()()13013f x f x f x f x +-≥⇒≥-- ()()3131111311x x f x f x x x ≤-⎧⎪⇒≥-⇒-<<⎨⎪-<-<⎩,解可得:1223x ≤<,即不等式的解集为12,23⎡⎫⎪⎢⎣⎭; 故选:D . 【点睛】本题考查函数的奇偶性与单调性的综合应用,解题时不要忽略函数的定义域,属于中档题.3.C解析:C 【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 详解:因为()f x 是定义域为(,)-∞+∞的奇函数,且(1)(1)f x f x -=+, 所以(1)(1)(3)(1)(1)4f x f x f x f x f x T +=--∴+=-+=-∴=,因此(1)(2)(3)(50)12[(1)(2)(3)(4)](1)(2)f f f f f f f f f f ++++=+++++L , 因为(3)(1)(4)(2)f f f f =-=-,,所以(1)(2)(3)(4)0f f f f +++=,(2)(2)(2)(2)0f f f f =-=-∴=Q ,从而(1)(2)(3)(50)(1)2f f f f f ++++==L ,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.4.A解析:A 【解析】不妨设123x x x <<,当2x <时,()()212f x x =--+,此时二次函数的对称轴为1x =,最大值为2,作出函数()f x 的图象如图,由222x -=得3x =,由()()()123f x f x f x ==,,且1212x x +=,即122x x +=,12332,x x x x ∴++=+ 由图可知3323,425x x <<∴<+<, 即123x x x ++的取值范围是()4,5,故选A.5.C解析:C 【解析】x ⩽1时,f (x )=−(x −1)2+1⩽1, x >1时,()()21,10a a f x x f x x x=++'=-…在(1,+∞)恒成立, 故a ⩽x 2在(1,+∞)恒成立, 故a ⩽1,而1+a +1⩾1,即a ⩾−1, 综上,a ∈[−1,1], 本题选择C 选项.点睛:利用单调性求参数的一般方法:一是求出函数的单调区间,然后使所给区间是这个单调区间的子区间,建立关于参数的不等式组即可求得参数范围;二是直接利用函数单调性的定义:作差、变形,由f (x 1)-f (x 2)的符号确定参数的范围,另外也可分离参数转化为不等式恒成立问题.6.A解析:A 【解析】由奇函数满足()32f x f x ⎛⎫-=⎪⎝⎭可知该函数是周期为3T =的奇函数, 由递推关系可得:112,21n n n n S a n S a n +-=+=+-, 两式做差有:1221n n n a a a -=--,即()()1121n n a a --=-, 即数列{}1n a -构成首项为112a -=-,公比为2q =的等比数列, 故:()1122,21n n n n a a --=-⨯∴=-+,综上有:()()()()()552131223f a f f f f =-+=-==--=,()()()()66216300f a f f f =-+=-==,则:()()563f a f a +=. 本题选择A 选项.7.C解析:C 【解析】 由题意知,函数sin 21cos xy x =-为奇函数,故排除B ;当πx =时,0y =,故排除D ;当1x =时,sin 201cos 2y =>-,故排除A .故选C . 点睛:函数图像问题首先关注定义域,从图像的对称性,分析函数的奇偶性,根据函数的奇偶性排除部分选择项,从图像的最高点、最低点,分析函数的最值、极值,利用特值检验,较难的需要研究单调性、极值等,从图像的走向趋势,分析函数的单调性、周期性等.8.D解析:D 【解析】 【分析】求得函数()f x 的定义域为(3,1)-,根据二次函数的性质,求得()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,再由(0)0f <,得到01a <<,利用复合函数的单调性,即可求解. 【详解】由题意,函数2()log (23)a f x x x =--+满足2230x x --+>,解得31x -<<,即函数()f x 的定义域为(3,1)-,又由函数()223g x x x =--+在(3,1]--单调递增,在(1,1)-单调递减,因为(0)0f <,即(0)log 30a f =<,所以01a <<,根据复合函数的单调性可得,函数()f x 的单调递减区间为(3,1]--,故选D. 【点睛】本题主要考查了对数函数的图象与性质,以及复合函数的单调性的判定,着重考查了推理与运算能力,属于基础题.9.C解析:C 【解析】 【分析】先判断函数的定义域关于原点对称,再由奇偶性的定义判断奇偶性,根据复合函数的单调判断其单调性,从而可得结论. 【详解】由100100x x +>⎧⎨->⎩,得(10,10)x ∈-, 故函数()f x 的定义域为()10,10-,关于原点对称,又()()lg 10lg(10)()f x x x f x -=-++=,故函数()f x 为偶函数, 而()()2lg(10)lg(10)lg 100f x x x x=++-=-,因为函数2100y x =-在()0,10上单调递减,lg y x =在()0,∞+上单调递增, 故函数()f x 在()0,10上单调递减,故选C. 【点睛】本题主要考查函数的奇偶性与单调性,属于中档题. 判断函数的奇偶性首先要看函数的定义域是否关于原点对称,如果不对称,既不是奇函数又不是偶函数,如果对称常见方法有:(1)直接法, ()()f x f x -=±(正为偶函数,负为减函数);(2)和差法,()()0f x f x -±=(和为零奇函数,差为零偶函数);(3)作商法,()()1f x f x -=±(1 为偶函数,1- 为奇函数) .10.C解析:C 【解析】由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭, 且:0.822log 5log 4.12,122>><<,据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<. 本题选择C 选项.【考点】 指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.11.B解析:B 【解析】试题分析:集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点22,22⎛⎫ ⎪ ⎪⎝⎭,22,22⎛⎫-- ⎪ ⎪⎝⎭,则A B I 中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.12.D解析:D 【解析】 试题分析:当时,11()()22f x f x +=-,所以当时,函数是周期为的周期函数,所以,又函数是奇函数,所以,故选D .考点:函数的周期性和奇偶性.二、填空题13.-1【解析】【分析】由分段函数的解析式先求出f(-2)的值并判定符号从而可得f(f(-2))的值【详解】∵fx=1-xx≥0x2x<0-2<0∴f-2=-22=4>0所以f(f(-2))=f4=1-解析:-1 【解析】 【分析】由分段函数的解析式先求出的值并判定符号,从而可得的值.【详解】, ,所以,故答案为-1.【点睛】本题主要考查分段函数的解析式,属于简单题. 求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.14.【解析】【分析】利用换元法求函数解析式【详解】令则代入可得到即【点睛】本题考查利用换元法求函数解析式考查基本代换求解能力 解析:()21?x + 【解析】 【分析】利用换元法求函数解析式. 【详解】 令 1t x -=则 t 1,x =+代入 ()21f x x -=可得到()()21f t t =+ ,即()()21f x x =+. 【点睛】本题考查利用换元法求函数解析式,考查基本代换求解能力.15.【解析】【分析】利用换元法求解析式即可【详解】令则故故答案为【点睛】本题考查函数解析式的求法换元法是常见方法注意新元的范围是易错点 解析:2()23(1)f x x x x =--≥【解析】 【分析】利用换元法求解析式即可 【详解】 令11t x =≥,则()21x t =-故()()214f t t =--=223(1)t t t --≥ 故答案为2()23(1)f x x x x =--≥ 【点睛】本题考查函数解析式的求法,换元法是常见方法,注意新元的范围是易错点16.【解析】试题分析:设因为因此【考点】指数运算对数运算【易错点睛】在解方程时要注意若没注意到方程的根有两个由于增根导致错误 解析:42【解析】试题分析:设log ,1b a t t =>则,因为21522t t a b t +=⇒=⇒=, 因此22222, 4.b a b b a b b b b b b a =⇒=⇒=⇒==【考点】指数运算,对数运算. 【易错点睛】在解方程5log log 2a b b a +=时,要注意log 1b a >,若没注意到log 1b a >,方程5log log 2a b b a +=的根有两个,由于增根导致错误 17.【解析】【分析】若方程有四个不同的实数解则函数与直线有4个交点作出函数的图象由数形结合法分析即可得答案【详解】因为函数是定义在R 上的偶函数且当时所以函数图象关于轴对称作出函数的图象:若方程有四个不同 解析:(1,0)-【解析】 【分析】若方程()0f x m -=有四个不同的实数解,则函数()y f x =与直线y m =有4个交点,作出函数()f x 的图象,由数形结合法分析即可得答案. 【详解】因为函数()f x 是定义在R 上的偶函数且当0x ≥时,2()2f x x x =-,所以函数()f x 图象关于y 轴对称, 作出函数()f x 的图象:若方程()0f x m -=有四个不同的实数解,则函数()y f x =与直线y m =有4个交点, 由图象可知:10m -<<时,即有4个交点. 故m 的取值范围是(1,0)-, 故答案为:(1,0)- 【点睛】本题主要考查了偶函数的性质以及函数的图象,涉及方程的根与函数图象的关系,数形结合,属于中档题.18.【解析】【分析】根据判断出函数在上为增函数由此列不等式组解不等式组求得的取值范围【详解】由于对任意的时都有所以函数在上为增函数所以解得故答案为:【点睛】本小题主要考查根据函数的单调性求参数的取值范围 解析:[1,0)-【解析】【分析】 根据()()12120f x f x x x ->-判断出函数在R 上为增函数,由此列不等式组,解不等式组求得a 的取值范围.【详解】由于对任意的12,x x R ∈,12x x ≠时,都有()()12120f x f x x x ->-,所以函数在R 上为增函数,所以1210124a a a a ->⎧⎪<⎨⎪-≤+⎩,解得10a -≤<.故答案为:[)1,0-. 【点睛】本小题主要考查根据函数的单调性求参数的取值范围,考查指数函数的单调性,考查分式型函数的单调性,属于基础题.19.