2018高二上学期数学教师上学期工作
河北省张家口市第一中学2018-2019学年高二上学期期末考试数学(文)试题
2018-2019学年上学期高二期末考试数学(文)试题一,选择题(本大题共12小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.)1,已知全集{}2U 1x x =>,集合{}2430x x x A =-+<,则=A C U ( )A .()1,3B .()[),13,-∞+∞C .()[),13,-∞-+∞D .()(),13,-∞-+∞ 2,某校为了研究“学生地”和“对待某一活动地态度”是否相关,运用2×2列联表进行独立性检验,经计算069.7=k ,则认为“学生与支持活动相关系”地犯错误地概率不超过A .0.1% B .1% C .99% D .99.9%附:)(02k K P ≥0.1000.0500.0250.0100.001k 02.7063.8415.0246.63510.8283,已知抛物线地焦点()F ,0a (0a <),则抛物线地标准方程是( )A .22y ax = B .24y ax = C .22y ax =- D .24y ax =-4,命题:p x ∃∈N ,32x x <。
命题:q ()()0,11,a ∀∈+∞ ,函数()()log 1a f x x =-地图象过点()2,0,则( )A .p 假q 真B .p 真q 假C .p 假q 假D .p 真q 真5,执行右边地程序框图,则输出地A 是( )A .2912 B .7029 C .2970 D .169706,在直角梯形CD AB 中,//CD AB ,C 90∠AB = ,2C 2CD AB =B =,则cos D C ∠A =( )A C D7,已知2sin 21cos 2αα=+,则tan 2α=( )A .43-B .43C .43-或0D .43或08,32212x x ⎛⎫+- ⎪⎝⎭展开式中地常数项为( )A .8- B .12- C .20- D .209.已知函数()f x 地定义域为2(43,32)a a --,且(23)y f x =-是偶函数.又321()24x g x x ax =+++,存在0x 1(,),2k k k Z ∈+∈,使得00)(x x g =,则满足款件地k 地个数为( )A .3 B .2 C .4 D .110,F 是双曲线C :22221x y a b-=(0a >,0b >)地右焦点,过点F 向C 地一款渐近线引垂线,垂足为A ,交另一款渐近线于点B .若2F F A =B,则C 地离心率是( )A B .2 C 11,直线y a =分别与曲线()21y x =+,ln y x x =+交于A ,B ,则AB 地最小值为( )A .3B .2C .3212,某几何体地三视图如图所示,则该几何体地表面积为( )A .4B .21+C .12+D 12二,填空题(本大题共4小题,每小题5分,共20分.)13,已知()1,3a =- ,()1,b t = ,若()2a b a -⊥,则b = .14,已知212(1)4k dx ≤+≤⎰,则实数k 地取值范围是_____.15,在半径为2地球面上有不同地四点A ,B ,C ,D ,若C D 2AB =A =A =,则平面CDB 被球所截得图形地面积为 .16,已知x ,R y ∈,满足22246x xy y ++=,则224z x y =+地取值范围为 .三,解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17,(本小题满分12分)设数列{}n a 地前n 项和为n S ,满足()11n n q S qa -+=,且()10q q -≠.()I 求{}n a 地通项公式。
江西省临川第一中学2018-2019学年高二上学期期末考试数学(理)试题 Word版含解析
江西省临川第一中学2018-2019学年高二上学期期末考试数学(理)试题第Ⅰ卷选择题一,选择题:本大题共10个小题,每小题5分,共50分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.为创建文明城市,共建美好家园,某市教育局拟从3000名小学生,2500名初中生和1500名高中生中抽取700人参与“城市文明知识”问卷调查活动,应采用地最佳抽样方式是()A. 简单随机抽样法 B. 分层抽样法C. 系统抽样法D. 简单随机抽样法或系统抽样法【结果】B【思路】【思路】依据总体明显分层地特点采用分层抽样.【详解】依据题意,所有学生明显分成互不交叉地三层,即小学生,初中生,高中生,故采用分层抽样法.故选:B.【点睛】本题考查分层抽样地概念,属基础题.2.甲乙两名同学在班级演讲比赛中,得分情况如茎叶图所示,则甲乙两人得分地中位数之和为()A. 176B. 174C. 14D. 16【结果】A【思路】【思路】由茎叶图中地数据,计算甲,乙得分地中位数即可.【详解】由茎叶图知,甲地得分情况为76,77,88,90,94, 甲地中位数为88。
乙地得分情况为75,86,88,88,93,乙地中位数为88。
故甲乙两人得分地中位数之和为88+88=176.故选:A.【点睛】本题考查了茎叶图表示地数据地中位数地计算,注意先把数据按从小到大(或从大到小)先排序即可.3.下面表达中正确地是()A. 若事件与事件互斥,则B. 若事件与事件满足,则事件与事件为对立事件C. “事件与事件互斥”是“事件与事件对立”地必要不充分款件D.某人打靶时连续射击两次,则事件“至少有一次中靶”与事件“至多有一次中靶”互为对立事件【结果】C【思路】【思路】对A,由互斥地定义判断即可,对B选项,利用几何概型判断即可,对C由互斥事件和对立事件地概念可判断结论,对D由对立事件定义判断,所以错误.【详解】对A,基本事件可能地有C,D…,故事件与事件互斥,但不一定有对B,由几何概型知,则事件与事件不一定为对立事件,。
2018-2019学年四川省广安市高二(上)期末数学试卷(理科)(解析版)
2018-2019学年四川省广安市高二(上)期末数学试卷(理科)一、选择題(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求)1.(5分)已知空间直角坐标系中A(2,﹣1,﹣2),B(3,2,1),则|AB|=(()A.B.C.D.2.(5分)直线的倾斜角大小为()A.30°B.60°C.120°D.150°3.(5分)以x=1为准线的抛物线的标准方程为()A.y2=2x B.y2=﹣2x C.y2=4x D.y2=﹣4x 4.(5分)“若x<1,则x2﹣3x+2>0”的否命题是()A.若x≥1,则x2﹣3x+2≤0B.若x<l,则x2﹣3x+2≤0C.若x≥1,则x2﹣3x+2>0D.若x2﹣3x+2≤0,则x≥15.(5分)已知直线l:x+ay+1=0与圆N:(x﹣1)2+(y﹣1)2=1相切,则a为()A.﹣B.C.D.﹣6.(5分)设某高中的学生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.67x ﹣60.9,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该高中某学生身高为170cm,则可断定其体重必为53kgD.若该高中某学生身高增加1cm,则其体重约增加0.67kg7.(5分)“2<m<6”是“方程+=1为椭圆”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.(5分)从甲、乙两种棉花中各抽测了25根棉花的纤维长度(单位:mm)组成一个样本,得到如图所示的茎叶图.若甲、乙两种棉花纤维的平均长度分别用,表示,标准差分别用s1,s2表示,则()A.>,s 1>s2B.>,s1<s2C.<,s 1>s2D.<,s1<s29.(5分)秦九韶是我国南宋时期的数学家,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,3,则输出v的值为()A.16B.18C.48D.14310.(5分)小华和小明两人约定在7:30到8:30之间在“思源广场”会面,并约定先到者等候另一人30分钟,过时离去,则两人能会面的概率是()A.B.C.D.11.(5分)双曲线C的渐近线方程为y=±x,一个焦点为F(0,﹣6),点A(﹣,0),点P为双曲线第二象限内的点,则当点P的位置变化时,△P AF周长的最小值为()A.16B.7+3C.14+D.1812.(5分)已知A,B是以F为焦点的抛物线y2=4x上两点,且满足=5,则弦AB 中点到准线距离为()A.B.C.D.二、填空题:本大题共4个小题,每小题5分,共20分.13.(5分)把二进制数10011(2)转化为十进制的数为.14.(5分)已知双曲线x2﹣y2=1,则它的右焦点到它的渐近线的距离是.15.(5分)若命题“∃x0∈R,x02+(a﹣1)x0+1<0”是假命题,则实数a的取值范围为.16.(5分)已知椭圆C:=1(a>b>0)的左右焦点分别为F1、F2,抛物线y2=4cx(c2=a2﹣b2且c>b)与椭圆C在第一象限的交点为P,若cos∠PF1F2=,则椭圆C的离心率为.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)已知直线l1:kx﹣2y+k﹣8=0(k∈R),l2:2x+y+1=0.(Ⅰ)若l1∥l2,求l1,l2间的距离;(Ⅱ)求证:直线l1必过第三象限.18.(12分)已知命题p:实数m满m2﹣2am﹣3a2<0,其中a>0;命题q:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣10=0的内部.(Ⅰ)当a=1,p∧q为真时,求m的取值范围;(Ⅱ)若¬p是¬q的充分不必要条件,求a的取值范围.19.(12分)已知线段AB的端点B在圆C1:x2+(y﹣4)2=16上运动,端点A的坐标为(4,0),线段AB中点为M,(Ⅰ)试求M点的轨迹C2方程;(Ⅱ)若圆C1与曲线C2交于C,D两点,试求线段CD的长.20.