考研数学一真题及答案详解

合集下载

2020年考研数学一真题及答案(全)

2020年考研数学一真题及答案(全)

全国硕士研究生入学统一考试数学(一)试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上. (1)若函数0(),0x f x b x >=⎪≤⎩在x 连续,则 (A) 12ab =. (B) 12ab =-. (C) 0ab =. (D) 2ab =.【答案】A【详解】由011lim 2x b ax a +→-==,得12ab =.(2)设函数()f x 可导,且()'()0f x f x >则(A) ()()11f f >- . (B) ()()11f f <-. (C) ()()11f f >-. (D) ()()11f f <-.【答案】C【详解】2()()()[]02f x f x f x ''=>,从而2()f x 单调递增,22(1)(1)f f >-. (3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿着向量(1,2,2)n =的方向导数为 (A) 12. (B) 6.(C) 4.(D)2 .【答案】D【详解】方向余弦12cos ,cos cos 33===αβγ,偏导数22,,2x y z f xy f x f z '''===,代入cos cos cos x y z f f f '''++αβγ即可.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处.图中,实线表示甲的速度曲线1()v v t =(单位:m/s),虚线表示乙的速度曲线2()v v t =(单位:m/s),三块阴影部分面积的数值一次为10,20,3,计时开始后乙追上甲的时刻记为(单位:s),则(A) 010t =. (B) 01520t <<. (C) 025t =. (D) 025t >.【答案】C【详解】在025t =时,乙比甲多跑10m,而最开始的时候甲在乙前方10m 处. (5)设α为n 维单位列向量,E 为n 阶单位矩阵,则 (A) TE -αα不可逆. (B) TE +αα不可逆. (C) T 2E +αα不可逆. (D) T2E -αα不可逆.【答案】A【详解】可设T α=(1,0,,0),则T αα的特征值为1,0,,0,从而T αα-E 的特征值为011,,,,因此T αα-E 不可逆.(6)设有矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,122C ⎛⎫ ⎪= ⎪ ⎪⎝⎭(A)A 与C 相似,B 与C 相似. (B) A 与C 相似,B 与C 不相似.(C) A 与C 不相似,B 与C 相似. (D) A 与C 不相似,B 与C 不相似. 【答案】B【详解】,A B 的特征值为221,,,但A 有三个线性无关的特征向量,而B 只有两个,所以A 可对角化,B 则不行.(7)设,A B 为随机事件,若0()1P A <<,0()1P B <<,则(|)(|)P A B P B A >的充分必要条件(A) (|)(|)P B A P B A >. (B) (|)(|)P B A P B A <. (C) (|)(|)P B A P B A >. (D) (|)(|)P B A P B A <.【答案】A【详解】由(|)(|)P A B P A B >得()()()()()()1()P AB P AB P A P AB P B P B P B ->=-,即()>()()P AB P A P B ;由(|)(|)P B A P B A >也可得()>()()P AB P A P B . (8)设12,,,(2)n X X X n 为来自总体(,1)N μ的简单随机样本,记11ni i X X n ==∑,则下列结论不正确的是 (A)21()nii X μ=-∑服从2χ分布 . (B) 212()n X X -服从2χ分布.(C)21()nii XX =-∑服从2χ分布. (D) 2()n X -μ服从2χ分布.【答案】B【详解】222211~(0,1)()~(),()~(1)1n ni i i i i X N X n X X n ==----∑∑μμχχ; 221~(,),()~(1);X N n X n-μμχ2211()~(0,2),~(1)2n n X X X X N --χ.二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)已知函数21(),1f x x=+(3)(0)f = . 【答案】0 【详解】2421()1(11)1f x x x x x==-++-<<+,没有三次项.(10)微分方程032=+'+''y y y 的通解为 .【答案】12e ()xy C C -=+【详解】特征方程2230r r ++=得1r =-,因此12e ()x y C C -=+.(11)若曲线积分⎰-+-L y x aydy xdx 122在区域{}1),(22<+=y x y x D 内与路径无关,则=a. 【答案】1-【详解】有题意可得Q Px x∂∂=∂∂,解得1a =-. (12)幂级数111)1(-∞=-∑-n n n nx 在(-1,1)内的和函数()S x = .【答案】21(1)x + 【详解】112111(1)[()](1)n n n n n nxx x ∞∞--=='-=--=+∑∑.(13)⎪⎪⎪⎭⎫ ⎝⎛=110211101A ,321ααα,,是3维线性无关的列向量,则()321,,αααA A A 的秩为 .【答案】2【详解】123(,,)()2r r ααα==A A A A(14)设随即变量X 的分布函数4()0.5()0.5()2x F x x -=Φ+Φ,其中)(x Φ为标准正态分布函数,则EX = . 【答案】2 【详解】00.54()d [0,5()()]d 222x EX xf x x x x x +∞+∞-∞-==+=⎰⎰ϕϕ. 三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上. (15)(本题满分10分).设函数(,)f u v 具有2阶连续偏导数,(e ,cos ),xy f x =求2200,x x dyd y dxdx==.【答案】(e ,cos )x y f x =()''12'12''''''''''111212122222''''11122sin ,0(1,1)sin (sin )sin cos 0(1,1)(1,1)(1,1)x x x x x dyf e f x dx dy x f dx d y f e f x e f e f e f x x f x dx d y x f f f dx ∴=-∴===-+---==+- (16)(本题满分10分).求2limln(1)n k kn n→∞+.【答案】212221120012202lim ln(1)1122lim ln(1)ln(1)...ln(1)11122lim ln(1)ln(1)...ln(1)1ln(1)ln(1)21111ln(1)02211111ln 2221n k n n k k nn n n n n n n n n n n n n n n n n n x x dx x d x x x x dxx x ∞→∞=→∞→∞+⎛⎫=++++++ ⎪⎝⎭⎛⎫=++++++ ⎪⎝⎭=+=+=+-+-+=-∑⎰⎰⎰1011002111ln 2[(1)]22111111ln 2[()ln(1)]002221111ln 2(1ln 2)2224dxxx dx dx xx x x +=--++=--++=--+=⎰⎰⎰(17)(本题满分10分).已知函数)(x y 由方程333320x y x y +-+-=确定,求)(x y 的极值. 【答案】333320x y x y +-+-=①,方程①两边对x 求导得:22''33330x y y y +-+=②,令'0y =,得233,1x x ==±.当1x =时1y =,当1x =-时0y =.方程②两边再对x 求导:'22''''66()330x y y y y y +++=,令'0y =,2''6(31)0x y y ++=,当1x =,1y =时''32y =-,当1x =-,0y =时''6y =. 所以当1x =时函数有极大值,极大值为1,当1x =-时函数有极小值,极小值为0.(18)(本题满分10分).设函数()f x 在区间[0,1]上具有2阶导数,且(1)0f >,0()lim 0x f x x+→<.证明: (I )方程()0f x =在区间(0,1)内至少存在一个实根;(II )方程2()''()['()]0f x f x f x +=在区间(0,1)内至少存在两个不同实根. 【答案】 (1)()lim 0x f x x+→<,由极限的局部保号性,(0,),()0c f c δ∃∈<使得,又(1)0,f >由零点存在定理知,(c,1)ξ∃∈,使得,()0f ξ=.(2)构造()()'()F x f x f x =,(0)(0)'(0)0F f f ==,()()'()0F f f ξξξ==,()lim 0,'(0)0,x f x f x +→<∴<由拉格朗日中值定理知(1)(0)(0,1),'()010f f f ηη-∃∈=>-,'(0)'()0,f f η<所以由零点定理知1(0,)(0,1)ξη∃∈⊂,使得1'()0f ξ=,111()()'()0,F f f ξξξ∴== 所以原方程至少有两个不同实根。

2020年考研数学一真题及答案解析

2020年考研数学一真题及答案解析

(4)【答案】(A).
【解析】若 anrn 发散,则 r R ,否则,若 r R ,由阿贝尔定理知, anrn
n 1
n 1
绝对收敛,矛盾. 故应选(A).
(5)若矩阵 A 经过初等列变换化成 B ,则
()
(A)存在矩阵 P ,使得 PA B.
(B)存在矩阵 P ,使得 BP A.
(C)存在矩阵 P ,使得 PB A.
x a2 a1
y b2 b1
z c2 c1
与直线 L2
:
x a3 a2
y b3 b2
z c3 c2
相交于一
ai
点,法向量 αi
bi
,
i
1, 2,3 .则
ci
()
(A) α1 可由 α2 , α3 线性表示.
(B) α2 可由 α1, α3 线性表示.
(C) α3 可由 α1, α2 线性表示. (6)【答案】(C).
f x
,
f y
, 1
0,0
fx0, 0, fy 0, 0 , 1 ,故
n x, y, f x, y fx0, 0 x fy 0, 0 y f x, y x2 y2 ,
3
n x, y, f x, y
x2 y2
则 lim
lim
0. 故应选(A).
x, y0,0
x2 y2
x, y0,0
x2 y2
(4) 设 R 为幂级数 an xn 的收敛半径, r 是实数,则 n 1
()
(A) anrn 发散时, r R . n 1
(B) anrn 发散时, r R . n 1
(C) r R 时, anrn 发散. n 1

2023年考研数学一真题及答案

2023年考研数学一真题及答案

2023年考研数学一真题及答案一、选择题:1~10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上.1. 的斜渐近线为( )A. B.C. D.【答案】B.【解析】由已知,则,,所以斜渐近线为.故选B.2.若的通解在上有界,则().A. B.C. D.【答案】D. 【解析】微分方程的特征方程为.若,则通解为;若,则通解为;若,则通解为.由于在上有界,若,则中时通解无界,若,则中时通解无界,故.时,若,则,通解为,在上有界.时,若,则,通解为,在上无界. 综上可得,.3. 设函数由参数方程确定,则( ).A .连续,不存在 B.存在,在处不连续C.连续,不存在D.存在,在处不连续【答案】C【解析】,故在连续..时,;时,;时,,故在连续.,,故不存在.故选C.4.设,且与收敛,绝对收敛是绝对收敛的().A.充分必要条件B.充分不必要条件C.必要不充分条件D.既非充分又非必要条件【答案】A.【解析】由已知条件可知为收敛的正项级数,进而绝对收敛.设绝对收敛,则由与比较判别法,得绝对收玫; 设绝对收敛,则由与比较判别法,得绝对收敛.故选A.5.设均为阶矩阵,,记矩阵的秩分别为,则( )A. B. C. D.【答案】B【解析】由矩阵的初等变换可得,故.,故.,故. 综上,比较可得B正确.6. 下列矩阵不能相似对角化的是( )A. B.C. D.【答案】D.【解析】由于A.中矩阵的特征值为,特征值互不相同,故可相似对角化.B.中矩阵为实对称矩阵,故可相似对角化.C.中矩阵的特征值为,且,故可相似对角化.D.中矩阵的特征值为,且,故不可相似对角化. 选D.7. 已知向量,,,,若既可由线性表示,也可由线性表示,则( ) A . B.C. D.【答案】D.【解析】设,则,对关于的方程组的系数矩阵作初等变换化为最简形,,解得,故.8.设服从参数为1的泊松分布,则().A. B. C. D.【答案】C.【解析】方法一由已知可得,,,故,故选C.方法二由于,于是,因此. 由已知可得,,故,故选C. 9.设为来自总体的简单随机样本,为来自总体的简单随机样本,且两样本相互独立,记,,,,则( )A. B.C. D.【答案】D.【解析】由两样本相互独立可得与相互独立,且,,因此,故选D.10. 已知总体服从正态分布,其中为未知参数,,为来自总体的简单随机样本,且为的无偏估计,则( ).A. B. C. D.【答案】A.【解析】由与,为来自总体的简单随机样本,,相互独立,且,,因而,令,所以的概率密度为,所以,又由为的无偏估计可得,,即,解得,故选A.二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上.11.当时,与是等价无穷小,则.【答案】【解析】由题意可知,,于是,即,从而.12.曲面在处的切平面方程为_ .【答案】【解析】由于在点处的法向量为,从而曲面在处的切平面方程为.13.设是周期为的周期函数,且,则.【答案】【解析】由题意知,于是.14.设连续函数满足,,则.【答案】【解析】.15.已知向量,若,则.【答案】【解析】,;,;,.故.16. 设随机变量与相互独立,且则. 答案】【解析】.三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分10分)设曲线经过点,该曲线上任意一点到轴的距离等于该点处的切线在轴上的截距.(1)求;(2)求函数在的最大值.【解】(1)曲线在点处的切线方程为,于是切线在轴上的截距为,由题意可知,即,此为一阶线性微分方程,根据通解公式可得,将代入上式得,即.(2)由(1)知,于是,. 令,解得唯一驻点,,故.18.(本题满分12分)求函数的极值.【解】由已知可得,,由解得驻点为.又,,.在处,,,取,于是,从而在的领域内;取,于是,从而在的领域内,从而在点处不去极值;在处,,于是,故不是极大值点在处,,于是,是极小值点,极小值.19.(本题满分12分)已知有界闭区域是由,,所围的,为边界的外侧,计算曲面积分.【解】由高斯公式,有.由于关于坐标面对称,是关于的奇函数,因此,所以.20.(本题满分12分)设函数在上有二阶连续导数.(1)证明:若,存在,使得;(2)若在上存在极值,证明:存在,使得.【证明】(1)将在处展开为,其中介于与之间.分别令和,则,,,,两式相加可得,又函数在上有二阶连续导数,由介值定理知存在,使得,即.(2)设在处取得极值,则.将在处展开为,其中介于与之间.分别令和,则,,,,两式相减可得,所以,即.21.(本题满分12分)设二次型,,(1)求可逆变换,将化为.(2)是否存在正交矩阵,使得时,将化为.【解】(1) 由配方法得..令,则,即时,规范形为.令,则时,规范形为.故可得时化为,可逆变换,其中. (2)二次型的矩阵为.,所以的特征值为.二次型的矩阵为.,所以的特征值为.故合同但不相似,故不存在可逆矩阵使得.若存在正交矩阵,当时,,即,即相似,矛盾,故不存在正交矩阵,使得时,化为.22.(本题满分12分)设二维随机变量的概率密度函数为(1)求和的协方差;(2)判断和是否相互独立;(3)求的概率密度函数.【解】(1)由题意可得,和的边缘概率密度分别为因此,其中,,,故.(2)由(1)可知,,故和不相互独立.(3)设的分布函数为,概率密度为,则根据分布函数的定义有当时,;当时,;当时,.综上,故。