【解析】【分析】先由求出的值可得出函数的解析式然后再求出的值【详解】由题意得即解得因此故答案为【点睛】本题考查函数求值解题的关键就是通过题中复合函数的解析式求出函数的解析式考查运算求解能力属于中等题 解析:3【解析】 【分析】 先由()()43ff x x =-求出a 、b 的值,可得出函数()y f x =的解析式,然后再求出()2f 的值.【详解】 由题意,得()()()()()243ff x f ax b a ax b b a x ab b x =-=⋅--=-+=-,即2430a ab b a ⎧=⎪+=⎨⎪>⎩,解得21a b =⎧⎨=⎩,()21f x x ∴=-,因此()23f =,故答案为3.【点睛】本题考查函数求值,解题的关键就是通过题中复合函数的解析式求出函数的解析式,考查运算求解能力,属于中等题.20.(1)-1(2)或【解析】【分析】【详解】①时函数在上为增函数且函数在为减函数在为增函数当时取得最小值为-1;(2)①若函数在时与轴有一个交点则则函数与轴有一个交点所以;②若函数与轴有无交点则函数与解析:(1)-1,(2)112a ≤<或2a ≥. 【解析】 【分析】 【详解】①1a =时,()()()2,1{42, 1.x a x f x x a x a x -<=--≥,函数()f x 在(,1)-∞上为增函数且()1f x >-,函数()f x 在3[1,]2为减函数,在3[,)2+∞为增函数,当32x =时,()f x 取得最小值为-1;(2)①若函数()2xg x a =-在1x <时与x 轴有一个交点,则0a >, (1)2g a =->0,则02a <<,函数()4()(2)h x x a x a =--与x 轴有一个交点,所以211a a ≥<⇒且112a ≤<; ②若函数()2xg x a =-与x 轴有无交点,则函数()4()(2)h x x a x a =--与x 轴有两个交点,当0a ≤时()g x 与x 轴有无交点,()4()(2)h x x a x a =--在1x ≥与x 轴有无交点,不合题意;当当2a ≥时()g x 与x 轴有无交点,()h x 与x 轴有两个交点,x a =和2x a =,由于2a ≥,两交点横坐标均满足1x ≥;综上所述a 的取值范围112a ≤<或2a ≥.考点:本题考点为函数的有关性质,涉及函数图象、函数的最值,函数的零点、分类讨论思想解题.利用函数图象研究函数的单调性,求出函数的最值,涉计参数问题,针对参数进行分类讨论.三、解答题21.(Ⅰ)()()(](]2110800,1229012,40x x f x x x ⎧--+∈⎪=⎨⎪-+∈⎩;(Ⅱ)在()4,28x ∈时段内安排核心内容,能使得学生学习效果最佳,理由见解析 【解析】 【分析】(I )当(]0,12x ∈时,利用二次函数顶点式求得函数解析式,当(]12,40x ∈时,一次函数斜截式求得函数解析式.由此求得()f x 的函数关系式.(II )利用分段函数解析式解不等式()62f x >,由此求得学习效果最佳的时间段. 【详解】(Ⅰ)当(]0,12x ∈时,设()()21080f x a x =-+,过点()12,78代入得,则()()2110802f x x =--+, 当(]12,40x ∈时,设y kx b =+,过点()12,78、()40,50,得12784050k b k b +=⎧⎨+=⎩,即90y x =-+,则函数关系式为()()(](]211080,0,12290,12,40x x f x x x ⎧--+∈⎪=⎨⎪-+∈⎩. (Ⅱ)由题意(]0,12x ∈,()211080622x --+>或(]12,40x ∈,9062x -+>.得412x <≤或1228x <<,∴428x <<.则老师就在()4,28x ∈时段内安排核心内容,能使得学生学习效果最佳. 【点睛】本小题主要考查分段函数解析式的求法,考查待定系数法求一次函数、二次函数的解析式,考查函数在实际生活中的应用,考查数形结合的数学思想方法,属于基础题.22.(1)2()22f x x x =++;(2)min 252,2,()21, 2.t t h x t t t -⎧=⎨-++>⎩„;(3)7m < 【解析】 【分析】(1) 根据二次函数()f x ,则可设2()(0)f x ax bx c a =++≠,再根据题中所给的条件列出对 应的等式对比得出所求的系数即可.(2)根据(1)中所求的()f x 求得2()2(1)2h x x t x =+-+,再分析对称轴与区间[1,)+∞的位置关系进行分类讨论求解()h x 的最小值即可.(3)根据题意可知需求()f x 与()g x 在区间上的最小值.再根据对数函数与二次函数的单调性求解最小值即可. 【详解】(1)设2()(0)f x ax bx c a =++≠. ①∵(0)2f =,∴(0)2f c ==, 又∵(1)()1f x f x x +-=+,∴22(1)(1)2223a x b x ax bx x ++++---=+,可得223ax a b x ++=+,∴21,3,a a b =⎧⎨+=⎩解得12a b =⎧⎨=⎩,,即2()22f x x x =++. (2)由题意知,2()2(1)2h x x t x =+-+,[1,)x ∈+∞,对称轴为1x t =-. ①当11t -„,即2t „时,函数h (x )在[1,)+∞上单调递增, 即min ()(1)52h x h t ==-;②当11t ->,即2t >时,函数h (x )在[1,1)t -上单调递减,在[1,)t -+∞上单调递增,即2min ()(1)21h x h t t t =-=-++.综上,min252,2,()21, 2.t t h x t t t -⎧=⎨-++>⎩… (3)由题意可知min min ()()f x g x >,∵函数()f x 在[1,4]上单调递增,故最小值为min ()(1)5f x f ==, 函数()g x 在[1,4]上单调递减,故最小值为min ()(4)2g x g m ==-+, ∴52m >-+,解得7m <. 【点睛】本题主要考查利用待定系数法求解二次函数解析式的方法,二次函数对称轴与区间关系求解最值的问题,以及恒成立和能成立的问题等.属于中等题型.23.(1)B ∩A =[1,4),B ∩(∁U A )= [-4,1)∪[4,5);(2)1[,)2+∞ . 【解析】 【分析】(1)利用补集的定义求出A 的补集,然后根据交集的定义求解即可直接求解即可;(2 )分类讨论B 是否是空集,列出不等式组求解即可. 【详解】(1)∵A ={x |1≤x <4},∴∁U A ={x |x <1或x ≥4},∵B ={x |2a ≤x <3-a },∴a =-2时,B ={-4≤x <5},所以B ∩A =[1,4), B ∩(∁U A )={x |-4≤x <1或4≤x <5}=[-4,1)∪[4,5). (2)A ∪B =A ⇔B ⊆A , ①B =∅时,则有2a ≥3-a ,∴a ≥1, ②B ≠∅时,则有,∴, 综上所述,所求a 的取值范围为.【点睛】本题主要考查集合的交集、集合的补集以及空集的应用,属于简答题.要解答本题,首先必须熟练应用数学的转化与划归思想及分类讨论思想,将并集问题转化为子集问题,其次分类讨论进行解答,解答集合子集过程中,一定要注意空集的讨论,这是同学们在解题过程中容易疏忽的地方,一定不等掉以轻心. 24.(1)a=1,b=0;(2) (],0-∞. 【解析】 【分析】(1)依据题设条件建立方程组求解;(2)将不等式进行等价转化,然后分离参数,再换元利用二次函数求解.【详解】(1)()()2g x a x 11b a =-++-,因为a 0>,所以()g x 在区间[]23,上是增函数, 故()()21{34g g ==,解得1{0a b ==. (2)由已知可得()12=+-f x x x ,所以()20-≥x f kx 可化为12222+-≥⋅x x x k , 化为2111+222-⋅≥x x k (),令12=x t ,则221≤-+k t t ,因[]1,1∈-x ,故1,22⎡⎤∈⎢⎥⎣⎦t , 记()221=-+h t t t ,因为1,22⎡⎤∈⎢⎥⎣⎦t ,故()0=min h t ,所以k 的取值范围是(],0∞-. 【点睛】(1)本题主要考查二次函数的图像和性质,考查不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分析推理能力,(2)本题的关键有两点,其一是分离参数得到2111+222-⋅≥x x k (),其二是换元得到221≤-+k t t ,1,22⎡⎤∈⎢⎥⎣⎦t . 25.(1)1a =(2)见解析(3)1,2⎛⎫-∞ ⎪⎝⎭【解析】试题分析:(1)由()f x 为奇函数可知,()()f x f x -=--,即可得解;(2)由21xy =+递增可知()11221x f x =-++在R 上为减函数,对于任意实数12,x x ,不妨设12x x <,化简()()12f x f x -判断正负即可证得; (3)不等式()()222120f m m f m mt -+++-≤,等价于()()22212f m m f m mt -++≤-+,即22212m m mmt -++≥-+,原问题转化为121t m m ≤-++在()1,2m ∈上有解,求解11y m m=-++的最大值即可. 试题解析解:(1)由()f x 为奇函数可知,()()f x f x -=--,解得1a =.(2)由21xy =+递增可知()11221x f x =-++在R 上为减函数, 证明:对于任意实数12,x x ,不妨设12x x <,()()()()21121212112221212121x x x x x x f x f x --=-=++++∵2xy =递增,且12x x <,∴1222x x <,∴()()120f x f x ->,∴()()12f x f x >,故()f x 在R 上为减函数.(3)关于m 的不等式()()222120f m m f m mt -+++-≤, 等价于()()22212f m m f m mt -++≤-+,即22212m m mmt -++≥-+,因为()1,2m ∈,所以121t m m≤-++, 原问题转化为121t m m≤-++在()1,2m ∈上有解, ∵11y m m=-++在区间()1,2上为减函数, ∴11y m m =-++,()1,2m ∈的值域为1,12⎛⎫- ⎪⎝⎭,∴21t <,解得12t <, ∴t 的取值范围是1,2⎛⎫-∞ ⎪⎝⎭. 点晴:本题属于对函数单调性应用的考察,若函数()f x 在区间上单调递增,则()()1212,,x x D f x f x ∈>且时,有12x x >,事实上,若12x x ≤,则()()12f x f x ≤,这与()()12f x f x >矛盾,类似地,若()f x 在区间上单调递减,则当()()1212,,x x D f x f x ∈>且时有12x x <;据此可以解不等式,由函数值的大小,根据单调性就可以得自变量的大小关系.本题中可以利用对称性数形结合即可.26.①1)22,(0)()0,(0)(,(0)xxx f x x x ⎧-<⎪⎪==⎨⎪⎪>⎩n ;②单调递减区间为(,0),(0,)-∞+∞,无单调递增区间. 【解析】 【分析】 【详解】试题分析:①考察了利用函数的奇偶性求分段函数的解析式,根据求什么设什么所以设,那么,那么,求得的解析式,又因为,即求得函数的解析式;②根据上一问解析式,画出分段函数的图像,观察函数的单调区间. 试题解析:解: ①∵函数()f x 是定义在R 上的奇函数,∴(0)0f =.当0x <时,0x ->,1()()()22xx f x f x -=--=-=-.∴函数()f x 的解析式为1)22,(0)()0,(0)(,(0)xxx f x x x ⎧-<⎪⎪==⎨⎪⎪>⎩n②函数图象如图所示:由图象可知,函数()f x 的单调递减区间为(,0),(0,)-∞+∞,无单调递增区间. 考点:1.分段函数的解析式;2.函数的图像.。