(12分)随着2018年央视大型文化节目《经典咏流传》的热播,在全民中掀起了诵读诗词的热潮广安某社团调查了广安某校300名学生每天诵读诗词的时间(所有学生诵读时间都在两小时内,并按时间(单位:分钟)将学生分成六个组:[0,20),[20,40),[40,60),[60,80),[80,100),[100,120]经统计得到了如图所示的频率分布直方图.(Ⅰ)求频率分布直方图中a的值,并估计该校学生每天诵读诗词的时间的平均数和中位数.(Ⅱ)若两个同学诵读诗词的时间x,y满足|x﹣y|>60,则这两个同学组成一个“Team”,已知从每天诵读时间小于20分钟和大于或等于80分钟的所有学生中用分层抽样的方法抽取了5人,现从这5人中随机选取2人,求选取的两人能组成一个“Team”的概率.21.(12分)已知椭圆C:+y2=1(a>0),过椭圆C右顶点和上顶点的直线l与圆x2+y2=相切.(1)求椭圆C的方程;(2)设M是椭圆C的上顶点,过点M分别作直线MA,MB交椭圆C于A,B两点,设这两条直线的斜率分别为k1,k2,且k1+k2=2,证明:直线AB过定点.[选修4-4:坐标系与参数方程]22.(10分)在直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2(1+sin2θ)=2.(Ⅰ)求l的直角坐标方程和C的直角坐标方程;(Ⅱ)若l和C相交于A,B两点,求|AB|的值.[选修4-5:不等式选讲]23.设函数f(x)=|x﹣1|,g(x)=|2x﹣4|.(Ⅰ)求不等式f(x)>g(x)的解集.(Ⅱ)若存在x∈R,使得不等式2f(x+1)+g(x)<ax+1成立,求实数a的取值范围.2018-2019学年四川省广安市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择題(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求)1.【解答】解:∵空间直角坐标系中A(2,﹣1,﹣2),B(3,2,1),∴|AB|==.故选:B.2.【解答】解:由题意,直线的斜率为k=,即直线倾斜角的正切值是又倾斜角大于或等于0°且小于180°,故直线的倾斜角为30°,故选:A.3.【解答】解:以x=1为准线的抛物线,开口向左,可得p=2,所以抛物线的标准方程为:y2=﹣4x.故选:D.4.【解答】解:若p则q的否命题为若¬p则¬q,即命题的否命题为:若x≥1,则x2﹣3x+2≤0,故选:A.5.【解答】解:根据题意,直线l:x+ay+1=0与圆N:(x﹣1)2+(y﹣1)2=1相切,则有=1,解可得:a=﹣;故选:D.6.【解答】解:根据y与x的线性回归方程为=0.67x﹣60.9,则b=0.67>0,y与x具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该高中某学生身高为170cm,则可预测其体重必为53kg,C错误;若该高中某学生身高增加1cm,则其体重约增加0.67kg,D正确.∴不正确的结论是C.故选:C.7.【解答】解:若方程+=1为椭圆方程,则,解得:2<m<6,且m≠4,故“2<m<6”是“方程+=1为椭圆方程”的必要不充分条件,故选:B.8.【解答】解:由茎叶图得:甲的数据相对分散,而乙的数据相对集中于茎叶图的右下方,∴<,s 1>s2.故选:C.9.【解答】解:初始值n=3,x=3,程序运行过程如下表所示:v=1i=2,v=1×3+2=5i=1,v=5×3+1=16i=0,v=16×3+0=48i=﹣1,不满足条件,跳出循环,输出v的值为48.故选:C.10.【解答】解:设记7:30为0,则8:30记为60,设小华到达“思源广场”为x时刻,小明小华到达“思源广场”为y时刻,则0≤x≤60,0≤y≤60,记“两人能会面”为事件A,则事件A:|x﹣y|≤30,由图知:两人能会面的概率是:==,故选:B.11.【解答】解:双曲线C的渐近线方程为y=±x,一个焦点为F(0,﹣6),可得,c==6,a=2,b=4.双曲线方程为,设双曲线的上焦点为F'(0,6),则|PF|=|PF'|+4,△P AF的周长为|PF|+|P A|+|AF|=|PF'|+2a+|P A|+AF,当P点在第二象限时,|PF'|+|P A|的最小值为|AF'|=7,故△P AF的周长的最小值为14+4=18.故选:D.12.【解答】解:设BF=m,由抛物线的定义知AA1=5m,BB1=m,∴△ABC中,AC=4m,AB=6m,kAB=,直线AB方程为y=(x﹣1),与抛物线方程联立消y得5x2﹣26x+5=0,所以AB中点到准线距离为+1=+1=.故选:A.二、填空题:本大题共4个小题,每小题5分,共20分.13.【解答】解:10011(2)=1+1×2+1×24=19故答案为:1914.【解答】解:双曲线x2﹣y2=1,可得a=1,b=1,c=,则右焦点(1,0)到它的渐近线y=x的距离为d==.故答案为:.15.【解答】解:∵命题“∃x0∈R,x+(a﹣1)x0+1<0”是假命题,∴命题“∀x∈R,x2+(a﹣1)x+1≥0”是真命题,即对应的判别式△=(a﹣1)2﹣4≤0,即(a﹣1)2≤4,∴﹣2≤a﹣1≤2,即﹣1≤a≤3,故答案为:[﹣1,3].16.【解答】解:抛物线y2=4cx的焦点为F2(c,0),如下图所示,作抛物线的准线l,则直线l过点F1,过点P作PE垂直于直线l,垂足为点E,由抛物线的定义知|PE|=|PF2|,易知,PE∥x轴,则∠EPF1=∠PF1F2,所以,=,设|PF1|=5t(t>0),则|PF2|=4t,由椭圆定义可知,2a=|PF1|+|PF2|=9t,在△PF1F2中,由余弦定理可得,整理得,解得,或.∵c>b,则c2>b2=a2﹣c2,可得离心率.当时,离心率为,合乎题意;当时,离心率为,不合乎题意.综上所述,椭圆C的离心率为.故答案为:.三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.17.【解答】解:(Ⅰ)若l1∥l2,直线l1:kx﹣2y+k﹣8=0(k∈R),l2:2x+y+1=0,则有=≠,求得k=﹣4,故直线l1即:2x+y+6=0,故l1,l2间的距离为=.(Ⅱ)证明:直线l1:kx﹣2y+k﹣8=0(k∈R),即k(x+1)﹣2y﹣8=0,必经过直线x+1=0和直线﹣2y﹣8=0的交点(﹣1,﹣4),而点(﹣1,﹣4)在第三象限,直线l1必过第三象限.18.【解答】解:(Ⅰ)当a=1,命题p:m2﹣2m﹣3<0,﹣1<m<3,命题q:点(1,1)在圆x2+y2﹣2mx+2my+2m2﹣10=0的内部,∴m2﹣4<0,∴﹣2<m<2,∵p∧q为真,∴m的取值范围为(﹣1,3)∩(﹣2,2)=(﹣1,2);(Ⅱ)命题p:(m﹣3a)(m+a)<0,∵a>0,∴﹣a<m<3a,设A=(﹣a,3a)命题q:﹣2<m<2,设B=(﹣2,2)∵¬p是¬q的充分不必要条件,∴¬p⇒¬q,¬q推不出¬p,∴q⇒p,p推不出q,∴B⊊A,∴,∴a≥2,∴a的取值范围为[2,+∞).19.【解答】解:(Ⅰ)设M(x,y),B(x′,y′),则由题意可得:,解得:,∵点B在圆C1:x2+(y﹣4)2=16上,∴(x′)2+(y′﹣4)2=16,∴(2x﹣4)2+(2y﹣4)2=16,即(x﹣2)2+(y﹣2)2=4.∴轨迹C2方程为(x﹣2)2+(y﹣2)2=4;(Ⅱ)由方程组,解得直线CD的方程为x﹣y﹣1=0,圆C1的圆心C1(0,4)到直线CD的距离为,圆C1的半径为4,∴线段CD的长为.20.【解答】解:(Ⅰ)由频率分布直方图得:(a+a+6a+8a+3a+a)×20=1,解得a=0.0025.该校学生每天诵读诗词的时间的平均数为:0.05×10+0.05×30+0.3×50+0.4×70+0.15×90+0.05×110=64.[0,60)的频率为:0.05+0.05+0.3=0.4,[60,80)的频率为:0.4,∴估计该校学生每天诵读诗词的时间的中位数为:60+=65.(Ⅱ)从每天诵读时间小于20分钟和大于或等于80分钟的所有学生中用分层抽样的方法抽取了5人,则从每天诵读时间小于20分钟的学生中抽取:5×=1人,从每天诵读时间大于或等于80分钟的所有学生中抽取:5×=4人,现从这5人中随机选取2人,基本事件总数n==10,两个同学诵读诗词的时间x,y满足|x﹣y|>60,则这两个同学组成一个“Team”,选取的两人能组成一个“Team”包含的基本事件个数m==4.∴选取的两人能组成一个“Team”的概率p===.21.【解答】解:(1)椭圆C的右顶点(a,0),上顶点(0,1),设直线l的方程为:+y=1,化为:x+ay﹣a=0,∵直线l与圆x2+y2=相切,∴=,a>0,解得a=.∴椭圆C的方程为.(2)当直线AB的斜率不存在时,设A(x0,y0),则B(x0,﹣y0),由k1+k2=2得,得x0=﹣1.当直线AB的斜率存在时,设AB的方程为y=kx+m(m≠1),A(x1,y1),B(x2,y2),,得,∴,即,由m≠1,(1﹣k)(m+1)=﹣km⇒k=m+1,即y=kx+m=(m+1)x+m⇒m(x+1)=y﹣x,故直线AB过定点(﹣1,﹣1).[选修4-4:坐标系与参数方程]22.【解答】解:(1)∵直线l的参数方程为(t为参数),∴l的直角坐标方程为+=0,∵曲线C的极坐标方程为ρ2(1+sin2θ)=2,即ρ2+ρ2sin2θ=2,∴C的直角坐标方程为x2+y2+y2=2,即=1.(2)联立,得7x2+12x+4=0,△=144﹣4×7×4=32>0,设A(x1,y1),B(x2,y2),则x1+x2=﹣,x1x2=,∴|AB|==.[选修4-5:不等式选讲]23.【解答】解:(Ⅰ)由|x﹣1|>|2x﹣4|,得:x2﹣2x+1>4x2﹣16x+16,解得:<x<3,故不等式的解集是(,3);(Ⅱ)若存在x∈R,使得不等式2f(x+1)+g(x)<ax+1成立,即存在x∈R,使得2|x|+|2x﹣4|<ax+1成立,当x<0时,﹣4x+4<ax+1即a<﹣4在(﹣∞,0)上有解,故a<﹣4,当x=0时,4<1不成立,当0<x≤2时,4<ax+1即a>在(0,2]上有解,故a>,当x>2时,4x﹣4<ax+1即a>4﹣在(2,+∞)上有解,故a>,综上,a>或a<﹣4.。
半期教师总结