2020年考研数学(一)真题及解析

2020年考研数学(一)真题及解析

2020年考研数学(一)真题一、选择题:1~8小题,每小题4分,共32分. 下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上。

1. +→0x 时,下列无穷小量中最高阶是( )A.()⎰-xt dt e 012B.0ln(1x dt +⎰C.⎰xdt t sin 02sin D.⎰-xdt t cos 103sin【答案】D【解析】()A 22++3200(1)(1)1lim lim33xxt t x x e dt e dt x x →→--==⎰⎰,可知0x +→,2301(1)~3x t e dt x -⎰, ()B ++500222limlim ln(155xx x xx dt→→==+⎰,可知5202ln(1~5x dt x +⎰,0x +→ ()C +++s 3in 2200020sin sin(sin )co cos 1limlim lim 333s x x x xx x t dt x x x →→→===⋅⎰,可知sin 2301sin ~3x t dt x ⎰,0x +→()D ++1co 50s 0limlim x x x →→-===⎰,可知1cos 50~x -⎰,0x +→ 通过对比,⎰-xdt t cos 103sin 的阶数最高,故选()D2. 设函数()x f 在区间()1,1-内有定义,且()0lim 0=→x f x ,则( )A. 当()0lim=→xx f x ,()x f 在0=x 处可导.B. 当()0lim2=→xx f x ,()x f 在0=x 处可导.C. 当()x f 在0=x 处可导时,()0lim=→xx f x .D. 当()x f 在0=x 处可导时,()0lim2=→xx f x .【答案】C 【解析】当()f x 在0x =处可导时,由()0(0)lim 0x f f x →==,且0()(0)()(0)limlim 0x x f x f f x f x x →→-'==-,也即0()lim x f x x →存在,从而()0lim0=→xx f x ,故选C 3. 设函数(),f x y 在点()0,0处可微,()00,0=f ,()0,01,,⎪⎪⎭⎫⎝⎛-∂∂∂∂=y f x f n 非零向量d 与n 垂直,则( )A.()()()()0,,,lim220,0,=+⋅→yx y x f y x n y x 存在. B.()()()()0,,,lim220,0,=+⨯→yx y x f y x n y x 存在.C. ()()()()0,,,lim220,0,=+⋅→yx y x f y x d y x 存在. D.()()()()0,,,lim220,0,=+⨯→yx y x f y x d y x .【答案】A【解析】函数(),f x y 在点()0,0处可微,()00,0=f ,(,)(0,0)(0,0)(0,0)0x y f x y f f x f y→→''---=,00(,)(0,0)(0,0)0x y f x y f x f y→→''--=由于()(),,,n x y f x y ⋅=(0,0)(0,0)(,)x y f x f y f x y ''+-,所以()()()()0,,,lim220,0,=+⋅→yx y x f y x n y x 存在4. 设R 为幂级数1nn n a r∞=∑的收敛半径,r 是实数,则( )A.1nn n a r∞=∑发散时,R r ≥. B.1nn n a r∞=∑发散时,R r ≤.C.R r ≥时,1nn n a r∞=∑发散. D. R r ≤时,1nn n a r∞=∑发散.【答案】A【解析】R 为1nn n a r∞=∑的收敛半径,所以1nn n a r∞=∑在(,)R R -必收敛,所以1nn n a r∞=∑发散时,R r ≥.故选A5. 若矩阵A 经初等列变换化成B ,则( )A. 存在矩阵P ,使得B PA =.B.存在矩阵P ,使得A BP =.C.存在矩阵P ,使得A PB =.D. 方程组0=Ax 与0=Bx 同解. 【答案】B【解析】A 经过初等列变换化成B ,存在可逆矩阵1P 使得1AP B =,令11PP -=,得出A BP =,故选B6. 已知直线12121212:c c b b y a a x L -=-=-与直线23232322:c c b b y a a x L -=-=-相交于 一点,法向量i i i i a b c α⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,3,2,1=i . 则 A. 1a 可由32,a a 线性表示. B. 2a 可由31,a a 线性表示. C.3a 可由21,a a 线性表示. D. 321,,a a a 线性无关. 【答案】C【解析】令22211112:x a y b c L t a b c ---===,即有21212121=+a a x y b t b t z c c αα⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 由2L 方程得32323223=+a a x y b t b t z c c αα⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,两条线相交,得2132++t t αααα=即2123123+(1)t t t t ααααααα-=⇔+-=,故选C 7. 设A ,B ,C 为三个随机事件,且()()()41===C P B P A P ,()0=AB P , ()()121==BC P AC P ,则A ,B ,C 中恰有一个事件发生的概率为 A. 43. B. 32. C. 21. D. 125. 【答案】D【解析】()()()(())P ABC P ABUC P A P A BUC ==-111()()()()004126P A P AB P AC P ABC =--+=--+=()()()(())P BAC P B AUC P B P B AUC ==-111()()()()004126P B P AB P BC P ABC =--+=--+=()()()(())P CAB P C AUB P B P C AUB ==-1111()()()()04121212P C P CB P CA P ABC =--+=--+=所以1115()()()661212P ABC P ABC P ABC ++=++= 8. 设n x x x ,,,21 为来自总体X 的简单随机样本,其中()()2110====X P X P , ()x Φ表示标准正态分布函数,则利用中心极限定理可得⎪⎭⎫⎝⎛≤∑=100155i i X P 的近似值为A. ()11Φ-.B. ()1Φ.C.()2,01Φ-.D.()2,0Φ. 【答案】B【解析】由题意12EX =,14DX =,根据中心极限定理1001~(50,25)i i X N =∑,所以⎪⎭⎫ ⎝⎛≤∑=100155i i X P=10050(1)iX P ⎛⎫- ⎪≤=Φ⎝⎭∑二、填空题:9~14小题,每小题2分,共24分.请将解答写在答题纸指定位置上. 9. ()=⎥⎦⎤⎢⎣⎡+--→x e x x 1ln 111lim 0 . 【答案】-1【解析】()()()()2000ln 11ln 1111lim lim lim 1ln 1(1)ln 1x x x x x x x x e x e e x e x x →→→⎡⎤⎡⎤+-++-+-==⎢⎥⎢⎥-+-+⎣⎦⎣⎦ =()2222001111ln 1122lim lim 1xx x x x x x x e x x→→----++-+==-10. 设()⎪⎩⎪⎨⎧++=+=1ln 122t t y t x ,则==122t dx y d .【答案】【解析】1dy dy dt dx dx dt t ===22231=dy dy d d d y dt dx dt dx dx dt dx t t t⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭===--得212t d y dx==11. 若函数()x f 满足()()()()00>=+'+''a x f x f a x f ,且()m f =0,()n f ='0,则()f x dx +∞=⎰.【答案】n am +【解析】特征方程210a λλ++=,则1212,1a λλλλ+=-⋅=,所以两个特征根都是负的。

2020年考研数学一真题及答案解析(完整版)

2020年考研数学一真题及答案解析(完整版)

2020年考研数学一真题及答案解析(完整版)2020年考研数学一真题及答案解析(完整版)一、选择题:1~8小题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将选项前的字母填在答题纸指定位置上。

XXX 时,下列无穷小量中最高阶是()A。

$\int_{x^2}^{et-1}dt$B。

$\int_0^x\frac{3\ln(1+tdt)}{t}$C。

$\int_0^x\frac{\sin x}{\sin t^2}dt$D。

$\int_0^x\frac{1-\cos x}{\sin t^2}dt$2.设函数 $f(x)$ 在区间 $(-1,1)$ 内有定义,且$\lim\limits_{x\to 0}f(x)=0$,则()A。

当 $\lim\limits_{x\to 0}\frac{f(x)}{|x|}=0$,$f(x)$ 在$x=0$ 处可导。

B。

当 $\lim\limits_{x\to 0}\frac{f(x)}{x^2}=0$,$f(x)$ 在$x=0$ 处可导。

C。

当 $f(x)$ 在 $x=0$ 处可导时,$\lim\limits_{x\to0}\frac{f(x)}{|x|}=0$。

D。

当 $f(x)$ 在 $x=0$ 处可导时,$\lim\limits_{x\to0}\frac{f(x)}{x^2}=0$。

3.设函数 $f(x,y)$ 在点 $(0,0)$ 处可微,$f(0,0)=0,n=\begin{pmatrix}\frac{\partial f}{\partialx}(0,0)\\\frac{\partial f}{\partial y}(0,0)\\-1\end{pmatrix}$ 非零向量 $d$ 与 $n$ 垂直,则()A。

$\lim\limits_{(x,y)\to(0,0)}n\cdot(x,y,f(x,y))$ 存在。

B。

$\lim\limits_{(x,y)\to(0,0)}n\times(x,y,f(x,y))$ 存在。

2024年考研数学一真题及解析

2024年考研数学一真题及解析

2024年全国硕士研究生入学统一考试数学(一)试题解析一、选择题:1~10小题,每小题5分,共50分。

下列每题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上。

(1)已知函数cos 0()xtf x edt =⎰,2sin 0()xt g x e dt =⎰,则()(A )()f x 是奇函数,()g x 是偶函数(B )()f x 是偶函数,()g x 是奇函数(C )()f x 与()g x 均为奇函数(D )()f x 与()g x 均为周期函数【答案】C ,【解析】由于cos te 是偶函数,所以()f x 是奇函数;又2(sin )cos ()x xg x e'=是偶函数,所以是()g x 奇函数.(2)设(,,),(,,)P P x y z Q Q x y z ==均为连续函数,∑为曲面0,0)Z x y = 的上侧,则Pdydz Qdzdx ∑+=⎰⎰()(A )()x yP Q dxdy z z ∑+⎰⎰(B )()x yP Q dxdy z z ∑-+⎰⎰(C )()xyP Q dxdy zz∑-⎰⎰(D )()xyP Q dxdy zz∑--⎰⎰【答案】A ,【解析】由,z x z y z x z y z ∂∂==-=-∂∂,1cos cos dS dxdy dS dxdy γγ=→=cos cos cos cos cos cos Pdydz Qdzdx P dS Q dS Pdxdy Q dxdy αβαβγγ∑∑∑+=+=+⎰⎰⎰⎰⎰⎰(()()z z x yP dxdy Q dxdy P Q dxdy x y z z∑∑∂∂=-+-=+∂∂⎰⎰⎰⎰.(3)设幂级数nn nxa ∑∞=0的和函数为)2ln(x +,则∑∞=02n nna()(A )61-(B )31-(C )61(D )31【答案】(A )【解析】法1,∑∞=--+=++=+=+11)21()1(2ln )211ln(2ln )211(2ln )2ln(n nn n x x x x所以⎪⎩⎪⎨⎧>-==-0,21)1(0,2ln 21n n n a n n ,当n n n a n 22221,0⋅-=>,所以61411)21(21)2213112112202-=--=-=⋅-⋅==∑∑∑∑∞=+∞=∞=∞=n n n n n n n n n n na na (,故选(A);法2:n n n xx x x )2()1(21)21(2121])2[ln(0∑∞=-=+=+='+C n x C n x x n n n n n n +-=++-=+∑∑∞=-+∞=1110)21()1(1)21()1()2ln(,2ln )02ln()0(=+==C S ,⎪⎩⎪⎨⎧>-==-0,21)1(0,2ln 21n n n a n n ,所以)221(112202∑∑∑∞=∞=∞=⋅-==n n n n n n n n na na 61411)21(213112-=--=-=∑∞=+n n (4)设函数()f x 在区间上(1,1)-有定义,且0lim ()0x f x →=,则()(A )当0()limx f x m x→=时,(0)f m '=(B )当(0)f m '=时,0()limx f x m x→=(C )当0lim ()x f x m →'=时,(0)f m '=(D )当(0)f m '=时,0lim ()x f x m→'=【答案】B ,【解析】因为(0)f m '=所以()f x 在0x =处连续,从而0lim ()(0)0x f x f →==,所以0()()(0)limlim 0x x f x f x f m x x →→-==-,故选B .(5)在空间直角坐标系O xyz -中,三张平面:(1,2,3)i i i i i a x b y c z d i π++==的位置关系如图所示,记(),,i i i i a b c α=,(),,,i i i i i a b c d β=若112233,r m r n αβαβαβ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则()(A )1,2m n ==(B )2m n ==(C )2,3m n ==(D )3m n ==【答案】B ,【解析】由题意知111222333x d x d x d ααα⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭有无穷多解,故1122333r r αβαβαβ⎛⎫⎛⎫ ⎪ ⎪=< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭又由存在两平面的法向量不共线即线性无关,故1232r ααα⎛⎫ ⎪≥ ⎪ ⎪⎝⎭,则1122332r r αβαβαβ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,故2m n ==,故选B.(6)设向量1231111,,1111ab a a ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,若123,,ααα线性相关,且其中任意两个向量均线性无关,则()(A )1,1a b =≠(B )1,1a b ==-(C )2,2a b ≠=(D )2,2a b =-=【答案】D ,【解析】由于123,,ααα线性相关,故1111011a a a =得1a =或2-,当1a =时,13,αα相关,故2a =-,又由112111111201111aa b b -=-=----得2b =故选D .(7)设A 是秩为2的3阶矩阵,α是满足0A α=的非零向量,若对满足0Tβα=的3维向量β均有A ββ=,则()(A )3A 的迹为2(B )3A 的迹为5(C )2A 的迹为8(D )2A 的迹为9【答案】A ,【解析】由0A α=且0α≠,故10λ=,由于A 是秩为2的3阶矩阵,对于0Ax =仅有一个解向量,所以,1λ是一重,0Tβα=可得到所有的β有两个无关的向量构成,A ββ=,故21λ=为两重,故3A 的特征值为0,1,1,故3()2tr A =.(8)设随机变量,X Y 相互独立,且()()~0,2,~2,2X N Y N -,若}{}{2P X Y a P X Y +<>=,则a =()(A)2-(B)2-+(C)2-(D)2-+【答案】B ,【解析】()2~ 2,10;~ (2,4)X Y N Y X N +---,所以{2}P X Y a +<=Φ={0}P Y X -<=02()2+Φ,022+=,2a =-+(9)设随机变量X 的概率密度为2(1)01()0,x x f x -<<⎧=⎨⎩,其他,在(01)X x x =<<的条件下,随机变量Y 服从区间(,1)x 上的均匀分布,则Cov(,)X Y =()(A )136-(B )172-(C )172(D )136【答案】D ,【解析】当01x <<时,|1el 1,(|)1se 0,Y X x y f y x x ⎧<<⎪=-⎨⎪⎩,则2,1,01(,)0,x y x f x y else <<<<⎧=⎨⎩10,1(,)24yx y EXY xyf x y dxdy d y xydx -∞<<+∞-∞<<+∞===⎰⎰⎰⎰112(1)3EX x x dx =-=⎰,,2(,)3x y EY y f x y dxdy -∞<<+∞-∞<<+∞==⎰⎰所以1(,)36Cov X Y EXY EXEY =-=,故选D (10)设随机变量,X Y 相互独立,且均服从参数为λ的指数分布,令Z X Y =-,则下列随机变量中与Z 同分布的是()(A )X Y +(B )2X Y+(C )2X (D )X【答案】(D )【解析】令{}{}zY X P z Z P z F Y X Z z ≤-=≤=-=)(,则0)(0=<z F z z 时,当当0≥z 时,dxdy e e dxdy y x f z F y x zy x zy x z λλλλ--≤-≤-⎰⎰⎰⎰==),()(zy x zy ye dy e e dy λλλλλ---+∞+-==⎰⎰120所以⎩⎨⎧≥-<=-0,10,0)(z ez z F zz λ,显然Y X Z -=与X 同步,故选(D )二、填空题:11~16小题,每小题5分,共30分,请将答案写在答题纸指定位置上。

