数学建模
数学建模简介及数学建模常用方法

数学建模简介及数学建模常用方法数学建模,简单来说,就是用数学的语言和方法来描述和解决实际问题的过程。
它就像是一座桥梁,将现实世界中的复杂问题与数学的抽象世界连接起来,让我们能够借助数学的强大工具找到解决问题的有效途径。
在我们的日常生活中,数学建模无处不在。
比如,当我们规划一次旅行,考虑路线、时间和费用的最优组合时;当企业要决定生产多少产品才能实现利润最大化时;当交通部门设计道路规划以减少拥堵时,这些背后都有着数学建模的身影。
那么,数学建模具体是怎么一回事呢?数学建模首先要对实际问题进行观察和分析,明确问题的关键所在,确定需要考虑的因素和变量。
然后,根据这些因素和变量,运用数学知识建立相应的数学模型。
这个模型可以是一个方程、一个函数、一个图表,或者是一组数学关系。
接下来,通过对模型进行求解和分析,得到理论上的结果。
最后,将这些结果与实际情况进行对比和验证,如果结果不符合实际,就需要对模型进行修正和改进,直到得到满意的结果。
数学建模的过程并不是一帆风顺的,往往需要不断地尝试和调整。
但正是这种挑战,让数学建模充满了魅力和乐趣。
接下来,让我们了解一下数学建模中常用的一些方法。
第一种常用方法是线性规划。
线性规划是研究在一组线性约束条件下,如何使一个线性目标函数达到最优的数学方法。
比如说,一个工厂要生产两种产品,每种产品需要不同的资源和时间,而工厂的资源和时间是有限的,那么如何安排生产才能使利润最大呢?这时候就可以用线性规划来解决。
第二种方法是微分方程模型。
微分方程可以用来描述一些随时间变化的过程,比如人口的增长、传染病的传播、物体的运动等。
通过建立微分方程,并求解方程,我们可以预测未来的发展趋势,从而为决策提供依据。
第三种是概率统计方法。
在很多情况下,我们面临的问题具有不确定性,比如市场需求的波动、天气的变化等。
概率统计方法可以帮助我们处理这些不确定性,通过收集和分析数据,估计概率分布,进行假设检验等,为决策提供风险评估和可靠性分析。
什么是数学建模?

1. 什么是数学建模?
数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。
我们也可以这样直观地理解这个概念:数学变成物理学家,生物学家,经济学家甚至心理学家等等的过程。
2. 什么是数学模型?
数学模型是指用数学语言描述了的实际事物或现象。它一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
3. 为什么要建立数学模型?
在科学领域中,数学因为其众所周知的准确而成为研究者们最广泛用于交流的语言--因为他们普遍相信,自然是严格地演化着的,尽管控制演化的规律可以很复杂甚至是混沌的。因此,人们常对实际事物建立种种数学模型以期通过对该模型的考察来描述,解释,预计或分析出与实际事物相关的规律。
数学建模的主要建模方法

数学建模的主要建模方法数学建模是指运用数学方法和技巧对复杂的实际问题进行抽象、建模、分析和求解的过程。
它是解决实际问题的一个重要工具,在科学研究、工程技术和决策管理等领域都有广泛的应用。
数学建模的主要建模方法包括数理统计法、最优化方法、方程模型法、概率论方法、图论方法等。
下面将分别介绍这些主要建模方法。
1.数理统计法:数理统计法是基于现有的数据进行概率分布的估计和参数的推断,以及对未知数据的预测。
它适用于对大量数据进行分析和归纳,提取有用的信息。
数理统计法可以通过描述统计和推断统计两种方式实现。
描述统计主要是对数据进行可视化和总结,如通过绘制直方图、散点图等图形来展示数据的分布特征;推断统计则采用统计模型对数据进行拟合,进行参数估计和假设检验等。
2.最优化方法:最优化方法是研究如何在给定的约束条件下找到一个最优解或近似最优解的方法。
它可以用来寻找最大值、最小值、使一些目标函数最优等问题。
最优化方法包括线性规划、非线性规划、整数规划、动态规划等方法。
这些方法可以通过建立数学模型来描述问题,并通过优化算法进行求解。
3.方程模型法:方程模型法是通过建立数学方程或函数来描述问题,并利用方程求解的方法进行求解。
这种方法适用于可以用一些基本的方程来描述的问题。
方程模型法可以采用微分方程、代数方程、差分方程等不同类型的方程进行建模。
通过求解这些方程,可以得到问题的解析解或数值解。
4.概率论方法:概率论方法是通过概率模型来描述和分析不确定性问题。
它可以用来处理随机变量、随机过程和随机事件等问题。
概率论方法主要包括概率分布、随机变量、概率计算、条件概率和贝叶斯推理等内容。
利用概率论的方法,可以对问题进行建模和分析,从而得到相应的结论和决策。
5.图论方法:图论方法是研究图结构的数学理论和应用方法。
它通过把问题抽象成图,利用图的性质和算法来分析和求解问题。
图论方法主要包括图的遍历、最短路径、最小生成树、网络流等内容。
什么是数学建模