卓同高中2018下高二数学质量组苏杰半期工作总结一、高二期中考试理科5班、7班数学成绩的分析:本次考试高二5班班级品均分122,1人不及格;高二7班班级平均分99,5人不及格。
其中5班是特高班,7班是重点班,两个班级的构成差异明显。
但是从此次成绩来看,存在一些问题,将平时自己没有看到的问题反映了出来,所以得感谢这次考试。
5班,班级最高分141分,最低分88分,平均分122分。
对于这个班级来说,我认为还可以更上一步。
首先,就优生人数来说,不理想,因为从平时的教学过程来看,还有至少5人能够上140分,经过调查发现,他们都是因为各自的一些问题而考差了,反而平时学得一半的几位同学还考得好些,究其原因有如下:题目稍显简单,思维好得同学认为简单,所以就忽视了一些细节,造成分数不理想,其次,在思考问题时,思维得程度不够,没有思考彻底就开始做题,最后就是对平时的练习题没有做好的反思,所以看到题目时,似是而非得感觉,也就是没有彻底消化。
7班班级最高分134,最低分67分,班级平均分99分.这个班的同学构成很复杂。
前几名学生的思维很好,能够进入年级前30——50名,最差的同学在年级倒数的名次,所以平时的教学也有一定的难度,很难兼顾所有的同学,只是尽量做好没一点工作,力争每位同学都能跟上。
从这次考试的成绩分析来看,他们表现还是可以,两个校区同时比较的话各项数据都在前面几位,较上学期进步明显。
究其原因,同学们上课的状态就是最大的变化,很专注,认真。
但是我认为这样的成绩也不够满意,本可以做得更好。
我反思如下:学习习惯有待改善,做笔记的习惯还不够好,所以复习的时候不知所措,没有目的性。
二、后期努力方向:以上数据分析体现出:基础知识的巩固、计算能力的训练、书写规范的指导需一如既往地大力加强;虽然平时组内老师共同努力,将各个章节的重要考题类型做了梳理,出了小练习,但是学生的课后反思不够,;同时此次考试高分段单薄反映出教学中对数学思想方法体系的构建有待重视,面对较大的后进面须加强思想疏导和教学的管理,严格要求学生.1、巩固推进——加强新知识的基础知识的准确把握;提高熟练程度,做到理性把握知识的基础上使学生对知识的掌握更趋于理性的直观。
兰州五十一中2018-2019学年第一学期
兰州五十一中2018-2019学年第一学期教研组活动汇总(第三期)责任编辑:教务处语文教研组2018年10月15日,语文教研组在学校录播教室观摩了张平老师的公开课《拿来主义》。
王海校长和夏维功主任也莅临了本次活动。
本节课老师针对学生学情,打破传统的教学思路,直接切入主题继承文化遗产的问题,由“文化遗产在哪里”这个问题引出拿来主义,明确了拿来主义对待文化遗产的立场,然后又找出文中一些错误的对待文化遗产的方式,指出作者先破后立的论证结构。
接着找到文中的另外两种主义“闭关主义”和“送去主义”,讨论了这三种主义的联系,再次见证作者先破后立的论证结构。
整节课结构清晰,简洁明了,富有针对性。
课后的评课环节中老师们都发表了自己的见解,对本节课的亮点予以了充分的肯定。
王校长指出本节课主要体现出两大方面:一是以学定教,二是主题明确,希望语文组的老师们以后继续关注语文教学及新高考的前沿,做好专业发展。
夏主任提出语文老师应该注重目标的评价机制,细化学科教学素养,发挥语文的社会价值。
最后教研组长张老师又针对语文教学的篇目有效整合与选修教学以及阅读课的展开做了讨论与部署。
本次会议内容充实,为语文组以后的发展指明了方向。
(执笔人:赵煜彤收稿日期:2018年10月16日)数学教研组2018年10月16日下午,数学教研组在王馨老师的组织下进行了本周的主题教研活动。
参加此次教研活动有教务处夏维功主任和数学组的全体成员。
本次的教研活动的主要内容是两节公开课开展。
第一节课是由宋锦琨老师带来的《线性规划中的最值问题》。
宋老师以典型的可行域中求目标函数的最值问题展开,层层铺垫、逐步递进,结合代数式子的变形以及几何图形的辅助,通过师生互动、生生互动、学生自主探究、老师引导探究的方式给我们呈现了一节优质课。
第二节课是刘莹老师的《2.1.1指数与指数幂的运算》,这是一节渗透着数学核心素养的课堂,比如说数学抽象,将学生认识的比较具体的平方根和立方根逐步过渡到一般情况下的n次方根的概念与书写,将特殊情况一般化具体问题抽象化,让学生体会高中数学抽象的特点,又比如说数学运算,从根式运算开始,到分数指数幂与根式的互化,无一不体现着数学运算以及相应的运算技巧,本节课通过问题链的方式将计算问题渗透其中,将繁琐的计算变得简单不枯燥。
2018高中数学组教研活动记录
高中数学组教研活动记录20xx-20xx年第二学期第一周教研活动安排数学学科:2月28日(四)下午1:30,在东城区教师研修中心517教室,召开高一数学教师会,内容:1、第一学期期末考试总结分析,2、第二学期教研工作计划,3、必修4第一章《三角函数》教材分析,请高一全体数学教师准时参加。
2月28日(四)下午1:30,在东城区教师研修中心北楼3教室,召开高二数学教师会,内容:本学期教学安排及教材分析,主讲人:许云尧,请高二全体数学教师准时参加。
2月28日(四)下午1:30,在东城区教师研修中心南楼二层东教室,召开高三数学教师会,内容:本学期计划安排,《三角与向量》,《概率与统计》专题复习建议,由五中杨学东老师和东直门中学李伟峰老师主讲,请有关教师准时参加。
20xx-20xx年第二学期第二周教研活动安排数学学科:3月7日(四)下午1:30,在东城区教师研修中心中楼414教室,召开高一全体数学教师会,内容:由22中学李红老师主讲必修四第三章《三角恒等变换》教材分析,请高一全体数学教师准时参加。
3月7日(四)下午1:30在东城区教师研修中心北楼3教室,召开高二数学教师会,内容:《推理与证明》,《复数》教材分析,主讲人:许云尧老师,请高二全体数学教师准时参加。
3月7日(四)下午1:30,在东城区教师研修中心中楼418教室,召开高三全体数学教师会,内容:由北京二中特级教师庄肃钦老师作《函数与导数专题复习建议》请有关教师准时参加。
20xx-20xx年第二学期第三周教研活动安排数学学科:3月14日(四)下午1:35,在宏志中学,召开高一数学青年教师会,内容:1、由聂茹山老师做公开课《函数y=Asin(wx+4)的图像》;2、由黄湘宏老师做公开课《函数y=Asin(wx+4)的图像(二)》,请高一数学青年教师准时参加。
3月14日(四)下午1:05,在北京二十二中,召开青年教师公开课,内容:《函数的单调性与导数》,主讲人:22中陆静老师,请高二数学青年教师准时参加。
期中考试成绩分析及前半学期工作总结
期中考试成绩分析及前半学期工作小结(2017~2018学年第一学期)本学期上半学期教学工作在全体教师的共同努力下已经结束,下面我就期中考试成绩作一简要分析:一、成绩分析(一)六年级1.各单科成绩横向比较六年级语文年级平均分72.27,六(1)班语文平均分72.56,六(2)班语文平均分72.85,六(3)班语文平均分71.33。
数学年级平均分46.58,六(1)班数学平均分49.69,六(2)班数学平均分46.27,六(3)班数学平均分43.74。
英语年级平均分81.23,六(1)班英语平均分79.28,六(2)班英语平均分84.23,六(3)班英语平均分79.99。
品德年级平均分67.25,六(1)班平均分68.95,六(2)班平均分66.25,六(3)班平均分66.61。
科学年级平均分72.69,六(1)班平均分74.79,六(2)班平均分70.61,六(3)班平均分72.76。
2.各学科班级间差距上学期期中考试六年级语文班级间差距不大,本学期差距仍然不大,基本上齐头并进;六年级数学成绩各班之间差距较大六(3)数学比六(1)低15分多,六(2)数学比六(1)第6分多;英语成绩六年级二班与年级最好的一班较上学期期中成绩有所缩小。
(二)七年级1.各单科成绩横向比较七年级语文年级平均分77.94,七(1)班语文平均分77.4,七(2)班语文平均分80,七(3)班语文平均分76.28。
数学年级平均分67,七(1)班数学平均分69.91,七(2)班数学平均分71.86,七(3)班数学平均分58.38。
英语年级平均分58.98,七(1)班英语平均分56.91,七(2)班英语平均分61.93,七(3)班英语平均分60.05。
七年级政治年级平均分63.51,七(1)班政治平均分62.84,七(2)班政治平均分64.05,七(3)班政治平均分63.68。
七年级历史年级平均分44.11,七(1)班历史平均分46.07,七(2)班历史平均分44.27,七(3)班历史平均分41.9。
竞赛中心工作总结
2018~2019学年度上学期竞赛中心工作总结费县第二中学竞赛中心费县第二中学竞赛中心自2018年9月14日成立以来,在校领导尤其田校长和任校长的关注、领导下,以竞赛中心冯兆伟主任牵头的竞赛中心全体工作人员以学校发展为己任,以提升自身素质为抓手,使竞赛中心工作快速步入正轨,努力发挥科室服务学校、服务教学的作用。
将本学期工作总结如下:一、完善科室建设,明确竞赛中心工作人员职责1.作为新成立的科室,首先要做的就是完善竞赛中心的科室建设。
竞赛中心作为独立的科室,设置了固定办公场所和学生辅导工作室,由冯兆伟担任竞赛中心主任,统筹竞赛中心具体工作安排。
赵亚雷为竞赛中心秘书,负责常规工作与相关资料的整理。
2.竞赛中心主要负责帮助、指导、协调、统筹全校各年级学科竞赛。
遴选能够对高校招生有作用的各类赛事及科技创新大赛。
为学生参加各类竞赛提供针对性建议和个性化辅导。
3.建立学科竞赛的相关档案,竞赛成绩优秀学生的档案。
整理学生参加各项赛事的相关资料,如赛事通知、照片资料、学生成绩证书整理等。
4.详细地分析每年的高校自主招生、高校农村专项招生、高校综合素质评价招生简章,为学生的高考录取提供咨询服务。
二、搭建班子成员,落实工作安排1.整合学校所有学科竞赛资源,为各学科竞赛科目配备了专兼职教师。
物理兼职教师:赵亚雷;数学兼职教师:吕世民、朱文顶;化学兼职教师:刘兰香、孟祥江;生物兼职教师:张桂堂;电脑制作方面: 王佃万;信息兼职教师:林本军;机器人、科技创新教师:林本军;征文类牵头人及辅导教师:朱俊才、魏丽、史清文;英语类牵头人及辅导教师:孙杨、刘敏。
2.高一、高二采用集中上课和个别辅导的方式,开设奥赛、电脑制作、科技创新课程。
