脲酶抑制剂

合集下载

脲酶抑制剂在畜牧生产中的应用浅析

脲酶抑制剂在畜牧生产中的应用浅析

脲酶抑制剂在畜牧生产中的应用浅析脲酶抑制剂是一类用于抑制脲酶活性的化合物,脲酶是一种在动植物体内负责尿素分解的酶类,而尿素则是动物体内代谢产物中含氮化合物的主要来源。

在畜牧生产中,脲酶抑制剂具有辅助动物生长、改善饲料利用率和减少氮排放的作用。

本文将对脲酶抑制剂在畜牧生产中的应用进行浅析。

一、脲酶抑制剂的作用机制脲酶抑制剂是通过抑制脲酶的活性,降低尿素分解速度,从而减少氮的排放量。

尿素是动物体内代谢产物中含氮化合物的主要来源,其生成一部分取决于氨基酸代谢的速率,另一部分则取决于蛋白质分解速率。

而脲酶抑制剂的作用就是通过降低脲酶的活性,减缓尿素分解速度,使得尿素在体内的利用率提高,从而达到减少氮排放的效果。

二、脲酶抑制剂在畜牧生产中的应用1. 改善饲料利用率脲酶抑制剂可以降低尿素分解速度,从而延缓氮排放,使得动物体内氮的利用率提高。

研究表明,添加脲酶抑制剂可以显著提高动物对氮的利用率,降低饲料与肉品之间的转化率,改善饲料利用效率。

2. 辅助动物生长通过降低尿素分解速度,脲酶抑制剂可以改善动物对饲料中氮的利用率,从而提高动物的生长速度,增加体重增长率。

对于畜禽生产来说,这意味着更高效的生长和更快的肉品生产速度,可以减少饲料投入,提高养殖效益。

3. 减少氮排放动物体内大量的氮排放不仅会造成资源浪费,还会对环境造成污染。

脲酶抑制剂的应用可以减缓尿素分解速度,降低氮的排放量,从而减轻养殖场对环境的压力,符合绿色养殖理念和可持续发展的要求。

三、脲酶抑制剂在畜牧生产中的局限性和发展前景尽管脲酶抑制剂在畜牧生产中具有诸多优点,但也存在一些局限性。

脲酶抑制剂的添加对饲料的质量有一定要求,不同的饲料配方可能会对脲酶抑制剂的效果产生影响。

脲酶抑制剂的添加量需要严格控制,过量添加会对动物的健康产生负面影响。

当前对脲酶抑制剂的研究还不够深入,相关技术仍需要进一步完善。

随着畜牧业的发展和技术的进步,脲酶抑制剂在畜牧生产中的应用前景依然广阔。

脲酶抑制剂在畜牧生产中的应用浅析

脲酶抑制剂在畜牧生产中的应用浅析

脲酶抑制剂在畜牧生产中的应用浅析一、脲酶抑制剂的原理脲酶是一种存在于动物体内的酶,能够分解氨基酸中的尿素,产生氨氮。

在畜牧生产中,氨氮的释放会直接影响到动物的生长发育和肉质品质,因此需要通过一定的方式来控制脲酶的活性。

脲酶抑制剂正是针对这一问题而开发出来的一种饲料添加剂,它能够抑制脲酶的活性,从而减少氨氮的产生,提高畜禽对于饲料中蛋白质的利用率。

1.减少氨氮排放畜禽在消化过程中会产生大量的氨氮,过多的氨氮排放不仅会导致养殖环境的恶化,还会造成资源浪费和污染。

脲酶抑制剂能够有效地降低氨氮的排放量,从而减轻环境压力,保护生态环境。

2.提高饲料转化率脲酶抑制剂可以有效地提高畜禽对于饲料中蛋白质的利用率,降低了饲料的成本,提高了饲料的转化率。

由于蛋白质的利用率得到了提高,畜禽的生长速度也会得到加快,从而提高了养殖效益。

3.改善肉质品质过多的氨氮不仅会对环境造成污染,也会对畜禽的肉质品质产生不良影响。

通过使用脲酶抑制剂,可以使畜禽消化吸收更加充分,从而减少了肌肉中的氨基酸含量,提高了肉质的口感和营养价值。

1.饲料添加剂脲酶抑制剂通常以添加剂的形式加入到饲料中,一般与饲料混合均匀后直接喂给畜禽。

这种方式操作简单,不会对饲料的口感和营养价值产生影响,是目前应用最广泛的一种方式。

2.饮水添加除了作为饲料添加剂外,脲酶抑制剂还可以直接加入到畜禽的饮水中。

这种方式操作简单,能够确保每只畜禽都能够摄入到足够的脲酶抑制剂,提高了效果。

