近世代数第9讲
《近世代数》PPT课件
a b a b ,(m m )o a b d a b(m m )o
10.01.2021
编辑ppt
18
2.2 多项式剩余类环和域
1.域上多项式的定义
– 多项式与码字的关系:桥梁;
• 多项式的系数表示
;
• x的幂次表示
;
– 域上的多项式
• 针对系数定义;
• 例如二进制系数多项式,称为二元域GF(2)上的 多项式。
编辑ppt
28
(1) 常数总是多项式的因子。
(2) 一个多项式 f(x) 是否为既约多项式 与所定义的域有关。
(3) 一个多项式既约的充要条件:多项 式Pl(x) 不能分解成两个次数低于Pl(x) 的多项式的乘积。
(4) 完全分解:n次多项式最多能分解成 n个一次多项式的乘积,被称为完全分 解。
(5) 一次多项式一定是既约的。
(3)加法和乘法之间满足如下分配率 (distributive) :
a(bc) abac
(bc)a baca
则称F是一个域。
10.01.2021
编辑ppt
6
(1)域的阶(针对群中元素的个数),记 为q。
(2)有限域或伽逻华(Galois)域,表示为:
GF(q)。
–域将
10.01.2021
和
编辑ppt
联系在一起?
7
例2-3
– F1:有理数全体、实数全体对加法和乘法都 分别构成域,分别称为有理数域和实数域。
– F2:0、1两个元素模2加构成域;由于该域 中只有两个元素,记为GF(2)。
10.01.2021
编辑ppt
8
• 定理:
– 设p为质数,则整数全体关于p模的剩余类: 0,1,2,…,p-1,在模p的运算下(p模相 加和相乘),构成p阶有限域GF(p)。
近世代数第9讲
近世代数第9讲置换群(pormutation group)本讲的教学目的和要求:置换群是一种特殊的变换群。
换句话说,置换群就是有限集上的变换群。
由于是定义在有限集上,故每个置换的表现形式,固有特点都是可揣测的。
这一讲主要要求:1、弄清置换与双射的等同关系。
2、掌握置换—轮换—对换之间的联系和置换的奇偶性。
3、置换的分解以及将轮换表成对换之积的基本方法要把握。
4、对称群与交错群的结构以及有限群的cayley定理需要理解。
本讲的重点与难点:对于置换以及置换群需要侧重注意的是:对称群和交错群的结构和置换的分解定理(定理2)。
注意:由有限群的cayley定理可知:如把所有置换群研究清楚了。
就等于把所有有限群都研究清楚了,但经验告诉我们,研究置换群并不比研究抽象群容易。
所以,一般研究抽象群用的还是直接的方法。
并且也不能一下子把所有群都不得找出来。
因为问题太复杂了。
人们的方法是将群分成若干类(即附加一定条件);譬如有限群;无限群;变换群;非变换群等等。
对每个群类进行研究以设法回答上述三个问题。
可惜 , 人们能弄清的群当今只有少数几类(后面的循环群就是完全解决了的一类群)大多数还在等待人们去解决。
变换群是一类应用非常广泛的群,它的具有代表性的特征—置换群,是现今所研究的一切抽象群的来源,是抽象代数创始人E.Galais(1811-1832)在证明次数大于四的一元代数方程不可能用根号求解时引进的。
一. 置换群的基本概念定义1.任一集合A 到自身的映射都叫做A 的一个变换,如果A 是有限集且变换是一一变换(双射),那么这个变换为A 的一个置换。
有限集合A 的若干个置换若作成群,就叫做置换群。
含有n 个元素的有限群A 的全体置换作成的群,叫做n 次对称群。
通常记为n S .明示:由定义1知道,置换群就是一种特殊的变换群(即有限集合上的变换群)而n 次对称群n S 也就是有限集合A 的完全变换群。
现以{}321 , , a a a A =为例,设π:A →A 是A 的一一变换。
近世代数复习
近世代数复习(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章集合A 的一个分类决定A的元间的一个等价关系;集合A元间的一个等价关系~决定A的一个分类。