什么是数学建模数学建模是指运用数学的理论、方法和技术,以模型为基础,通过对实际问题进行抽象、建模、求解和验证,为实际问题的研究和决策提供可靠依据的过程。
数学建模可以帮助我们更好地理解、分析、解决实际问题。
它是一种综合运用数学、物理、计算机科学和其他相关学科知识的跨学科研究领域,可以应用于各个领域的问题,包括自然科学、工程技术、社会科学、医学、金融等。
数学建模的过程一般包括以下几个步骤:1. 定义问题和目标。
在这个阶段,我们需要对实际问题进行全面的了解,明确研究的目标和需要解决的问题是什么,确定问题的限制和条件。
2. 建立模型。
在这个阶段,我们需要根据实际问题的特点和需要解决的问题,选择适当的模型类型,建立数学模型。
模型应该尽可能简明明了,能够比较好地描述实际问题,并且便于求解。
3. 求解模型。
在这个阶段,我们需要根据所建立的模型,采用数学和计算机科学等相关方法,对模型进行求解,得到具体的结果和解决方案。
4. 验证模型。
在这个阶段,我们需要根据模型的求解结果,进行模型的验证。
验证模型的正确性和可靠性,以及对模型的结果进行误差分析和敏感性分析,以保证模型的可行性和实用性。
5. 应用模型。
在这个阶段,我们需要将模型的结果应用于实际问题的解决中。
根据模型的结果,提出相应的决策和措施,实现问题的解决和优化。
数学建模具有广泛的应用领域和重要性。
在物理、化学、生物学和工程技术等领域,数学建模可以帮助我们解决复杂的系统问题,如气候模型、流体力学模型、生物进化模型等。
在社会科学领域,数学建模可以应用于经济学、管理学、社会学等领域,对社会现象进行建模和预测,如人口增长模型、市场模型、网络模型等。
在医学领域,数学建模可以帮助我们研究疾病的发展和治疗方法,如病毒传播模型、治疗模型等。
在金融领域,数学建模可以帮助我们分析风险和投资策略,如股票价格模型、期权评估模型等。
总之,数学建模是一种重要的跨学科研究领域,以模型为基础,运用数学和相关学科知识,对实际问题进行抽象、建模、求解和验证,为实际问题的研究和决策提供可靠依据,具有广泛的应用领域和重要性。
什么是数学建模3篇

什么是数学建模第一篇:数学建模基础数学建模是指利用数学方法及其它学科的知识和技术,对实际问题进行抽象、分析和求解的一种综合性学科。
数学建模的目的是通过对实际问题的建模进行定量分析和解决,从而为实际问题提供可行的解决方案,为现代社会的发展提供技术和理论支持。
数学建模可以分为三个阶段:问题分析阶段、建模阶段和求解阶段。
在问题分析阶段,需要对实际问题进行详细的调查和分析,了解实际问题的背景以及运作模式。
在建模阶段,需要对实际问题进行抽象、量化并建立数学模型,确定模型的参数、变量及其相互关系。
在求解阶段,需要运用数学方法和技术对建立的数学模型进行求解,并给出实际问题的解决方案。
数学建模是一门综合性的学科,需要掌握数学、物理学、工程学等多学科的知识。
在数学方面,需要熟练掌握微积分、线性代数、统计学等数学基础知识,并能够灵活运用这些知识;在其它学科方面,需要了解相关学科的基本知识和应用技术,如电子技术、通信技术等。
此外,数学建模还需要高超的计算机应用技术,能够用计算机模拟实际问题的过程,并对其进行分析和求解。
总之,数学建模是一门综合性、学科交叉性强的学科,对全面培养学生的综合素质提出了更高的要求。
通过学习数学建模,可以培养学生的创新思维能力和解决实际问题的能力,提高综合应用数学知识解决实际问题的能力,并为未来走向各个领域和专业打下坚实基础。
第二篇:数学建模与实际应用数学建模是数学和实际应用之间的桥梁,主要应用于工程、自然科学和社会科学等领域。
在工程领域,数学建模可以应用于各种工程设计和工程管理中,如市政供水、排水、高速公路等。
在自然科学领域,数学建模可以应用于气象、生态学、地理学、天文学等领域,如预测天气、分析生态系统破坏的原因等。
而在社会科学领域,数学建模可以应用于经济、管理学、政治学等领域中,如预测股票市场走势、企业管理优化等。
数学建模与实际应用密不可分,具有卓越的应用价值和广阔的应用前景。
随着科技和工业的不断发展,实际问题的规模和复杂性也在不断提高,对数学建模提出了更高的要求。
数学专业的数学建模

数学专业的数学建模数学建模是数学专业中重要的一门课程,它通过数学的方法和技巧解决实际问题。
本文将介绍数学建模的定义、应用领域、建模过程以及数学专业学生在数学建模中的作用。
一、数学建模的定义数学建模是将实际问题转化为数学问题,并应用数学方法和工具解决这些问题的过程。
它是数学与现实世界之间的桥梁,通过数学的抽象和建模能力,解决现实问题,提高生产效益和科学研究水平。
二、数学建模的应用领域数学建模广泛应用于各个领域,包括经济、生态、环境、物理、工程等。
在经济领域,数学建模可以帮助企业分析市场需求,制定最优营销策略;在生态领域,数学建模可以评估生物多样性,分析环境问题;在物理领域,数学建模可以解释物质运动规律;在工程领域,数学建模可以优化工艺流程,提高工程效率。
三、数学建模的过程数学建模的过程一般包括问题的分析、建立数学模型、求解模型和对结果的验证。
首先,需要对实际问题进行充分的分析,明确问题的要求和限制条件;其次,根据问题的特点,运用数学知识建立数学模型,将实际问题抽象为数学符号和方程;然后,对建立的数学模型进行求解,可以使用数值计算、优化算法等方法得到解析结果;最后,对结果进行验证,比较实际情况和模型预测,评估模型的准确性和可行性。
四、数学专业学生在数学建模中的作用数学专业学生在数学建模中发挥着重要的作用。
首先,他们具备扎实的数学基础和数学思维能力,能够快速理解和应用数学方法解决问题;其次,数学专业学生熟练掌握常用的数学工具和软件,能够高效地进行数学计算和模型求解;此外,他们对数学理论有深入的研究,能够通过对数学模型的优化和改进提升模型的准确性和可靠性。
总结:数学建模作为数学专业中重要的课程,对于培养学生的数学思维和解决实际问题的能力具有重要意义。
通过数学建模,学生能够将所学的数学知识应用到实际中,提升自己的综合素质。
希望广大学生能够重视数学建模的学习,不断提高自己的数学建模能力,为社会的发展做出贡献。
数学建模方法大汇总