3.环境处理除了直接添加到饲料和饮水中外,脲酶抑制剂还可以通过环境处理的方式来降低氨氮的排放。

在畜禽舍内通过喷洒脲酶抑制剂的方式来降低氨氮的含量,从而改善养殖环境。

1.用量控制使用脲酶抑制剂时,需要严格控制添加剂的用量,避免使用过量或不足的情况发生。

一般情况下,应根据不同种类的畜禽和饲料的需要来确定合适的添加量。

2.质量保证选择正规的生产厂家和销售商购买脲酶抑制剂,确保产品的质量和安全性。

脲酶抑制剂综述

脲酶抑制剂综述

脲酶抑制剂综述抑制剂研究进展1、脲酶抑制剂研究进展1.1脲酶抑制剂种类及作用原理脲酶是氨基水解酶的一类酶的通称,是一种作用于线型酰胺C-N键(非肽)的水解酶。

土壤脲酶抑制剂是对土壤脲酶活性有抑制作用的化合物或元素。

Conrad早在1940年就指出向土壤中加入某些物质可以抑制脲酶活性并延缓尿素水解。

在随后的几十年里,脲酶抑制剂的研究取得很大进展,包括对尿素水解、NH3挥发、尿素N土壤转化、尿素利用率、作物产量的影响等。

脲酶抑制剂主要有无机物和有机物二大类。

无机物中主要是分子量大于50的重金属化合物如Cu、Ag、Pb、Hg、Co、Ni、Au、As、Cr等元素的不同价态离子;有机化合物中包括对氨基苯磺酰胺、二硫代氨基甲酸盐、羟基草氨酸盐、有机汞化合物、酚类、醌及取代醌类、磷胺类化合及其转化物等。

Bremner 和Douglas证明二元酚和醌是当时最有效的有机化合物,银和汞盐是最有效的无机化合物[62]。

Mulvaney和Bremner(1981)、Byrnes和Freney 等(1995)指出,最有效的脲酶抑制剂是醌如 -苯醌和氢醌(HQ)、二元酚和磷胺类化合物如N-丁基硫代磷酰三胺(NBPT)、苯基磷酰二胺(PPD)、环己基磷酰三胺(CHPT)等[65]。

其中HQ被认是较有效并经济的,而NBPT、PPD、CHPT等磷胺化合物的抑制效果则是最好的。

对脲酶抑制剂的筛选,通常注意的只是该化合物使用后尿素在一定培养时间内的残留量,而对脲酶抑制剂的作用机制研究的较少。

重金属离子和醌类物质的脲酶抑制作用机理相同,它们均能作用于脲酶蛋白上对酶促有重要的作用的巯基(-SH)),抑制作用的效果与金属-锍化物和醌-锍化物复合体的解离能力呈反比。

磷胺类化合物的作用机理为该类化合物与尿素分子有相似的结构,可与尿素竞争与脲酶的结合位点,而且其与脲酶的亲和力极高,此种结合使得脲酶减少了作用尿素的机会,达到了抑制尿素水解的目的。

脲酶抑制剂和硝化抑制剂

脲酶抑制剂和硝化抑制剂

脲酶抑制剂和硝化抑制剂脲酶抑制剂1、脲酶的作用:能将尿素分解成氨和二氧化碳,即水解作用。

2、脲酶抑制剂及其作用原理:A 脲酶抑制剂:对土壤脲酶活性有抑制作用的化合物或元素的总称。

B作用原理:它通过对在脲酶催化过程中扮演主要角色的巯基发生作用,有效的抑制脲酶的活性,从而延缓土壤中尿素的水解速度,减少氨向大气中挥发损失。

(即脲酶抑制剂通过与尿素竞争脲酶活性部位,抢占先机,使脲酶失去与尿素作用来减缓尿素水解)。

C其抑制重点在于:抑制尿素活性并延缓水解过程,减少氨产生。

3、脲酶抑制剂的种类:主要有无机物和有机物两大类。

无机物主要是分子量大于50的重金属化合物如Cu、Ag、Co、Ni等元素的不同价态离子;有机物主要是各类醌类物质。

不同的脲酶抑制剂其抑制机理不同。

本论文采用的脲酶抑制剂—NBPT便是醌类物质。

4、脲酶抑制剂的国内外研究现状A 国外研究现状20世纪30年代,Rotini报道了土壤脲酶的存在,40年代Cornad指出将某些物质施入土壤可以抑制脲酶活性,延长氮肥的有效期。