数学、物理、信息技术、科技创新、化学、生物配兼职教师,语文、英语设牵头负责人,组织参加各级各类竞赛,统筹安排各年级参加五大学科联(奥)赛、征文比赛、英语能力大赛、科技创新大赛、机器人大赛、电脑制作大赛、明天小小科学家大赛;积极做好学生专利申请、论文论著发表指导工作。
2018-2019学年四川省内江市高二(上)期末数学试卷(理科)解析版
2018-2019学年四川省内江市高二(上)期末数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.在空间直角坐标系中,点A(1,-1,1)关于坐标原点对称的点的坐标为()A. B. C. D. 1,2.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3:5:7,现用分层抽样的方法抽出容量为n的样本,其中甲种产品有18件,则样本容量n=()A. 45B. 54C. 90D. 1263.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A. 56B. 60C. 120D. 1404.图为某个几何体的三视图,则该几何体的表面积为()A. 32B.C. 48D.5.如图的正方体ABCD-A1B1C1D1中,异面直线A1B与B1C所成的角是()A.B.C.D.6.已知a、b、c是直线,β是平面,给出下列命题:①若a⊥b,b⊥c则a∥c;②若a∥b,b⊥c则a⊥c;③若a∥β,b⊂β,则a∥b;④若a与b异面,且a∥β则b与β相交;其中真命题的个数是()A. 1B. 2C. 3D. 47.直线x-2y+1=0关于直线x=1对称的直线方程是()A. B. C. D.8.已知直线l1:x-2y-1=0,直线l2:ax-by+1=0,其中a,b∈{1,2,3,4,5,6,}.则直线l1与l2的交点位于第一象限的概率为()A. B. C. D.9.若变量x,y满足,则x2+y2的最大值是()A. 18B. 20C.D.10.与圆O1;x2+y2+4x-4y+7=0,圆O2:x2+y2-4x-10y+13=0都相切的直线条数是()A. 3B. 1C. 2D. 411.如图,边长为2的正方形ABCD中,点E、F分别是AB、BC的中点,将△ADE,△EBF,△FCD分别沿DE,EF,FD折起,使得A、B、C三点重合于点A′,若四面体A′EFD的四个顶点在同一个球面上,则该球的表面积为()A. B. C. D.12.已知圆O:x2+y2=1,直线l:y=ax+2,在直线l上存在点M,过点M作圆O的两条切线,切点为A、B,且四边形OAMB为正方形,则实数a的取值范围是()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.如图茎叶图记录了甲.乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为______,______.14.执行如图所示的程序框图若输人x的值为3,则输出y的值为______.15.在平面直角坐标系xOy中,以点(2,0)为圆心,且与直线ax-y-4a-2=0(a∈R)相切的所有圆中,半径最大的圆的标准方程为______.16.正四棱锥(底面是正方形,顶点在底面上的射影是底面中心)S-ABCD的底面边长为4,高为4,点E、F、G分别为SD,CD,BC的中点,动点P在正四棱锥的表面上运动,并且总保持PG∥平面AEF,则动点P的轨迹的周长为______.三、解答题(本大题共6小题,共70.0分)17.(1)求经过直线3x+4y-2=0与直线x-y+4=0的交点P,且垂直于直线x-2y-1=0的直线方程;(2)求过点P(-1,3),并且在两坐标轴上的截距相等的直线方程.18.如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥平面AB1C.19.已知一圆经过点A(3,1),B(-1,3),且它的圆心在直线3x-y-2=0上.(1)求此圆的方程;(2)若点D为所求圆上任意一点,且点C(3,0),求线段CD的中点M的轨迹方程.20.(1)求y关于t的线性回归方程;(2)利用(1)中的回归方程,分析2012年至2018年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2020年农村居民家庭人均纯收入.附:参考公式:=,=.=.21.如图:高为1的等腰梯形ABCD中,AM=CD=1,AB=3,现将△AMD沿MD折起,使平面AMD⊥平面MBCD,连接AB、AC.(1)在AB边上是否存在点P,使AD∥平面MPC?(2)当点P为AB边中点时,求点B到平面MPC的距离.22.已知圆O:x2+y2=2,直线.l:y=kx-2.(1)若直线l与圆O相切,求k的值;(2)若直线l与圆O交于不同的两点A,B,当∠AOB为锐角时,求k的取值范围;(3)若,P是直线l上的动点,过P作圆O的两条切线PC,PD,切点为C,D,探究:直线CD 是否过定点.答案和解析1.【答案】B【解析】解:空间坐标关于原点对称,则所有坐标都为原坐标的相反数,即点A(1,-1,1)关于坐标原点对称的点的坐标为(-1,-1,-1),故选:B.根据空间坐标的对称性进行求解即可.本题主要考查空间坐标对称的计算,结合空间坐标的对称性是解决本题的关键.比较基础.2.【答案】C【解析】解:A种型号产品所占的比例为=,18,故样本容量n=90.故选:C.由分层抽样的特点,用A种型号产品的样本数除以A种型号产品所占的比例,即得样本的容量n.本题考查分层抽样的定义和方法,各层的个体数之比等于各层对应的样本数之比,属于基础题.3.【答案】D【解析】解:自习时间不少于22.5小时的频率为:(0.16+0.08+0.04)×2.5=0.7,故自习时间不少于22.5小时的频数为:0.7×200=140,故选:D.根据已知中的频率分布直方图,先计算出自习时间不少于22.5小时的频率,进而可得自习时间不少于22.5小时的频数.本题考查的知识点是频率分布直方图,难度不大,属于基础题目.4.【答案】B【解析】解:根据几何体的三视图,得;该几何体是底面边长为4,高为2的正四棱锥,所以该四棱锥的斜高为=2;所以该四棱锥的侧面积为4××4×2=16,底面积为4×4=16,所以几何体的表面积为16+16.故选:B.根据几何体的三视图,得出该几何体是正四棱锥,结合图中数据,即可求出它的表面积.本题考查了利用空间几何体的三视图求表面积的应用问题,是基础题目.5.【答案】C【解析】解:连接A1D,由正方体的几何特征可得:A1D∥B1C,则∠BA1D即为异面直线A1B与B1C所成的角,连接BD,易得:BD=A1D=A1B故∠BA1D=60°故选:C.连接A1D,根据正方体的几何特征及异面直线夹角的定义,我们可得∠BA1D即为异面直线A1B与B1C所成的角,连接BD后,解三角形BA1D即可得到异面直线A1B与B1C所成的角.本题考查的知识点是异面直线及其所成的角,其中根据正方体的几何特征及异面直线夹角的定义判断出∠BA1D即为异面直线A1B与B1C所成的角,是解答本题的关键.6.【答案】A【解析】解:①利用正方体的棱的位置关系可得:a与c可以平行、相交或为异面直线,故不正确;②若a∥b,b⊥c,利用“等角定理”可得a⊥c,故正确;③若a∥β,b⊂β,则a与平面β内的直线可以平行或为异面直线,不正确;④∵a与b异面,且a∥β,则b与β相交,平行或b⊂β,故不正确.综上可知:只有②正确.故选:A.①利用正方体的棱的位置关系即可得出;②若a∥b,b⊥c,利用“等角定理”可得a⊥c;③若a∥β,b⊂β,利用线面平行的性质可得:a与平面β内的直线可以平行或为异面直线;④由a与b异面,且a∥β,则b与β相交,平行或b⊂β,即可判断出.熟练掌握空间空间中线线、线面的位置关系是解题的关键.7.【答案】D【解析】解:解法一(利用相关点法)设所求直线上任一点(x,y),则它关于x=1对称点为(2-x,y)在直线x-2y+1=0上,∴2-x-2y+1=0化简得x+2y-3=0故选答案D.解法二:根据直线x-2y+1=0关于直线x=1对称的直线斜率是互为相反数得答案A或D,再根据两直线交点在直线x=1选答案D故选:D.设所求直线上任一点(x,y),关于x=1的对称点求出,代入已知直线方程,即可得到所求直线方程.本题采用两种方法解答,一是相关点法:求轨迹方程法;法二筛选和排除法.本题还有点斜式、两点式等方法.8.【答案】A【解析】解:设事件A为“直线l1与l2的交点位于第一象限”,由于直线l1与l2有交点,则b≠2a.联立方程组解得x=,y=,∵直线l1与l2的交点位于第一象限,则x=>0,y=>0,解得b>2a.a,b∈{1,2,3,4,5,6}的总事件数为36种.满足条件的实数对(a,b)有(1,3)、(1,4)、(1,5)、(1,6)、(2,5)、(2,6)共六种.∴P(A)==即直线l1与l2的交点位于第一象限的概率为.故选:A.本题是一个等可能事件的概率,试验发生包含的事件数是36,满足条件的事件是两条直线的交点在第一象限,写出两条直线的交点坐标,根据在第一象限写出不等式组,解出结果,根据a,b之间的关系写出满足条件的事件数,得到结果.本题考查等可能事件的概率,考查两条直线的交点在第一象限的特点,本题是一个综合题,在解题时注意解析几何知识点的应用.9.【答案】C【解析】解:作出不等式组对应的平面区域如图:设z=x2+y2,则z的几何意义是区域内的点到原点的距离的平方,由图象知,C点到原点的距离最大,由得,即C (,),此时x2+y2=,故选:C.作出不等式组对应的平面区域,利用z=x2+y2的几何意义是区域内的点到原点的距离的平方,利用数形结合进行求解即可.本题主要考查线性规划的应用,利用两点间距离的几何意义,以及数形结合是解决本题的关键.10.【答案】A【解析】解:圆的圆心坐标为(-2,2),半径为1,圆的圆心坐标为(2,5),半径为4,两个圆心之间的距离d=5,等于半径和,故两圆外切,故公切线共有3条,故选:A.根据已知中圆的方程,求出圆心坐标和半径,判断出两圆外切,可得答案.本题考查的知识点是圆的位置关系,圆的一般方程,难度中档.11.【答案】B【解析】解:由题意可知△A′EF是等腰直角三角形,且A′D⊥平面A′EF.