第二章群的定义a.设G是一个非空集合,“▫”是其上一个二元运算,若满足1.“▫”满足结合律;2.{G,▫}中有单位元;3.{G,▫}每个元都与逆元则称{G,▫}是一个群,简称G是一个群。
b. 若G是一个有乘法的有限非空集合,且满足消去律。
群的性质1.单位元唯一;2.逆元唯一;3.若G是群,则对G中的任意元a、b,方程ax = b和xa = b都有唯一的解4.若G是群,则对任意G中的两个元素a、b, 有(ab)-1=b-1a-1注:可以推广到无限:111211m1m1m21ma...aaa)...aa(aG,a..,------=⇒∈∀,.a,a215.单位元是群中唯一的等幂元素(满足x2 = x的元叫等幂元)证:令x是等幂元,∴x=ex=(x-1x)x=x-1(xx)=x-1x=e。
6.群满足左右消去律。
推论:若G是有限群,则其运算表中的每一行(列)都是G中元的一个排列,而且不同行(列)的排列不同。
7.若群G的元a的阶是n(有限),则a k。
8.群中的任意元素a和他的逆元a-1具有相同的阶。
9.在有限群G中,每一元素具有一有限阶,且阶数至多为|G|。
交换群:若一个群中的任意两个元a、b,都满足ab = ba,则这个群为交换群。
元素的阶:G的一个元素a,能够使a m = e 的最小正整数m叫做a的阶,记为o(a)。
若是这样的m不存在,则称a是无限阶的。
有限群:若一个群的元的个数是一个有限整数,则称这个群为有限群,否则为无限群。
一个有限群的元的个数叫做这个群的阶。
定理:一个有乘法的有限集合G若是满足封闭性、结合律、消去律,那么,对于G的任意两个元a,b来说,方程ax = b 和 ya = b§5变换群定理1:假定G是集合A的若干个变换所作成的集合,并且G包含恒等变换ε。
《近世代数》课件
近世代数的重要性
近世代数是数学领域中的基础学科之 一,是学习其它数学分支的重要基础 。
它对于理解数学的抽象本质和掌握数 学的基本思想方法具有重要意义,有 助于培养学生的逻辑思维和抽象思维 能力。
课程大纲简介
本课程将介绍近世代数的基本概念和性质,包括集合、群、环、域等代数系统的 定义、性质和关系。
1.1 答案
对。因为$a^2$的定义是两个整数相乘,结果仍为整数。
第1章习题及解答
1.2 答案:(略)
1.3 答案:群的基本性质包括封闭性、结合律和存在单位元。
第2章习题及解答
2.1 判断题:若$a$是整数,则$a^3$也是整数。 2.2 选择题:下列哪个是环?
第2章习题及解答
要点一
2.3 简答题
编码理论中的应用
线性码
线性码是一类重要的纠错码,其生成矩阵和校验矩阵都是线性方程组的解。这 些矩阵的构造和性质都与代数理论紧密相关。
高斯-若尔当消元法
在编码理论中,经常使用高斯-若尔当消元法来求解线性方程组,这种方法在代 数中也有广泛的应用。
物理学中的应用
量子力学中的态空间
在量子力学中,态空间是一个复的向量空间,其基底对应于可观测物理量。这与代数学中的向量空间 概念非常相似。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个多项式,那么E在F上形成一个 子域。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个不可约多项式,那么E在F上形 成一个有限子域。
有限域
有限域的性质
有限域中的元素个数一定是某个素数的幂。
理想与商环
理想的定义与性质
介绍理想的定义,包括左理想、右理想、双边理想等 ,并讨论理想的封闭性、运算性质等。
大学数学《近世代数》课件
3.推移律:
a bb a
a a,不管a是A的哪一个元。
a b, b c a c
定义:若把一个集合A分成若干个叫做类的子集,使得A的每一个元属于而 且只属于一个类,那么这些类的全体叫做集合A的一个分类。
定理1:集合A的一个分类决定A的元间的一个等价关系。
定理2:集合A 的元间的一个等价关系决定A的一个分类。
III.