60年代对与脲酶抑制剂的研究开始。

至1971年Bromner等人从130多种化合物中筛选出效果较好的脲酶抑制剂为苯醌和氢醌类化合物。

Bundy等(1973)的实验表明苯醌的效果最好。

进入80年代,国际上已开发了近70种有实用意义的脲酶抑制剂,主要包括醌类、多羟酚类、磷酰胺类、重金属类以及五氯硝基苯等。

1996年春,美国IMC-Agrotain公司以Agrotain商标在市场上销售。

B 国内研究现状脲酶抑制剂在我国的研究起步较晚,80年代初,中国科学院沈阳应用生态研究所首先进行了系统研究,以周礼恺、张志明为代表。

90年代初,开发出长效碳酸氢铵、长效尿素和一系列含尿素长效复合肥料,并申请了专利。

进入90年代,研究方向由纯化合物或无机盐转向了天然物质,如腐植酸类。

硝化抑制剂1、硝化抑制剂及其原理A 硝化抑制剂对能够抑制土壤中亚硝化细菌微生物活性的一类物质的总称。

浅谈脲酶抑制剂在动物生产中的应用

浅谈脲酶抑制剂在动物生产中的应用
改变脲酶的结构,使脲酶变性失活,例如重金属
盐类和多聚甲醛[2]。
3 脲酶抑制剂在动物生产中的应用效果
3.1 鸡
脲酶抑制剂可降低肉仔鸡肠道内脲酶活性
和氨浓度,减少氨的释放,改善养殖场的环境,净
化空气,减弱氨气对动物和人体产生的有害作
用,减少腹水病的发生率,降低死亡率,提高生产
性能。Staudinger 等(1994)[3]证明:
的饲料中,
不仅可以改善动物品质,
提高对饲料的
利用效率,还可以降低动物疾病的发生,减少死
亡的数量,对环境污染也起到一定的治理作用。
1 脲酶抑制剂的概述
脲酶抑制剂是一类能够直接或间接抑制脲
酶活性的物质。主要分为重金属盐类、尿素衍生
物、异位酸类、酚醌类、氧肟酸类、酰胺类、植物提
取物类和磷酸盐等。最常用的是氢醌(对苯二
2018 年第 5 期
江西饲料



浅谈脲酶抑制剂在动物生产中的应用
王寒冰,
王琤韡*
(江西科技师范大学生命科学学院,
南昌 330013)
摘 要:脲酶抑制剂是一种可以提高动物对尿素的利用效率,抑制脲酶的活性,避免氨中毒的危
险,有利于动物健康生长,提高动物品质的非营养性饲料添加剂。本文对脲酶抑制剂的作用机理以及
重效果极显著(P<0.01)。刘海燕等(2007)[14]研究
发现,在羊日粮中添加脲酶抑制剂(同时添加尿
素),尿素的利用效率提高,粗纤维的消化速率加
快,营养物质沉积,日增重显著提高。
4 小结
虽然脲酶抑制剂对动物的生产有一定的帮
助,能够有效抑制动物肠道和粪中脲酶活性,减
少氨气产生,改善养殖环境,提高动物生产性能,

脲酶抑制剂综述

脲酶抑制剂综述

抑制剂研究进展1、脲酶抑制剂研究进展1.1脲酶抑制剂种类及作用原理脲酶是氨基水解酶的一类酶的通称,是一种作用于线型酰胺C-N键(非肽)的水解酶。

土壤脲酶抑制剂是对土壤脲酶活性有抑制作用的化合物或元素。

Conrad早在1940年就指出向土壤中加入某些物质可以抑制脲酶活性并延缓尿素水解。

在随后的几十年里,脲酶抑制剂的研究取得很大进展,包括对尿素水解、NH3挥发、尿素N土壤转化、尿素利用率、作物产量的影响等。

脲酶抑制剂主要有无机物和有机物二大类。

无机物中主要是分子量大于50的重金属化合物如Cu、Ag、Pb、Hg、Co、Ni、Au、As、Cr等元素的不同价态离子;有机化合物中包括对氨基苯磺酰胺、二硫代氨基甲酸盐、羟基草氨酸盐、有机汞化合物、酚类、醌及取代醌类、磷胺类化合及其转化物等。