数学建模方法大汇总数学建模是数学与实际问题相结合,通过建立数学模型来解决实际问题的一种方法。
在数学建模中,常用的方法有很多种,下面将对常见的数学建模方法进行大汇总。
1.描述性统计法:通过总结、归纳和分析数据来描述现象和问题,常用的统计学方法有平均值、标准差、频率分布等。
2.数据拟合法:通过寻找最佳拟合曲线或函数来描述和预测数据的规律,常用的方法有最小二乘法、非线性优化等。
3.数理统计法:通过样本数据对总体参数进行估计和推断,常用的方法有参数估计、假设检验、方差分析等。
4.线性规划法:建立线性模型,通过线性规划方法求解最优解,常用的方法有单纯形法、对偶理论等。
5.整数规划法:在线性规划的基础上考虑决策变量为整数或约束条件为整数的情况,常用的方法有分支定界法、割平面法等。
6.动态规划法:通过递推关系和最优子结构性质建立动态规划模型,通过计算子问题的最优解来求解原问题的最优解,常用的方法有最短路径算法、最优二叉查找树等。
7.图论方法:通过图的模型来描述和求解问题,常用的方法有最小生成树、最短路径、网络流等。
8.模糊数学法:通过模糊集合和隶属函数来描述问题,常用的方法有模糊综合评价、模糊决策等。
9.随机过程法:通过概率论和随机过程来描述和求解问题,常用的方法有马尔可夫过程、排队论等。
10.模拟仿真法:通过构建系统的数学模型,并使用计算机进行模拟和仿真来分析问题,常用的方法有蒙特卡洛方法、事件驱动仿真等。
11.统计回归分析法:通过建立自变量与因变量之间的关系来分析问题,常用的方法有线性回归、非线性回归等。
12.优化方法:通过求解函数的最大值或最小值来求解问题,常用的方法有迭代法、梯度下降法、遗传算法等。
13.系统动力学方法:通过建立动力学模型来分析系统的演化过程,常用的方法有积分方程、差分方程等。
14.图像处理方法:通过数学模型和算法来处理和分析图像,常用的方法有小波变换、边缘检测等。
15.知识图谱方法:通过构建知识图谱来描述和分析知识之间的关系,常用的方法有图论、语义分析等。
数学建模是什么

数学建模是什么
数学建模是指利用数学工具和方法分析和解决实际问题的过程,是一种跨学科的综合性应用科学研究方法。
数学建模的基本步骤包括:问题建模、假设、模型的构建、模型求解和模型评价。
在这个过程中,数学建模的核心是模型的构建和求解,其中模型的构建需要理解实际问题的基本特征和数学方法的应用,而模型求解则需要掌握数学分析、数值计算等技能和方法。
数学建模的应用范围非常广泛,包括但不限于自然科学、社会科学、经济学、工程学等领域的问题。
数学建模在现实生活中的应用包括:企业生产、物流配送、城市交通规划、自然资源评估、环境保护、金融、医学等各个领域。
数学建模的方法多种多样,常见的数学方法包括:微积分、线性代数、概率论、统计学、优化理论等。
通过对实际问题的建模、数学方法的应用和模型求解的计算和分析,数学建模可进一步为决策提供科学依据和参考。
数学建模的主要特点是模型化思维、跨学科交叉和创新性思维。
在这个过程中,数学建模要求研究者对问题进行深入的分析和研究,要对数学方法的应用有较大的理解和掌握,并且要结合实际考虑模型的可行性。
数学建模的创新性思维则要求研究者在模型的构建和求解中体现出一定的创新性和思维深度。
无论是学术界还是实际应用领域,数学建模的应用都已经深入到各个角落。
在数学建模中,数学是一种工具性语言,
而模型则是实际问题的一种映射。
数学建模不仅促进了数学研究和应用之间的相互促进和发展,还连接了传统学科和新兴学科之间的桥梁,推动了知识的跨领域传播和交流。
数学建模有哪些方法

数学建模有哪些方法
数学建模是指将实际问题用数学的方法进行描述和分析的过程。
常见的数学建模方法有以下几种:
1. 形式化建模:将实际问题抽象成数学模型,通过符号和公式的形式进行描述和求解。
2. 统计建模:利用统计学的方法对数据进行收集、整理和分析,从中提取规律和模式,对未知的情况进行预测和决策。
3. 数值模拟:利用计算机和数值方法对问题进行模拟和求解,通过近似计算得到结果。
4. 最优化建模:通过建立优化模型,寻找使目标函数达到最大或最小值的最优解。
5. 离散建模:将连续的问题离散化,转化为离散的数学模型进行分析和求解。
6. 动态建模:对问题进行时间序列的分析和建模,预测未来的变化和趋势。
7. 图论建模:将问题抽象成图的形式,利用图的相关理论和算法进行分析和求解。
8. 概率建模:利用概率论的方法对问题进行建模和分析,从中推断出一些未知的情况。
以上是一些常见的数学建模方法,具体的方法选择要根据实际问题的特点和要求进行判断和决策。
数学建模的概念