,方程 和
在G中都有解。
例1 G={g},乘法规定gg=g, 则G是一个群。
例2 G={全体整数};G中运算为普通加法,则G是一个群。
例3 G={所有非整数},G对于普通乘法不作成一个群。
定义1 同态:S , 与 T , 为两个代数系
统, :S T 为同态映射,若对 a ,b S
有:a b=ab
S , 定义2 同态满射: 与 为两个代数系统 ,
该映射为同态满射, ,
:S T
T , 为同态映射,且为满射,则 同态
S , T ,
定理1 假定,对于代数运算 和 来说, S与T 同态则:
二元代数运算“
”适合结合律和交换律
则 ai S,i 1,2,n, n个元素
a , a ,, a 1 2
n 的乘积仅与这n个元素
有关而与它们的次序无关。
例 仅满足结合律而不满足交换律:
1)矩阵乘法 2)映射的复合运算 3)字符串的复合运算 同时满足结合律与交换律:
1)普通乘法 2)集合的并、交 3)逻辑与、逻辑或 两者均不满足:
[本章主要内容]
1)群、子群及相关性质; 2)置换群、循环群; 3)子群的陪集、正规子群; 4)群的同态;
2.1半群与群的概念
定义1 设“
”时非空集合S上的一个二元
近世代数基础课件
第3讲 特殊的唯一分解环 1 主理想环 2 欧氏环 3 唯一分解环上的一元多项式环 4 因子分解与多项式的根
38
第六章 群论补充
39
第1讲 共轭元与共轭子群 1 第2讲 群的直积 第3讲 群在集合上的作用 第4讲 西罗定理
40
第1讲 共轭元与共轭子群
研究群内一些特殊类型的元素和子群
1 中心和中心化子 2 共轭元和共轭子群 3 共轭子群与正规化子
53
四 代数学发展的四个阶段
代数学经历了漫长的发展过程,抽象代 数(近世代数)是19世纪最后20年直到20世 纪前30年才发展起来的现代数学分支. 1 最初的文字叙述阶段 2 代数的简化文字阶段 3 符号代数阶段 4 结构代数阶段
54
1 最初的文字叙述阶段
古希腊之前直到丢番图(Diophantine,公元250年)时 代,代数学处于最初的文字叙述阶段,这一阶段除古希腊 数学之外还包括古巴比伦、古埃及与古代中国的数学. 此时算术或代数尚未形成任何简化的符号表达法,代数 运算则都采用通常的语言叙述方式表达,因而代数推理 也都采用直观的方法.在中国古代则有著名的筹算法,而 在古希腊则借助于几何图形的变换方法.最典型的代表 是毕达哥拉斯(Pythagoras,公元前585-497)几何数论方 法.例如通过图形的组合可以得到
}
} }
映射相关概念及举例
映射的运算 映射及其相关概念的推广
}
特殊映射
6
第3讲 基本概念之代数运算适应的规则 ——运算律 运算律
1 与一种代数运算发生关系的运算律 (1)结合律 (2)交换律 (3)消去律 2 与两种代数运算发生关系的运算律 (1)第一分配律 (2)第二分配律
7
第4讲 基本概念之与代数运算发生关系的映射 ——同态映射 同态映射 1 同态映射 2 同态满射 3 同构映射 4 自同构映射 5 举例
近世代数教学课件
并运算 设 A, B是两个集合 . 由 A的一切元素和 B的一切 元素所成的集合叫做A与B的并集(简称并),记作 A B. 如图1所示.
A
A B
( x A B) ( x A或x B) ( x A B) ( x A且x B)
B
交运算 由集合A与B的公共元素所组成的集合叫做A 与B的交集(简称交),记作: A B ,如图2所示.