Bremner和Douglas证明二元酚和醌是当时最有效的有机化合物,银和汞盐是最有效的无机化合物[62]。

Mulvaney和Bremner(1981)、Byrnes和Freney 等(1995)指出,最有效的脲酶抑制剂是醌如 -苯醌和氢醌(HQ)、二元酚和磷胺类化合物如N-丁基硫代磷酰三胺(NBPT)、苯基磷酰二胺(PPD)、环己基磷酰三胺(CHPT)等[65]。

其中HQ被认是较有效并经济的,而NBPT、PPD、CHPT等磷胺化合物的抑制效果则是最好的。

对脲酶抑制剂的筛选,通常注意的只是该化合物使用后尿素在一定培养时间内的残留量,而对脲酶抑制剂的作用机制研究的较少。

重金属离子和醌类物质的脲酶抑制作用机理相同,它们均能作用于脲酶蛋白上对酶促有重要的作用的巯基(-SH)),抑制作用的效果与金属-锍化物和醌-锍化物复合体的解离能力呈反比。

磷胺类化合物的作用机理为该类化合物与尿素分子有相似的结构,可与尿素竞争与脲酶的结合位点,而且其与脲酶的亲和力极高,此种结合使得脲酶减少了作用尿素的机会,达到了抑制尿素水解的目的。