数学建模的概念数学建模是指将现实世界中的问题,通过数学语言和技术进行分析、表述、求解的过程。
它是数学与应用学科相结合的一项重要工作。
数学建模包括以下三个阶段:第一、问题的数学化,即将实际问题转化为符合数学语言和数学规律的数学问题;第二、建立数学模型,根据数学问题的特性和问题的需求建立数学模型,确定数学模型中的各个参数;第三、求解数学模型,利用数学方法和计算机技术进行建模求解,从而给出实际问题的数值解或者给出实际问题的变化规律。
数学建模在解决实际问题中具有重要意义。
首先,它能够帮助人们对实际问题进行深入的分析和理解,将问题形式化,从而更好地理解问题的本质和内在规律。
其次,它可以为实际问题提供更加准确、可靠的解决方案,并且在求解问题中提高效率,降低成本。
最重要的是,数学建模还能够帮助人们预测问题发展的趋势,提前做预防和控制,从而减少潜在风险和代价。
在数学建模的过程中,需要注意以下几个方面:一、正确理解实际问题。
这是数学建模的前提和基础。
要深入理解问题的背景、目的、约束条件以及关键因素,从而确定问题的数学表达方式和求解方法。
二、合理选择数学模型。
数学模型一是根据实际问题的特点和要求,二是根据数学方法和工具的可行性与有效性的考虑,进行选择。
建立的数学模型应当简单明了,能够反映实际问题的本质,准确捕捉关键因素的变化趋势,并且方便求解和分析。
三、确定数学模型的参数。
参数的选择应该考虑模型的可靠性和准确性,必须要有实际意义,并且需要根据实际数据和情况进行校正和调整。
四、有效求解数学模型。
为了提高效率和准确性,需要选择合适的数学工具和计算机软件,并且要按照求解计划进行前期数据处理、模型运行、结果验证等多个环节。
总之,数学建模是一项综合性的工作,需要涉及到多个学科和领域的知识。
在实际工作中,需要有一定的数学知识和操作技能,并且要具备对实际问题的深入理解、清晰思路、认真负责的态度。
这样才能够将数学建模发挥出其最大的应用价值。
什么叫数学建模:

什么叫数学建模:数学建模指的是,利用数学方法和理论对现实问题进行描述、分析和解决的过程。
这种过程需要数学、自然科学、工程技术等学科的知识和技能,同时需要对现实问题的深入理解和实地调查。
数学建模在解决现实问题方面起着非常重要的作用,尤其是涉及到科学、工程、经济和社会等各个领域。
数学建模可以帮助人们更好地理解问题的本质和特征,从而提供更精确和有效的解决方案。
数学建模的过程可以分为以下几个步骤:1.问题描述。
将现实问题转化为数学问题,确定问题的目标、限制条件、变量等。
2.建立模型。
通过分析问题的本质和特征,选择合适的数学方法和理论,建立数学模型。
3.求解模型。
采用数学计算方法和技术,对模型进行求解和优化,得出问题的解决方案。
4.模型验证。
将建立的模型与实际情况进行比较和验证,检验模型的有效性和可行性。
5.预测和应用。
根据问题的特点,应用建立好的模型进行预测和实际应用。
数学建模在现代科学技术和社会发展中扮演着至关重要的角色。
它可以帮助人们更好地理解复杂的现实问题,并提供科学有效的解决方案。
同时,数学建模也推动了数学学科的发展和应用。
在应用领域,数学建模被广泛应用于车辆运输、环境保护、金融投资、医疗卫生、城市规划等多个方面。
例如,在车辆运输领域,数学建模可以在路面拥堵、车辆行驶路径、节能减排等方面提供解决方案;在环境保护领域,数学建模可以针对大气污染、水质污染等问题提供有效的控制策略。
总之,数学建模是一种非常有价值的方法,它能够帮助人们更好地理解问题、提供科学有效的解决方案,是现代科学技术和社会发展中不可或缺的重要工具。
数学建模知识点总结

数学建模知识点总结一、数学建模的基本概念数学建模是指利用数学方法和技术对实际问题进行数学化描述和求解的过程。
数学建模的核心是将实际问题抽象化为数学模型,并通过数学方法对模型进行求解,从而得出对实际问题的合理解释和解决方案。
二、数学建模的基本步骤1. 问题的分析与建模:对实际问题进行深入分析,明确问题的目标和约束条件,然后将问题转化为数学模型的形式。
数学模型可以是代数方程、差分方程、微分方程、优化问题等。
2. 模型的求解:根据具体问题的特点,选择合适的数学方法和技术对模型进行求解。
常见的数学方法包括数值计算、概率统计、优化算法等。
3. 模型的验证与评估:对求解得到的数学模型进行验证,检验模型的有效性和可行性。
可以通过实际数据的拟合度、模型的稳定性等方面来评估模型的质量。
4. 结果的解释与应用:将数学模型的求解结果进行解释和分析,得出对实际问题的合理解释和解决方案。
根据实际需求,可以对模型进行调整和优化,进一步提高模型的准确性和实用性。
三、常见的数学建模方法和技术1. 线性规划:线性规划是一种优化方法,用于解决目标函数线性、约束条件线性的优化问题。
通过线性规划可以求解最大化或最小化目标函数的最优解,广泛应用于生产调度、资源分配等领域。
2. 非线性规划:非线性规划是一种优化方法,用于解决目标函数非线性、约束条件非线性的优化问题。
非线性规划相比线性规划更加复杂,但可以处理更为实际的问题,如经济增长模型、能源消耗模型等。
3. 微分方程模型:微分方程模型是一种描述系统演化过程的数学模型,广泛应用于物理、生物、经济等领域。
通过求解微分方程模型,可以揭示系统的动力学行为和稳定性特征。
4. 差分方程模型:差分方程模型是一种递推关系式,描述系统在离散时间点上的变化规律。
差分方程模型常用于描述离散事件系统、人口增长模型等。
5. 概率统计模型:概率统计模型是一种利用概率统计方法对随机事件进行建模和分析的方法。
通过概率统计模型,可以对实际问题的不确定性进行量化和分析,如风险评估、市场预测等。
数学建模常见方法