考研数学一真题及答案(全)

考研数学一真题及答案(全)

全国硕士研究生入学统一考试数学(一)试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项是符合题目要求的.请将所选项前的字母填在答题纸...指定位置上.(1)若函数10(),0x f x axb x ⎧->⎪=⎨⎪≤⎩在x 连续,则 (A) 12ab =. (B) 12ab =-. (C) 0ab =. (D) 2ab =.【答案】A【详解】由011lim2x b ax a +→-==,得12ab =. (2)设函数()f x 可导,且()'()0f x f x >则(A) ()()11f f >- . (B) ()()11f f <-.(C) ()()11f f >-. (D) ()()11f f <-. 【答案】C【详解】2()()()[]02f x f x f x ''=>,从而2()f x 单调递增,22(1)(1)f f >-. (3)函数22(,,)f x y z x y z =+在点(1,2,0)处沿着向量(1,2,2)n =的方向导数为(A) 12. (B) 6. (C) 4. (D)2 .【答案】D【详解】方向余弦12cos ,cos cos 33===αβγ,偏导数22,,2x y z f xy f x f z '''===,代入cos cos cos x y z f f f '''++αβγ即可.(4)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处.图中,实线表示甲的速度曲线1()v v t =(单位:m/s),虚线表示乙的速度曲线2()v v t =(单位:m/s),三块阴影部分面积的数值一次为10,20,3,计时开始后乙追上甲的时刻记为(单位:s),则(A) 010t =. (B) 01520t <<.(C) 025t =. (D)025t >.【答案】C【详解】在025t =时,乙比甲多跑10m,而最开始的时候甲在乙前方10m 处.(5)设α为n 维单位列向量,E 为n 阶单位矩阵,则(A) T E -αα不可逆. (B) T E +αα不可逆.(C) T 2E +αα不可逆. (D) T 2E -αα不可逆.【答案】A【详解】可设T α=(1,0,,0),则T αα的特征值为1,0,,0,从而T αα-E 的特征值为011,,,,因此T αα-E 不可逆.(6)设有矩阵200021001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,210020001B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,122C ⎛⎫⎪= ⎪ ⎪⎝⎭(A)A 与C 相似,B 与C 相似. (B) A 与C 相似,B 与C 不相似.(C) A 与C 不相似,B 与C 相似.(D) A 与C 不相似,B 与C 不相似.【答案】B【详解】,A B 的特征值为221,,,但A 有三个线性无关的特征向量,而B 只有两个,所以A 可对角化, B 则不行.(7)设,A B 为随机事件,若0()1P A <<,0()1P B <<,则(|)(|)P A B P B A >的充分必要条件(A) (|)(|)P B A P B A >. (B) (|)(|)P B A P B A <. (C) (|)(|)P B A P B A >. (D) (|)(|)P B A P B A <.【答案】A【详解】由(|)(|)P A B P A B >得()()()()()()1()P AB P AB P A P AB P B P B P B ->=-,即()>()()P AB P A P B ;由(|)(|)P B A P B A >也可得()>()()P AB P A P B .(8)设12,,,(2)n X X X n 为来自总体(,1)N μ的简单随机样本,记11ni i X X n ==∑,则下列结论不正确的是(A)21()ni i X μ=-∑服从2χ分布 . (B) 212()n X X -服从2χ分布.(C)21()nii XX =-∑服从2χ分布. (D) 2()n X -μ服从2χ分布.【答案】B【详解】222211~(0,1)()~(),()~(1)1n ni i i i i X N X n X X n ==----∑∑μμχχ;221~(,),()~(1);X N n X n-μμχ2211()~(0,2),~(1)2n n X X X X N --χ.二、填空题:9~14小题,每小题4分,共24分.请将答案写在答.题纸..指定位置上.(9)已知函数21(),1f x x=+(3)(0)f = . 【答案】0 【详解】2421()1(11)1f x x x x x==-++-<<+,没有三次项.(10)微分方程032=+'+''y y y 的通解为 .【答案】12e ()x y C C -=+【详解】特征方程2230r r ++=得1r =-+,因此12e ()x y C C -=+.(11)若曲线积分⎰-+-L y x aydyxdx 122在区域{}1),(22<+=y x y x D 内与路径无关,则=a.【答案】1-【详解】有题意可得Q Px x∂∂=∂∂,解得1a =-. (12)幂级数111)1(-∞=-∑-n n n nx 在(-1,1)内的和函数()S x = .【答案】21(1)x +【详解】112111(1)[()](1)n n n n n nxx x ∞∞--=='-=--=+∑∑.(13)⎪⎪⎪⎭⎫ ⎝⎛=110211101A ,321ααα,,是3维线性无关的列向量,则()321,,αααA A A 的秩为 .【答案】2【详解】123(,,)()2r r ααα==A A A A(14)设随即变量X 的分布函数4()0.5()0.5()2x F x x -=Φ+Φ,其中)(x Φ为标准正态分布函数,则EX = . 【答案】2【详解】00.54()d [0,5()()]d 222x EX xf x x x x x +∞+∞-∞-==+=⎰⎰ϕϕ. 三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.请将答案写在答题纸...指定位置上.(15)(本题满分10分).设函数(,)f u v 具有2阶连续偏导数,(e ,cos ),xy f x =求2200,x x dyd y dxdx==.【答案】(e ,cos )x y f x =()''12'12''''''''''111212122222''''11122sin ,0(1,1)sin (sin )sin cos 0(1,1)(1,1)(1,1)x x x x x dyf e f x dx dy x f dx d y f e f x e f e f e f x x f x dx d y x f f f dx ∴=-∴===-+---==+- (16)(本题满分10分).求2limln(1)n k k n n→∞+. 【答案】212221120012202lim ln(1)1122lim ln(1)ln(1)...ln(1)11122lim ln(1)ln(1)...ln(1)1ln(1)ln(1)21111ln(1)02211111ln 2221n k n n k k nn n n n n n n n n n n n n n n n n n x x dx x d x x x x dxx x ∞→∞=→∞→∞+⎛⎫=++++++ ⎪⎝⎭⎛⎫=++++++ ⎪⎝⎭=+=+=+-+-+=-∑⎰⎰⎰1011002111ln 2[(1)]22111111ln 2[()ln(1)]002221111ln 2(1ln 2)2224dxxx dx dx xx x x +=--++=--++=--+=⎰⎰⎰(17)(本题满分10分).已知函数)(x y 由方程333320x y x y +-+-=确定,求)(x y 的极值. 【答案】333320x y x y +-+-=①,方程①两边对x 求导得:22''33330x y y y +-+=②, 令'0y =,得233,1x x ==±. 当1x =时1y =,当1x =-时0y =.方程②两边再对x 求导:'22''''66()330x y y y y y +++=, 令'0y =,2''6(31)0x y y ++=,当1x =,1y =时''32y =-,当1x =-,0y =时''6y =.所以当1x =时函数有极大值,极大值为1,当1x =-时函数有极小值,极小值为0.(18)(本题满分10分).设函数()f x 在区间[0,1]上具有2阶导数,且(1)0f >,0()lim 0x f x x+→<.证明:(I )方程()0f x =在区间(0,1)内至少存在一个实根;(II )方程2()''()['()]0f x f x f x +=在区间(0,1)内至少存在两个不同实根. 【答案】 (1)()lim 0x f x x+→<,由极限的局部保号性,(0,),()0c f c δ∃∈<使得,又(1)0,f >由零点存在定理知,(c,1)ξ∃∈,使得,()0f ξ=.(2)构造()()'()F x f x f x =,(0)(0)'(0)0F f f ==,()()'()0F f f ξξξ==,0()lim 0,'(0)0,x f x f x+→<∴<由拉格朗日中值定理知(1)(0)(0,1),'()010f f f ηη-∃∈=>-,'(0)'()0,f f η<所以由零点定理知1(0,)(0,1)ξη∃∈⊂,使得1'()0f ξ=,111()()'()0,F f f ξξξ∴== 所以原方程至少有两个不同实根。

2021年考研数学一真题及答案解析

2021年考研数学一真题及答案解析

2015年全国硕士研究生入学统一考试数学(一)试题一、选择题:18小题,每题4分,共32分。

以下每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上。

(1)设函数()f x 在(),-∞+∞内持续,其中二阶导数()''f x 的图形如下图,那么曲线()=y f x 的拐点的个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3【答案】(C )【解析】拐点出此刻二阶导数等于0,或二阶导数不存在的点,而且在这点的左右双侧二阶导函数异号。

因此,由()f x ''的图形可得,曲线()y f x =存在两个拐点.应选(C ). (2)设211()23=+-x x y e x e 是二阶常系数非齐次线性微分方程'''++=x y ay by ce 的一个特解,那么 ( )(A) 3,2,1=-==-a b c (B) 3,2,1===-a b c (C) 3,2,1=-==a b c (D) 3,2,1===a b c 【答案】(A )【分析】此题考查二阶常系数非齐次线性微分方程的反问题——已知解来确信微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是依照二阶线性微分方程解的性质和结构来求解,也确实是下面演示的解法.【解析】由题意可知,212x e 、13x e -为二阶常系数齐次微分方程0y ay by '''++=的解,因此2,1为特点方程20r ar b ++=的根,从而(12)3a =-+=-,122b =⨯=,从而原方程变成32x y y y ce '''-+=,再将特解x y xe =代入得1c =-.应选(A )(3) 假设级数1∞=∑nn a条件收敛,那么=x 3=x 依次为幂级数1(1)∞=-∑n n n na x 的( )(A) 收敛点,收敛点 (B) 收敛点,发散点 (C) 发散点,收敛点 (D) 发散点,发散点 【答案】(B )【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质。

考研数学一(高等数学)历年真题试卷汇编25(题后含答案及解析)

考研数学一(高等数学)历年真题试卷汇编25(题后含答案及解析)