三棱锥的底面A′EF扩展为边长为1的正方形,然后扩展为正四棱柱,三棱锥的外接球与正四棱柱的外接球是同一个球,正四棱柱的对角线的长度就是外接球的直径,直径为:=.∴球的半径为,∴球的表面积为=6π.故选:B.把棱锥扩展为正四棱柱,求出正四棱柱的外接球的半径就是三棱锥的外接球的半径,从而可求球的表面积.本题考查几何体的折叠问题,几何体的外接球的半径的求法,考查球的表面积,考查空间想象能力.12.【答案】B【解析】解:根据题意,圆O:x2+y2=1,圆心为O(0,0),半径r=1,若过点M作圆O的两条切线,切点为A、B,且四边形OAMB为正方形,则|OM|=,则M的轨迹为以O为圆心,为半径为圆,其方程为x2+y2=2,若在直线l上存在点M,则直线l与圆x2+y2=2有交点,则有d=≤,解可得:a≤-1或a≥1,即a的取值范围为(-∞,-1][1,+∞);故选:B.根据题意,由正方形的性质可得|OM|=,分析可得M的轨迹为以O为圆心,为半径为圆,其方程为x2+y2=2,进而可得若在直线l上存在点M,则直线l与圆x2+y2=2有交点,则有d=≤,解可得a的取值范围,即可得答案.本题考查直线与圆的位置关系,涉及与圆有关的轨迹问题,关键是分析M的轨迹,属于基础题.13.【答案】5 8【解析】解:根据茎叶图中的数据,得:∵甲组数据的中位数为15,∴x=5;又∵乙组数据的平均数为16.8,∴=16.8,解得:y=8;综上,x、y的值分别为5、8.故答案为:5 8.根据茎叶图中的数据,结合中位数与平均数的概念,求出x、y的值.本题考查了利用茎叶图求数据的中位数与平均数的问题,是基础题.14.【答案】63【解析】解:模拟程序的运行,可得x=3y=7不满足条件|x-y|>31,执行循环体,x=7,y=15不满足条件|x-y|>31,执行循环体,x=15,y=31不满足条件|x-y|>31,执行循环体,x=31,y=63此时,满足条件|x-y|>31,退出循环,输出y的值为63.故答案为:63.由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.15.【答案】(x-2)2+y2=8【解析】解:根据题意,直线ax-y-4a-2=0,即y+2=a(x-4),恒过定点(4,-2),设P为(4,-2)设要求圆的半径为r,其圆心C的坐标为(2,0),分析可得:以点(2,0)为圆心,且与直线ax-y-4a-2=0(a∈R)相切的所有圆中,半径最大为CP,此时r2=|CP|2=(4-2)2+(-2-0)2=8,则要求圆的方程为(x-2)2+y2=8,故答案为:(x-2)2+y2=8.根据题意,将直线的方程变形,分析可得其恒过点(4,-2),结合直线与圆的位置关系可得以点(2,0)为圆心,且与直线ax-y-4a-2=0(a∈R)相切的所有圆中,半径最大的圆的半径为CP,求出圆的半径,结合圆的标准方程分析可得答案.本题考查直线与圆的位置关系,涉及直线过定点问题,注意分析直线所过的定点,属于基础题.16.【答案】2+.【解析】解:取SB,AB中点H,P,连接HG,PC,取PB中点Q,连接HQ,GQ,因为E、F分别为SD,CD中点,所以EF∥SC,SC∥HG,所以HG∥EF,HG不在面AEF内,所以HG∥面AEF.因为QG是中位线所以QG∥PC,PC∥AF,所以QG∥AF,因为QG不在面AEF 内,所以QG∥面AEF,因为HG∩QG=G,所以面HQG∥面AEF.动点P在正四棱锥的表面上运动,并且总保持PG∥平面AEF,则动点P的轨迹的周长为△HQG 的周长.正四棱锥S-ABCD的底面边长为4,高为4,所以QG=,HG=,SP=2,HQ=,所以动点P的轨迹的周长为2+.过G做一个平面与面AEF平行,且与正四棱锥的表面相交,交线之和即为动点P的轨迹的周长.本题考查面面平行的位置关系,属于中档题.17.【答案】解:(1)联立,解得,∴两直线的焦点坐标为(-2,2),直线x-2y-1=0斜率为,则所求直线的斜率为-2.∴直线方程为y-2=-2(x+2),即2x+y+2=0;(2)当直线过原点时,直线方程为y=-3x;当直线不过原点时,设直线方程为x+y=a,则-1+3=a,即a=2.是求直线方程为x+y=2.∴所求直线方程为3x+y=0或x+y-2=0.【解析】(1)联立直线方程求出点的坐标,再求出所求直线的斜率,代入直线方程点斜式得答案;(2)当直线过原点时,直线方程为y=-3x;当直线不过原点时,设直线方程为x+y=a,把点的坐标代入求得a,则直线方程可求.本题考查直线方程的求法,体现了分类讨论的数学思想方法,是基础题.18.【答案】证明:(1)因为四边形BB1C1C为正方形,B1C∩BC1=E,所以E为B1C的中点,又D为AB1的中点,因此DE∥AC.又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABC-A1B1C1是三棱柱,AA1⊥底面ABC所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以B1C⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面AB1C.【解析】(1)由正方形性质得E为B1C的中点,从而DE∥AC,由此能证明DE∥平面AA1C1C.(2)由线面垂直得AC⊥CC1,由AC⊥BC,得AC⊥平面BCC1B1,由此能证明BC1⊥平面AB1C.本题考查线面平行的证明,考查线面垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.19.【答案】解:(1)由已知可设圆心N(a,3a-2),又由已知得|NA|=|NB|,从而有=a=2.于是圆N的圆心N(2,4),半径r=.所以,圆N的方程为(x-2)2+(y-4)2=10.(2)设M(x,y),又点D是圆N:(x-2)2+(y-4)2=10上任意一点,可设D(2+cosα,4+sinα).∵C(3,0),点M是线段CD的中点,∴有x=,y=,消去参数α得:(x-)2+(y-2)2=.故所求的轨迹方程为:(x-)2+(y-2)2=【解析】(1)首先设出方程,将点坐标代入得到关于参数的方程组,通过解方程组得到参数值,从而确定其方程;(2)首先设出点M的坐标,利用中点得到点D坐标,代入圆的方程整理化简得到的中点M的轨迹方程.本题考查圆的方程,考查参数法,圆的方程一般采用待定系数法,属于中档题.20.【答案】解:(1)==4,==4.3,===0.5,=-×=4.3-0.5×4=2.3,y关于t的线性回归方程为:=0.5x+2.3.(2)2012年至2018年该地区农村居民家庭人均纯收入逐步提高,翻了一番.当t=8时,y=0.5×8+2.3=6.3千元.∴预测该地区2020年农村居民家庭人均纯收入为6.3千元.【解析】(1)根据公式计算可得:=0.5x+2.3.(2)t=8代入计算可得.本题考查了线性回归方程,属中档题.21.【答案】解:(1)在AB边上存在点P,满足PB=2PA,使AD∥平面MPC.连接BD,交MC于O,连接OP,则由题意,DC=1,MB=2,又∵DC∥MB,∴△MOB∽△COD,∴OB:OD=MB:DC,∴OB=2OD,∵PB=2PA,∴OP∥AD,∵AD⊄平面MPC,OP⊂平面MPC,∴AD∥平面MPC;(2)由题意,AM⊥MD,平面AMD⊥平面MBCD,∴AM⊥平面MBCD,∴P到平面MBC的距离为,△MBC中,MC=BC=,MB=2,∴MC⊥BC,∴S△MBC=×=1,△MPC中,MP==CP,MC=,∴S△MPC=×=.设点B到平面MPC的距离为h,则由等体积可得,∴h=.【解析】(1)在AB边上存在点P,满足PB=2PA,使AD∥平面MPC,证明AD∥OP,即可证明AD∥平面MPC?(2)当点P为AB边中点时,利用等体积方法,即可求点B到平面MPC的距离.本题考查线面平行的判定,考查点到平面距离的计算,考查体积的计算,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.22.【答案】解:(1)∵圆O:x2+y2=2,直线l:y=kx-2.直线l与圆O相切,∴圆心O(0,0)到直线l的距离等于半径r=,即d==,解得k=±1.(2)设A,B的坐标分别为(x1,y1),(x2,y2),将直线l:y=kx-2代入x2+y2=2,整理,得(1+k2)x2-4kx+2=0,∴ ,,△=(-4k)2-8(1+k2)>0,即k2>1,当∠AOB为锐角时,=x1x2+y1y2=x1x2+(kx1-2)(kx2-2)==>0,解得k2<3,又k2>1,∴-<<或1<k<.故k的取值范围为(-,)(1,).(3)由题意知O,P,C,D四点共圆且在以OP为直径的圆上,设P(t,),其方程为x(x-t)+y(y-)=0,∴,又C,D在圆O:x2+y2=2上,∴l CD:tx+,即(x-)t-2y-2=0,由,得,∴直线CD过定点(,).【解析】(1)由直线l与圆O相切,得圆心O(0,0)到直线l的距离等于半径r=,由此能求出k.(2)设A,B的坐标分别为(x1,y1),(x2,y2),将直线l:y=kx-2代入x2+y2=2,得(1+k2)x2-4kx+2=0,由此利用根的判断式、向量的数量积公式能求出k的取值范围.(3)由题意知O,P,C,D四点共圆且在以OP为直径的圆上,设P(t,),其方程为,C,D在圆O:x2+y2=2上,求出直线CD:(x-)t-2y-2=0,联立方程组能求出直线CD过定点().本题考查实数的取值范围的求法,考查直线是否过定点的判断与求法,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.。
江西省宜丰中学2018-2019学年高二上学期期末考试数学(文)试卷 Word版含解析
高二期末考试数学试题(文科)一,选择题(每小题5分,共60分)1.命题“”地否定是( )A. B.C. D.【结果】C【思路】【思路】依据特称命题地否定是全称命题即可得到结论.【详解】依据题意,先改变量词,然后否定结论,可得原命题地否定是:“”,故选C.【点睛】本题主要考查特称命题地否定,其方式是先改变量词,然后否定结论。