数学建模是将实际问题抽象成数学模型,并通过数学方法进行求解和分析的过程。
以下是一些常见的数学建模方法:
1.数理统计:利用概率论和统计学方法来分析数据,建立统计模型并进行参数估计、假设
检验等,从而对问题进行量化和预测。
2.最优化方法:使用最优化理论和方法,在给定约束条件下寻找最优解,如线性规划、非
线性规划、整数规划等。
3.微分方程模型:通过建立微分方程或偏微分方程描述系统的动态行为,包括常微分方程
和偏微分方程模型。
4.离散事件模拟:通过离散事件模拟方法模拟系统的运作过程,包括随机过程、排队论等。
5.图论与网络流模型:使用图论和网络流算法对复杂的关系和网络结构进行建模和分析,
如最短路径、最小生成树等。
6.时间序列分析:对时间序列数据进行建模和预测,涉及自相关函数、谱分析、回归分析
等方法。
7.近似方法:如插值、拟合、逼近等方法,通过寻找适当的函数形式来近似真实问题。
8.随机过程:通过建立随机过程来描述系统的不确定性和随机性,包括马尔可夫链、布朗
运动等。
9.图像处理与模式识别:利用数学方法和算法对图像和模式进行处理和识别,如图像滤波、
边缘检测、模式匹配等。
10.数据挖掘与机器学习:利用统计学和机器学习算法对大规模数据进行分析和挖掘,发现
隐藏的模式和关联规律。
这些方法只是数学建模中的一部分,实际应用还需根据具体问题进行选择和组合。
在数学建模过程中,常常需要结合领域知识和实际情况,并使用计算机软件和工具进行模型求解和结果分析。
数学建模常识与经验

• 题型:
• 赛题题型结构形式有三个基本组成部分:
• 一、实际问题背景 1. 涉及面宽--有社会,经济,管 理,生活,环境,自然现象,工程技术,现代科学中 出现的新问题等。 2. 一般都有一个比较确切的现实问 题。
• 二、若干假设条件 有如下几种情况: 1. 只有过程、规 则等定性假设,无具体定量数据; 2. 给出若干实测或 统计数据; 3. 给出若干参数或图形; 4. 蕴涵着某些机 动、可发挥的补充假设条件,或参赛者可以根据自己 收集或模拟产生数据。
• 它要用到各方面的综合的知识,但还不限于 此.参赛选手不只是要有各方面的知识,还要 驾驭这些知识,应用这些知识处理实际问题的 能力。知识是无止境的,还必须有善于获得新 的知识的能力。总之,数学建模竟赛,既要比 赛各方面的综合知识,也要比赛各方面的综合 能力。它的特点就是综合,它的优点也是综合。 在这个意义上看,它与任何一个学科领域内的 纯知识竞赛都不相同的特点就是不纯,它的优 点也就是不纯,综合就是不纯。
5、动态规划、回溯搜索、分治算法、分支定界等计算机 算法(这些算法是算法设计中比较常用的方法,很多场 合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经 网络、遗传算法(这些问题是用来解决一些较困难的最 优化问题的算法,对于有些问题非常有帮助,但是算法 的实现比较困难,需慎重使用) 7、数值分析算法(如果在比赛中采用高级语言进行编程 的话,那一些数值分析中常用的算法比如方程组求解、 矩阵运算、函数积分等算法就需要额外编写库函数进行 调用) 8、一些连续离散化方法(很多问题都是实际来的,数据 可以是微分、求和代替积分等思想是 非常重要的)
“树上有十只鸟,开枪打死一只,还剩几只?”
二、相关的数学基础
• 线性规划 • 概率统计 • 图论 • 常微分方程 • 最优化理论
数学建模的主要建模方法

数学建模的主要建模方法数学建模是一种用数学语言描述实际问题,并通过数学方法求解问题的过程。
它是数学与实际问题相结合的一种技术,具有广泛的应用领域,如物理、工程、经济、生物等。
数学建模的主要建模方法可以分为经典建模方法和现代建模方法。
经典建模方法是数学建模的基础,主要包括数理统计、微积分、线性代数等数学工具。
经典建模方法的特点是基于简化和线性的假设,并通过解析或数值方法来求解问题。
1.数理统计:统计学是数学建模的重要工具之一,它的主要任务是通过对样本数据的分析,推断出总体的特征。
数理统计中常用的方法有概率论、抽样理论、假设检验等。
2.微积分:微积分是数学建模中常用的工具,它研究变化率和积分问题。
微积分的应用范围广泛,常用于描述物体的运动,求解最优化问题等。
3.线性代数:线性代数是研究向量空间与线性变换的数学学科。
在数学建模中,线性代数经常出现在模型的描述和求解过程中,如矩阵运算、线性回归等。
现代建模方法是近年来发展起来的一种新的建模方法,主要基于现代数学工具和计算机技术。
现代建模方法的特点是模型更为复杂,计算更加精确,模拟和实验相结合。
1.数值模拟:数值模拟是一种基于计算机技术的建模方法,通过离散和近似的数学模型,利用数值计算方法求解模型。
数值模拟常用于模拟和预测实际问题的复杂现象,如天气预报、电路仿真等。
2.优化理论:优化理论是数学建模中的一种重要工具,它研究如何找到最优解或最优化方案。
优化问题常用于求解资源分配、生产排程等实际问题。
3.系统动力学:系统动力学是一种研究系统结构和行为的数学方法,它通过建立动态模型,分析系统的变化趋势和稳定性。
系统动力学常用于研究生态系统、经济系统等复杂系统。
4.随机过程:随机过程是描述随机事件随时间变化的数学模型。
它在数学建模中常用于分析随机现象的特征和规律,如金融市场变动、人口增长等。
总体而言,数学建模的方法多种多样,建模方法的选择取决于问题的性质、可用数据和计算资源等因素。
什么是数学建模