2020年石家庄市高中必修一数学上期中模拟试卷(附答案)

2020年石家庄市高中必修一数学上期中模拟试卷(附答案)

2021年石家庄市高中必修一数学上期中模拟试卷 〔附答案〕、选择题B. a 05.如图,U 为全集,M 、P 、S 是U 的三个子集,那么阴影局部所表示的集合是〔 〕B.2B. f X X 2D. f X X函数f X XlOg a X〔0 a 1〕的图象大致形状是〔〕是R 上的增函数,那么a 的取值范围是〔A. C. 3. af 〔x 〕是定义域为〔D,3< a<〕的奇函数,满足f 〔1 X 〕 f (1 X).假设 f(1) 2,那么f(1) f(2) f(3) Lf(50)A.50 B.C. 2D. 504.假设函数f 2 3a X 1,X是R 上的减函数,那么实数1a 的取值范围是A. 2,1 3B.3,142 3°,3,42 D , 3,C. Me U SD. e U S6.函数sinx lgx 的零点个数为〔〕A.B. 1C.D. 37. 函数fV X 2 X 4G 5,那么f X 的解析式为A.C.1 .函数2. B.X1,D .SP A. Mx2 cosx,那么以下结论正确的选项是A. 20213f 2021 2 2021 B. 2021 f 2021 3 f 2021 2C . 2021 f2021 2 20213D.2021220213f 20219. a 「1 c 11,2,2,3,3 f (x) =ax为奇函数, 且在(0, )上单调递增,那么实数a的值是()A. 1,3B. 3,3 C. 1 1 3 ,3,10.函数f(x) lOg a( 2x 3)(a 0,a 1),假设f(0) 0,那么此函数的单调减区间是()A. 1]B. 1, C.[ 1,1) D. ( 3, 1]x是定义域为R的偶函数, 且在0, 单调递减,那么A. 10g3:B. 10g3:C . 10g3:D. 10g3:12. 集合(x, y) y2 1 (x, y) y x ,那么AI B中元素的个数为A. 3二、填空题B. C. 1 D. 013.假设函数f x 4,xx24x 3,x恰有2个零点,那么的取值范围是14.函数y=^3 2x x2的定义域是x15.函数f(x)2x 4x 1,3x,0,那么函数f (f(x)) 3的零点的个数是x值范围是19 .函数f x 是定义在R 上的奇函数,且当 x 0时,f x 2x 1 ,那么f f 1的值为.20 .假设点2,1 )既在f x 2ax b 图象上,又在其反函数的图象上,那么 a b 2三、解做题21 .某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益1f x 与投资额x 成正比,且投资1万元时的收益为」万元,投资股票等风险型产品的收 8 益g x 与投资额x 的算术平方根成正比,且投资 1万元时的收益为0.5万元,(1)分别写出两种产品的收益与投资额的函数关系;(2)该家庭现有20万元资金,全部用于理财投资,问:怎样分配资金能使投资获得最大收益,其最大收益为多少万元?“ 422 .设 f x x — x(1)讨论f x 的奇偶性;(2)判断函数f x 在0, 上的单调性并用定义证实.23 .函数f(x) 2a x 4 a(a 0,a 1)是定义在R 上的奇函数. 2a x a ' (1)求a 的值:(2)求函数f x 的值域;(3)当x 1,2时,2 mf x 2x 0恒成立,求实数m 的取值范围.24 .食品平安问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入 200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入 20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收益P 、种黄瓜的年收益 Q 与投入a (单位:万元)满足P= 80+4>/2a,Q 1a +120.设甲大棚的投入为 x(单位:万元),每年两个大 4 棚的总收益为f(x)(单位:万元). ⑴求f(50)的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益 25 .集合 A={x|xv-1,或 x>2}, B={x|2p-1WxWp+3} ,、4 1 ,、(1)右 p=—,求 AC B;(2)假设AA B=B 求实数p 的取值范围. 26 .全集 U= {1,2,3,4,5,6,7,8}, A= {x | x2-3x+2=0} , B= {x |1 <x<5, xCZ}, C={ x |2< x <9, x C Z}.求⑴ AU (Bn C ) ; (2)( ?U B ) U(?U Q .17.假设函数f X 3 x 6,x 2 (alOg a X,X 20且a 1)的值域是4,,那么实数a 的取18.函数f(x)2lg x ax 2在区间(2,)上单调递增,那么实数a 的取值范围是f(x)最大?【参考答案】***试卷处理标记,请不要删除一、选择题1. C解析:C【解析】【分析】确定函数是奇函数,图象关于原点对称, x>.时,f (x) = logax (0v av 1)是单调减函数,即可得出结论.【详解】由题意,f ( - x) = - f (x),所以函数是奇函数,图象关于原点对称,排除B、D;x>0时,f (x) = log a x (0v av1)是单调减函数,排除A.应选C.【点睛】此题考查函数的图象,考查函数的奇偶性、单调性,正确分析函数的性质是关键.2. D解析:D【解析】【分析】根据分段函数的单调性特点,两段函数在各自的定义域内均单调递增,同时要考虑端点处的函数值.【详解】要使函数在R上为增函数,须有f x在(,1]上递增,在(1 )上递增,21,所以a 0, ,解得3< a< 2.2 a1 a 1 5 -,应选D.【点睛】此题考查利用分段函数的单调性求参数的取值范围,考查数形结合思想、函数与方程思想的灵活运用,求解时不漏掉端点处函数值的考虑^3. C解析:C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:由于f(x)是定义域为(,)的奇函数,且f (1 x) f (1 x),所以f(1 x) f (x 1) f(3 x) f (x 1) f (x 1) T 4,因此f(1) f(2) f (3) L f(50) 12[f(1) f(2) f(3) f(4)] f(1) f (2),由于f(3) f(1), f(4) f(2),所以f(1) f(2) f(3) f(4) 0,Q f(2) f( 2) f(2) f(2) 0,从而f(1) f(2) f(3) L f (50) f(1) 2, 选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到解析式的函数定义域内求解.4. C解析:C【解析】【分析】由题意结合分段函数的解析式分类讨论即可求得实数a的取值范围.【详解】当x 1时,a x为减函数,那么0 a 1,2当x 1时,一次函数2 3ax 1为减函数,那么2 3a 0 ,解得:a -,31 3且在x 1处,有:2 3a 1 1 a ,解得:a 一,4『一『 2 3综上可得,实数a的取值范围是一,一.3 4此题选择C选项.【点睛】对于分段函数的单调性,有两种根本的判断方法:一保证各段上同增(减)时,要注意上、下段间端点值间的大小关系;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断.5. C解析:C【解析】【分析】先根据图中的阴影局部是MAP的子集,但不属于集合S,属于集合S的补集,然后用关系式表示出来即可.【详解】图中的阴影局部是:MTP的子集,不属于集合S,属于集合S的补集,即是C U S的子集那么阴影局部所表示的集合是〔MTP〕A?U S〕.应选C .【点睛】此题主要考查了Venn图表达集合的关系及运算,同时考查了识图水平,属于根底题.6. D解析:D【解析】画出函数图像,根据函数图像得到答案.【详解】如下图:画出函数y sin x和y lgx的图像,共有3个交点.当x 10时,lg x 1 sin x,故不存在交点.应选:D .此题考查了函数的零点问题,画出函数图像是解题的关键^7. B解析:B【解析】【分析】利用换元法求函数解析式,注意换元后自变量范围变化^【详解】令4 2 t,那么t 2 ,所以f t t 2 2 4 t 2 5 t2 1, t 2 2即f x x 1x2.【点睛】此题考查函数解析式,考查根本求解水平.注意换元后自变量范围变化 .8. C【解析】 【分析】【点睛】此题考查奇函数, 属于中档题.9. B解析:B 【解析】 【分析】先根据奇函数性质确定 a 取法,再根据单调性进行取舍,进而确定选项 ^【详解】a . 一一一 1由于f x x 为奇函数,所以a 1,331由于f x 在0, 上单调递增,所以a 3,3因此选B. 【点睛】此题考查哥函数奇偶性与单调性,考查根本判断选择水平 ^10. D解析:D 【解析】 【分析】求得函数f x 的定义域为(3,1),根据二次函数的性质,求得 g xx 2 2x 3在(3, 1]单调递增,在(1,1)单调递减,再由f (0) 0,得到0 a 1,利用复合函数的 单调性,即可求解.【详解】2根据f (x)是奇函数,以及 f (x+2) =f (-x)即可得出f (x+4) =f (x),即得出 f (x)的周期为4,从而可得出f (2021) =f (0),f 2021 22021 7 T ------- T — 3 12然后可根据f (x)在[0, 1]上的解析式可判断 果. 【详解】f (x)在[0, 1]上单调递增,从而可得出结•.f ••.f (x) (x) 是奇函数;,f ( x+2) =f 的周期为4;.••f ( 2021)(-x ) =-f (x) ; 1- f ( x+4) =-f (x+2) =f (x);=f (2+4X 504) =f(2) =f (0),202122021 f -37 f12,. x€ [0 ,1]时,f (x) =2x -cosx 单调递增;.•.f(0)<—f 1220212021 22021 ,f ——,应选C.3周期函数的定义, 指数函数和余弦函数的单调性,以及增函数的定义,由题意,函数f(x) log a( x 2x 3)满足x2 2x 3 0 ,解得3x1,即函数f x的定义域为(3,1),2 _ _ 一一一一又由函数g x x 2x 3在(3, 1]单调递增,在(1,1)单调递减,由于f (0) 0,即f(0) log a3 0 ,所以0 a 1,根据复合函数的单调性可得,函数f x的单调递减区间为(3, 1],应选D.