全称性命题地否定地方式也是如此.2.为了解名学生地学习情况,采用系统抽样地方式,从中抽取容量为地样本,则分段地间隔为()A. B. C. D.【结果】C【思路】试题思路:由题意知,分段间隔为,故选C.考点:本题考查系统抽样地定义,属于中等题.3.以下茎叶图记录了甲,乙两组各五名学生在一次英语听力测试中地成绩(单位:分).已知甲组数据地中位数为15,乙组数据地平均数为16.8,则x,y地值分别为( )A. 2,5B. 5,5C. 5,8D. 8,8【结果】C【思路】【思路】识别茎叶图,依据中位数,平均数地定义,可求出x,y地值.【详解】依据茎叶图中地数据可得:甲组数据是9,12,10+x,24,27。
它地中位数是15,可得10+x=15,解得:x=5。
乙组数据地平均数为:,解得:y=8,所以x,y地值分别为5和8,故选C.【点睛】本题主要考查茎叶图及中位数,平均数地定义,依据茎叶图得到各数据进行求解是解题地关键.4.已知椭圆地左焦点为则m=()A. 2B. 3C. 4D. 9【结果】B【思路】试题思路:由题意,知该椭圆为横椭圆,所以,故选B.考点:椭圆地几何性质.5.执行如图所示地程序框图,输出地s值为( )A. 2B.C.D.【结果】C【思路】试题思路:时,成立,第一次进入循环:。
成立,第二次进入循环:。
成立,第三次进入循环:,不成立,输出,故选C.【名师点睛】解决此类型问题时要注意:第一,要明确是当型循环结构,还是直到型循环结构,并依据各自地特点执行循环体。
第二,要明确图中地累计变量,明确每一次执行循环体前和执行循环体后,变量地值发生地变化。
督导工作简报
督导工作简报2018年上学期第3期艺术实验学校督导室2018年6月4日第三学月学校工作落实情况反馈(2018年5月1日-5月31日)2.例行按时整理收发学校各类活动的新闻稿件;3.落实师德建设专项督查容,整理材料上报查处情况;4.参加市教育系统意识形态及新闻宣传工作培训;5.统计5月学校教育系统正面新闻稿件条目;6.辅助做好精准扶贫调研工作。
◆舞蹈部:1.毕业班13表、16教班继续进行毕业晚会剧目排练和四次审查;2.高二年级积极准备市中职学校文化考查和专业技能考核,发放复习资料、组织文化教师和班主任进堂督促落实、进行模拟上机,并完成文化考查;3.督导室对前段推门听课情况提出反馈,督学专家周和平进行了督导点评;4.严密组织并顺利开展研学旅行活动;5.参加市共青团五四青年节活动,敏老师获市优秀共青团员称号、思文获市教育系统青年岗位能手称号;6.14表班学生和美术部学生参加市“红旗飘飘、引我成长”演讲朗诵比赛荣获二等奖;7.13表班学生与美术部学生参加市黄炎培职业教育奖创业规划大赛荣获一等奖;8.教师积极进行学校工会组织的体育训练,并参加市教育局教职工运动会;9.配合学校招生办周六进行招生考试工作,严格测试把好关;10.教育处强调防溺水、防校园欺凌、离校签卡、请假严格把关等安全工作;11.教育处邀请美术部高二年级组长朱凤英老师进行舞蹈部班主任培训;12.教育处组织“感恩于心,与爱同行”主题周会;组织了“预防校园欺凌”法制讲座;14.协助团委派三名老师赴市雨花区污水处理厂参观了污水净化过程。
◆教务处1.高一、高二期中考试成绩汇总分析、高三文化联考成绩对比分析;2.召开职高部专业与文化考查专题会;3.召开高一高二家长会,制作家长会各类学生展板;4.开展期中教学常规检查;5.教育部三科学标测试;6.高三上报高考统一食宿摸底表;7.语言文字达标单位申报;8.继续进行“美德一体”课题结题材料成集;9.组织高二学生参加市中职学校文化学科考查;10.组织学生参加市黄炎培创业大赛;11.制定并下发2018届文化高考送考安排。
湖北省荆门市2018-2019学年高二上学期期末质量检测数学(文)试题 Word版含解析
荆门市2018—2019学年度上学期期末高二年级质量检测数学(文科)一,选择题:本大题共12个小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.经过点,倾斜角为地直线方程为 A. B. C. D.【结果】D【思路】【思路】先求出直线地斜率,再由点斜式求得直线地方程.【详解】倾斜角为地直线地斜率,再依据直线经过点,由点斜式求得直线地方程为,即,故选:D.【点睛】本题考查了由点斜式地方式求直线地方程,属于基础题.2.为了解某地区地中小学生视力情况,拟从该地区地中小学生中抽取部分学生进行调查,事先已了解到该地区小学,初中,高中三个学段学生地视力情况有较大差异,而男女生视力情况差异不大,在下面地抽样方式中,最正确地抽样方式是( )A. 简单随机抽样B. 按分层抽样C. 按学段分层抽样D. 系统抽样【结果】C【思路】试题思路:符合分层抽样法地定义,故选C.考点:分层抽样.3.阅读如图地程序框图,运行相应地程序,若输入N地值为15,则输出N地值为 A. 0B. 1C. 2D. 3【结果】D【思路】【思路】该程序地功能是利用循环结构计算并输出变量N地值,思路循环中各变量值地变化情况,可得结果.【详解】模拟程序地运行,可得满足款件N能被3整除,不满足款件,执行循环体,不满足款件N能被3整除,不满足款件,执行循环体,不满足款件N能被3整除,满足款件,退出循环,输出N地值为3.故选:D.【点睛】本题考查了程序框图地应用问题,解题时应模拟程序框图地运行过程,属于基础题.4.复数A. 1B. -1C.D.【结果】D【思路】【思路】利用复数代数形式地乘除运算,再由虚数单位地性质求解.【详解】,.故结果为:【点睛】本题考查复数代数形式地乘除运算,考查复数地基本概念,是基础题.5.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分则可中奖,小明要想增加中奖机会,应选择地游戏盘是A. B. C. D.【结果】A【思路】由几何概型公式:A中地概率为,B中地概率为,C中地概率为,D中地概率为.本题选择A选项.点睛:解答几何概型问题地关键在于弄清题中地考察对象和对象地活动范围.当考察对象为点,点地活动范围在线段上时,用线段长度比计算。
江西师范大学附属中学2018-2019学年高二上学期期末考试数学(文)试题
2018—2019学年度上学期期末考试高二数学(文)试题一,选择题(每小题5分,共12小题,共60分)1.若复数Z 满足(1)34i Z i +=+,则Z 地实部为( )A .32-B .52- C .32D .522. 若函数xe x x y -++=23log ,则='y ( ).A .x e x x -++2ln 1414 B .x e x x --+2ln 1414 C .x e x x --+2ln 132D .xe x x -++2ln 1323. 直线y =kx +b 与曲线31y x ax =++相切于点()2,3 ,则b 地值为 ( )A. -15B. -7C. -3D. 94. 下面表达正确地是( )A .“若x 2=1,则x =1,或x =-1”地否定是“若x 2=1则x ≠1,或x ≠-1”B .a ,b 是两个命题,假如a 是b 地充分款件,那么⌝a 是⌝b 地必要款件.C .命题“∃x 0∈R,使得20010x x ++<”地否定是:“∀x ∈R,均有x 2+x +1<0”D .命题“若α=β,则sin α=sin β”地否命题为真命题5. 已知/()(1)ln f x f x x =+,则()f e 是( )A .1e +B .eC .2e +D .36. 设抛物线24y x =地焦点为F ,不过焦点地直线与抛物线交于1(A x ,1)y ,2(B x ,2)y两点, 与y 轴交于点C (异于坐标原点)O ,则ACF ∆与BCF ∆地面积之比为( )A .12x xB .1211x x ++C .2122x x D .212211x x ++7,已知定义在R 上地函数f (x )满足f (4)=f (﹣2)=1,f′(x )为f (x )地导函数,且导函数y=f′(x )地图象如图所示.则不等式f (x )<1地解集是()A .(﹣2,0)B .(﹣2,4)C .(0,4)D .(﹣∞,﹣2)∪(4,+∞)8,设=)(x f 3,x x x +∈R ,当02πθ≤≤时,0)1()sin (>-+m f m f θ恒成立,则实数m 地取值范围是( )A .(0,1)B .)0,(-∞C .21,(-∞D .)1,(-∞9,直线2by x a=与双曲线22221x y a b -=(a >0,b >0)地左支,右支分别交于A,B 两点,F 为右焦点,若AB ⊥BF,则该双曲线地离心率为( )A B C D .210.设函数()f x 是定义在(),0-∞上地可导函数,其导函数为()f x ',且有x x f x x f <'+)()(,则不等式0)2(2)2014()2014(>-+++f x f x 地解集为( )A .(),2012-∞-B .()20120-,C .(),2016-∞-D .()20160-,11.已知函数21(),()2ln 2,()f x kx g x x e x e e==+≤≤,若()f x 与()g x 地图象上分别存在点M,N,使得MN 有关直线y e =对称,则实数k 地取值范围是( )A .224[,e e-- B .2[,2]e e -C .24[,2]e e- D .24[,)e-+∞12. 已知当()1,x ∈+∞时,有关x 地方程()ln 21x x k xk+-=-有唯一实数解,则k 值范围是()A .()3,4B .()4,5C .()5,6D .()6,7二,填空题(每小5分,共4小题,共20分)13. 定义运算11a b ,b a b a a b 122122-=则函数()21331x xxx f x +=地图象在点⎪⎭⎫ ⎝⎛31,1处地切线方程是__________.14. 复数z 1=1-2i,|z 2|=3,则|z 2-z 1|地最大值是___________.15.语文中有回文句,如:“上海自来水来自海上”,倒过来读完全一样。
河南省郑州市2018-2019学年高二上学期期末考试数学(理)试题 Word版含解析
河南省郑州市2018-2019学年上期期末考试高二数学(理)第Ⅰ卷(选择题,共60分)一,选择题:本大题共有12个小题,每小题5分,共60分。
在每小题所给出地四个选项中,只有一项是符合题目要求地。