什么是数学建模数学建模是一种通过数学方法解决实际问题的过程。
它结合数学理论与实际问题,将抽象的数学模型与具体的实际情况相结合,通过计算机模拟、优化算法等手段,对问题进行分析和求解,从而得到实际问题的答案或者有效的解决方案。
数学建模可以应用于各个领域,如物理学、生物学、经济学、化学、环境科学、社会学等。
在实际问题中,通常会涉及到大量的变量、约束条件和目标函数。
数学建模的过程一般包括以下几个步骤:问题的建立、模型的建立、模型的求解、模型的验证和结果的分析与应用。
首先,问题的建立是数学建模的起点。
在这一步骤中,需要明确问题的目标、所处环境以及问题的限制条件。
具体来说,要确定需要解决的问题是什么、为什么需要解决这个问题、解决这个问题对应的适用范围等。
接下来,模型的建立是数学建模的关键步骤。
在这一步骤中,需要确定适用的数学模型和假设,并将实际问题转化为数学形式。
根据实际问题的性质,常见的数学模型包括线性规划模型、非线性规划模型、随机模型等。
通过数学模型的建立,可以对问题进行抽象和简化,提高问题的可计算性和可解性。
然后,模型的求解是数学建模的核心步骤。
在这一步骤中,需要用数学方法和计算机技术对建立的模型进行求解。
根据不同的数学模型,常见的求解方法包括数值计算方法、优化算法、随机模拟等。
通过模型的求解,可以得到问题的解答、最优解或者有效的解决方案。
模型的验证是数学建模的重要步骤。
在这一步骤中,需要对模型的求解结果进行验证和分析。
对模型的验证可以通过与实际数据的对比、灵敏性分析、误差分析等方法进行。
通过验证结果,可以判断建立的模型是否准确可靠,并根据需要进行调整和优化。
最后,结果的分析与应用是数学建模的最终目标。
在这一步骤中,需要对模型的求解结果进行分析和解释,从而得出实际问题的结论或者决策依据。
根据实际问题的需求,可以通过模型的结果进行业务分析、评估和预测等。
总之,数学建模是一种结合数学理论和实际问题的求解方法。
数学建模是什么意思

数学建模是什么意思为了描述一个实际现象更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。
使用数学语言描述的事物就称为数学模型。
有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。
数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为一个数学问题,然后用适当的数学方法去解决。
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。
为了叙述一个实际现象极具科学性,逻辑性,客观性和可重复性,人们使用一种普遍认为比较严苛的语言去叙述各种现象,这种语言就是数学。
采用数学语言叙述的事物就称作数学模型。
有时候我们须要搞一些实验,但这些实验往往用抽象化出了的数学模型做为实际物体的替代而展开适当的实验,实验本身也就是实际操作的一种理论替代。
数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为一个数学问题,然后用适当的数学方法去解决。
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。
(1)模型准备工作:介绍问题的实际背景,明晰其实际意义,掌控对象的各种信息。
用数学语言去叙述题(2) 模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
(3) 模型创建:在假设的基础上,利用适度的数学工具去刻划各变量之间的数学关系,建立相应的数学结构。
(尽量用直观的数学工具)(4) 模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。
(5) 模型分析:对税金的结果展开数学上的分析。
(6) 模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。
数学建模是什么

数学建模是什么1. 什么是数学建模?:数学建模是一种以数学方法描述和分析实际问题的方法。
它是一种将实际问题的复杂性转化为数学模型,以便更好地理解和解决实际问题的方法。
数学建模的过程包括描述实际问题,建立数学模型,求解模型,验证模型,以及分析模型的结果。
数学建模的目的是提出有效的解决方案,以解决实际问题,并且可以更好地控制和管理实际问题。
数学建模的应用非常广泛,可以用于科学研究,经济分析,社会研究,工程设计,管理决策,以及其他各种实际问题的分析和解决。
2. 数学建模的基本步骤:数学建模是一种将实际问题转换为数学模型,以便利用数学方法来解决实际问题的方法。
它是一种以数学抽象的方式来描述实际问题的过程,是一种将实际问题转换为数学模型的过程,是一种将实际问题转换为数学模型的过程。
数学建模的基本步骤包括:首先,要确定问题的范围和目标,明确问题的描述,确定变量和参数,构建数学模型,解决模型,分析模型的结果,并将模型的结果应用到实际问题中。
确定问题的范围和目标时,要明确问题的描述,以便确定问题的范围和目标,以及确定变量和参数。
确定变量和参数时,要确定变量的类型,变量的取值范围,参数的取值,以及变量和参数之间的关系。
构建数学模型时,要根据问题的描述,确定变量和参数,构建一个恰当的数学模型,以表达问题的特征。
解决模型时,要根据模型的特征,利用数学方法来解决模型,求出模型的解。
分析模型的结果时,要分析模型的结果,分析模型的有效性,并对模型的结果进行评价。
最后,将模型的结果应用到实际问题中,以解决实际问题。
3. 数学建模的应用领域数学建模的应用领域十分广泛,从社会科学到工程科学,从经济学到生物学,都可以使用数学建模来解决问题。
在社会科学领域,数学建模可以用来研究社会系统中的结构和行为,以及社会系统中的社会经济、政治、文化等因素之间的关系。
在工程科学领域,数学建模可以用来研究和设计工程系统,比如电力系统、燃气系统、水利系统等,以及这些系统中的各种参数和变量之间的关系。
数学建模基本要素