考研数学一(高等数学)历年真题试卷汇编25(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(08年)在下列微分方程中,以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的是A.y”‘+y”一4y’一4y=0.B.y”‘+y”+4y’+4y=0.C.y”‘一y”一4y’+4y=0.D.y”‘一y”+4y’一4y=0.正确答案:D解析:由原题设知所求方程的特征方程的根为ρ1=1,ρ2,3=±2i则其特征方程为(ρ一1)(ρ2+4)=0,故所求方程应为y”‘一y”+4y’一4y=0故(D).知识模块:高等数学2.(15年)设y=是二阶常系数非齐次线性微分方程y”+ay’+by=cex的一个特解,则A.a=一3,b=2,c=一1.B.a=3,b=2,c=一1.C.a=一3,b=2,c=1.D.a=3,b=2,c=1.正确答案:A解析:由是方程y”+ay’+by=cex的一个特解可知,y1=e2x,y2=ex是齐次方程的两个线性无关的解,y*=xex是非齐次方程的一个解.1和2是齐次方程的特征方程的两个根,特征方程为(ρ一1)(ρ一2)=0即ρ2—3ρ+2=0则a=一3,b=2将y=xex代入方程y”一3y’+2y=cex得c=一1.故(A).知识模块:高等数学3.(16年)若y=(1+x2)2一是微分方程y’+p(x)y=q(x)的两个解,则q(x)= A.3x(1+x2).B.一3x(1+x2).C.D.正确答案:A解析:利用线性微分方程解的性质与结构.由是微分程y’+p(x)y=q(x)的两个解,知y1=y2是y’+p(x)y=0的解.故(y1—y2)’+p(x)(y1一y2)=0,即从而得p(x)=又是微分方程y’+p(x)y=q(x)的解,代入方程,有[(1+x2)2]’+p(x)(1+x2)2=q(x),解得q(x)=3x(1+x2).因此(A).知识模块:高等数学4.(96年)4阶行列式的值等于A.a1a2a3a4一b1b2b3b4B.a1a2a3a4+b1b2b3b4C.(a1a2-b1b2)(a3a4-b3b4)D.(a2a3一b2b3)(a1a4一b1b4)正确答案:D解析:按第1行展开所求行列式D4,得=(a2a3一b2b3)(a1a4一b1b4).知识模块:线性代数5.(14年)行列式A.(ad—bc)2B.一(ad—bc)2C.a2d2一b2c2D.b2c2一a2d2正确答案:B解析:按第1列展开,得所求行列式D等于=一ad(ad一bc)+be(ad一bc)=一(ad一bc)2 知识模块:线性代数6.(87年)设A为n阶方阵,且A的行列式|A|=a≠0,而A*是A的伴随矩阵,则|A*|等于A.aB.C.an+1D.an正确答案:C解析:由AA*=|A|E两端取行列式,得|A||A*|=|A|n,因|A|=a≠0,得|A*|=|A|n-1=an-1.知识模块:线性代数7.(91年)设n阶方程A、B、C满足关系式ABC=E,其中E是n阶单位阵,则必有A.ACB=EB.CBA=EC.BAC=ED.BCA=E正确答案:D解析:因为ABC=E,即A(BC)=E,故方阵A与BC互为逆矩阵,从而有(BC)A=E,即BCA=E.知识模块:线性代数填空题8.(06年)微分方程的通解是______.正确答案:y=Cxe-x.解析:ln|y|=ln|x|—x=ln|x|+lne-x=ln|x|e-x则y=Cxe-x.知识模块:高等数学9.(07年)二阶常系数非齐次线性微分方程y”一4y’+3y=2e2x的通解为y=________.正确答案:y=C1e2+C2e3x一2e2x.解析:齐次方程特征方程为ρ2—4ρ+3=0解得ρ1=1,ρ2=3,则齐次方程通解为y=C1ex+C2e3x设非齐方程特解为代入原方程得A=一2,则原方程通解为y=C1ex+C2e3x一2e2x 知识模块:高等数学10.(08年)微分方程xy’+y=0满足条件y(1)=1的解是y=______.正确答案:解析:方程xy’+y=0是一个变量可分离方程,原方程可改写为知识模块:高等数学11.(09年)若二阶常系数线性齐次微分方程y”+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y”+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=_______.正确答案:y=一xex+x+2.解析:由于y=(C1+C2x)ex是方程y”+ay’+by=0的通解,则该方程的两个特征根为λ1=λ2=1,故a=一2,b=1.设非齐次方程y”一2y’+y=x的特解为y’=Ax+B代入方程得A=1,B=2,则其通解为y=(C1+C2x)ex+x+2由y(0)=2,y’(0)=0得,C1=0,C2=一1.所以y=一xex+x+2 知识模块:高等数学12.(11年)微分方程y’+y=e-xcosx满足条件y(0)=0的解为y=______.正确答案:e-xsinx.解析:由一阶线性方程的通解公式得y=e-∫dx[∫e-xcosx.e∫dxdx+C]=e-x[∫cosxdx+C]=e-x[sinx+C]由y(0)=0知,C=0,则y=e-xsinx 知识模块:高等数学13.(12年)若函数f(x)满足方程f”(x)+f’(x)一2f(x)=0及f”(x)+f(x)=2ex,则f(x)=_______。

2020年考研数学一真题详细答案解析

2020年考研数学一真题详细答案解析

一、选择题(1)【答案】D【解析】(方法一)利用结论:若f(x)和g(x)在x=O某邻域内连续,且当x-o时,f位)~g(x)'则J勹(t)dt �r g(t)dt.(A)『(/-l)dt� 『t 2dt =气3(B)『ln(l +万)dt �rt 令dt=气5(C) f"工s int 2dt �厂r t 2dt�f c 2d t =丘。

3(D)J :-co sx /忒臣了d t -I -c os rt i d t �I :''l令d t=岊(占)寺x故应选CD).(方法二)设J(x)和<p (x)在x =O某邻域内连续,且当x-0时,f(x)和<p (x)分别是x 的m阶和n阶无穷小,则『(,-)J(t)dt 是x -0时的n(m+ 1)阶无穷小.。

CA)r C / -1) d t , m = 2 , n = 1 , 则n(m+ 1) = 3. 。

ln(l + #)dt,m =立,n= 1, 则n(m+l)=立。

2 2.CC)厂sint 2dt, m =2, n =1 , 则n(m+ 1)=3.。

1一cos,·3叫产t,m=一,n= 2, 则n(m+l)=5.。

2故应选(D).(2)【答案】C【解析】(方法一)直接法若f(x)在x=O处可导,则f(x)在x=O处连续,且f(O)=lim f(x) = 0.工-o故应选(C).f(x) -f(O) = limf(x)j'(O) = Jim;-0Xr•OXf(x)f(x) lim=lim ——•X =j'(0)• 0 = 0工-o,/了.,·-oX�(方法二)排除法取f (x)= {X, X # 0,则l im f位)=o ,且1,X= 0J-0 x 3f(x ) x 3lim·f(x)=lim _。

J了工-o�= O ,lim 一=lim —=22 工-oXr--0 X但f(x)在x=O处不可导,因为f(x)在X = 0处不连续,则排除选项(A),CB).若取f(x)= x , 则lim f(x)= 0, 且f(x)在x =O处可导,但J-0• 5 •叫排除CD )'故应选CC).(3)【答案】A2 ,·-·OX.r-0 X.r -•O X【解析】利用函数z = .I 一位,y)在(x 。

历年考研数一真题及答案

历年考研数一真题及答案

历年考研数一真题及答案【篇一:历年考研数学一真题及答案(1987-2013)】ss=txt>数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)?=_____________.(2)曲面x2?2y2?3z2?21在点(1,?2,?2)的法线方程为_____________.(3)微分方程xy???3y??0的通解为_____________.?121?(4)已知方程组??23a?2???x1??1?x???3??1a?2???2无解,则a= ???????x3????0??_____________.(5)设两个相互独立的事件a和b都不发生的概率为19,a发生b不发生的概率与b发生a不发生的概率相等,则p(a)=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设f(x)、g(x)是恒大于零的可导函数,且f?(x)g(x)?f(x)g?(x)?0,则当a?x?b时,有(a)f(x)g(b)?f(b)g(x)(b)f(x)g(a)?f(a)g(x)(c)f(x)g(x)?f(b)g(b)(d)f(x)g(x)?f(a)g(a)(2)设s:x2?y2?z2?a2(z?0),s1为s在第一卦限中的部分,则有(a)??xds?4s??xdss1(b)??yds?4??xdsss1(c)??zds?4??xdsss1(d)??xyzds?4??xyzdsss1(3)设级数??un收敛,则必收敛的级数为n?1(a)??(?1)nun (b)??u2nn?1nn?1(c)??(u2n?1?u2n)n?1(d)??(un?un?1)n?1(a)e(x)?e(y)(b)e(x2)?[e(x)]2?e(y2)?[e(y)]2(c)e(x2)?e(y2) (d)e(x2)?[e(x)]2?e(y2)?[e(y)]2三、(本题满分6分) 1求lim(2?exx??4?sinx).1?exx四、(本题满分5分) 设z?f(xy,xy)?g(xy),其中f具有二阶连续偏导数,g具有二阶连续导数,求?2z?x?y.五、(本题满分6分) 计算曲线积分i??xdy?ydxl4x2?y2,其中l是以点(1,0)为中心,r为半径的圆周(r?1),取逆时针方向.六、(本题满分7分)设对于半空间x?0内任意的光滑有向封闭曲面s,都有??xf(x)dydz?xyf(x)dzdx?e2xzdxdy?0,其中函数f(x)在s(0,??)内具有连续的一阶导数,且xlim?0?f(x)?1,求f(x).七、(本题满分6分)求幂级数??1xnn?13n?(?2)nn的收敛区间,并讨论该区间端点处的收敛性.八、(本题满分7分)设有一半径为r的球体,p0是此球的表面上的一个定点,球体上任一点的密度与该点到p0距离的平方成正比(比例常数k?0),求球体的重心位置.九、(本题满分6分) 设函数f(x)在[0,?]上连续,且???f(x)dx?0,?0f(x)cosxdx?0.试证:在(0,?)内至少存在两个不同的点?1,?2,使f(?1)?f(?2)?0.十、(本题满分6分)??1000?000? 设矩阵a的伴随矩阵a*??1??1010??,且?0?308??aba?1?ba?1?3e,其中e为4阶单位矩阵,求矩阵b.十一、(本题满分8分)某适应性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将16熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐.新、老非熟练工经过培训及实践至年终考核有25成为熟练工.设第n年1月份统计的熟练工与非熟练工所占百分比分别为xn和yn,记成向量??xn?y??. ?n(1)求??xn?1?与??xn?的关系式并写成矩阵形?y?n?1??y?n?式:??xn?1??xn?y??a???. n?1??yn??1??是a的两个线性无关的特征向量,并求出相应的特征值.?1?(3)当??x1??2?时,求??y?????xn?1??. 1???1??yn?1??2??十二、(本题满分8分)某流水线上每个产品不合格的概率为p(0?p?1),各产品合格与否相对独立,当出现1个不合格产品时即停机检修.设开机后第1次停机时已生产了的产品个数为x,求x的数学期望e(x)和方差d(x).十三、(本题满分6分) 设某种元件的使用寿命x的概率密度为?2e?2(x??)x??f(x;?)??x???0x1,x2,,其中??0为未知参数.又设,xn是x的一组样本观测值,求参数?的最大似然估计值.2001年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设y?ex(asinx?bcosx)(a,b为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________. (2)r?x2?y2?z2,则div(gradr)(1,?2,2)=_____________.(3)交换二次积分的积分次序:?01?y?1dy?2f(x,y)dx=_____________. (4)设a2?a?4e?o,则(a?2e)?1= _____________.(5)d(x)?2,则根据车贝晓夫不等式有估计p{x?e(x)?2}? _____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设函数f(x)在定义域内可导,y?f(x)的图形如右图所示,则y?f?(x)的图形为(a)(b)(c)【篇二:2000年-2016年考研数学一历年真题完整版(word版)】ss=txt>数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)?=_____________.(2)曲面x2?2y2?3z2?21在点(1,?2,?2)的法线方程为_____________. (3)微分方程xy???3y??0的通解为_____________.1??x1??1??12??????(4)已知方程组23a?2x2?3无解,则a=_____________. ????????1a?2????x3????0??(5)设两个相互独立的事件a和b都不发生的概率为生的概率相等,则p(a)=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设f(x)、g(x)是恒大于零的可导函数,且f?(x)g(x)?f(x)g?(x)?0,则当a?x?b时,有 (a)f(x)g(b)?f(b)g(x) (c)f(x)g(x)?f(b)g(b)(b)f(x)g(a)?f(a)g(x) (d)f(x)g(x)?f(a)g(a)1,a发生b不发生的概率与b发生a不发9(2)设s:x2?y2?z2?a2(z?0),s1为s在第一卦限中的部分,则有 (a)(c) ??xds?4??xdsss1(b)(d)??yds?4??xdsss1ss1??zds?4??xdsss1??xyzds?4??xyzds(3)设级数?un?1?n收敛,则必收敛的级数为u(a)?(?1)nnn?1n?(b)?un?1?2n(c)?(un?1?2n?1?u2n)(d)?(un?1?n?un?1)(5)设二维随机变量(x,y)服从二维正态分布,则随机变量??x?y 与 ??x?y不相关的充分必要条件为(a)e(x)?e(y)(c)e(x2)?e(y2)三、(本题满分6分)(d)e(x2)?[e(x)]2?e(y2)?[e(y)]2(b)e(x2)?[e(x)]2?e(y2)?[e(y)]2求lim(x??2?e1?e1x4x?sinx). x四、(本题满分5分)xx?2z设z?f(xy,)?g(),其中f具有二阶连续偏导数,g具有二阶连续导数,求. yy?x?y五、(本题满分6分)计算曲线积分i?xdy?ydx??l4x2?y2,其中l是以点(1,0)为中心,r为半径的圆周(r?1),取逆时针方向.六、(本题满分7分)设对于半空间x?0内任意的光滑有向封闭曲面s,都有???xsx?0?(f)x?dyd(z)x?2xyfex?dzd0x,f(x)在z(0,d??x)内具有连续的一阶导数dy其中函数,且limf(x)?1,求f(x).七、(本题满分6分)八、(本题满分7分)1xn求幂级数?n的收敛区间,并讨论该区间端点处的收敛性. n3?(?2)nn?1?设有一半径为r的球体,p0是此球的表面上的一个定点,球体上任一点的密度与该点到p0距离的平方成正比(比例常数k?0),求球体的重心位置.九、(本题满分6分)设函数f(x)在[0,?]上连续,且??f(x)dx?0,?f(x)cosxdx?0.试证:在(0,?)内至少存在两?个不同的点?1,?2,使f(?1)?f(?2)?0.十、(本题满分6分)?10?01*?设矩阵a的伴随矩阵a??10??0?300100?0??,?1?1且aba?ba?3e,其中e为4阶单位矩阵,求0??8?矩阵b.十一、(本题满分8分)1熟练工支援其他生产部62门,其缺额由招收新的非熟练工补齐.新、老非熟练工经过培训及实践至年终考核有成为熟练工.设第5某适应性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将n年1月份统计的熟练工与非熟练工所占百分比分别为xn和yn,记成向量??xn?1??xn??xn?1??xn?与的关系式并写成矩阵形式:?a???????.?yn?1??yn??yn?1??yn??xn??. ?yn?(1)求??4???1??1??1??1??x1??2??xn?1?(3)当?????时,求??.y1y?1????n?1????2?十二、(本题满分8分)某流水线上每个产品不合格的概率为p(0?p?1),各产品合格与否相对独立,当出现1个不合格产品时即停机检修.设开机后第1次停机时已生产了的产品个数为x,求x的数学期望e(x)和方差d(x).十三、(本题满分6分)?2e?2(x??)x??设某种元件的使用寿命x的概率密度为f(x;?)??,其中??0为未知参数.又设x???0x1,x2,?,xn是x的一组样本观测值,求参数?的最大似然估计值.2001年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设y?ex(asinx?bcosx)(a,b为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_____________.(2)r?x2?y2?z2,则div(gradr)(1,?2,2)= _____________.(3)交换二次积分的积分次序:?0?1dy?1?y2f(x,y)dx=_____________.2(4)设a?a?4e?o,则(a?2e)?1= _____________.(5)d(x)?2,则根据车贝晓夫不等式有估计p{x?e(x)?2}?_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设函数f(x)在定义域内可导,y?f(x)的图形如右图所示,则y?f?(x)的图形为(a) (b)(c) (d)(2)设f(x,y)在点(0,0)的附近有定义,且fx?(0,0)?3,fy?(0,0)?1则(a)dz|(0,0)?3dx?dy(b)曲面z?f(x,y)在(0,0,f(0,0))处的法向量为{3,1,1}(c)曲线z?f(x,y)在(0,0,f(0,0))处的切向量为{1,0,3}y?0z?f(x,y)(d)曲线在(0,0,f(0,0))处的切向量为{3,0,1}y?0(3)设f(0)?0则f(x)在x=0处可导?f(1?cosh)(a)lim存在2h?0h(c)limh?0f(1?eh)(b) lim存在h?0h(d)limh?0f(h?sinh)存在h2111111111??4??1?0,b???01???1??00000000f(2h)?f(h)存在h?1?(4)设a??1?1??10??0?,则a与b 0??0?(a)合同且相似 (c)不合同但相似(b)合同但不相似 (d)不合同且不相似(5)将一枚硬币重复掷n次,以x和y分别表示正面向上和反面向上的次数, 则x和y相关系数为(a) -1 (c)(b)0 (d)11 2三、(本题满分6分)arctanex. 求?e2x四、(本题满分6分)【篇三:历年考研数学一真题及答案(1987-2015)】1987-2014 (经典珍藏版)1987年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)当x=_____________时,函数y?x?2x取得极小值.(2)由曲线y?lnx与两直线y?e?1?x及y?0所围成的平面图形的面积是_____________.1?x(3)与两直线y??1?tz?2?t及x?1y?2z?11?1?1都平行且过原点的平面方程为_____________.(4)设l为取正向的圆周x2?y2?9,则曲线积分??l(2xy?2y)dx?(x2?4x)dy= _____________.(5)已知三维向量空间的基底为此基底下的坐标是_____________.二、(本题满分8分) 求正的常数a与b,使等式lim1x2x?0bx?sinx?0?1成立.三、(本题满分7分)1(1)设f、g为连续可微函数,u?f(x,xy),v?g(x?xy),求?u?x,?v?x. (2)设矩阵a和b满足关系式ab=a?2b,其中?301?a???110?,求矩阵 ?4?b.?01??四、(本题满分8分)求微分方程y????6y???(9?a2)y??1的通解,其中常数a?0.五、选择题(本题共4小题,每小题3分,满分12分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设limf(x)?f(a)x?a(x?a)2??1,则在x?a处(a)f(x)的导数存在,且f?(a)?0 (b)f(x)取得极大值(c)f(x)取得极小值 (d)f(x)的导数不存在 (2)设f(x)为已知连续函数s,i?t?t0f(tx)dx,其中t?0,s?0,则i的值(a)依赖于s和t (b)依赖于s、t和x(c)依赖于t、x,不依赖于s (d)依赖于s,不依赖于t (3)设常数?k?0,则级数?(?1)nk?nn2n?1(a)发散(b)绝对收敛2(c)条件收敛(d)散敛性与k的取值有关(4)设a为n阶方阵,且a的行列式|a|?a?0,而a*六、(本题满分10分)求幂级数?a1n?1的收敛域,并求其和函数. xnn?2n?1?是a的伴随矩阵,则|a*|等于(a)a (b)1 (c)an?1七、(本题满分10分)求曲面积分i???x(8y?1)dydz?2(1?y2)dzdx?4yzdxdy,?(d)an??z?1?y?3f(x)?其中?是由曲线绕y轴旋转一周而成的曲面,其法向量与y轴正向的夹角恒大于?. ?2x?0??八、(本题满分10分)设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f?(x)?1,证明在(0,1)内有且仅有一个x,使得f(x)?x.九、(本题满分8分)3问a,b为何值时,现线性方程组?x2?x3?x4?02?2x3?2x4?1x2?(a?3)x3?2x4?bx1?2x2?x3?ax4?? 1有唯一解,无解,有无穷多解?并求出有无穷多解时的通解.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在一次实验中,事件a发生的概率为p,现进行n次独立试验,则a至少发生一次的概率为____________;而事件a至多发生一次的概率为____________.(2)有两个箱子,第1个箱子有3个白球,2个红球, 第2个箱子有4个白球,4个红球.现从第1个箱子中随机地取1个球放到第2个箱子里,再从第2个箱子中取出1个球,此球是白球的概率为____________.已知上述从第2个箱子中取出的球是白球,则从第一个箱子中取出的球是白球的概率为____________. (3)已知连续随机变量____________.4x的概率密度函数为f(x)??x2?2x?1,则x的数学期望为____________,x的方差为十一、(本题满分6分)设随机变量x,y相互独立,其概率密度函数分别为fx(x)?10?x?1,fy(y)? y?0,求z?2x?y的概率密度函数.?y其它y?05。