A A
交换律 : A B B A ; A B B A 结合律 : ( A B) C A ( B C ) ; ( A B) C A ( B C) 分配律 : A B C A B A C
A B C A B A C
A是B的子集,记作:
( A B) (x : x A x B)
如果集合A与B的由完全相同的元素组成部分的, 就说A与B 相等,记作:A=B. 即
( A B) (x : x A x B)
以集合A的所有子集为ຫໍສະໝຸດ 素的集合,称为A的幂集, 记为P(A).
如果集合A包含无限多个元素,则记为 A =;如 果A包含n个元素,则记为 A =n,此时 P(A) 2n
近世代数
第一章 基本概念
§1 §2 §3 集 合 映射与变换 代数运算
§4 §5 §6
运算率 同态与同构 等价关系与集合的分类
§1 集 合
表示一定事物的集体,我们把它们称为集合或集, 如“一队”、“一班”、“一筐”. 组成集合的东西 叫这个集合的元素. 我们常用大写拉丁字母A,B,C,…表示集合,用 小写拉丁字母a,b,c,…表示元素. 如果a是集合A的 元素,就说a属于A,记作 a A ;如果a不是集合A 的元素,就说a不属于A,记作 a A ; 例如,设A是一切偶数所成的集合,那么4∈A, 而 3 . A
近世代数精品课程25页PPT
•
6、黄金时代是在我们的前面,而不在 我们的 后面。
•
7、心急吃不了热汤圆。
•
8、你可以很有个性,但某些时候请收 敛。
•
9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。
•
10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。
6பைடு நூலகம்最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you
近世代数课件(全)--1-2运算律,同态同构
2012-9-19
定义3
设
则称
是集合A的代数运算,若 a , b A, 都 有 a b=b a.
满足交换律.
定理2 如果 A 的代数运算 同时满足 交换律和结合律,那么 a 1 a 2 a n 中的元的次序可以任意掉换.
2012-9-19
定义4
是一个B×A到A的代数运算,⊕是一个A
n 0
0不在N中,矛盾。
( N , ) 与 (N , ) 不同构.
2012-9-19
作业: 证明: (1) { N ,}与 { N ,} (2) { Z , }与 { Z ,} (3)
{Q , }与 {Q ,}
不同构(普通乘法).
不同构.
(其中 Q
不同构. 为非零有理数集).
都是整数中
通常的加法“+”,现作
: ( A , ) ( A , )其 中 ( n ) n , n A
,那么
2012-9-19
是同构映射.
定理5 如果 ( A , , ) 和( A , , ) 同构,那么 (1) 满足结合律 也满足结合律 ; (2) (3)
的代数运算.若 , ⊕对于B的任何b,A的任何
a 1 , a 2 ,都有
a (b c ) ( a b ) ( a c )
则说 , ⊕适合第一分配律. 类似地可定义第二分配律. 如果⊕适合结合律 , , ⊕适合第一分配律,则
b B , a1 , a 2 , a n A, 都 有 a ( b1 b 2 b n ) ( a b1 ) ( a b 2 ) ( a b n )
近世代数主要知识点PPT课件
第8页/共27页
等价关系与等价类
• 集合的等价关系 。Ⅱ,
对称律:a~b=>b~a Ⅲ,推移律:a~b,b~c=>a~c 同余关系
第22页/共27页
除环、域
• 除环 1, R至少包含一个而不等于零的元
的每一个不等于零的元有一个逆元
2,R有单位元
3,R
• 域 一个交换除环叫做一个域
• 在一个没有零因子的环里所有不等于零的元对于加法来说的阶都一样的
• 一个无零因子的环里的非零元的相同的阶叫做环的特征
• 整环 除环 域 的特征或是无限大 或是一个素数
(b+c)a=ba+ca
第21页/共27页
交换律、单位元、零因子、整环