【点睛】此题主要考查了对数函数的图象与性质,以及复合函数的单调性的判定,着重考查了推理与运算水平,属于根底题.11. C解析:C【解析】【分析】1 2 2由函数为偶函数,把f 10g3一, f 2 2, f 2 3,转化为同一个单调区间上,再4比拟大小.【详解】…, 1 • ・Q f x 是R 的偶函数, f log 3 - f 10g 3 4 .42 3 23Qlog 3 4 10g33 1,1 20 2 3 2 2, 10g34 2 % 2*又f x在(0, +°°惮调递减,2 3••• f 10g3 4 f 2 3 f 2 2 ,3 2 1f 2 2f 2 3f 10g3」,应选C.4【点睛】此题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比拟同一区间的取值.12 . B解析:B【解析】试题分析:集合中的元素为点集,由题意,可知集合A表示以0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B表示直线y x上所有的点组成的集合,又圆素.应选B.【名师点睛】求集合的根本运算时,要认清集合元素的属性 化简集合,这是正确求解集合运算的两个先决条件 .集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否 满足互异性.二、填空题13 .【解析】【分析】根据题意在同一个坐标系中作出函数和的图象结合图象 分析可得答案【详解】根据题意在同一个坐标系中作出函数和的图象如图:假设 函数恰有2个零点即函数图象与轴有且仅有2个交点那么或即的取值范围是:解析:〔1, 3]U 〔4,〕.此题考查分段函数的图象和函数的零点,考查数形结合思想的运用,考查发现问题解决问 题的水平.14 .【解析】试题分析:要使函数有意义需满足函数定义域为考点:函数定义x 2 y 2 1与直线y x 相交于两点 —,—,2 2—,那么AI B 中有2个元 2〔是点集、数集或其他情形〕和根据题意,在同一个坐标系中作出函数2, 一,一,…•一, ,,x 4x 3的图象,结合图象分析根据题意,在同一个坐标系中作出函数2x 4x 3的图象,如图:假设函数f 〔x 〕恰有2个零点,即函数那么1 , 3或 4 ,f 〔x 〕图象与x 轴有且仅有2个交点,即的取值范围是:〔1, 3]U 〔4,域 解析:3,1 【解析】 试题分析:要使函数有意义,需满足 3 2x x 2 0 x 2 2x 3 0 3 x 1,函数 定义域为 3,1 考点:函数定义域 15. 4【解析】【分析】根据分段函数的解析式当时令那么解得当时做出函数的图 像即可求解【详解】当时令那么解得当时令得作出函数的图像由图像可知与有两 个交点与有一个交点那么的零点的个数为 4故答案为:4【点睛】此题考查 解析:4 【解析】 【分析】根据分段函数的解析式当 x 0时,令f x 3,那么x 2 4x 1 3,解得 x 2 72,当 x 0时,f x 3x 1, x 1 ,做出函数 f x , y 1,y 2 、.2, y 2 、. 2的图像,即可求解. 【详解】 00 24x 1 x 2 5 5,3, Q f(x) 4x 1, x 3x , 0时,f 3,那么 4x解得x 2衣, 12 \2 0, 42 . 2 3,作出函数f x , y 1,y 2 J2, y 2 J2的图像,由图像可知,f x 与y 1有两个交点,与 y 2 22有一个交点, 那么f(f(x)) 3的零点的个数为4. 故答案为:4 【点睛】此题考查了分段函数的零点个数,考查了数形结合的思想,属于根底题^16.【解析】假设那么在上为增函数所以此方程组无解;假设那么在上为减函数所以解 得所以考点:指数函数的性质__ 3解析:32一一 .................. ab 1 ..........假设a 1,那么f x 在 1,0上为增函数,所以{,此方程组无解;1 b 0一 一 .................... a 1,那么f x 在 1,0上为减函数,所以{ 1 考点:指数函数的性质 17.【解析】试题分析:由于函数的值域是故当时满足当时由所以所当 x 0时,f x 3x 1,b °,解得{ab 1b以所以实数的取值范围考点:对数函数的性质及函数的值域【方法点晴】此题以分段为背景主要考查了对数的图象与性质及函数的值域问题解答时要牢记对数函数解析:1,2【解析】x 6,x 2试题分析:由于函数f x { a 0,a 1的值域是4, ,故当x 23 log a x,x 2时,满足f x 6 x 4 ,当x 2时,由f x 3 log a x 4 ,所以log a x 1 ,所以log a2 1 1 a 2,所以实数a的取值范围1 a 2.考点:对数函数的性质及函数的值域.【方法点晴】此题以分段为背景主要考查了对数的图象与性质及函数的值域问题,解答时要牢记对数函数的单调性及对数函数的特殊点的应用是解答的关键,属于根底题,着重考查了分类讨论的思想方法的应用,此题的解答中,当x 2时,由f x 4,得log a x 1 ,即log a2 1 ,即可求解实数a的取值范围.18 .【解析】【分析】根据复合函数单调性同增异减以及二次函数对称轴列不等式组解不等式组求得实数的取值范围【详解】要使在上递增根据复合函数单调性需二次函数对称轴在的左边并且在时二次函数的函数值为非负数即解得解析:,3【解析】【分析】根据复合函数单调性同增异减,以及二次函数对称轴列不等式组,解不等式组求得实数a的取值范围.【详解】要使f x在2, 上递增,根据复合函数单调性,需二次函数y x2 ax 2对称轴在……X - …“〃心口- 2 3日x 2的左边,并且在x 2时,二次函数的函数值为非负数,即2 ,解得22 2a 2 0a 3 .即实数a的取值范围是,3 .【点睛】本小题主要考查复合函数的单调性,考查二次函数的性质,属于中档题^19 .【解析】由题意可得:解析:1【解析】由题意可得:f 1 f 1 1, f f 1 f 1 120 .【解析】【分析】由点在函数的反函数的图象上可得点在函数的图象上把点与分别代入函数可得关于的方程组从而可得结果【详解】点在函数的反函数的图象上根据反函数与原函数的对称关系点在函数的图象上把点与分别代入一一1解析:-3【解析】【分析】,1 1由点2,—在函数y 2ax b的反函数的图象上,可得点一,2在函数y 2axb的图象2 2上,...1.1 __ _…把点2,-与一,2分别代入函数y 2axb,可得关于a,b的方程组,从而可得结果.2 2【详解】… J ,一……Q点2,2在函数y 2 的反函数的图象上,根据反函数与原函数的对称关系,,1 ___ ib点2,2在函数y 2 的图象上,一1 1把点2,-与一,2分别代入函数y 2a x b可得,2 22ab 1,①1 _-a b 1,②2… 4 5 . 1 1斛仔a — ,b -, a b —,故答案为一.3 3 3 3【点睛】此题主要考查反函数的定义与性质,意在考查灵活应用所学知识解答问题的水平,属于中档题.三、解做题〜,八. 1 121. (1) f x —x,g(x) -V x,(x 0); ( 2)投资债券等稳健型产品为16万元,投8 2资股票等风险型产品为4万元,投资收益最大为3万元.【解析】【分析】(1)投资债券等稳健型产品的收益 f x与投资额x成正比,投资股票等风险型产品的收益g x与投资额x的算术平方根成正比,用待定系数法求这两种产品的收益和投资的函数关系;(2)由(1)的结论,设投资股票等风险型产品为X万元,那么投资债券等稳健型产品为20 x万元,这时可构造出一个关于收益y的函数,然后利用求函数最大值的方法进行求解.【详解】(1)依题意设f x k1x,g(x) k2 x/X ,• 1 1f(1) K -,g(1) k2 8 2一 1 1 - _f x -x, g(x) -7x,( x 0);8 2(2)设投资股票等风险型产品为x万元,那么投资债券等稳健型产品为20 x万元,y f(20 x) g(x) 1(20 x) :6 8 21( Tx 2)2 3,Q 0 x 20 , 8当jx 2, x 4万元时,收益最大y max3万元,20万元资金,投资债券等稳健型产品为16万元,投资股票等风险型产品为4万元,投资收益最大为3万元.【点睛】此题考查函数应用题,考查正比例函数、二次函数的最值、待定系数法等根底知识与根本方法,属于中档题.22. (1)奇函数(2) f x在0, 上是增函数,证实见解析.【解析】【分析】(1)分别确定函数的定义域和 f x与f(2) x,,x2 0, ,且x1 x2,通过讨论小,据此即可得到函数的单调性.【详解】上 4 ................⑴f x x -的定乂域为x, 4 4 x 0, f x x —— x - x x x的关系即可确定函数的奇偶性;f x〔f x2的符号决定f x〔与f x2的大•• 4 一f x , f x x -是奇函数.(2) x, x2 0, ,且X x2,Q f X 在0,上是增函数.【点睛】此题主要考查函数的奇偶性,函数的单调性的证实等知识,意在考查学生的转化水平和计 算求解水平.i0 、23. (i) a 2 (2) i,i (3)(一,) 3【分析】(i)利用函数是奇函数的定义求解a 即可(2)判断函数的单调性,求解函数的值域即可利用函数恒成立,别离参数 m,利用换元法,结合函数的单调性求解最大值,推出结果即可【详解】f x 1 f x 2X i4 X i X 2 X i X 2X i X 24 X 1X 2X i X 2X 2X 2X i X 2X i ,X 2 0, ,X i X 2, 0,X i X 2X i X 20 , f X if X 24 X 24 X i(i)••• f X 是R 上的奇函数,即:X2aX2a a X2a 4 aX2a a (4 a) a X 2 a 整理可得a Xa2.2a x 4 a 2a X a(2)f(X )2 2X—2—在R 上递增 X 2 i2Xi ,,函数2 2Xi 2 2X0,X 的值域为i,i .X i X i可得,mf x 2x 2, mf (x) m-2x—1 2x 2 .当x 1,2 时,m (2x 1)(2x 2) 2x 1令2x 1 t(1 t 3)),那么有m (t 2)(t 1) t 2 1, t t- 2 「 .........函数y t - 1在1qw3上为增函数,. 2 八10• • (t 7 1)max ■—, t310m ——, 3故实数m的取值范围为(一,)3【点睛】此题主要考查了函数恒成立条件的应用,函数的单调性以及函数的奇偶性的应用,属于中档题.24. (1) 27工5 ;(2)甲大棚128万元,乙大棚72万元时,总收益最大,且最大收益为282万元.【解析】试题分析:(1)当甲大棚投入50万元,那么乙大棚投入150万元,此时直接计算■ --- 1 _ ___f(50) 80 4V2 50 — 150 120 277.5即可;(2)列出总收益的函数式得4f(x) 1x 4技 250,令五打2根一6,?],换元将函数转换为关于t的二次函4 -数,由二次函数知识可求其最大值及相应的x值.试题解析:(1) .