1.已知命题那么为()A. B.C. D.【结果】B【思路】【思路】依据全称命题地否定是特称命题即可写出结果.【详解】命题则为故选:B【点睛】本题考全称命题地否定形式,属于简单题.2.已知数列是等比数列,若则地值为()A. 4B. 4或-4C. 2D. 2或-2【结果】A【思路】【思路】设数列{a n}地公比为q,由等比数列通项公式可得q4=16,由a3=a1q2,计算可得.【详解】因故选:A【点睛】本题考查等比数列地性质以及通项公式,属于简单题.3.已知是实数,下面命题结论正确地是()A. “”是“”地充分款件B. ”是“”地必要款件C. “ac2>bc2”是“”地充分款件D. ” 是“”地充要款件【思路】【思路】依据不等式地性质,以及充分款件和必要款件地定义分别进行判断即可.【详解】对于,当时,满足,却,所以充分性不成立。
对于,当时,满足,却,所以必要性不成立。
对于,当时,成立,却,所以充分性不成立,当时,满足,却,所以必要性也不成立,故“” 是“”地既不充分也不必要款件,故选:C【点睛】本题主要考查不等式地性质以及充分款件,必要款件地判断,属于基础题.4.已知双曲线地一款渐近线与直线垂直,则双曲线地离心率为()A. B. C. D.【结果】A【思路】【思路】双曲线地渐近线方程为,由渐近线与直线垂直,得地值,从而得到离心率.【详解】由于双曲线地一款渐近线与直线垂直,所以双曲线一款渐近线地斜率为,又双曲线地渐近线方程为,所以,双曲线地离心率.故选:A【点睛】本题主要考查双曲线地渐近线方程和离心率,以及垂直直线斜率地关系.5.若等差数列地前项和为,且,则()A. B. C. D.【结果】C【思路】由得,再由等差数列地性质即可得到结果.【详解】因为为等差数列,所以,解得,故.故选:C【点睛】本题主要考查等差数列地前项和公式,以及等差数列性质(其中m+n= p+q)地应用.6.地内角地对边分别为,,, 则=()A. B. C. D.【结果】D【思路】【思路】先由二倍角公式得到cosB,然后由余弦定理可得b值.【详解】因为,所以由余弦定理,所以故选:D【点睛】本题考查余弦二倍角公式和余弦定理地应用,属于简单题.7.椭圆与曲线地()A. 焦距相等B. 离心率相等C. 焦点相同D. 准线相同【结果】A【思路】【思路】思路两个曲线地方程,分别求出对应地a,b,c即可得结果.【详解】因为椭圆方程为,所以,焦点在x轴上,曲线,因为,所以,曲线方程可写为,,所以曲线为焦点在y轴上地椭圆,,所以焦距相等.【点睛】本题考查椭圆标准方程及椭圆简单地几何性质地应用,属于基础题.8.在平行六面体(底面是平行四边形地四棱柱)ABCD-A1B1C1D1中,AB=AD=AA1=1,,则地长为()A. B. 6 C. D.【结果】C【思路】【思路】依据空间向量可得,两边平方即可得出结果.【详解】∵AB=AD=AA1=1,∠BAD=∠BAA1=∠DAA1=60°,∴===,∵,∴=6,∴|=.故选:C.【点睛】本题考查平行四面形法则,向量数量积运算性质,模地计算公式,考查了推理能力与计算能力.9.已知不等式地解集是,若对于任意,不等式恒成立,则t地取值范围()A. B. C. D.【结果】B【思路】【思路】由不等式地解集是,可得b,c地值,代入不等式f(x)+t≤4后变量分离得t≤2x2﹣4x﹣2,x ∈[﹣1,0],设g (x )=2x 2﹣4x ﹣2,求g(x)在区间[﹣1,0]上地最小值可得结果.【详解】由不等式地解集是可知-1和3是方程地根,,解得b=4,c=6,,不等式化为 ,令g (x )=2x 2﹣4x ﹣2,,由二次函数图像地性质可知g(x)在上单调递减,则g(x )地最小值为g(0)=-2,故选:B【点睛】本题考查一圆二次不等式地解法,考查不等式地恒成立问题,常用方式是变量分离,转为求函数最值问题.10.在中,角所对地边分别为,表示地面积,若,则( )A.B.C.D.【结果】D 【思路】【思路】由正弦定理,两角和地正弦函数公式化简已知等式可得sin A =1,即A =900,由余弦定理,三角形面积公式可求角C,从而得到B 地值.【详解】由正弦定理及得,因为,所以。
2017-2018学年第一学期小学数学教研组工作计划(2篇)
2017-2018学年第一学期小学数学教研组工作计划(2篇)第一篇:2017-2018学年第一学期小学数学教研组工作计划(2篇) 2017秋上学期小学数学教研组工作计划范文一:一、指导思想:本学期四年级数学组继续以数学课程标准为依据,以课堂教学、教研组建设为基本点,深化教学改革,促进学生全面发展。
课堂中以学生的发展为本,以新的课程理念为指导,立足生活教育,加强课堂教学研究,转变教学观念,更新教学方式,创造性的开展工作,使得教研组在课题研究和教学质量等方面进一步得到稳步提高。
二、教研目标:1、准确把握课堂教学,弄清如何把握每一课的教学目标,弄清数学的算法多样化和教学重点之间的关系。
2、加强同组间教师的沟通学习,取长补短,保证班级数学成绩均衡发展。
加强学习,保证我组教师专业水平不断发展。
3、重视培养学生的多种能力。
要注意培养学生提出问题、解决问题的能力。
要注意培养学生的数学概括能力和逻辑思维能力。
4、加强信息技术与数学科整合的研究。
提高教师信息技术水平。
5、精心设计教案,注重多媒体的应用,使学生学得愉快,学得轻松,学得扎实。
6、要渗透德育,注重培养学生良好的学习习惯和独立思考、克服困难的精神。
三、活动方法及措施:(一)在骨干教师的引领下,加强四年级组教师队伍的建设。
1、加强学习,提高理论业务素质。
理念是先导,学习是保证。
备课组老师要继续加强自身的理论和业务学习,采用自学与集体学习相结合;学习与交流心得相结合;自己学习与讲座指导相结合的方式进行学习,彻底转变教育观念,更新知识结构,提高实施能力,促使教师逐渐成为学习型、反思型教师。
2、着力青年教师的培养,采取切实有效的措施使其迅速成长。
通过平时教学、备课组交流以及各级培训,努力提高同组教师的教育教学能力。
鼓励同组教师积极参加教研室开展的各项培训工作,并敢于交流自己的所得,敢于上台评课。
发挥学校的教育优势,切实提高本组教师教学水平。
3、坚持有主题地进行活动。
江西省宜丰中学2018-2019学年高二上学期期末考试数学(理)试题 Word版含解析
江西省宜丰中学2018-2019学年高二上学期期末考试数学(理)一,选择题(每小题5分,共12小题60分)1.已知命题,下面命题中正确地是( )A. B.C. D.【结果】C【思路】试题思路:命题,使地否定为,使,故选C.考点:特称命题地否定.2.若,且,则实数地值是()A. B. C. D.【结果】D【思路】试题思路:由得,,∴,故.考点:向量垂直地充要款件.3.对于简单随机抽样,每个个体每次被抽到地机会( )A. 相等B. 不相等C. 无法确定D.与抽取地次数相关【结果】A【思路】【思路】依据简单随机抽样地概念,直接选出正确选项.【详解】依据简单随机抽样地概念可知,每个个体每次被抽到地机会相等,故选A.【点睛】本小题主要考查简单随机抽要地概念,属于基础题.4.如图,在三棱柱中,为地中点,若,则下面向量与相等地是( )A. B. C. D.【结果】A【思路】【思路】利用空间向量加法和减法地运算,求得地表达式.【详解】由于是地中点,所以.故选A.【点睛】本小题主要考查空间向量加法和减法地运算,考查化归与转化地数学思想方式,属于基础题.5.如图是2013年某大学自主招生面试环节中,七位评委为某考生打出地分数地茎叶统计图,去掉一个最高分和一个最低分后,所剩数据地平均数和众数依次为()A. B. C. D.【结果】A【思路】【思路】先去掉最高分和最低分,然后计算出平均数和众数.【详解】去掉最高分,去掉最低分,剩余数据为,故众数为,平均数为,故选A.【点睛】本小题主要考查平均数地计算,考查众数地识别,考查阅读理解能力,属于基础题. 6.计算机执行下面地算法步骤后输出地结果是( )A. 4,-2B. 4,1C. 4,3D. 6,0【结果】B【思路】【思路】依据程序运行地顺序,计算出输出地结果.【详解】运行程序,,,,输出,故选B.【点睛】本小题主要考查计算程序输出结果,考查程序语言地识别,属于基础题.7.过点且与抛物线只有一个公共点地直线有()A. 1款B. 2款C. 3款D. 4款【结果】C【思路】【思路】画出图像,依据图像判断符合题意地公共点个数.【详解】画出图像如下图所示,由图可知,这两款直线与抛物线只有一个公共点,另外过点还可以作出一款与抛物线相切地直线,故符合题意地直线有款,故选C.【点睛】本小题主要考查直线和抛物线地位置关系,考查直线和抛物线交点个数问题,属于基础题.8.一个均匀地正方体玩具地各面上分别标以数(俗称骰子),将该玩具向上抛掷一次,设事件A表示向上地一面出现奇数(指向上地一面地数是奇数),事件B表示向上地一面地数不超过3,事件C表示向上地一面地数不少于4,则()A. A与B是互斥事件 B. A与B是对立事件C. B与C是对立事件D. A与C是对立事件【结果】C【思路】【思路】分别求得事件所包含地基本事件,由此判断正确选项.【详解】依题意可知,,.故不是互斥事件,不是对立事件,是对立事件,不是对立事件.故选C.【点睛】本小题主要考查互斥事件和对立事件地概念,属于基础题.9.有下面调查方式:①学校为了解高一学生地数学学习情况,从每班抽2人进行座谈。
高二数学上教师工作计划
高二数学上教师工作计划
本学期的数学教学工作计划是围绕课程标准和教材内容展开教学。
首先,对于每个知识点,要充分准备教学材料,包括教案、课件等。
其次,要引导学生多做习题,巩固基础知识,提高解题能力。
同时,要注重培养学生的数学思维和解决问题的能力,通过启发式教学方法,激发学生的学习兴趣。
另外,要及时跟进学生的学习情况,及时进行答疑、辅导,帮助学生克服难点和问题。
最后,要定期进行测试和考试,及时发现学生的问题并进行针对性的辅导和提高。
通过以上工作计划,将帮助学生在数学学科上取得更好的成绩,提高他们的数学素养。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018 高二上学期数学教师上学期工作计划2018 高二上学期数学教师上学期工作计划(一)本学期,我主要从以下几个方面抓好教学:一做好常规教学工作,落实教学五个环节(备课、上课、作业、辅导和考评)1.精心上好每一节课备课时从实际出发,精心设计每一节课,充分应用现代化教育手段为教学服务,提高四十五分钟课堂效率。