• 交换环 一个环 假如 ab=ba不管a b是环的哪两个元 • 单位元 ea=ae=a 一个环未必有单位元 • 零因子 若环里a≠0,b≠0但 ab=0 那么 a是左零因子 b 右零因子 • 整环 一个环叫做整环 如果 1.乘法适合交换律:ab=ba 2 .R有单位元1:1a=a1=a 3 R没有零因子ab=0=>a=0或b=0
合D的一个映射
像 逆象,
• 映射的相同 效果相同就行
第5页/共27页
代数运算
• 定义一个A×B到D的映射叫做一个A×B到D的代数运算 • 代数运算是一种特殊的映射 描写它的符号,也可以特殊一点,一个代数运算我们用。来
表示 • 二元运算 假如。是一个A×A到A的代数运算,我们说集合A是闭的 二元运算
换群 • 定理2 一个集合的所有一一变换做成一个变换群 • 定理3 任何一个群都同一个变换群同构 证明,假定G是一个群,G的元是a,b,c ·······我们在G里任意取出一个元x来,那么גx:
大学课程课件 近世代数教学课件
A1 , A2 ,, An
和
A1 A2 An 我们有
A1 A2 An
( x A1 A2 A) ( x至少属于某一Ai , i 1, 2,, n)
( x A1 A2 A) ( x属于每一Ai , i 1, 2,, n)
全体复数的集合,表示为C
设A,B是两个集合,如果A 的每一元素都是B 的
元素,那么就说A是B的子集,记作 作 ,或记
. 根据这个定义,A是B的的子集当且仅当
A B
.
BA 对于每一个元素 x,如果
,就有
x A
A是B的子集,记作:
xB
( A B) (x : x A x B)
f :x y
这时y 叫做 x 在f 之下的象,记作 . f (x )
例1 设
A B {1,2,3,4}
这是A到B的一个映射.
f : 1 2,2 3,3 4,4 1
例2 设A是一切非负数的集合,B是一切实数的集合. 对于每 一 与它对应. f 不是A到B的映射, x ,令 A f ( x) x 因为当 时, 不能由x唯一确定.
设 f :AB 如果对于每一 x A 与g是相等的. 记作
,B g:A ,都有
f ( x) g ( x)
都是A到B的映射, ,那么就说映射f
f g
例3
令
f : R R, x | x |
2 g : R R , x x 那么 .
f g
定义4: 设 是A到B 的一个映射, g : B C f :AB 是B 到C 的一个映射. 那么对于每一个 , x A g ( f ( x)) 是C中的一个元素. 因此,对于每一 ,就有C 中唯一的确定 x A 的元素 与它对应,这样就得到A到C 的一个映射,这映 g ( f ( x和 )) 射是由 所决定的,称为 f 与g 的合成(乘积),记作 f : A . B 于是有 g:BC
第9讲第2章第6节置换群
不是循环置换,但
1 2 3 4 5 3 4 5 2 1
1 2 3 4 5 1 2 3 4 5 3 2 5 4 1 1 4 3 2 5
(135)(24)
例:将S4中的置换写成循环置换乘积的形式。 1-循环 (1) 2-循环 (12),(13),(14),(23),(24),(34) 3-循环 (123), (124 ), (132 ), (134 ), (142 ), (143)
2 3 1
4
1 2 3
3 1 2
5
1 2 3
3 2 1
三次对称群中所有置换都是循环置换
S3 {(1), (12), (13), (23), (123), (132)}
注:并不是每个置换都是循环置换。
1 2 3 4 5
3 4 5 2 1
2 3 1
5
1 2 3
3 2 1
三次对称群为: S3 0 ,1,2,3,4,5
完全类似地可有:
S1
1
1
;
1 2 1 2
S2
1
2
,
2
1
S5 , S6, L L
关于置换的运算
1.置换的乘积:
1
p1
2L p2 L
n pn
,
p1 k1
p2 k2
L L
pn
kn
1
k1
2L k2 L
n
kn
2.单位(恒等)置换:
1
1
2 2
L L
n n
3.置换的逆:
1 2 L
p1
p2 L
n pn
1
p1 1
p2 L 2L
pn
近世代数(抽象代数)课件
9
Logo
§1 代数运算
· a1 a2 … an a1 a11 a12 … a1n a2 a21 a22 … a2n an an1 an2 … ann
其中, aia j aij A , i, j 1, 2, , n .