一甲大棚投入50万元,那么乙大棚投入150万元,- 1••• f(50) 80 4,2 50 — 150 120 277.54(2) /\切=80+4岳一;乂(200一方+120 = -:工一4岳+250 ,4 4x>20,即20<x<180 , 200-x>20依题得故「-- 一「一■•….4令(二五E [20=6旧],那么/\冷=_<广+4①『+ 250 = (t—S^2)2- 282 ,4 4当『二即叵时,即工三1期时,,3工二282,,甲大棚投入128万元,乙大棚投入72万元时,总收益最大,且最大收益为282万元. 考点:1.函数建模;2.二次函数.一7 325. (1) x2 X — ; ( 2) p —或p 4.2 2【解析】【分析】(1)根据集合的交集得到结果即可;( 2)当An B=B时,可得B?A,分B为空集和不为空集两种情况即可.【详解】....... I , _ . 7, . 7 .(1)当门一一时,B={x|0wxw_}, ..An B={x|2vxw—};2 2 2(2)当AA B=B时,可得B?A;当力=敏时,令2p-1 >p+3,解得p>4,满足题意;当*工族时,应满足"< 4、33 ; 即『< 一41也一4解得> - 27综上,实数p的取值范围尸> 不即< -4 .【点睛】与集合元素有关问题的思路:(1)确定集合的元素是什么,即确定这个集合是数集还是点集;(2)看这些元素满足什么限制条件;(3)根据限制条件列式求参数的值或确定集合元素的个数,但要注意检验集合是否满足元素的互异性.26. (1) AU (BA Q={1,2,3,4,5} . (2) ( ?U B) U ( ?U C) = {1,2,6,7,8}.【解析】试题分析:(1)先求集合A,B,C;再求Bn C,最后求AU (Bn.(2)先求?U B,?C;再求(?U§ U( ?U C).试题解析:解:(1)依题意有:A= {1,2} , B= {1,2,3,4,5} , C= {3,4,5,6,7,8} ,BA C= {3,4,5},故有AU (BA C) ={1,2} U {3,4,5} = {1,2,3,4,5}.(2)由?U B= {6,7,8} , ?U(C= {1,2};故有(?U B)U(?U C)= {6,7,8} U{1,2} ={1,2,6,7,8}.。

2020-2021高一数学上期中一模试卷(附答案)(1)

2020-2021高一数学上期中一模试卷(附答案)(1)

2020-2021高一数学上期中一模试卷(附答案)(1)一、选择题1.已知集合{}220A x x x =-->,则A =R ðA .{}12x x -<<B .{}12x x -≤≤ C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥2.设集合{}1,2,4A =,{}240B x x x m =-+=.若{}1A B ⋂=,则B =( ) A .{}1,3-B .{}1,0C .{}1,3D .{}1,53.函数()2312x f x x -⎛⎫=- ⎪⎝⎭的零点所在的区间为( )A .()0,1B .()1,2C .()2,3D .()3,44.不等式()2log 231a x x -+≤-在x ∈R 上恒成立,则实数a 的取值范围是( ) A .[)2,+∞B .(]1,2C .1,12⎡⎫⎪⎢⎣⎭D .10,2⎛⎤ ⎥⎝⎦5.如图,点O 为坐标原点,点(1,1)A ,若函数xy a =及log b y x =的图象与线段OA 分别交于点M ,N ,且M ,N 恰好是线段OA 的两个三等分点,则a ,b 满足.A .1a b <<B .1b a <<C .1b a >>D .1a b >>6.若函数()(1)(0xxf x k a a a -=-->且1a ≠)在R 上既是奇函数,又是减函数,则()log ()a g x x k =+的图象是( )A .B .C .D .7.已知()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,若存在三个不同实数a ,b ,c 使得()()()f a f b f c ==,则abc 的取值范围是( ) A .(0,1)B .[-2,0)C .(]2,0-D .(0,1)8.已知定义在R 上的函数()f x 是奇函数且满足,3()(2)32f x f x f ⎛⎫-=-=- ⎪⎝⎭,,数列{}n a 满足11a =-,且2n n S a n =+,(其中n S 为{}n a 的前n 项和).则()()56f a f a +=() A .3B .2-C .3-D .29.函数()2log ,0,2,0,xx x f x x ⎧>=⎨≤⎩则函数()()()2384g x fx f x =-+的零点个数是( )A .5B .4C .3D .610.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =I ,则实数a 的取值范围是( ) A .(,2]-∞- B .[2,)+∞ C .(,2]-∞ D .[2,)-+∞ 11.设0.60.3a =,0.30.6b =,0.30.3c =,则a ,b ,c 的大小关系为( ) A .b a c <<B .a c b <<C .b c a <<D .c b a <<12.若函数2()sin ln(14)f x x ax x =⋅+的图象关于y 轴对称,则实数a 的值为( ) A .2B .2±C .4D .4±二、填空题13.已知函数21,1()()1a x x f x x a x ⎧-+≤=⎨->⎩,函数()2()g x f x =-,若函数()()y f x g x =-恰有4个不同的零点,则实数a 的取值范围为______. 14.下列各式:(1)122[(2)]2--= (2)已知2log 13a〈 ,则23a 〉 .(3)函数2x y =的图象与函数2x y -=-的图象关于原点对称;(4)函数()f x的定义域是R ,则m 的取值范围是04m <≤; (5)函数2ln()y x x =-+的递增区间为1,2⎛⎤-∞ ⎥⎝⎦.正确的...有________.(把你认为正确的序号全部写上) 15.方程组2040x y x +=⎧⎨-=⎩的解组成的集合为_________.16.设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是____________.17.已知函数()2()lg 2f x x ax =-+在区间(2,)+∞上单调递增,则实数a 的取值范围是______.18.关于函数()f x =__________.①()f x 的定义域为[)(]1,00,1-U ;②()f x 的值域为()1,1-;③()f x 的图象关于原点对称;④()f x 在定义域上是增函数.19.某班有36名同学参加数学、物理、化学竞赛小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有__________人.20.函数()221,0ln 2,0x x f x x x x x ⎧+-≤=⎨-+>⎩的零点的个数是______. 三、解答题21.已知函数()()()3 01a f x log ax a a -≠=>且 .(1)当[]02x ∈,时,函数()f x 恒有意义,求实数a 的取值范围; (2)是否存在这样的实数a ,使得函数f (x )在区间[]12,上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.22.已知函数()222,00,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩是奇函数.(1)求实数m 的值;(2)若函数()f x 在区间[]1,2a --上单调递增,求实数a 的取值范围. 23.已知函数())2log f x x =是R 上的奇函数,()2g x t x a =--.(1)求a 的值;(2)记()f x 在3,24⎡⎤-⎢⎥⎣⎦上的最大值为M ,若对任意的3,24x ⎡⎤∈-⎢⎥⎣⎦,()M g x ≤恒成立,求t 的取值范围.24.已知幂函数2242()(22)m m f x m m x -+=--在(0,)+∞上单调递减.(1)求m 的值并写出()f x 的解析式;(2)试判断是否存在0a >,使得函数()(21)1()ag x a x f x =--+在[1,2]-上的值域为 [4,11]-?若存在,求出a 的值;若不存在,请说明理由.25.设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,tan a b A =,且B 为钝角. (1)证明:2B A π-=; (2)求sin sin A C +的取值范围.26.已知函数()f x 是R 上的奇函数,且当0x >时,()f x =1()2x.①求函数()f x 的解析式;②画出函数的图象,根据图象写出函数()f x 的单调区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果. 详解:解不等式220x x -->得12x x -或, 所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.2.C解析:C 【解析】∵ 集合{}124A ,,=,{}2|40B x x x m =-+=,{}1A B ⋂= ∴1x =是方程240x x m -+=的解,即140m -+=∴3m =∴{}{}{}22|40|43013B x x x m x x x =-+==-+==,,故选C3.B解析:B 【解析】 【分析】判断函数()2312x f x x -⎛⎫=- ⎪⎝⎭单调递增,求出f (0)=-4,f (1)=-1,f (2)=3>0,即可判断.【详解】∵函数()2312x f x x -⎛⎫=- ⎪⎝⎭单调递增,∴f(0)=-4,f (1)=-1, f (2)=7>0,根据零点的存在性定理可得出零点所在的区间是()1,2, 故选B . 【点睛】本题考查了函数的单调性,零点的存在性定理的运用,属于容易题.4.C解析:C 【解析】 【分析】由()2223122-+=-+≥x x x 以及题中的条件,根据对数函数的单调性性,对a 讨论求解即可. 【详解】由()2log 231a x x -+≤-可得()21log 23log -+≤a ax x a, 当1a >时,由()2223122-+=-+≥x x x 可知2123-+≤x x a无实数解,故舍去; 当01a <<时,()2212312-+=-+≥x x x a在x ∈R 上恒成立,所以12a ≤,解得112a ≤<. 故选:C 【点睛】本题主要考查对数函数的单调性,涉及到复合函数问题,属于中档题.5.A【解析】 【分析】由,M N 恰好是线段OA 的两个三等分点,求得,M N 的坐标,分别代入指数函数和对数函数的解析式,求得,a b 的值,即可求解. 【详解】由题意知(1,1)A ,且,M N 恰好是线段OA 的两个三等分点,所以11,33M ⎛⎫ ⎪⎝⎭,22,33N ⎛⎫ ⎪⎝⎭, 把11,33M ⎛⎫ ⎪⎝⎭代入函数xy a =,即1313a =,解得127a =,把22,33N ⎛⎫ ⎪⎝⎭代入函数log b y x =,即22log 33b =,即得32239b ⎛⎫== ⎪⎝⎭,所以1a b <<. 故选A. 