问题定义不清
总结词
数据是数学建模的基础,数据不足或不准确会导致模型无法准确反映实际情况。
详细描述
在数学建模过程中,需要收集大量相关数据作为输入。如果数据量不足或数据质量不高,会导致模型精度下降,甚至得出错误的结论。解决这个问题的方法是尽可能多地收集高质量的数据,同时采用合适的数据处理方法对数据进行清洗和预处理,提高数据的质量和准确性。
详细描述
05
CHAPTER
数学建模的常见问题与解决方案
总结词
问题定义不清是数学建模中常见的问题,它可能导致模型建立偏离实际需求。
详细描述
在数学建模过程中,首先需要对问题进行清晰、准确的定义。如果问题定义模糊或过于宽泛,会导致建模过程中出现偏差,甚至得出错误的结论。解决这个问题的方法是仔细分析问题,明确问题的边界和约束条件,确保模型能够准确反映实际需求。
通过代数方程和不等式来描述和解决问题的方法。
详细描述
代数法是数学建模中最基本的方法之一,它通过建立代数方程或不等式来描述和解决各种实际问题。例如,在解决几何问题时,可以通过代数法找到未知数,进而求出问题的解。
代数法
利用微积分的基本概念和定理来建模的方法。
总结词
微积分法是数学建模中常用的一种方法,它利用微积分的基本概念和定理来描述和解决实际问题。例如,在经济学中,可以通过微积分法建立需求和供给函数,进而求出市场的均衡价格。
详细描述
变量选择需要考虑与问题相关的各种因素,并确定哪些因素对模型输出有显著影响。参数设定则需要根据已知数据和经验进行合理估计,以确保模型的有效性和准确性。
变量选择与参数设定
总结词
假设条件是数学建模中不可或缺的一部分,它们限制了模型的可能解的范围,有助于简化模型并提高预测精度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 对于NBA这样庞大的赛事,编制一个完整的、对各球队尽 可能公平的赛程是一件非常复杂的事情,赛程的安排对球 队实力的发挥和战绩有一定的影响,从报刊上经常看到球 员、教练和媒体对赛程的抱怨或评论。这个题目主要是要 求用数学建模方法对已有的赛程进行定量的分析与评价: • 1)为了分析赛程对某一支球队的利弊,你认为有哪些要 考虑的因素,根据这些因素将赛程转换为便于进行数学处 理的数字格式,并给出评价赛程利弊的数量指标。 • 2)按照1)的结果计算、分析赛程对姚明加盟的火箭队的 利弊,并找出赛程对30支球队最有利和最不利的球队。
美军要攻克德军占领的一个城市,通往城市的道路 有甲乙两条。 装备力量: 德军:三个师 美军:两个师 城市 甲 乙
游戏规则: 1.规定双方的兵力只能整师调动。 2.美军的兵力比德军的守备兵力少或相等时,则美军失败 3.美军的兵力比德军的守备兵力多时,则美军成功攻城 例如: ① 德军:甲方向:2个师 乙方向:1个师 美军:甲方向:2个师 乙方向:0个师 结果:美军攻城失败,德军胜利 ② 德军:甲方向:2个师 乙方向:1个师 美军:甲方向:0个师 乙方向:2个师 结果:美军攻城成功,德军失败
数学应用的钥匙是数学建模,今天在 技术科学中最有用的数学领域是数值 分析和数学建模。
——美国科学工程和公共事务政策委员会报告 《美国数学 的现在和未来》(1986)
数学建模是一种数学的思考方法,是 运用数学的语言和方法,通过抽象、 简化建立能近似刻画并"解决"实际问题 的一种强有力的数学手段。
一个小游戏:
在分析赛场对某一支球队的利弊时,考虑四个因素: 因素一:比赛时间间隔的均匀度 x1 因素一 因素二:“背靠背”作战次数 x2 因素二 因素三:连续遭遇强手 x3 因素三 因素四:连续的客场之旅 x4 因素四 问题的关键:如何将这四个因素转化成具体的数值,并放在 一起来评价对一个球队的赛程安排的合理性 即求 y=a1x1+a2x2+a3x3+a4x4
全国大学生数学建模竞赛时间:9月的第二个星期的周末 我校选拔参赛学生的方式: 从《数学建模培训班》的学生中选拔优秀的学生参加 数学建模培训班的开班时间:3月-5月的周末 培训内容:数理统计、最优化、图论、微分方程、计算方法、 神经网络、层次分析法、模糊数学,数学软件包的使用等 讲座。
• 规划模型——计划管理工作中有关安排和估值的问题,解 决的主要问题是在给定条件下,按某一衡量指标来寻找安 排的最优方案。它可以表示成求函数在满足约束条件下的 极大极小值问题。 • 微分方程模型——表述事物变化所遵循的基本规律。实际 应用在自动控制、各种电子学装置的设计、弹道的计算、 飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的 研究等。 • 图论模型——它以图为研究对象。图论中的图是由若干给 定的点及连接两点的线所构成的图形,这种图形通常用来 描述某些事物之间的某种特定关系,用点代表事物,用连 接两点的线表示相应两个事物间具有这种关系。图论应用 在计算机技术实现以及工程中统筹安排的研究。
这次模拟“作战”,每一方取胜的概率都是50%
德 甲:3 乙:0 + 甲:1 乙:1 + 甲:0 乙:2 + + + + 甲:2 乙:1 + + + + + 甲:1 乙:2 + 甲:0 乙:3 -
ቤተ መጻሕፍቲ ባይዱ
美 甲:2 乙:0
这虽然是一个游戏,实际上是模拟诺曼底战役前的 情况。跨海作战,攻方能够调动来渡海作战的兵 力,通常总是比守方可以用来守备的兵力少。另 外,渡海登陆作战,通常至少在一开始的时候, 攻方要承受很大的牺牲。 这道题是普林斯顿大学的一道数学作业,让你作为 美军应该怎样制定攻城方案。
四、参加数学建模的益处 1. 培养创新意识和创造能力 2. 训练快速获取信息和资料的能力 3. 锻炼快速了解和掌握新知识的技能 4. 培养团队合作意识和团队合作精神 5. 增强写作技能和排版技术 6. 更重要的是训练人的逻辑思维和开放性思考方式
谢谢!