10
Logo
§1 代数运算
例 4 设 K4 {e, a, b, c} ,我们可以利用 下表来定义 K4 上的乘法“ ”:
明:在不改变元素顺序的前提下,无论怎样在其中添
加括号其中添加括号,这 n 个元素的乘积总等于
n
ai ,
i 1
从而与加括号的方式无关.
23
Logo
§1 代数运算
事实上,当 n 1或 n 2 时,无需加括号,我们的结论
自然成立.当 n 3时,由于“ ”适合结合律,我们的结论成
13
Logo
§1 代数运算
例 5 设 R 是实数集.则 R 上的加法“”适合 结合律、交换律和消去律; R 上的乘法“”适合结 合律和交换律,不适合消去律; R 上减法“-”不适 合结合律和交换律,但适合消去律.
注意: R \{0}上的乘法“”适合结合律、交换 律和消去律.
A1 A2 An . 特别地,当 A1 A2 An A 时, A1 A 2 A n 可 以简记作 An (读作 A 的 n 次方).这里约定,当 n 1 时, A1 A 2 A n 就是 A1 .
3
Logo
§1 代数运算
定义 1.1 设 A1, A2 , , An ( n 为正整数)和 A 都是非空集合. A1 A2 An 到 A 的映射 又 称 为 A1, A2 , , A n 到 A 的 代 数 运 算 ; 特 别 地, An 到 A 的映射又称为 A 上的 n 元运算.
近世代数课件(全)--近世代数1-0 基本概念
2019/1/20
数学上的确切描述
设由m颗珠子做成一个项链,可用一个正m边形 来代表它,它的每个顶点代表一颗珠子。
沿逆时针方向给珠子标号, 由于每一颗珠子的颜色有n种选 择,因而用乘法原理,这些有标 号的项链共有nm种。
但其中有一些可以通过旋转一个角 度或翻转180度使它们完全重合, 我们称为是本质相同的,我们要考 虑的是无论怎么旋转、翻转都不能 使它们重合的项链类型数。
2019/1/20
例5 简单检错码—奇偶性检错码
设用6位二进制码来表示26个英文字母,其中 前5位顺序表示字母,第6位做检错用,当前5位的 数码中1的个数为奇数时,第6位取1,否则第6位 是0。这样编出的码中1的个数始终是偶数个。例 如, A:000011 B:000101 C:000110 D:001001 …… 用这种码传递信息时可检查错误。当接收方收到的 码中含有奇数个1时,则可断定该信息是错的,可 要求发送者重发。因而,同样的设备,用这种编码 方法可提高通信的准确度。
2019/1/20
6. 数字通信的可靠性问题 现代通信中用数字代表信息,用电子设 备进行发送、传递和接收,并用计算机加以 处理。由于信息量大,在通信过程中难免会 出现错误。为了减少错误,除了改进设备 外,还可以从信息的表示方法上想办法。用 数字表示信息的方法称为编码。编码学就是 一 门 研 究 高 效 编 码 方 法 的 学 科 。 下面用两个简单的例子来说明检错码与 纠错码的概念。
2019/1/20
伽利略死后,直到19世纪末期,他的理 论才由别的数学家加以进一步的发展和系统 的阐述。 这样一门具有悠久历史、充满许多有趣 问题和故事的数学分支,在近代又得到了蓬 勃发展和广发应用,出现了许多应用与某一 领域的专著,正吸引越来越多的科技人员和 学生来学习和掌握它。
《近世代数》PPT课件
例2 设 A 1 { 东} , A 2 { 西 南 } , B { 高} ,低
则 1 :A 1 A 2 B ; ( 西 , 南 ) 高 不是映射.