【点睛】本题主要考查了指数函数与对数函数的图象与性质的应用,其中解答熟练应用指数函数和对数函数的解析式求得,a b 的值是解答的关键,着重考查了推理与运算能力,属于基础题.6.A解析:A 【解析】 【分析】由题意首先确定函数g (x )的解析式,然后结合函数的解析式即可确定函数的图像. 【详解】∵函数()(1)xxf x k a a -=--(a >0,a ≠1)在R 上是奇函数,∴f (0)=0,∴k =2, 经检验k =2满足题意, 又函数为减函数, 所以01a <<, 所以g (x )=log a (x +2)定义域为x >−2,且单调递减, 故选A . 【点睛】本题主要考查对数函数的图像,指数函数的性质,函数的单调性和奇偶性的应用等知识,意在考查学生的转化能力和计算求解能力.7.C解析:C【分析】画出函数图像,根据图像得到20a -<≤,1bc =,得到答案. 【详解】()201911,02log ,0x x f x x x ⎧+≤⎪=⎨⎪>⎩,画出函数图像,如图所示:根据图像知:20a -<≤,20192019log log b c -=,故1bc =,故20abc -<≤. 故选:C .【点睛】本题考查了分段函数的零点问题,画出函数图像是解题的关键.8.A解析:A 【解析】由奇函数满足()32f x f x ⎛⎫-= ⎪⎝⎭可知该函数是周期为3T =的奇函数, 由递推关系可得:112,21n n n n S a n S a n +-=+=+-, 两式做差有:1221n n n a a a -=--,即()()1121n n a a --=-, 即数列{}1n a -构成首项为112a -=-,公比为2q =的等比数列, 故:()1122,21n n n n a a --=-⨯∴=-+,综上有:()()()()()552131223f a f f f f =-+=-==--=,()()()()66216300f a f f f =-+=-==,则:()()563f a f a +=. 本题选择A 选项.9.A【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数. 【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0x x x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A . 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.10.B解析:B 【解析】由题意可得{}|2A x x =<,结合交集的定义可得实数a 的取值范围是[)2,+∞ 本题选择B 选项.11.B解析:B 【解析】 【分析】根据指数函数的单调性得出0.60.30.30.3<,而根据幂函数的单调性得出0.30.30.30.6<,从而得出a ,b ,c 的大小关系. 【详解】解:0.3xy =Q 在定义域上单调递减,且0.360.<,0.60.30.30.3∴<,又0.3y x∴=在定义域上单调递增,且0.360.<,0.30.30.30.6∴<,0.60.30.30.30.30.6∴<<,a cb ∴<<故选:B . 【点睛】考查指数函数和幂函数的单调性,以及增函数和减函数的定义.12.B解析:B 【解析】 【分析】根据图象对称关系可知函数为偶函数,得到()()f x f x =-,进而得到ax +=.【详解】()f x Q 图象关于y 轴对称,即()f x 为偶函数 ()()f x f x ∴=-即:()sin ln sin lnsin lnx ax x ax x ⋅+=-⋅=⋅ax ∴+=恒成立,即:222141x a x +-=24a ∴=,解得:2a =± 本题正确选项:B 【点睛】本题考查根据函数的奇偶性求解参数值的问题,关键是能够明确恒成立时,对应项的系数相同,属于常考题型.二、填空题13.【解析】【分析】由函数把函数恰有个不同的零点转化为恰有4个实数根列出相应的条件即可求解【详解】由题意函数且函数恰有个不同的零点即恰有4个实数根当时由即解得或所以解得;当时由解得或所以解得综上可得:实 解析:(]2,3【解析】 【分析】由函数()2()g x f x =-,把函数()()y f x g x =-恰有4个不同的零点,转化为()1f x =恰有4个实数根,列出相应的条件,即可求解. 【详解】由题意,函数()2()g x f x =-,且函数()()y f x g x =-恰有4个不同的零点, 即()1f x =恰有4个实数根,当1x ≤时,由11a x -+=,即110x a +=-≥,解得2=-x a 或x a =-,所以2112a a a a -≤⎧⎪-≤⎨⎪-≠-⎩,解得13a <?;当1x >时,由2()1x a -=,解得1x a =-或1x a =+,所以1111a a ->⎧⎨+>⎩,解得2a >,综上可得:实数a 的取值范围为(]2,3. 【点睛】本题主要考查了函数与方程的应用,其中解答中利用条件转化为()1f x =,绝对值的定义,以及二次函数的性质求解是解答的关键,着重考查了数形结合思想,以及推理与计算能力,属于中档试题.14.(3)【解析】(1)所以错误;(2)当时恒成立;当时综上或所以错误;(3)函数上任取一点则点落在函数上所以两个函数关于原点对称正确;(4)定义域为当时成立;当时得综上所以错误;(5)定义域为由复合函解析:(3) 【解析】 (1)(1122212---⎛⎫⎡⎤== ⎪⎢⎥⎣⎦⎝⎭,所以错误;(2)2log 1log 3aa a <=,当1a >时,恒成立;当01a <<时,023a <<,综上,023a <<或1a >,所以错误; (3)函数2xy =上任取一点(),x y ,则点(),x y --落在函数2x y -=-上,所以两个函数关于原点对称,正确;(4)定义域为R ,当0m =时,成立;当0m >时,240m m ∆=-≤,得04m <≤,综上,04m ≤≤,所以错误;(5)定义域为()0,1,由复合函数的单调性性质可知,所求增区间为10,2⎛⎫ ⎪⎝⎭,所以错误; 所以正确的有(3)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021石家庄市精英中学高一数学上期中一模试卷(带答案)一、选择题1.设集合{1,2,3,4}A =,{}1,0,2,3B =-,{|12}C x R x =∈-≤<,则()A B C =A .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}2.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A CB ⊆⊆的集合C 的个数为( )A .1B .2C .3D .43.函数tan sin tan sin y x x x x =+--在区间(2π,32π)内的图象是( ) A . B .C .D .4.函数2xy x =⋅的图象是( )A .B .C .D .5.函数()f x 在(,)-∞+∞单调递增,且为奇函数,若(1)1f =,则满足1(2)1f x -≤-≤的x 的取值范围是( ). A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.三个数20.420.4,log 0.4,2a b c ===之间的大小关系是( )A .a c b <<B .b a c <<C .a b c <<D .b c a <<7.已知111,2,,3,23a ⎧⎫∈-⎨⎬⎩⎭,若()a f x x 为奇函数,且在(0,)+∞上单调递增,则实数a的值是( ) A .1,3-B .1,33C .11,,33-D .11,,3328.若0.23log 2,lg0.2,2a b c ===,则,,a b c 的大小关系为A .c b a <<B . b a c <<C . a b c <<D .b c a <<9.已知()lg(10)lg(10)f x x x =++-,则()f x 是( ) A .偶函数,且在(0,10)是增函数 B .奇函数,且在(0,10)是增函数 C .偶函数,且在(0,10)是减函数D .奇函数,且在(0,10)是减函数10.设()f x 是定义域为R 的偶函数,且在()0,∞+单调递减,则( )A .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .233231log 224f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .23332122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11.设a =2535⎛⎫ ⎪⎝⎭,b =3525⎛⎫ ⎪⎝⎭ ,c =2525⎛⎫ ⎪⎝⎭,则a ,b ,c 的大小关系是( )A .a>c>bB .a>b>cC .c>a>bD .b>c>a12.方程 4log 7x x += 的解所在区间是( ) A .(1,2)B .(3,4)C .(5,6)D .(6,7)二、填空题13.已知函数2()121()f x ax x ax a R =+++-∈的最小值为0,则实数a =_________.14.设函数()f x 是定义在R 上的偶函数,记2()()g x f x x =-,且函数()g x 在区间[0,)+∞上是增函数,则不等式2(2)(2)4f x f x x +->+的解集为_____15.函数()1x f x x+=的定义域是______. 16.已知()32,,x x af x x x a⎧≤=⎨>⎩,若存在实数b ,使函数()()g x f x b =-有两个零点,则a的取值范围是________. 17.已知函数在区间,上恒有则实数的取值范围是_____.18.若点12,2⎛⎫ ⎪⎝⎭)既在()2ax b f x +=图象上,又在其反函数的图象上,则a b +=____19.已知()f x 定义在R 上的奇函数,当0x ≥时,,则函数()()3g x f x x =-+的零点的集合为 .20.若关于 x 的方程2420x x a ---= 在区间 (1, 4) 内有解,则实数 a 的取值范围是_____.三、解答题21.计算下列各式的值:(1)()1110232710223π20.25927--⎛⎫⎛⎫---+ ⎪ ⎪⎝⎭⎝⎭.(2)()221log 3lg5ln e 2lg2lg5lg2-+++++⋅. 22.已知函数()1ln1xf x x+=-的定义域为集合A ,集合(),1B a a =+,且B A ⊆. (1)求实数a 的取值范围;(2)求证:函数()f x 是奇函数但不是偶函数. 23.已知二次函数()2f x ax bx c =++.(1)若方程()0f x =两个根之和为4,两根之积为3,且过点(2,-1).求()0f x ≤的解集;(2)若关于x 的不等式()0f x >的解集为(2,1)-. (ⅰ)求解关于x 的不等式20cx bx a ++>(ⅱ)设函数2(1)(),(1)(1)b x cg x x a x +-=<-,求函数()g x 的最大值 24.在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营情况良好的某种消费品专卖店以5.8万元的优惠价转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3600元后,逐步偿还转让费(不计息).