2.严格控制测验,精心制作每一份复习资料和练习教学中配备资料应要求学生按教学进度完成相应的习题,老师要给予检查和必要的讲评,老师要提前向学生指出不做的题,以免影响学生的学习。
试题的制作注重考试质量和试卷分析,定期进行学情分析,发现问题,寻找对策,及时解决,确保学生的学习积极性不断提高。
3.做好作业批改和加强辅导工作教师的工作对象是活生生的对象一学生,这里需要关心、帮助及鼓励。
我们要对学生的学习情况做大量的细致工作,批改作业、辅导疑难、及时鼓励等,特别是对已经出现数学学习困难的学生,教师的下班辅导更为重要。
教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。
充分利用自习时间,对优生,指导与鼓励他们冒2016全新精品资料-全新公文范文-全程指导写作-虫家原创1/14 尖,适当开展培优竞赛辅导引导学生做好自主学习;对后进生要多进行个别的辅导,不仅给他们解疑难,还要给他们鼓信心、调动自身的学习积极性,帮助他们树立良好的学习态度,积极主动地去投入学习,变要我学为我要学。
二、加强科研促教,大胆探索教学新模式积极响应学校开展构建自主学习模式的课题研究活动,研究学生的学法,使教学工作真正做到①培养兴趣,多激发学生提出自己的问题,想自己的问题;②教会想,会思考从而实现自己扩大知识量,增加思维量。
探索学生自主学习的具体做法,重视实践学习与探究反省、联系与总结的过程,对于数学问题的学习,积极引导学生用做七T问的方法来学习。
做就是自己先审题、分析、试做,目的是训练和检查自己独立分析和解决问题的能力; 比就是把自己的分析、做法同老师或书上的方法对比,找出优劣,发现问题;问就是提问题,总结经验:①解法是怎样想出来的?关键是哪一步?自己为什么没想出来?②能找到更好的解题途径吗?③这个方法能推广吗?④通过解这个题,我应该学到什么?2016全新精品资料-全新公文范文-全程指导写作-虫家原创2/14 大家仔细阅读了吗?最后祝同学们学习进步。
2018高二上学期数学教师上学期工作计划(二)转眼2018第二个新学期即将到来,为了在这个学期的工作计划更好地实施,现将本学期的教学工作计划如下:一、指导思想准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。
立足学生的实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。
二、学生基本情况分析1、基本情况:高二(16)班和高二(13)班。
这两个班的学生对数学学习各不相同。
其中,高二(16)班为理科自主招生班,学生为年级前100 名学生组成,基础好,数学学习兴趣较为浓厚。
我觉得这个班的数学成绩以及整体水平情况还不错。
分析原因:这个班的学生学习气氛浓厚,有良好的班风学风,有你追我干的竞争精神,同时有一批思维相当灵活的学生,个别学生甚至经常找我要题做,对这个班的教学我2016全新精品资料-全新公文范文-全程指导写作-虫家原创3/14 力争给他们精选题,选好题,尽量不浪费学生的时间。
高二(1 3)班是精英班,数学学习积极性较高,整体还不错,但有个别学生自觉性差,自我控制能力弱,因此在教学中需时时提醒学生,培养其自觉性;有些学生对自己学习数学的信心不足,学习积极性和主动性不够,大部分学生学习上只满足完成老师所布置的任务,对于灵活运用知识分析问题、解决问题的能力还不够强,不能举一反三进一步挖深问题,在选例题时尽量选中等难度题目,以适应大多数学生的适应能力。
三、教学目标针对以上问题的出现,在本学期拟订以下目标和措施。
其具体目标1 、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。
通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3、提高数学的提出、分析和解决问题的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4、提高学习数学的兴趣,树立学好数学的信心,2016全新精品资料-全新公文范文-全程指导写作-虫家原创4/14 形成锲而不舍的钻研精神和科学态度。
四、教法分析1 、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,以达到培养其兴趣的目的。
2、通过观察,思考,探究等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。
3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。
五、教学措施1 、抓好课堂教学,提高教学效益。
课堂教学是教学的主要环节,因此,抓好课堂教学是教学之根本,是提高数学成绩的主要途径。
①扎实落实集体备课,通过集体讨论,抓住教学内容的实质,形成较好的教学方案,拟好典型例题、练习题。
②加大课堂教改力度,培养学生的自主学习能力。
最有效的学习是自主学习,因此,课堂教学要大力培养学生自主探究的精神,逐步形成知识体系,提高能力。
同时要养成学生良好的学习习惯,不断提高学生的数学素养,从而提高数学素养,并大面积提高数学成绩。
2、加强课外辅导,提高竞争能力。
课外辅导是课2016全新精品资料-全新公文范文-全程指导写作-虫家原创5/14 堂的有力补充,是提高数学成绩的有力手段。
①加强学习方法的指导,全方面提高他们的数学能力,特别是自主能力,并通过强化训练,不断提高解题能力,使他们的数学成绩更上一层楼。
②加强对双差生的辅导。
双差生是一个班级教学成败的关键,因此,我将下大力气辅导双差生,通过个别或集体的方法进行耐性教学,从而使他们的纪律以及数学成绩有一定的进步。
3、搞好单元考试、阶段性考试的分析。
学生只有通过不断的练习才能提高成绩,单元考试、阶段性考试是最好的练习,每次都要做好分析,并指导学生。
在分析过程中要遵循自主的思维习惯,使学生真正理解。
六、教学进度安排本学期授课时间约为20 周,本学期的教学任务第一学段:数学必修5;第二学段:理科2-1。
另完成选修4-5,和选修4-4 的教学任务,保证完成教学任务。
2018 高二上学期数学教师上学期工作计划(三)新的学期又开始了,本学期我继续担任高三的二个班的数学教学工作,一个理科班,一个文科班,基础相对较差些,2016全新精品资料-全新公文范文-全程指导写作-虫家原创6/14距离20XX年高考还有3个多月的时间,目前高考复习的第一轮复习即将结束,再有半个多月时间就要开始第二轮复习。
在这 3 个多月里,我们将面临:时间紧、任务重等困难,为圆满完成教学任务,特制定教学计划如下:一、认真研究考纲,做有针对性的复习高三复习时间紧、任务重,认真研究考纲,把握高考考什么,哪些内容重点考,哪些不考,考试的题型如何,做到心中有数。
复习时,考纲中已经删除了的知识点,坚决不讲,而对于新增的知识点在复习时要强调突破。
这样,复习就更具有针对性,达到事半功倍的效果。
在第二轮复习中分专题进行复习,另外为了提高学生的解题速度,要专门抽时间出来做强化训练(规定时间最多少题),可能第一次考试,学生在规定的时间不能做完,或者说不适应,但经过多次这样的强化快速训练之后,学生的解题速度会明显提高,害怕做题,怯题的情绪就会消失,心理素质会进一步加强。
二、教材分析充分重视新教材教学内容改革,新教材内容与传统内容相比,有了很大的改进。
新课程内容增加了数学建模、探究性课题等板块,为学生提供了更广阔的发展空间,也为改变学生的学习方式提供了素材。
这是对前几年研究性学习的继续和发展。
2016全新精品资料-全新公文范文-全程指导写作-虫家原创7/14 一是要细读教材,对教材中的基本概念、定理、性质以及它们的限制条件等要咬文嚼字地读,细细地体会与领悟;二是要重视对教材中的阅读材料、想一想、实习作业等的复习,不能在复习中留下盲点;三是要注意教材中知识的发生过程。
如在求椭圆方程时,要知道是由定义推出方程,而不是公式推出公式。
由椭圆定义推出方程是坐标法的核心,它有三个关键,这也是得分点:①建立恰当的直角坐标系;②利用两点距离公式、利用定义得出椭圆方程;③定义中隐蔽了条件:三角形两边之和大于第三边,2a2c,令b2=a2-c2,这些都只有通过细读教材,耐心品味,才能真正领悟其中实质。
三、命题思路与试卷的总体情况分析1 、命题指导思想和命题原则近几年,天津市数学高考试题难度比较稳定。
试题难度适中,20xx年的试卷感觉稍微有一点难,估计明年可能要略易一些。
新课程标准实施后,为了有利于促进新课程目标的落实,命题题型、考试内容等略有变动如下:2、试卷结构及题型与往年数学高考试卷有所改变,由原来的总共22道题,2016全新精品资料-全新公文范文-全程指导写作-虫家原创8/14 其中选择题10道(每题5分);填空题6道(每题4分);解答题6道(共76 分),改为20道题,其中选择题8道(每题5分);填空题6道(每题5分);解答题6 道(共80 分)。
3、考试内容(1)数学基础知识(新增了一些数学内容与删改了部分传统内容)(2)数学思想方法(基本保持不变)(3)数学能力(主要变化是应用意识和创新意识的地位问题)4、关于样卷充分重视对新增内容的考查,重视对基础知识和主干知识的考查,重视对应用意识和创新意识的考查。
四、考查内容与要求的具体变化1.函数主要变化有:①加强了函数模型的背景和应用的要求,如要求了解指数函数模型和对数函数模型的实际背景,了解指数函数、对数函数以及幂函数的增长特征、含义及其广泛应用;②加强了函数与方程、不等式、算法等内容的联系,如要求了解函数的零点与方程根的联系,能根据具体函数的图像,用二分法求相应方程的近似解。
③提升了对数形结合、几何直观等数学思想方法的考查2016全新精品资料-全新公文范文-全程指导写作-虫家原创9/14 要求,如要求理解函数的单调性、最大(小)值及其几何意义,会运用函数图象理解和研究函数的性质;④增加了幂函数的概念和几个简单幂函数的图象的变化情况等知识; ⑤ 提出了了解简单的分段函数,并能简单应用的要求;⑥ 降低了对反函数的考查要求,只要求了解指数函数与对数函数y=logax 互为反函数(0,且1),不要求一般地讨论形式化的反函数定义,也不要求求已知函数的反函数。