2020考研数学一真题及答案解析

2020考研数学一真题及答案解析

f
(12)设函数
x, y
xy ext2 dt
0
,则
2 f xy
1,1

【答案】 4e
a 0 1 1
0 a 1 1 1 1 a 0
(13)行列式 1 1 0 a

【答案】 a4 4a2 .
(14)已知随机变量
X
服从区间
2
,
2
上的均匀分布, Y
sin
X
,则 Cov X ,Y

2 【答案】 .
y2 8xy 4x2 (4x2 y2)2
,
P (4x2 y 2 ) 2y(4x y) y 2 8xy 4x2 ,
y
(4x2 y 2)2
(4x2 y 2)2
I
=
L1
4x 4x2
y y2
dx
x y 4x2 y2
dy
=
1 2
(4x
y)dx
(x
y)dy
L1
1 2
1
1
(1) dxdy
(B) n1
收敛,则
r
R
(D) r R ,则 n1 a2n x2n 收敛
(5)若矩阵 A 由初等列变换为矩阵 B ,则()
(A)存在矩阵 P ,使 PA B ;
(B)存在矩阵 P ,使 BP A ;
(C)存在矩阵 P ,使 PB A ;
(D)方程组 AX 0 与 BX =0 同解;
【答案】(B).
2020 年全国硕士研究生入学统一考试
数学(一)试题
一、 选择题:1~8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项是符合题目要求
的.请将所选项前的字母填在答.题.纸.指定位置上.