在甲提供的资料中有:①这种消费品的进价为每件14元;②该店月销量Q (百件)与销售价格P (元)的关系如图所示;③每月需各种开支2000元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?25.已知()42log ,[116]f x x x =+∈,,函数()()()22[]g x f x f x =+.(1)求函数()g x 的定义域;(2)求函数()g x 的最大值及此时x 的值.26.设全集U=R ,集合A={x|1≤x <4},B={x|2a≤x <3-a}.(1)若a=-2,求B∩A ,B∩(∁U A);(2)若A∪B=A ,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果. 详解:由并集的定义可得:{}1,0,1,2,3,4A B ⋃=-, 结合交集的定义可知:(){}1,0,1A B C ⋃⋂=-. 本题选择C 选项.点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.2.D解析:D 【解析】 【分析】 【详解】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义, 集合C 必须含有元素1,2,且可能含有元素3,4, 原题即求集合{}3,4的子集个数,即有224=个,故选D. 【点评】本题考查子集的概念,不等式,解一元二次方程.本题在求集合个数时,也可采用列举法.列出集合C 的所有可能情况,再数个数即可.来年要注意集合的交集运算,考查频度极高.3.D解析:D 【解析】解:函数y=tanx+sinx-|tanx-sinx|=2tan ,tan sin {2sin ,tan sin x x x x x x<≥分段画出函数图象如D 图示, 故选D .4.A解析:A 【解析】 【分析】先根据奇偶性舍去C,D,再根据函数值确定选A. 【详解】因为2xy x =⋅为奇函数,所以舍去C,D; 因为0x >时0y >,所以舍去B ,选A. 【点睛】有关函数图象识别问题的常见题型及解题思路(1)由解析式确定函数图象的判断技巧:(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.(2)由实际情景探究函数图象.关键是将问题转化为熟悉的数学问题求解,要注意实际问题中的定义域问题.5.D解析:D 【解析】 【分析】 【详解】()f x 是奇函数,故()()111f f -=-=- ;又()f x 是增函数,()121f x -≤-≤,即()(1)2(1)f f x f -≤-≤ 则有121x -≤-≤ ,解得13x ≤≤ ,故选D.【点睛】解本题的关键是利用转化化归思想,结合奇函数的性质将问题转化为()(1)2f f x -≤-(1)f ≤,再利用单调性继续转化为121x -≤-≤,从而求得正解.6.B解析:B 【解析】20.4200.41,log 0.40,21<<,01,0,1,a b c b a c ∴<<∴<<,故选B.7.B解析:B 【解析】 【分析】先根据奇函数性质确定a 取法,再根据单调性进行取舍,进而确定选项. 【详解】因为()af x x =为奇函数,所以11,3,3a ⎧⎫∈-⎨⎬⎩⎭因为()()0,f x +∞在上单调递增,所以13,3a ⎧⎫∈⎨⎬⎩⎭因此选B. 【点睛】本题考查幂函数奇偶性与单调性,考查基本判断选择能力.8.B解析:B 【解析】 【分析】由对数函数的单调性以及指数函数的单调性,将数据与0或1作比较,即可容易判断. 【详解】由指数函数与对数函数的性质可知,a =()3log 20,1,b ∈=lg0.20,c <=0.221>,所以b a c <<,故选:B. 【点睛】本题考查利用指数函数和对数函数的单调性比较大小,属基础题.9.C解析:C 【解析】 【分析】先判断函数的定义域关于原点对称,再由奇偶性的定义判断奇偶性,根据复合函数的单调判断其单调性,从而可得结论. 【详解】 由100100x x +>⎧⎨->⎩,得(10,10)x ∈-,故函数()f x 的定义域为()10,10-,关于原点对称,又()()lg 10lg(10)()f x x x f x -=-++=,故函数()f x 为偶函数, 而()()2lg(10)lg(10)lg 100f x x x x=++-=-,因为函数2100y x =-在()0,10上单调递减,lg y x =在()0,∞+上单调递增, 故函数()f x 在()0,10上单调递减,故选C. 【点睛】本题主要考查函数的奇偶性与单调性,属于中档题. 判断函数的奇偶性首先要看函数的定义域是否关于原点对称,如果不对称,既不是奇函数又不是偶函数,如果对称常见方法有:(1)直接法, ()()f x f x -=±(正为偶函数,负为减函数);(2)和差法,()()0f x f x -±=(和为零奇函数,差为零偶函数);(3)作商法,()()1f x f x -=±(1 为偶函数,1- 为奇函数) .10.C解析:C 【解析】 【分析】由已知函数为偶函数,把233231log ,2,24f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,转化为同一个单调区间上,再比较大小. 【详解】()f x 是R 的偶函数,()331log log 44f f ⎛⎫∴= ⎪⎝⎭.223303322333log 4log 31,1222,log 422---->==>>∴>>,又()f x 在(0,+∞)单调递减,∴()23323log 422f f f --⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,23323122log 4f f f --⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选C .【点睛】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值.11.A解析:A 【解析】试题分析:∵函数2()5xy =是减函数,∴c b >;又函数25y x =在(0,)+∞上是增函数,故a c >.从而选A考点:函数的单调性.12.C解析:C 【解析】 【分析】令函数4()log 7xf x x =+-,则函数()f x 是()0,∞+上的单调增函数,且是连续函数,根据(5)(6)0f f ⋅<,可得函数4()log 7xf x x =+-的零点所在的区间为()5,6,由此可得方程4log 7x x +=的解所在区间. 【详解】令函数4()log 7xf x x =+-,则函数()f x 是()0,∞+上的单调增函数,且是连续函数.∵(5)0f <,(6)0>f ∴(5)(6)0f f ⋅<∴故函数4()log 7xf x x =+-的零点所在的区间为()5,6∴方程4log 7x x +=的解所在区间是()5,6 故选C. 【点睛】零点存在性定理:利用定理不仅要函数在区间[,]a b 上是连续不断的曲线,且()()0f a f b ⋅<,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.二、填空题13.【解析】【分析】设计算可得再结合图象即可求出答案【详解】解:设则则由于函数的最小值为0作出函数的大致图象结合图象得所以故答案为:【点睛】本题主要考查分段函数的图象与性质考查转化思想考查数形结合思想属解析:±1. 【解析】 【分析】 设2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,计算可得2(),()()()2(),()()g x g x h x f x h x g x h x ≥⎧=⎨<⎩,再结合图象即可求出答案. 【详解】解:设2()()1()()21g x h x ax g x h x x ax +=+⎧⎨-=+-⎩,则22()()1g x x ax h x x ⎧=+⎨=-⎩, 则()()()()()f x g x h x g x h x =++-2(),()()2(),()()g x g x h x h x g x h x ≥⎧=⎨<⎩,由于函数()f x 的最小值为0,作出函数()g x ,()h x 的大致图象,结合图象,210x -=,得1x =±, 所以1a =±, 故答案为:±1. 【点睛】本题主要考查分段函数的图象与性质,考查转化思想,考查数形结合思想,属于中档题.14.【解析】【分析】根据题意分析可得为偶函数进而分析可得原不等式转化为结合函数的奇偶性与单调性分析可得解可得的取值范围【详解】根据题意且是定义在上的偶函数则则函数为偶函数又由为增函数且在区间上是增函数则 解析:()(),40,-∞-+∞【解析】 【分析】根据题意,分析可得()g x 为偶函数,进而分析可得原不等式转化为()()22g x g +>,结合函数的奇偶性与单调性分析可得22x +>,解可得x 的取值范围. 【详解】根据题意()()2g x f x x =-,且()f x 是定义在R 上的偶函数,则()()()()()22g x f x x f x x g x -=---=-=,则函数()g x 为偶函数,()()()()()()()22224222422f x f x x f x x f g x g +->+⇒+--⇒+>>+,又由()g x 为增函数且在区间[0,)+∞上是增函数,则22x +>, 解可得:4x <-或0x >, 即x 的取值范围为()(),40,-∞-+∞,故答案为()(),40,-∞-+∞;【点睛】本题考查函数的奇偶性与单调性的综合应用,注意分析()g x 的奇偶性与单调性,属于中档题.15.【解析】【分析】由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x 的取值集合得答案【详解】由得且函数的定义域为:;故答案为【点睛】本题考查了函数的定义域及其求法是基础的会考题型 解析:[)()1,00,∞-⋃+【解析】 【分析】由根式内部的代数式大于等于0且分式的分母不等于0联立不等式组求解x 的取值集合得答案. 【详解】由{100x x +≥≠,得1x ≥-且0x ≠.∴函数()1x f x x+=的定义域为:[)()1,00,-⋃+∞; 故答案为[)()1,00,-⋃+∞. 【点睛】本题考查了函数的定义域及其求法,是基础的会考题型.16.【解析】【分析】由有两个零点可得有两个零点即与的图象有两个交点则函数在定义域内不能是单调函数结合函数图象可求的范围【详解】有两个零点有两个零点即与的图象有两个交点由可得或①当时函数的图象如图所示此时 解析:()(),01,-∞⋃+∞【解析】 【分析】由()()g x f x b =-有两个零点可得()f x b =有两个零点,即()y f x =与y b =的图象有两个交点,则函数在定义域内不能是单调函数,结合函数图象可求a 的范围 【详解】()()g x f x b =-有两个零点,()f x b ∴=有两个零点,即()y f x =与y b =的图象有两个交点,由32x x =可得,0x =或1x =①当1a >时,函数()f x 的图象如图所示,此时存在b ,满足题意,故1a >满足题意②当1a =时,由于函数()f x 在定义域R 上单调递增,故不符合题意 ③当01a <<时,函数()f x 单调递增,故不符合题意④0a =时,()f x 单调递增,故不符合题意⑤当0a <时,函数()y f x =的图象如图所示,此时存在b 使得,()y f x =与y b =有两个交点综上可得,0a <或1a > 故答案为:()(),01,-∞⋃+∞ 【点睛】本题考察了函数的零点问题,渗透了转化思想,数形结合、分类讨论的数学思想.17.