因为映射要满足每一个元 (a1,a2) 都要有一个像.
而 2 : A 1 A 2 B ; ( 西 , 南 ) 高 ; ( 东 , 南 ) 低 是一个映射. 7
A 1A 2 A n{a1 (,a2, an)ai A i}.
即由一切从 A1,A2, ,An 里顺序取出元素组成的元素 组 (a1,a2, an),ai Ai 组成的集合.
例 A={1,2,3}, B={4,5}, 则
AB={(1,4), (1,5), (2,4), (2,5), (3,4), (3,5)},
A称为 的定义域,B称为 的值域.
注: (1) 映射定义中 “b”的唯一性:映射不能“一对多”,
但可以“多对一”.
(2) 记法: :A B ;ab (a ),aA .
(3) 一般情形,将A换成集合 A 1A 2.. .A n 的积,则
对 ( a 1 ,a 2 ,.a n .) .A ,1 A 2 . .A .n有 : A 1 A 2 . . . A n B ; ( a 1 , a 2 , . . . , a n ) b ( a 1 , a 2 , . . . , a n ) . 6
2. 元素(或元): 组成一个集合的事物.
如果a是集合A中的元素,记作a A ; 如果a不是集合A的元 素,记作 a A 或a A .
2
3.空集:没有元素的集合,记作 .
4.子集:设A,B是集合,则
B A (B是A的子集)是指 b B b A . 真子集:B是A的真子集是指 B A 且 aA,但aB .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变换群等等。对每个群类进行研究以设法回答上述三个问题。 可惜 , 人们能弄清的群当今只有少数几类(后面的循环群就 是完全解决了的一类群)大多数还在等待人们去解决。
变换群是一类应用非常广泛的群,它的具有代表性的特 征—置换群,是现今所研究的一切抽象群的来源,是抽象代 数创始人 E.Galais(1811-1832)在证明次数大于四的一元代 数方程不可能用根号求解时引进的。
换 1 4 2 3 5”
②.一般地,每个循环的表达方法不唯一,例如.
1 4 2 3 5 2 3 5 1 4 5 1 4 2 3
这是 因为,每个循环置换都可视为一个首尾相接的圆环:
所以,循环中的每个文字都可以置于首位.一旦首位确定后,整个循环
置换的表达形式也就确定了.
但习惯上,总是将循环置换中出现的最小文字置在首位.
2 3
31 , 4 13
2 1
32 , 5 13
2 2
31
所以 S3 3! b .其中 0 是恒等变换.即 0 是 S3 的单位元.
定理 1. n 次对称群 Sn 的阶是 n!.
由于置换群也是变换群,故必蕴含着变换群的一切特征.
譬如,不可交换性:
11
2 3
2312
2 1
33 12
2 3
31 13
一. 置换群的基本概念 定义 1.任一集合 A 到自身的映射都叫做 A 的一个变换,如果 A
是有限集且变换是一一变换(双射),那么这个变换 为 A 的一个置换。 有限集合 A 的若干个置换若作成群,就叫做置换群。 含有 n 个元素的有限群 A 的全体置换作成的群,叫做 n 次对称群。通常记为 Sn . 明示:由定义 1 知道,置换群就是一种特殊的变换群(即有 限集合上的变换群)而 n 次对称群 Sn 也就是有限集合 A 的完全 变换群。 现以 A a1 , a2 , a3为例,设 : A A 是 A 的一一变换。即 : a1 a2 , a2 a3 , a3 a1 ,利用 本 教材 中 特定 的表 示 方法 有 : , , . a1 a2 a2 a3 a3 a1 由于映射中只关心元素之间的对称关系.而不在乎元素
的具体内容.故可证 A 1 , 2 , 3.故此. :1 2 , 2 3 , 3 1.稍
1 23
做修改: :
231
= 12
2 3
31 .用 = 12
2 3
31 来描述 A 的
一个置换的方便之处是显而易见的.当然,上述的置换可记
为
2 3
1 2
31 , 13
1 2
23 …,但习惯上都将第一行按自然序列排
本讲的重点与难点:对于置换以及置换群需要侧重注意的是: 对称群和交错群的结构和置换的分解定理(定理 2)。
注意:由有限群的 cayley 定理可知:如把所有置换群研究 清楚了。就等于把所有有限群都研究清楚了,但经验告诉我 们,研究置换群并不比研究抽象群容易。所以,一般研究抽 象群用的还是直接的方法。并且也不能一下子把所有群都不 得找出来。因为问题太复杂了。人们的方法是将群分成若干 类(即附加一定条件);譬如有限群;无限群;变换群;非
写这就可以让我们都统一在一种表示置换的方法内进行研
究工作了.习惯上称它为三元置换.