2023考研数学一真题试卷+详细答案解析

2023考研数学一真题试卷+详细答案解析

2023年全国硕士研究生入学统一考试数学(一)试题及答案考试时间:180分钟,满分:150分一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1)曲线1ln()1yx e x =+−的斜渐近线方程为( ) (A)y x e =+ (B)1y x e=+(C)y x = (D)1y x e=−【答案】B 【解析】1limlimln()11x x y ke x x →∞→∞==+=−,11lim()lim()lim[ln(]lim [ln(ln ]11x x x x b y kx y x x e x x e e x x →∞→∞→∞→∞=−==−=+−=+−−−111lim ln(1lim (1)(1)x x x x e x e x e→∞→∞=+==−−,所以渐进线方程为1y x e =+,答案为B(2)若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( ) (A )0,0a b <>(B )0,0a b >>(C )0,0ab =>(D )0,0ab =<【答案】C 【解析】0y ay by ′′′++=的解一共三种情形:①240a b Δ=−>,1212x xy C e C e λλ=+,但此时无论12,λλ取何值,y 在(,)−∞+∞上均无界;②240a b Δ=−=,12()xy C C x eλ=+,但此时无论λ取何值,y 在(,)−∞+∞上均无界;③240a b Δ=−<,12(cos sin )xy e C x C x αββ=+,此时若y 在(,)−∞+∞上有界,则需满足0α=,所以0,0a b =>,答案为(C)(3)设函数()y f x =由2sin x t ty t t⎧=+⎪⎨=⎪⎩确定,则( ) (A)()f x 连续,(0)f ′不存在(B)(0)f ′不存在,()f x ′在0x =处不连续(C)()f x ′连续,(0)f ′′不存在(D)(0)f ′′存在,()f x ′′在0x =处不连续【答案】C【解析】当0t =时,有0x y ==①当0t >时,3sin x t y t t=⎧⎨=⎩,可得sin 33x xy =,故()f x 右连续;②当0t <时,sin x ty t t=⎧⎨=−⎩,可得sin y x x =−,故()f x 左连续,所以()f x 连续;因为0sin 033(0)lim 0x x x y x ++→−′==;0sin 0(0)lim 0x x x y x −−→−−′==,所以(0)0f ′=;③当0x >时,1sin sin cos 333393x x x x x y ′⎛⎫′==+ ⎪⎝⎭,所以0lim ()0x y x +→′=,即()f x ′右连续;④当0x <时,()sin sin cos y x x x x x ′′=−=−−,所以0lim ()0x y x −→′=,即()f x ′左连续,所以()f x ′连续;考虑01sin cos 23393(0)lim 9x x x xf x ++→+′′==;0sin cos (0)lim 2x x x x f x −−→−−′′==−,所以(0)f ′′不存在,答案为C(4)已知(1,2,)nn a b n <= ,若级数1n n a ∞=∑与1n n b ∞=∑均收敛,则“1n n a ∞=∑绝对收敛”是“1n n b ∞=∑绝对收敛”的( )(A )充分必要条件(B )充分不必要条件(C )必要不充分条件(D )既不充分也不必要条件【答案】A 【解析】因为级数1nn a ∞=∑与1nn b ∞=∑均收敛,所以正项级数1()nn n ba ∞=−∑收敛又因为()()n n n n n n n n n nb b a a b a a b a a =−+≤−+=−+所以,若1nn a∞=∑绝对收敛,则1n n b ∞=∑绝对收敛;同理可得:()()n n n n n n n n n na ab b a b b b a b =−+≤−+=−+所以,若1nn b ∞=∑绝对收敛,则1nn a∞=∑绝对收敛;故答案为充要条件,选(A)(5)已知n 阶矩阵A ,B ,C 满足ABC O =,E 为n 阶单位矩阵,记矩阵OA BC E ⎛⎫ ⎪⎝⎭,ABC O E ⎛⎫⎪⎝⎭,E AB AB O ⎛⎫⎪⎝⎭的秩分别为123,,r r r ,则( ) (A )123r r r ≤≤(B )132r r r ≤≤(C )321r r r ≤≤(D )213r r r ≤≤【答案】B【解析】根据初等变换可得:OA O O O O BC E BC E O E ⎛⎫⎛⎫⎛⎫⎯⎯→⎯⎯→⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭行列,所以1r n =;AB C AB O O E O E ⎛⎫⎛⎫⎯⎯→ ⎪ ⎪⎝⎭⎝⎭行,所以2()r n r AB =+;2()E AB E O E O AB O AB ABAB O AB ⎛⎫⎛⎫⎛⎫⎯⎯→⎯⎯→ ⎪ ⎪ ⎪−⎝⎭⎝⎭⎝⎭行列,所以23()r n r AB ⎡⎤=+⎣⎦;又因为20()()r AB r AB ⎡⎤≤≤⎣⎦,所以132r r r ≤≤(6)下列矩阵中不能相似于对角矩阵的是()(A )11022003a ⎛⎫ ⎪ ⎪ ⎪⎝⎭ (B )1112003a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C )11020002a ⎛⎫⎪ ⎪ ⎪⎝⎭(D )11022002a ⎛⎫⎪ ⎪ ⎪⎝⎭【答案】D【解析】(A )特征值互异,则可对角化;(B )为实对称矩阵,必可对角化; 选项(C ),特征值为1,2,2,且特征值2的重数(代数重数)2(2)312n r E A =−−=−=(几何重数),故矩阵可对角化;选项(D ),特征值为1,2,2,且特征值2的重数(代数重数)2(2)321n r E A ≠−−=−=(几何重数),故矩阵不可对角化;(7)已知向量1123α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2211α⎛⎫ ⎪= ⎪ ⎪⎝⎭,1259β⎛⎫ ⎪= ⎪ ⎪⎝⎭,2101β⎛⎫⎪= ⎪⎪⎝⎭,若γ既可由12,αα线性表示,也可由12,ββ线性表示,则γ=( )(A )33,4k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(B )35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(C )11,2k k R −⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(D )15,8k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭【答案】D 【解析】令γ11221122k k l l ααββ=+=+,则有112211220k k l l ααββ+−−=,即12121212(,)0k k l l ααββ⎛⎫ ⎪ ⎪−−= ⎪ ⎪⎝⎭而121212211003(,)2150010131910011ααββ−−⎛⎫⎛⎫ ⎪ ⎪−−=−→− ⎪ ⎪⎪ ⎪−−⎝⎭⎝⎭所以1212(,,,)(3,1,1,1),TT k k l l c c R =−−∈,所以12(1,5,8)(1,5,8),T T c c c k k R γββ=−+=−=∈,答案为D(8)设随机变量X 服从参数为1的泊松分布,则()E X EX −=( )(A)1e(B)12(C)2e(D)1【答案】C【解析】因为(1)X P ,所以1EX =,()()1110022112(1)(1)!0!!k k e e e E X EX E X k k E X k k e e−−−∞∞==−=−=−=+−=+−=∑∑,答案为C(9)设12,,,n X X X 为来自总体21(,)N μσ的简单随机样本,12,,,m Y Y Y 为来自总体22(,2)N μσ的简单随机样本,且两样本相互独立,记11n i i X X n ==∑,11m i i Y Y m ==∑,22111()1n i i S X X n ==−−∑, 22211()1mi i S Y Y m ==−−∑,则( ) (A)2122(,)S F n m S (B)2122(1,1)S F n m S −−(C)21222(,)S F n m S (D)21222(1,1)S F n m S −− 【答案】D【解析】由正态分布的抽样性质可得,2212(1)(1)n S n χσ−− ,2222(1)(1)2m S m χσ−− 又因为2212,S S 相互独立,所以212222(1)1(1,1)(1)21n S n F n m m S m σσ−−−−−− ,即21222(1,1)S F n m S −− ,答案为D (10)设12,X X 为来自总体2(,)N μσ的简单随机样本,其中(0)σσ>是未知参数,记12a X X σ=−,若()E σσ=,则a =( )(A)2π(B)2π【答案】A【解析】由已知可得,令212(0,2)Z X X N σ=− ,所以22221212()()()z Z E E a X X aE X X aE Z az f z dz a dzσσ−+∞+∞⋅−∞−∞=−=−===⎰⎰2222440z z a zdz aσσ−−+∞+∞==−=⎰若()E σσ=,则有2a π=,答案为A二、填空题:11~16小题,每小题5分,共30分,请将答案写在答题纸指定位置上. (11)当0x →时,函数2()ln(1)f x ax bx x =+++与2()cos x g x e x =−是等价无穷小,则ab =________【答案】2−【解析】由已知可得:2222200022221(())()ln(1)2lim lim lim 1()cos (1())(1())2x x x x ax bx x x o x f x ax bx x g x e x x o x x o x →→→++−++++==−++−−+220221(1)(()2lim 13()2x a x b x o x x o x →++−+==+所以1310,22a b +=−=,即1,2a b =−=,所以2ab =− (12)曲面222ln(1)z x y x y =++++在点(0,0,0)处的切平面方程为________【答案】20x y z +−=【解析】两边微分可得,222221xdx ydydz dx dy x y +=++++,代入(0,0,0)得2dz dx dy =+,因此法向量为(1,2,1)−,切平面方程为20x y z +−=(13)设()f x 是周期为2的周期函数,且()1,[0,1]f x x x =−∈,若01()cos 2n n a f x a n x π∞==+∑,则21nn a∞==∑_________【答案】0【解析】由已知得01(0)12n n a f a ∞==+=∑,01(1)(1)02n n n a f a ∞==+−=∑ 相加可得021(0)(1)21nn f f a a∞=+=+=∑显然()f x 为偶函数,则(0,1,2,)n a n = 为其余弦级数的系数,故1002()1a f x dx ==⎰,因此210n n a ∞==∑.(14)设连续函数()f x 满足:(2)()f x f x x +−=,2()0f x dx =⎰,则31()f x dx =⎰_______【答案】12【解析】323211121()()()()(2)f x dx f x dx f x dx f x dx f x dx=+=++⎰⎰⎰⎰⎰[]2121111()()()022f x dx f x x dx f x dx xdx =++=+=+=⎰⎰⎰⎰(15)已知向量11011α⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,21101α−⎛⎫ ⎪− ⎪= ⎪ ⎪⎝⎭,30111α⎛⎫ ⎪ ⎪= ⎪− ⎪⎝⎭,1111β⎛⎫ ⎪ ⎪= ⎪ ⎪−⎝⎭,112233k k k γααα=++,若(1,2,3)T T i i i γαβα==,则222123k k k ++=_______【答案】119【解析】由已知可得,123,,ααα两两正交,通过计算可得:11113TT k γαβα=⇒=;2221T T k γαβα=⇒=−;33213T T k γαβα=⇒=−,则222123k k k ++=119(16)设随机变量X 与Y 相互独立,且1(1,3X B ,1(2,2Y B ,则{}P X Y ==________ 【答案】13【解析】212211111{}{0}{1}(323223P X Y P X Y P X Y C ====+===⋅+⋅⋅=三、解答题:17~22小题,共70分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设曲线:()(0)L y y x x =>经过点(1,2),该曲线上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距(1)求()y x ;(2)求函数1()()xf x y t dt =⎰在(0,)+∞上的最大值【答案】(1)()(2ln )y x x x =− (2)454e −【解析】(1)曲线L 上任一点(,)P x y 处的切线方程为()Y y y X x ′−=−,令0X =,则y 轴上的截距为Y y xy ′=−,由题意可得x y xy ′=−,即11y y x′−=−,解得(ln )y x C x =−,其中C 为任意常数,代入(1,2)可得2C =,从而()(2ln )y x x x =−(2)()(2ln )f x x x ′=−,显然在2(0,)e 上()0f x ′>,()f x 单调递增;在2(,)e +∞上()0f x ′<,()f x 单调递减,所以()f x 在(0,)+∞上的最大值为22422211515()(2ln )ln 424e e ef e t t dt t t t −⎛⎫=−=−=⎪⎝⎭⎰(18)(本题满分12分)求函数23(,)()()f x y y x y x =−−的极值【答案】极小值为2104(,)327729f =−【解析】先求驻点42235(32)020xy f x x x y f y x x ⎧′=−+=⎪⎨′=−−=⎪⎩,解得驻点为(0,0),(1,1),210(,327下求二阶偏导数,3220(62)322xx xy yyf x x yf x xf ⎧′′=−+⎪⎪′′=−−⎨⎪′′=⎪⎩①对于点(0,0),(0,0)0f =,5(,0)f x x =,由定义可得(0,0)不是极值点;②代入点(1,1),解得1252xxxy yy A f B f C f ⎧′′==⎪⎪′′==−⎨⎪′′==⎪⎩,210AC B −=−<,所以(1,1)不是极值点;③代入点210(,)327,解得10027832xx xy yyA fB fC f ⎧′′==⎪⎪⎪′′==−⎨⎪⎪′′==⎪⎩,2809AC B −=>且0A >,所以210(,)327是极小值点,极小值为2104(,)327729f =−(19)(本题满分12分)设空间有界区域Ω由柱面221x y +=与平面0z =和1x z +=围成,Σ为Ω的边界曲面的外侧,计算曲面积分2cos 3sin I xzdydz xz ydzdx yz xdxdy Σ=++⎰⎰【答案】54π【解析】由高斯公式可得,2cos 3sin (2sin 3sin )I xzdydz xz ydzdx yz xdxdy z xz y y x dvΣΩ=++=−+⎰⎰⎰⎰⎰ 因为Ω关于平面xoz 对称,所以(sin 3sin )0xz y y x dv Ω−+=⎰⎰⎰所以1222022(1)(:1)xyxyxxy D D I zdv dxdy zdz x dxdyD x y −Ω===−+≤⎰⎰⎰⎰⎰⎰⎰⎰22221(21)()2xyxyxyD D D x x dxdy x dxdy x y dxdy ππ=−+=+=++⎰⎰⎰⎰⎰⎰ 2130015244d r dr πππθππ=+=+=⎰⎰(20)(本题满分12分)设函数()f x 在[,]a a −上具有2阶连续导数,证明: (1)若(0)0f =,则存在(,)a a ξ∈−,使得21()[()()]f f a f a aξ′′=+−(2)若()f x 在(,)a a −内取得极值,则存在(,)a a η∈−,使得21()()()2f f a f a aη′′≥−−【答案】(1)利用泰勒公式在0x =处展开,再利用介值性定理; (2)利用泰勒公式在极值点处展开,再利用基本不等式进行放缩;【解析】(1)在0x =处泰勒展开,22()()()(0)(0)(0)2!2!f c f c f x f f x x f x x ′′′′′′=++=+, 其中c 介于0与x 之间;代入两个端点有:211()()(0),(0,)2!f f a f a a a ξξ′′′=+∈222()()(0)(),(,0)2!f f a f a a a ξξ′′′−=−+∈− 两式相加可得:212()()()()2f f f a f a a ξξ′′′′++−=即122()()1[()()]2f f f a f a a ξξ′′′′++−= 因为()f x 在[,]a a −上具有2阶连续导数,所以()f x ′′存在最大值M 与最小值m , 根据连续函数的介值性定理可得,12()()2f f m M ξξ′′′′+≤≤,所以存在(,)a a ξ∈−,使得12()()()2f f f ξξξ′′′′+′′=,即21()[()()]f f a f a a ξ′′=+−成立;(2)若()f x 在(,)a a −内取得极值,不妨设0x 为其极值点,则由费马引理可得,0()0f x ′=将()f x 在0x 处泰勒展开,22000000()()()()()()()()()2!2!f d f d f x f x f x x x x x f x x x ′′′′′=+−+−=+−其中d 介于0x 与x 之间; 代入两个端点有:210010()()()(),(,)2!f f a f x a x x a ηη′′=+−∈ 220020()()()(),(,)2!f f a f x a x a x ηη′′−=+−−∈−两式相减可得:221200()()()()()()22f f f a f a a x a x ηη′′′′−−=−−−−所以22120022()()11()()()()2222f f f a f a a x a x a a ηη′′′′−−=−−−− 22102021[()()()()]4f a x f a x aηη′′′′≤−++,记112()max[(),()]f f f ηηη′′′′′′=, 又因为22220000()()[()()]4a x a x a x a x a −++≤−++=,所以21()()()2f a f a f a η′′−−≤成立 (21)(本题满分12分)已知二次型2221231231213(,,)2222f x x x x x x x x x x =+++−,22212312323(,,)2g y y y y y y y y =+++(1)求可逆变换x Py =,将123(,,)f x x x 化成123(,,)g y y y ; (2)是否存在正交变换x Qy =将123(,,)f x x x 化成123(,,)g y y y ?