(131)【解析】【分析】根据对数函数的图象和性质可得函数f (x )=loga (2x ﹣a )在区间1223上恒有f (x )>0即0<a<10<2x-a<1或a>12x-a>1分别解不等式组可得答案【详解】 解析:【解析】 【分析】根据对数函数的图象和性质可得,函数f (x )=log a (2x ﹣a )在区间[]上恒有f (x )>0,即,或,分别解不等式组,可得答案.【详解】若函数f (x )=log a (2x ﹣a )在区间[]上恒有f (x )>0,则,或当时,解得<a <1,当时,不等式无解.综上实数的取值范围是(,1) 故答案为(,1). 【点睛】本题考查的知识点是复合函数的单调性,及不等式的解法,其中根据对数函数的图象和性质构造不等式组是解答的关键,属于中档题.18.【解析】【分析】由点在函数的反函数的图象上可得点在函数的图象上把点与分别代入函数可得关于的方程组从而可得结果【详解】点在函数的反函数的图象上根据反函数与原函数的对称关系点在函数的图象上把点与分别代入解析:13【解析】 【分析】 由点12,2⎛⎫ ⎪⎝⎭在函数2ax by +=的反函数的图象上,可得点1,22⎛⎫ ⎪⎝⎭在函数2ax b y +=的图象上,把点12,2⎛⎫ ⎪⎝⎭与1,22⎛⎫ ⎪⎝⎭分别代入函数2ax by +=,可得关于,a b 的方程组,从而可得结果.【详解】 点12,2⎛⎫ ⎪⎝⎭在函数2ax by +=的反函数的图象上, 根据反函数与原函数的对称关系,∴点1,22⎛⎫ ⎪⎝⎭在函数2ax b y +=的图象上,把点12,2⎛⎫ ⎪⎝⎭与1,22⎛⎫ ⎪⎝⎭分别代入函数2ax by +=可得,21a b +=-,①112a b +=,②解得45,33a b =-=,13a b +=,故答案为13. 【点睛】本题主要考查反函数的定义与性质,意在考查灵活应用所学知识解答问题的能力,属于中档题.19.【解析】试题分析:当时由于定义在上的奇函数则;因为时则若时令若时令因则的零点集合为考点:奇函数的定义与利用奇函数求解析式;2函数的零点;3分段函数分段处理原则; 解析:【解析】 试题分析:当时,,由于()f x 定义在R 上的奇函数,则;因为0x ≥时,,则若时,令若时,令,因,则,的零点集合为考点:奇函数的定义与利用奇函数求解析式;2.函数的零点;3.分段函数分段处理原则;20.-6-2)【解析】【分析】转化成f(x)=与有交点再利用二次函数的图像求解【详解】由题得令f(x)=所以所以故答案为-6-2)【点睛】本题主要考查二次方程的有解问题考查二次函数的图像和性质意在考查学解析:[-6,-2) 【解析】 【分析】转化成f(x)=242x x --与y a =有交点, 再利用二次函数的图像求解. 【详解】由题得242x x a --=,令f(x)=()242,1,4x x x --∈,所以()()[)2242266,2f x x x x =--=--∈--, 所以[)6,2a ∈-- 故答案为[-6,-2) 【点睛】本题主要考查二次方程的有解问题,考查二次函数的图像和性质,意在考查学生对这些知识的掌握水平和数形结合分析推理能力.三、解答题21.(1)9512;(2)3.【解析】 【分析】(1)利用指数的运算法则化简求值.(2)利用对数的运算法则化简求值. 【详解】 (1)原式113113232232232256415415395111892743323412----⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=--+=--+=--+=⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦(或写成11712). (2)原式()()2log 3111113lg522lg22lg55231322222lg lg lg -=++⋅++=+++⨯=++=. 【点睛】 本题主要考查指数对数的运算法则,意在考查学生对这些知识的掌握水平和分析推理计算能力.22.(1)[1,0]- ;(2)见解析. 【解析】试题分析:(1)由对数的真数大于0,可得集合A ,再由集合的包含关系,可得a 的不等式组,解不等式即可得到所求范围;(2)求得()f x 的定义域,计算()f x -与()f x 比较,即可得到所求结论. 试题解析:(1)令101xx+>-,解得11x -<<,所以()1,1A =-, 因为B A ⊆,所以111a a ≥-⎧⎨+≤⎩,解得10a -≤≤,即实数a 的取值范围是[]1,0-(2)函数()f x 的定义域()1,1A =-,定义域关于原点对称()()()1ln 1x f x x ---=+- ()1111ln ln ln 111x x x f x x x x -+--⎛⎫===-=- ⎪-++⎝⎭而1ln32f ⎛⎫=⎪⎝⎭,11ln 23f ⎛⎫-= ⎪⎝⎭,所以1122f f ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭所以函数()f x 是奇函数但不是偶函数.23.(1){}13x x ≤≤;(2)(ⅰ)1(,)(1,)2-∞-⋃+∞;(ⅱ)2-. 【解析】 【分析】(1)由韦达定理及函数过点(2,-1),列方程组()432421b a ca f abc ⎧-=⎪⎪⎪=⎨⎪=++=-⎪⎪⎩求解即可;(2)(ⅰ)由不等式的解集与方程的根可得012a ba ca ⎧⎪<⎪⎪-=-⎨⎪⎪=-⎪⎩,则20cx bx a ++>可化为2210x x -->,再解此不等式即可;(ⅱ)由(ⅰ)得()g x =4(1)()21x x ⎡⎤--++⎢⎥-⎣⎦,再利用均值不等式求函数的最大值,一定要注意取等的条件,得解. 【详解】(1)由题意可得()432421b ac af a b c ⎧-=⎪⎪⎪=⎨⎪=++=-⎪⎪⎩,解得143a b c =⎧⎪=-⎨⎪=⎩,()243f x x x ∴=-+,解不等式()0f x ≤,即2430x x -+≤,即()()130x x --≤,解得13x ≤≤, 因此,不等式()0f x ≤的解集为{}13x x ≤≤;(2)(ⅰ)由题意可知012a b aca⎧⎪<⎪⎪-=-⎨⎪⎪=-⎪⎩,所以20cx bx a ++>可化为210c bx x a a ++<,即2210x x -++<,得2210x x -->,解得21x <-或1x > 所求不等式的解集为1(,)(1,)2-∞-⋃+∞.(ⅱ)由(ⅰ)可知22(1)(1)2()(1)(1)b x c a x a g x a x a x +-++==--=231x x +=-2(1)2(1)41x x x -+-+=-=4(1)()21x x ⎡⎤--++⎢⎥-⎣⎦ ,因为1,x <所以10x ->,所以4(1)()41x x-+≥-,当且仅当411x x -=-时即1x =-时取等号 , 所以4(1)()41x x ⎡⎤-+≤-⎢⎥-⎣⎦,4(1)()221x x ⎡⎤-≤-++≤-⎢⎥-⎣⎦所以当1x =-时,()max 2g x =- . 【点睛】本题考查了二次函数解析式的求法及不等式的解集与方程的根的关系,重点考查了利用均值不等式求函数的最大值及取等的条件,属中档题. 24.(1)当P =19.5元,最大余额为450元;(2)20年后 【解析】 【分析】(1)根据条件关系建立函数关系,根据二次函数的图象和性质即可求出函数的最值; (2)根据函数的表达式,解不等式即可得到结论. 【详解】设该店月利润余额为L ,则由题设得L =Q (P ﹣14)×100﹣3600﹣2000,① 由销量图,易得Q =250,14P 20340,20P 262p p -+⎧⎪⎨-+<⎪⎩代入①式得L =(250)(14)1005600,14P 20340(14)100560,20P 262P P P P -+-⨯-⎧⎪⎨⎛⎫-+-⨯-< ⎪⎪⎝⎭⎩ (1)当14≤P ≤20时,2(250)(14)1005600200780075600L P P p p =-+-⨯-=-+-,当P =19.5元,L max =450元,当20<P ≤26时,23340(14)100560615656022L P P P p ⎛⎫=-+-⨯-=-+- ⎪⎝⎭,当P =613元时,L max =12503元. 综上:月利润余额最大,为450元,(2)设可在n 年内脱贫,依题意有12n ×450﹣50000﹣58000≥0,解得n ≥20,即最早可望在20年后脱贫. 【点睛】本题主要考查实际函数的应用问题,根据条件建立函数关系,利用二次函数的图象和性质是即可得到结论,属于中档题.25.(1)[1]4,;(2)4x =时,函数有最大值13. 【解析】 【分析】(1)由已知()f x 的定义域及复合函数的定义域的求解可知,2116116x x ≤≤⎧⎨≤≤⎩,解不等式可求(2)由已知可求()()()22[]g x f x f x +=,结合二次函数的性质可求函数g x ()的最值及相应的x . 【详解】 解:(1)()42log [116]f x x x =+∈,,,()()()22[]g x f x f x +=.由题意可得,2116116x x ≤≤⎧⎨≤≤⎩, 解可得,14x ≤≤即函数()g x 的定义域[1]4,; (2)()42log ,[116]f x x x =+∈,,()()()()222224444[]2log 2log log 6log 6g x f x f x x x x x ∴=+=+++=++设4log t x =,则[01]t ∈,, 而()()226633g t t t t =++=+-在[0]1,单调递增, 当1t =,即4x =时,函数有最大值13. 【点睛】本题主要考查了对数函数的性质,二次函数闭区间上的最值求解,及复合函数的定义域的求解,本题中的函数()g x 的定义域是容易出错点.26.(1)B ∩A =[1,4),B ∩(∁U A )= [-4,1)∪[4,5);(2)1[,)2+∞ . 【解析】 【分析】(1)利用补集的定义求出A 的补集,然后根据交集的定义求解即可直接求解即可;(2 )分类讨论B 是否是空集,列出不等式组求解即可. 【详解】(1)∵A ={x |1≤x <4},∴∁U A ={x |x <1或x ≥4},∵B ={x |2a ≤x <3-a },∴a =-2时,B ={-4≤x <5},所以B ∩A =[1,4), B ∩(∁U A )={x |-4≤x <1或4≤x <5}=[-4,1)∪[4,5). (2)A ∪B =A ⇔B ⊆A , ①B =∅时,则有2a ≥3-a ,∴a ≥1, ②B ≠∅时,则有,∴, 综上所述,所求a 的取值范围为.【点睛】本题主要考查集合的交集、集合的补集以及空集的应用,属于简答题.要解答本题,首先必须熟练应用数学的转化与划归思想及分类讨论思想,将并集问题转化为子集问题,其次分类讨论进行解答,解答集合子集过程中,一定要注意空集的讨论,这是同学们在解题过程中容易疏忽的地方,一定不等掉以轻心.。

相关文档
最新文档