二、数学建模竞赛 大学生数学建模竞赛(Mathematical Contest in Modeling,MCM)最早是1985 年在美国出现的, 1989 年我国大学生开始参加美国的竞赛,经过两 三年的参与,大家认为竞赛是推动数学建模教学 在高校迅速发展的好形式,1992 年由中国工业与 应用数学学会数学模型专业委员会组织举办了我 国10 城市的大学生数学模型联赛。教育部领导及 时发现、并扶植、培育了这一新生事物,决定从 1994 年起由教育部高教司和中国工业与应用数学 学会共同主办全国大学生数学建模竞赛,每年一 次。十几年来这项竞赛的规模以平均年增长25% 以上的速度发展。
参考书目
1、数学模型,姜启源编,高等教育出版社(1987年第一版,1993年第二版, 2003年第三版;第一版在 1992年国家教委举办的第二届全国优秀教材评选中 获"全国优秀教材奖"). 2、数学模型与计算机模拟,江裕钊、辛培情编,电子科技大学出版社, (1989). 3、数学模型选谈(走向数学从书),华罗庚,王元著,王克译,湖南教育出 版社;(1991). 4、数学建模--方法与范例,寿纪麟等编,西安交通大学出版社(1993). 5、数学模型,濮定国、 田蔚文主编,东南大学出版社(1994). 6..数学模型,朱思铭、李尚廉编,中山大学出版社,(1995) 7、数学模型,陈义华编著,重庆大学出版社,(1995)
8、数学模型建模分析,蔡常丰编著,科学出版社,(1995). 9、数学建模竞赛教程,李尚志主编,江苏教育出版社,(1996). 10、数学建模入门,徐全智、杨晋浩编,成都电子科大出版社,(1996). 11、数学建模,沈继红、施久玉、高振滨、张晓威编,哈尔滨工程大学出版 社,(1996). 12、数学模型基础,王树禾编著,中国科学技术大学出版社,(1996). 13、数学模型方法,齐欢编著,华中理工大学出版社,(1996). 14、数学建模与实验,南京地区工科院校数学建模与工业数学讨论班编,河 海大学 出版社,(1996).
赛题的设置非常具有实用性和挑战性。如,2003年的 “SARS的传播 “抢渡长江”;2004年的“奥运会临时超 市网点设计”、“饮酒驾车”、“公务员招聘”;2005 年的“长江水质的评价和预测”、“DVD在线租赁”、 “雨量预报方法的评价”;2007年“中国人口增长预 测”、“乘公交,看奥运”“ 手机“套餐”优惠几何”; 2008年“高等教育学费标准探讨”、“地面搜索(汶川大 地震搜救人员路线设计) ”、“NBA赛程的分析与评 价 ”——每一道题都紧扣当前社会热点,很有时代意义。
全国大学生数学建模竞赛 宗旨 激励学生学习数学的积极性,提高学生建立数学 模型和运用计算机技术解决实际问题的综合能力, 鼓励广大学生踊跃参加课外科技活动,开拓知识 面,培养创造精神及合作意识 实际问题,涉及面广,不固定范围和领域 开卷,三人团体合作,三天三夜解决一个问题, 最后以一篇论文的形式上交 允许不同答案,着重建模思想及实际眼光,评出 等级
• Lingo——Lindo 和 Lingo 是美国 Lindo 系统公司开发的一套专门用 于求解最优化问题的软件包。Lindo 用于求解线性规划和二次规划问 题,Lingo 除了具有 Lindo 的全部功能外,还可以用于求解非线性规划 问题,也可以用于一些线性和非线性方程(组)的求解,等等。Lindo 和 Lingo 软件的最大特色在于可以允许优化模型中的决策变量是整数 (即整数规划),而且执行速度很快。 • 由于这些特点,Lindo系统公司的线性、非线性和整数规划求解程序已 经被全世界数千万的公司用来做最大化利润和最小化成本的分析。应 用的范围包含生产线规划、运输、财务金融、投资分配、资本预算、 混合排程、库存管理、资源配置等等...
内容 形式 判卷
• 数学建模竞赛的题目由工程技术、经济管理、社 会生活等领域中的实际问题简化加工而成,没有 事先设定的标准答案,但留有充分余地供参赛者 发挥其聪明才智和创造精神。 • 改卷形式:没有标准的解题过程,没有标准答案, 关键考察学生利用数学计算机工具分析解决现实 问题的能力
2008年 NBA赛程的分析与评价 2008年D题: NBA赛程的分析与评价 NBA是全世界篮球迷们最钟爱的赛事之一,姚易加盟以后 更是让中国球迷宠爱有加。NBA共有30支球队,西部联盟、 东部联盟各15支,大致按照地理位置,西部分西南、西北 和太平洋3个区,东部分东南、中部和大西洋3个区,每区 5支球队。对于2008~2009新赛季,常规赛阶段从2008年 10月29日(北京时间)直到2009年4月16日,在这5个多 月中共有1230场赛事,每支球队要进行82场比赛,附件1 是30支球队2008~2009赛季常规赛的赛程表,附件2是分 部、分区和排名情况(排名是2007~2008赛季常规赛的结 果),见/nba/ 。
三、我校数学建模竞赛情况 2009 年全国有33个省/市/自治区(包括香港和澳 门特区)1137所院校、15046个队(其中甲组 12276队、乙组2770队)、4万5千多名来自各个 专业的大学生参加竞赛,是历年来参赛人数最多 的(其中西藏和澳门是首次参赛)! 我校自2000年参加全国大学生数学建模竞赛以 来,多次获得国家奖和江西省奖。今年我校参赛 又取得较好成绩:获国家奖2项,江西省一等奖4 项,江西省二等奖4项,江西省三等奖6项。
数学建模
报告人:理学院
陈萍
目录
1 2 3 4 数学建模是什么 全国大学生数学建模竞赛 我校数学建模竞赛情况 参加全国数模竞赛的益处
一、数学建模是什么
• 近半个多世纪以来,随着计算机技术的迅速发展,数学的 应用不仅在工程技术、自然科学等领域发挥着越来越重要 的作用,而且以空前的广度和深度向经济、金融、生物、 医学、环境、地质、人口、交通等新的领域渗透,所谓数 学技术已经成为当代高新技术的重要组成部分。 • 美国现代数学家L.A斯蒂恩说:“读完高中数学课程的人, 大约达到17世纪中叶的数学水平;而大学一年级的微积分, 也不过使一些学生的数学水平达到18世纪而已。现在的美 国人中,能学到一点超过18世纪数学知识的还不到1%”。 在中国的比例可能还要小,对于应用数学以及19世纪以后 的数学知识,很多人甚至大学生基本上是一片空白。