【答案】(1)111010001P −⎛⎫ ⎪= ⎪⎪⎝⎭(2)不存在(二者矩阵的迹不相同)【解析】(1)利用配方法将123(,,)f x x x 化成123(,,)g y y y , 先用配方法将123(,,)f x x x 化成标准形:22222212312312131232323(,,)2222()2f x x x x x x x x x x x x x x x x x =+++−=+−+++2212323()()x x x x x =+−++再用配方法将123(,,)g y y y 化成标准形:2222212312323123(,,)2()g y y y y y y y y y y y =+++=++令11232233y x x x y x y x =+−⎧⎪=⎨⎪=⎩,即11232233x y y y x y x y=−+⎧⎪=⎨⎪=⎩, 则在可逆变换112233*********x y x y x y −⎛⎫⎛⎫⎛⎫⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭下,其中111010001P −⎛⎫ ⎪= ⎪ ⎪⎝⎭,二次型123(,,)f x x x 即可化成123(,,)g y y y (2)因为二次型123(,,)f x x x 与123(,,)g y y y 的矩阵分别为111120102A −⎛⎫ ⎪= ⎪ ⎪−⎝⎭,100011011B ⎛⎫⎪= ⎪⎪⎝⎭显然()5tr A =,()3tr B =,所以矩阵A ,B 不相似,故不存在正交矩阵Q ,使得1T Q AQ Q AQ B −==, 所以也不存在正交变换x Qy =,将123(,,)f x x x 化成123(,,)g y y y .11 /11 (22)(本题满分12分)设二维随机变量(,)X Y 的概率密度为22222(),1(,)0,x y x y f x y else π⎧++≤⎪=⎨⎪⎩,求 (1)求X 与Y 的斜方差;(2)X 与Y 是否相互独立?(3)求22Z X Y =+概率密度【答案】(1)0 (2)不独立 (3)2,01()0,z z f z else <<⎧=⎨⎩【解析】(1)由对称性可得:222212()0x y EX x x y dxdy π+≤=+=⎰⎰,同理0EY =,0EXY =所以(,)()()()0Cov X Y E XY E X E Y =−=; (2)22)11()(,)0,X x y dy x f x f x y dy else +∞−∞⎧+−≤≤⎪==⎨⎪⎩⎰24(121130,x x elseπ⎧+−≤≤⎪=⎨⎪⎩同理可得,24(1211()30,Y y y f y else π⎧+−≤≤⎪=⎨⎪⎩所以(,)()()X Y f x y f x f y ≠,X 与Y 不独立 (3)先求分布函数22(){}{}Z F z P Z z P X Y z =≤=+≤ 当0z <时,()0Z F z =;当01z ≤<时,2222222320022(){}()Z x y z F z P X Y z x y dxdy d dr z πθππ+≤=+≤=+==⎰⎰⎰;当1z ≤时,()1Z F z =;所以22Z X Y =+概率密度为2,01()()0,Z Z z z f z F z else <<⎧′==⎨⎩。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1994年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5个小题,每小题3分,满分15分.) (1) 011limcot ()sin x x x x→-=_____________. (2) 曲面23zz e xy -+=在点(1,2,0)处的切平面方程为_____________.(3) 设sin xx u e y -=,则2ux y∂∂∂在点1(2,)π处的值为_____________.(4) 设区域D 为222x y R +≤,则2222()Dx y dxdy a b +=⎰⎰_____________.(5) 已知11(1,2,3),(1,,)23αβ==,设TA αβ=,其中T α是α的转置,则nA =_________.二、选择题(本题共5个小题,每小题3分,满分15分.) (1)设4222sin cos 1x M xdx x ππ-=+⎰,3422(sin cos )N x x dx ππ-=+⎰,23422(sin cos )P x x x dx ππ-=-⎰, 则( )(A) N P M << (B) M P N << (C) N M P << (D) P M N << (2) 二元函数(,)f x y 在点00(,)x y 处两个偏导数00(,)x f x y '、00(,)y f x y '存在是(,)f x y 在该点连续的 ( )(A) 充分条件但非必要条件 (B) 必要条件而非充分条件(C ) 充分必要条件 (D) 既非充分条件又非必要条件 (3) 设常数0λ>,且级数21nn a∞=∑收敛,则级数1(1)nn ∞=-∑( )(A) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 收敛性与λ有关 (4) 2tan (1cos )lim2ln(12)(1)x x a x b x c x d e -→+-=-+-,其中220a c +≠,则必有( )(A) 4b d = (B) 4b d =- (C ) 4a c = (D ) 4a c =- (5) 已知向量组1234αααα、、、线性无关,则向量组( )(A) 12αα+、23αα+、34αα+、41αα+线性无关 (B) 12αα-、23αα-、34αα-、41αα-线性无关(C) 12αα+、23αα+、34αα+、41αα-线性无关 (D ) 12αα+、23αα+、34αα-、41αα-线性无关 三、(本题共3小题, 每小题5分,满分15分.)(1)设2221cos(),cos(),t x t y t t udu ⎧=⎪⎨=-⎪⎩⎰ 求dy dx 、22d y dx在t = (2) 将函数111()ln arctan 412x f x x x x +=+--展开成x 的幂级数. (3) 求sin 22sin dxx x+⎰.四、(本题满分6分)计算曲面积分2222Sxdydz z dxdy x y z +++⎰⎰,其中S 是由曲面222x y R +=及两平面,z R = (0)z R R =->所围成立体表面的外侧.五、(本题满分9分)设()f x 具有二阶连续导数,(0)0,(0)1f f '==,且2[()()][()]0xy x y f x y dx f x x y dy '+-++=为一全微分方程,求()f x 及此全微分方程的通解. 六、(本题满分8分)设()f x 在点0x =的某一领域内具有二阶连续导数,且0()lim0x f x x→=,证明级数 11()n f n∞=∑绝对收敛.七、(本题满分6分)已知点A 与B 的直角坐标分别为(1,0,0)与(0,1,1).线段AB 绕z 轴旋转一周所围成的旋转曲面为S .求由S 及两平面0,1z z ==所围成的立体体积.八、(本题满分8分)设四元线性齐次方程组()I 为12240,0,x x x x +=⎧⎨-=⎩ 又已知某线性齐次方程组()II 的通解为12(0,1,10)(1,2,2,1)k k +-.(1) 求线性方程组()I 的基础解系;(2) 问线性方程组()I 和()II 是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.九、(本题满分6分)设A 为n 阶非零方阵,*A 是A 的伴随矩阵,T A 是A 的转置矩阵,当*T A A =时,证明||0A ≠.十、填空题(本题共2小题, 每小题3分,满分6分.)(1) 已知A 、B 两个事件满足条件()()P AB P AB =,且()P A p =,则()P B =__________.(2) 设相互独立的两个随机变量X 、Y 具有同一分布律,且X 的分布律为则随机变量{}max ,Z X Y =的分布律为_______.十一、(本题满分6分)已知随机变量(,)X Y 服从二维正态分布,且X 和Y 分别服从正态分布2(1,3)N 和2(0,4)N ,X 与Y 的相关系数12XY ρ=-,设32X YZ =+,(1) 求Z 的数学期望()E Z 和方差()D Z ;(2) 求X 与Z 的相关系数XZ ρ; (3) 问X 与Z 是否相互独立?为什么?1994年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5个小题,每小题3分,满分15分.) (1)【答案】16【解析】原式变形后为“0”型的极限未定式,又分子分母在点0处导数都存在,所以连续应用两次洛必达法则,有原式20cos (sin )limsin x x x x x x →-=300sin limcos lim x x x xx x→→-=⋅ 2001cos sin 1lim lim 366x x x x x x →→-===. (由重要极限0sin lim 1x xx→=)(2)【答案】240x y +-=【解析】所求平面的法向量n 为平行于所给曲面在点(1,2,0)处法线方向的方向向量l ,取n l =,又平面过已知点(1,2,0)M .已知平面的法向量(,,)A B C 和过已知点000(,,)x y z 可唯一确定这个平面:000()()()0A x x B y y C z z -+-+-=.因点(1,2,0)在曲面(,,)0F x y z =上.曲面方程(,,)23zF x y z z e xy =-+-. 曲面在该点的法向量{}{}{}(1,2,0)(1,2,0),,2,2,14,2,022,1,0z F F F n y x e x y z ⎧⎫∂∂∂ ==-==⎨⎬∂∂∂⎩⎭, 故切平面方程为 2(1)(2)0x y -+-=, 即 240x y +-=.(3)【答案】22eπ【解析】由于混合偏导数在连续条件下与求导次序无关,为了简化运算,所以本题可以先求u y ∂∂,再求u x y ⎛⎫∂∂ ⎪∂∂⎝⎭. 2cos x u x xe y y y-∂=-∂, ()2221112(2,)(2,)2cos x y x x u u uxe x x y y x x y xπππππ-===⎛⎫∂∂∂∂∂===-⎪ ⎪∂∂∂∂∂∂∂⎝⎭ 2222((1)cos )0xx e x x e πππ-==--+=.(可边代值边计算,这样可以简化运算量.)【相关知识点】多元复合函数求导法则:如果函数(,),(,)u x y v x y ϕψ==都在点(,)x y 具有对x 及对y 的偏导数,函数(,)z f u v =在对应点(,)u v 具有连续偏导数,则复合函数((,),(,))z f x y x y ϕψ=在点(,)x y 的两个偏导数存在,且有12z z u z v u vf f x u x v x x x∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂; 12z z u z v u v f f y u y v y y y∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂. (4)【答案】42211()4R a bπ+ 【解析】很显然,根据此题的特征用极坐标变换来计算: 原式222222232222000cos sin cos sin RR d r rdr d r dr a b a b ππθθθθθθ⎛⎫⎛⎫=+=+⋅ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰⎰.注意:22220cos sin d d ππθθθθπ==⎰⎰,则 原式4422221111144R R a b a b ππ⎛⎫⎛⎫=+⋅=+⎪ ⎪⎝⎭⎝⎭. (5)【答案】111123232133312n -⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦【解析】由矩阵乘法有结合律,注意 1111,,23233Tβα⎡⎤⎛⎫⎢⎥== ⎪⎢⎥⎝⎭⎢⎥⎣⎦是一个数,而 11123111221,,2123333312T A αβ⎡⎤⎢⎥⎡⎤⎢⎥⎛⎫⎢⎥⎢⎥=== ⎪⎢⎥⎢⎥⎝⎭⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦,(是一个三阶矩阵) 于是,()()()()()()()n T T T T T T T TA αβαβαβαβαβαβαβαβ==11111232332133312n T n αβ--⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦.二、选择题(本题共5个小题,每小题3分,满分15分.)(1)【答案】(D)【解析】对于关于原点对称的区间上的积分,应该关注被积函数的奇偶性.由对称区间上奇偶函数积分的性质,被积函数是奇函数,积分区间关于原点对称,则积分为0,故0M =,且由定积分的性质,如果在区间[],a b 上,被积函数()0f x ≥,则()0 ()baf x dx a b ≥<⎰.所以 422cos 0N xdx π=>⎰, 4202cos 0P xdx N π=-=-<⎰.因而 P M N <<,应选(D ). (2)【答案】(D)【解析】(,)f x y 在点00(,)x y 连续不能保证(,)f x y 在点00(,)x y 存在偏导数00(,),x f x y '00(,)y f x y '.反之,(,)f x y 在点00(,)x y 存在这两个偏导数00(,),x f x y '00(,)y f x y '也不能保证(,)f x y 在点00(,)x y 连续,因此应选(D).二元函数(,)f x y 在点00(,)x y 处两个偏导数存在和在点00(,)x y 处连续并没有相关性.(3)【答案】(C)【解析】考查取绝对值后的级数.因2222111112222n n a a n n λ≤+<++, (第一个不等式是由2210,0,()2a b ab a b ≥≥≤+得到的.) 又21nn a ∞=∑收敛,2112n n ∞= ∑收敛,(此为p 级数:11p n n∞=∑当1p >时收敛;当1p ≤时发散.)所以2211122n n a n ∞=+∑收敛,由比较判别法,得1n ∞=收敛.故原级数绝对收敛,因此选(C). (4)【答案】(D)【解析】因为 22211cos (),1()2x xx o x e x o x --=-=,故 tan (1cos )(0)a x b x ax a +-≠,2ln(12)(1)2 (0)x c x d e cx c --+--≠,因此,原式左边0lim222x ax acx c→====--原式右边,4a c ⇒=-.当0,0a c =≠时,极限为0;当0,0a c ≠=时,极限为∞,均与题设矛盾,应选(D). 【相关知识点】1.无穷小的比较:设在同一个极限过程中,(),()x x αβ为无穷小且存在极限 ()lim.()x l x αβ= (1) 若0,l ≠称(),()x x αβ在该极限过程中为同阶无穷小; (2) 若1,l =称(),()x x αβ在该极限过程中为等价无穷小,记为()()x x αβ;(3) 若0,l =称在该极限过程中()x α是()x β的高阶无穷小,记为()()()x o x αβ=.若()lim()x x αβ不存在(不为∞),称(),()x x αβ不可比较. 2. 无穷小量的性质:当0x x →时,(),()x x αβ为无穷小,则()()()()(())x x x x o x αβαββ⇔=+.(5)【答案】(C)【解析】这一类题目应当用观察法.若不易用观察法时可转为计算行列式. (A):由于()()()()122334410αααααααα+-+++-+=,所以(A)线性相关. (B):由于()()()()122334410αααααααα-+-+-+-=,所以(B )线性相关.对于(C ),实验几组数据不能得到0时,应立即计算由α的系数构成的行列式,即100111002001100011-=≠,由行列式不为0,知道(C)线性无关.故应选(C). 