二.置换的乘积.
设 A 1 , 2 , 3的任二个置换
12
2 3
31 , 13
2 1
23 ,那么由于 和 都是一一变换,于是
也是 A 的一一变换.且有 :1 1, 2 2 , 3 3 .
用本教材的记法为:1 1, 2 2 , 3 3 .
文 字 都 删 掉 ,那 么 上 述 置 换 可 写 成 循 环 置 换 的 形 式 :
1 4 2 3 5
注意:①循环置换是置换的另一种表达形式,它以发生变化的文字的
变化次序为序,表达成轮换的形式.虽然表达形式简捷,但所含置换的 原有文字的数目可能反映不出来.这要求事先予以说明.例如.“8 元置
置 换 群(pormutation group)
本讲的教学目的和要求:置换群是一种特殊的变换群。换句话 说,置换群就是有限集上的变换群。由于是定义在有限集上, 故每个置换的表现形式,固有特点都是可揣测的。这一讲主 要要求:
1、 弄清置换与双射的等同关系。 2、掌握置换—轮换—对换之间的联系和置换的奇偶性。 3、置换的分解以及将轮换表成对换之积的基本方法要 把握。 4、对称群与交错群的结构以及有限群的 cayley 定理需 要理解。
换句话说: 12
2 3
3113
2 2
31 11
2 2
33
例1. 计算下列置换的乘积:
(1) , (2) 2 , (3) 2 .
解:
13
2 1
2312
2 3
31 11
2 2
33
2 11
2 2
3311
2 2
33 13
2 1
23
2 13
2 1
2311
2 2
33 13
2 1
2 1
23 12
2 1
3311
2 3
23
三 循环置换及循环置换分解.
(1)循环置换(轮换)
前面我们已经引入了置换的记法,下面,再介绍一种记法.
设 有 8 元 置 换 14
2 3
3 5
4 2
5 1
6 6
7 7
88 , 的 变 换 过 程 为
1 4 2 3 5 1,即其他元素都不改变,若将不发生改变的
③.S8 的单位(恒等置换) 0 1 2 3 同上,习惯写成 0 1. 定义 2. Sn 中的一个将 i1变到 i2 , i2 变到 i3,,ik 变回到 i1而其余 文字(如果还有其他文字)不发生变化的置换,叫做 k —循
环置换(或称 k —循环),记为( i1,i2 ,i3 ik )
23
注意:置换乘积中,是从左到右求变换值,这是与过去的习惯
方法不同的.
例2. 设 A 1 , 2 , 3,那么 A 的全部一一变换构成的三次对称群
为
S3 0 , 1, 2 , 3 , 4 , 5 .其中
0 11
2 2
33 , 1 11
2 3
23 , 2 12
2 1
33
3 12
例 3.在 S5 中.
12
2 3
3 1
4 4
55 1
2
3
叫作 3—循环置换.
12
2 3
3 4
4 5
5 1
1
2
3
4
5
叫作 5—循环置换.
11
2 2
3 3
4 4)循环置换分解