当然,在处理(C)有困难时,也可来看(D ),由12233441()()()()0αααααααα+-++-+-=,知(D)线性相关,于是用排除法可确定选(C). 【相关知识点】12,,,s ααα线性相关的充分必要条件是存在某(1,2,,)i i s α=可以由111,,,,i i s αααα-+线性表出.12,,,s ααα线性无关的充分必要条件是任意一个(1,2,,)i i s α=均不能由111,,,,i i s αααα-+线性表出.三、(本题共3小题, 每小题5分,满分15分.)(1)【解析】dy dy dt dydx dtdtdx dt dx =⋅=222221cos 2sin cos 22(0),2sin t t t t t t t y t t t x t t--⋅'===>'- 同理 2()12sin x txx t y y x t t''''=='-, 代入参数值t =则xt y '=xxt y ''=. 【相关知识点】1.复合函数求导法则:如果()u g x =在点x 可导,而()y f x =在点()u g x =可导,则复合函数[]()y f g x =在点x 可导,且其导数为()()dyf ug x dx''=⋅ 或 dy dy du dx du dx =⋅. 2.对积分上限的函数的求导公式:若()()()()t t F t f x dx βα=⎰,()t α,()t β均一阶可导,则[][]()()()()()F t t f t t f t ββαα'''=⋅-⋅.(2)【解析】111()ln(1)ln(1)arctan 442f x x x x x =+--+-. 先求()f x '的展开式.将()f x 微分后,可得简单的展开式,再积分即得原函数的幂级数展开.所以由2(1)(1)(1)(1)1,2!!nn x x x x n ααααααα---++=+++++(11)x -<<该级数在端点1x =±处的收敛性,视α而定.特别地,当1α=-时,有2311(1),1n n x x x x x =-+-++-++ (11)x -<< 2311,1n x x x x x =++++++- (11)x -<< 得 2221111111111()114141212121f x x x x x x '=++-=+-+-+-+44401111(||1)1n n n n x x x x ∞∞===-=-=<-∑∑, 积分,由牛顿-莱布尼茨公式得4140011()(0)() (||1)41n xx nn n x f x f f x dx t dt x n +∞∞=='=+==<+∑∑⎰⎰.(3)【解析】方法1:利用三角函数的二倍角公式sin 22sin cos ααα=⋅,并利用换元积分,结合拆项法求积分,得sin 22sin 2sin (cos 1)dx dxx x x x =++⎰⎰22sin 11cos 2sin (cos 1)2(1)(1)xdx x u du x x u u ==-+-+⎰⎰ (22sin 1cos x x =-)221(1)(1)1112()4(1)(1)811(1)u u du du u u u u u ++-=-=-++-+-++⎰⎰ 12ln |1|ln |1|8(1)u u C u ⎡⎤=--+++⎢⎥+⎣⎦()()12ln 1cos ln 1cos 81cos x x C x ⎡⎤=--+++⎢⎥+⎣⎦, 其中C 为任意常数.方法2:换元cos x u =后,有原式22sin 12sin (cos 1)2sin (cos 1)2(1)(1)dx xdx dux x x x u u ===-++-+⎰⎰⎰.用待定系数法将被积函数分解:221(1)(1)11(1)A B Du u u u u =++-+-++22()(2)()(1)(1)A B u A D u A B D u u -+-+++=-+,1120,421A B A D A B D A B D -=⎧⎪⇒-=⇒===⎨⎪++=⎩.于是,2111212()ln 1ln 1811(1)81du u u C u u u u ⎡⎤-++=--+++⎢⎥-+++⎣⎦⎰原式= ()()12ln 1cos ln 1cos 81cos x x C x ⎡⎤=--+++⎢⎥+⎣⎦.四、(本题满分6分)【解析】求第二类曲面积分的基本方法:套公式将第二类曲面积分化为第一类曲面积分,再化为二重积分,或用高斯公式转化为求相应的三重积分或简单的曲面积分.这里曲面块的个数不多,积分项也不多,某些积分取零值,如若∑垂直yOz 平面,则0Pdydz ∑=⎰⎰.化为二重积分时要选择投影平面,注意利用对称性与奇偶性.先把积分化简后利用高斯公式也很方便的.方法1:注意 22220Sz dxdyx y z =++⎰⎰,(因为S 关于xy 平面对称,被积函数关于z 轴对称) 所以 222SxdydzI x y z =++⎰⎰. S 由上下底圆及圆柱面组成.分别记为123,,S S S . 12,S S 与平面yOz 垂直⇒122222220s s xdydz xdydzx y z x y z ==++++⎰⎰⎰⎰. 在3S 上将222x y R +=代入被积表达式⇒322s xdydzI R z =+⎰⎰. 3S 在yz 平面上投影区域为:,yz D R y R R z R -≤≤-≤≤,在3S上,x =3S 关于yz 平面对称,被积函数对x 为奇函数,可以推出22002222yzR R D dz I R z ==⨯⨯ +⎰⎰ 2201arctan 42Rz R R R R ππ1=8⋅⋅=.方法2:S 是封闭曲面,它围成的区域记为Ω,记 22SxdydzI R z =+⎰⎰. 再用高斯公式得 222222()1R R D z x dxdyI dV dV dz x R z R z R z -ΩΩ∂⎛⎫=== ⎪∂+++⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰ 22221122RRdz R R z ππ==+⎰(先一后二的求三重积分方法) 其中()D z 是圆域:222x y R +≤.【相关知识点】高斯公式:设空间闭区域Ω是由分片光滑的闭曲面∑所围成,函数(,,)P x y z 、(,,)Q x y z 、(,,)R x y z 在Ω上具有一阶连续偏导数,则有,P Q R dv Pdydz Qdzdx Rdxdy x y z Ω∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰或()cos cos cos ,P Q R dv P Q R dS x y z αβγΩ∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰这里∑是Ω的整个边界曲面的外侧,cos α、cos β、cos γ是∑在点(,,)x y z 处的法向量的方向余弦.上述两个公式叫做高斯公式.五、(本题满分9分) 【解析】由全微分方程的条件,有2[()()][()]xy x y f x y f x x y y x∂∂'+-=+∂∂,即 22()()2x xy f x f x xy ''+-=+,亦即 2()()f x f x x ''+=.因而是初值问题 200,0,1,x x y y x y y ==''⎧+=⎪⎨'==⎪⎩ 的解,此方程为常系数二阶线性非齐次方程,对应的齐次方程的特征方程为210r +=的根为1,2r i =±,原方程右端202x x e x =⋅中的0λ=,不同于两个特征根,所以方程有特解形如 2Y Ax Bx C =++. 代入方程可求得 1,0,2A B C ===,则特解为22x -.由题给(0)0,(0)1f f '==,解得 2()2cos sin 2f x x x x =++-.()f x 的解析式代入原方程,则有22[2(2cos sin )][22sin cos ]0xy y x x y dx x y x x x dy +-+++-+=.先用凑微分法求左端微分式的原函数:222211()2()(2sin cos )(2sin cos )022y dx x dy ydx xdy yd x x x x dy +++----=, 221(2(cos 2sin ))02d x y xy y x x ++-=.ﻫ其通解为 2212(cos 2sin )2x y xy y x x C ++-= 其中C 为任意常数. 【相关知识点】1.二阶线性非齐次方程解的结构:设*()y x 是二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解.()Y x 是与之对应的齐次方程 ()()0y P x y Q x y '''++=的通解,则*()()y Y x y x =+是非齐次方程的通解.2. 二阶常系数线性齐次方程通解的求解方法:对于求解二阶常系数线性齐次方程的通解()Y x ,可用特征方程法求解:即()()0y P x y Q x y '''++=中的()P x 、()Q x 均是常数,方程变为0y py qy '''++=.其特征方程写为20r pr q ++=,在复数域内解出两个特征根12,r r ; 分三种情况:(1) 两个不相等的实数根12,r r ,则通解为1212;rx r x y C eC e =+(2) 两个相等的实数根12r r =,则通解为()112;rxy C C x e =+(3) 一对共轭复根1,2r i αβ=±,则通解为()12cos sin .xy e C x C x αββ=+其中12,C C 为常数.3.对于求解二阶线性非齐次方程()()()y P x y Q x y f x '''++=的一个特解*()y x ,可用待定系数法,有结论如下:如果()(),x m f x P x e λ=则二阶常系数线性非齐次方程具有形如*()()k xm y x x Q x e λ=的特解,其中()m Q x 是与()m P x 相同次数的多项式,而k 按λ不是特征方程的根、是特征方程的单根或是特征方程的重根依次取0、1或2.如果()[()cos ()sin ]xl n f x e P x x P x x λωω=+,则二阶常系数非齐次线性微分方程()()()y p x y q x y f x '''++=的特解可设为*(1)(2)[()cos ()sin ]k x m m y x e R x x R x x λωω=+,其中(1)()m R x 与(2)()m R x 是m 次多项式,{}max ,m l n =,而k 按i λω+(或i λω-)不是特征方程的根、或是特征方程的单根依次取为0或1. 六、(本题满分8分) 【解析】0()lim0x f x x→=表明0x →时()f x 是比x 高阶的无穷小,若能进一步确定()f x 是x 的p 阶或高于p 阶的无穷小,1,p >从而1()f n也是1n的p 阶或高于p 阶的无穷小,这就证明了级数11()n f n∞=∑绝对收敛. 方法一:由0()lim0x f x x→=及()f x 的连续性得知(0)0,(0)0f f '==,再由()f x 在点0x =的某一领域内具有二阶连续导数以及洛必达法则,20()lim x f x x →为“00”型的极限未定式,又分子分母在点0处导数都存在,连续运用两次洛必达法则,有2000()()()1lim lim lim (0)222x x x f x f x f x f x x →→→'''''=== 2()1lim(0)2x f x f x →''⇒=. 由函数极限与数列极限的关系 21()1lim(0)12n f nf n →+∞''⇒=. 因211n n ∞=∑收敛11()n f n ∞=⇒∑收敛,即 11()n f n ∞=∑绝对收敛.方法二:由0()lim0x f x x→=得知(0)0,(0)0f f '==,可用泰勒公式来实现估计.()f x 在点0x =有泰勒公式:2211()(0)(0)()()(01,[,])22f x f f x f x x f x x x θθθδδ'''''= ++=<<∈- 因()f x 在点0x =的某一领域内具有二阶连续导数,0,()f x δ''⇒∃>在[,]x δδ∈-有界,即0M ∃>,有|()|,[,]f x M x δδ''≤∈-2211()(),[,]22f x f x x Mx x θδδ''⇒=≤∈-. 对此0δ>,,N n N ∃>时,211110()2f M n n nδ<<⇒≤. 又211n n ∞=∑收敛11()n f n ∞=⇒∑收敛,即 11()n f n ∞=∑绝对收敛.【相关知识点】正项级数的比较判别法:设1nn u∞=∑和1nn v∞=∑都是正项级数,且lim,nn nv A u →∞=则⑴ 当0A <<+∞时,1nn u∞=∑和1nn v∞=∑同时收敛或同时发散;⑵ 当0A =时,若1nn u∞=∑收敛,则1nn v∞=∑收敛;若1nn v∞=∑发散,则1nn u∞=∑发散;⑶ 当A =+∞时,若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散.七、(本题满分6分)【解析】方法1:用定积分.设高度为z 处的截面z D 的面积为()S z ,则所求体积1()V S z dz =⎰.,A B 所在的直线的方向向量为()()01,10,101,1,1---=-,且过A 点,所以,A B 所在的直线方程为 1111x y z-== - 或 1x z y z =-⎧⎨=⎩. 截面z D 是个圆形,其半径的平方 22222(1)R x y z z =+=-+,则面积222()[(1)]S z R z z ππ==-+,由此 1220[(1)]V z z dz π=-+⎰()120122z z dz π=-+⎰123023z z z π⎛⎫=-+ ⎪⎝⎭23π=.方法2:用三重积分.2123V dV d dz ππθΩ===⎰⎰⎰⎰⎰, 或者 1122[(1)]zD V dV dz d z z dz σπΩ===-+⎰⎰⎰⎰⎰⎰⎰ ()120122z z dz π=-+⎰123023z z z π⎛⎫=-+ ⎪⎝⎭23π=.八、(本题满分8分)【解析】(1)由已知,()I 的系数矩阵,11000101A ⎡⎤=⎢⎥-⎣⎦.由于()2,n r A -=所以解空间的维数是2.取34,x x 为自由变量,分别令()()()34,1,0,0,1x x =,求出0Ax =的解. 故()I 的基础解系可取为 (0,0,1,0),(1,1,0,1)-. (2)方程组()I 和()II 有非零公共解.将()II 的通解 1221231242,2,2,x k x k k x k k x k =-=+=+=代入方程组()I ,则有212121222020k k k k k k k k -++=⎧⇒=-⎨+-=⎩. 那么当120k k =-≠时,向量121(0,1,1,0)(1,2,2,1)(1,1,1,1)k k k +-=---是()I 与()II 的非零公共解.九、(本题满分6分)【解析】证法一:由于 *TA A =,根据*A 的定义有(,1,2,,)ij ij A a i j n =∀=,其中ij A 是行列式||A 中ij a 的代数余子式.由于0A ≠,不妨设0ij a ≠,那么2222112212||0ij i i i i in in i i in A a A a A a A a a a a =+++=+++≥>,故 ||0A ≠.证法二:(反证法)若||0A =,则*T AA AA ==||0A E =. 设A 的行向量为(1,2,,)i i n α=,则 222120T i i i i in a a a αα=+++= (1,2,,)i n =.于是 12(,,,)0i i i in a a a α== (1,2,,)i n =.进而有0A =,这与A 是非零矩阵相矛盾.故||0A ≠.十、填空题(本题共2小题, 每小题3分,满分6分.)(1)【解析】利用随机事件的概率运算性质进行化简.由概率的基本公式(广义加法公式),有()()1()P AB P A B P A B ==-1[()()()]P A P B P AB =-+- 1()()()P A P B P AB =--+.因题目已知 ()()P AB P AB =,故有()()1P A P B +=,()1()1P B P A p =-=-.(2)【解析】由于X 、Y 相互独立且同分布,只能取0、1两个数值,易见随机变量{}max ,Z X Y =只取0与1两个可能的值,且{}{}{}0max ,0P Z P X Y ==={}{}{}10,0004P X Y P X P Y =====⋅==, {}{}31104P Z P Z ==-==. 所以随机变量{}max ,Z X Y =的分布律为:十一、(本题满分6分)【解析】此题的第一小问是求数学期望()E Z 和方差()D Z ,是个常规问题;(2)求相关系数XZ ρ,关键是计算X 与Z 的协方差;(3)考查相关系数为零与相互独立是否等价. (1) 由2(1,3)XN ,2(0,4)Y N ,知()1,()9,()0,()16E X D X E Y D Y ====.由数学期望和方差的性质:()()()E aX bY c aE X bE Y c ++=++,22()()()2Cov(,)D aX bY c a D X b D Y ab X Y ++=++,其中,,a b c 为常数.得 111,323EZ EX EY =+= 111Cov(,)943DZ DX DY X Y =++111916943XY ρ=⨯+⨯+115()34 3.32=+⨯-⨯⨯=(2) 因为11Cov(,)Cov(,)32X Z X X Y =+11Cov(,)Cov(,)32X X X Y =+2113(6)032=⋅+-= 所以 0XZ ρ==.(3) 由于(,)X Y 服从二维正态分布,则其线性组合构成的随机变量也服从二维正态分布,而32X YZ =+,0X X Y =+,故X 和Z 都是其线性组合,则(,)X Z 服从二维正态分布,根据 0XZ ρ==,所以X 与Z 是相互独立的.。

相关文档
最新文档