综合国内外的资料研究,脲酶抑制剂的作用机理主要表现在以下几个方面:(1)脲酶抑制剂占据了脲酶水解尿素的活性位置,降低脲酶活性。

细菌脲酶抑制剂及其作用机理的研究进展

细菌脲酶抑制剂及其作用机理的研究进展

动物营养学报2020,32(8):3496⁃3508ChineseJournalofAnimalNutrition㊀doi:10.3969/j.issn.1006⁃267x.2020.08.007细菌脲酶抑制剂及其作用机理的研究进展张震宇1,2㊀赵圣国1,2㊀郑㊀楠1,2㊀王加启1,2∗(1.中国农业科学院北京畜牧兽医研究所,动物营养学国家重点实验室,北京100193;2.中国农业科学院北京畜牧兽医研究所,农业部奶及奶制品质量安全控制重点实验室,北京100193)摘㊀要:脲酶抑制剂能有效抑制细菌脲酶活性,降低尿素分解菌产生氨的速度,广泛应用于医药及农业领域㊂然而,目前使用的脲酶抑制剂存在着生物毒性强㊁微生物适应性与稳定性差等问题,限制了脲酶抑制剂的应用㊂近年来,研究发现了一系列新的脲酶抑制先导化合物,同时报道了这些化合物的脲酶抑制结构以及作用模式与机制㊂本文综述了近10年有关脲酶抑制剂的报道,并对所报道的脲酶抑制剂进行系统分类,以探讨不同类别的脲酶抑制剂的构效关系㊁抑制效果与抑制模式,并从不同类型脲酶抑制剂的构效关系探讨了其作用机理,旨在为新型脲酶抑制剂的开发提供参考㊂关键词:脲酶抑制剂;细菌脲酶;非蛋白氮;构效关系;抑制机制中图分类号:S816.7㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀文章编号:1006⁃267X(2020)08⁃3496⁃13收稿日期:2020-01-09基金项目:国家自然科学基金项目(31430081);现代农业产业技术体系专项(CARS⁃36);中国农业科学院农业科技创新工程重大产出科研选题(CAAS⁃ZDXT2019004);中国农业科学院科技创新工程(ASTIP⁃IAS12)作者简介:张震宇(1996 ),男,江西南昌人,硕士研究生,研究方向为反刍动物营养与饲料科学㊂E⁃mail:zzy123779@126.com∗通信作者:王加启,研究员,博士生导师,E⁃mail:Jiaqiwang@vip.163.com㊀㊀脲酶又称尿素酰胺水解酶(EC3.5.1.5),属于酰胺水解酶家族的杂聚酶,可催化尿素分解为氨和二氧化碳[1],其来源于自然界的植物㊁细菌㊁真菌㊁藻类以及无脊椎动物等生物㊂细菌脲酶是由2个或3个亚基复合物组成的多聚体[2-3]㊂脲酶高效催化尿素降解,在提供氮源的同时也给人类健康和农业生产带来许多不利影响,主要表现在如下4个方面:1)产脲酶微生物定植消化道或尿道所致的胃肠道溃疡(幽门螺杆菌)或泌尿结石(克雷伯氏菌和变形杆菌)[4];2)土壤中的产脲酶微生物所致的尿素流失[5];3)畜禽生产中,粪便中产脲酶微生物加速氨的排放所致的大气环境污染[6];4)反刍动物瘤胃中产脲酶微生物降低尿素氮的利用率所致的动物生产性能下降[7]㊂㊀㊀细菌脲酶结构蛋白是由2个(α㊁β)或3个(α㊁β㊁γ)亚基单位组成的同源寡聚体蛋白组成的多聚体[2,8],如产气克雷伯氏菌(Klebsiellaaero⁃genes)和巴氏生孢八叠球菌(Sporosarcinapasteur⁃ii)所产脲酶就由(αβγ)3组成,每个α-亚基含有2个镍离子活性中心构成的(αβ)8桶状结构域;腐生葡萄球菌(staphylococcussaparophytics)所产脲酶由(αβγ)4组成,幽门螺杆菌所产脲酶则仅由α和β形成(αβ)12球形结构组成㊂尽管不同种类的脲酶间亚基数量不同,但脲酶镍离子附近活性位点的结构是保守的,且其活化与催化机制相似㊂然而,不同种类脲酶间变构位点结构可变性却很大[9]㊂㊀㊀脲酶抑制剂能抑制尿素产氨的反应,有助于解决脲酶活性强导致的人体健康危害㊁土壤氮流失㊁粪肥氨释放以及瘤胃尿素氮利用率低等问题㊂近年来,新型脲酶抑制剂的研发多以前期报道的不同类别脲酶抑制剂的有效基团的组合优化为基础㊂鉴于此,本文按化合物种类将脲酶抑制剂分为不同的类别,并探讨各类化合物的脲酶抑制功能基团或其特征结构,以及这些化合物与脲酶活性中心的作用模式㊂这些化合物中的功能基团或其特征结构可以用于新型脲酶抑制剂的合成,对研发新型脲酶抑制剂具有重要的参考作用㊂1 近年来公开报道的脲酶抑制剂㊀㊀近年来公开报道的对研发新型脲酶抑制剂具有重要参考作用的脲酶抑制剂见表1㊂表1对不同脲酶抑制剂进行了分类,并列举了不同研究中8期张震宇等:细菌脲酶抑制剂及其作用机理的研究进展合成的抑制剂类型㊁代表抑制剂㊁抑制类型㊁ki值㊁半抑制浓度(IC50)值㊁抑制对象㊁参比抑制剂以及重要基团信息㊂其中,抑制剂类型是指在研究中涉及的一类化合物的总称;代表抑制剂是指通过脲酶活性试验筛选出的该类化合物中抑制活性最强的化合物;抑制类型是指脲酶抑制剂与脲酶的作用特点,通常包括竞争性抑制㊁非竞争性抑制㊁反竞争性抑制㊁混合性抑制;脲酶抑制剂的ki值和IC50值用于反映其抑制活性㊂不同研究中往往会使用不同脲酶作为研究对象,通过在相同条件下测定公认有效的脲酶抑制剂(如乙酰氧肟酸㊁硫脲㊁羟基脲等)作为参比抑制剂与新型脲酶抑制剂进行脲酶抑制效果比较,就能判断新型脲酶抑制剂抑制效果的强弱㊂表1中重要基团一栏是指一类化合物中被认为对于该类化合物脲酶抑制活性至关重要的化学结构,通过化学修饰取代该结构能改变化合物的抑制活性㊂1.1 氧肟酸类化合物㊀㊀氧肟酸类化合物的螯合性强,能与镍㊁铜等各种过渡金属形成螯合力较强的复合物㊂当氧肟酸类化合物与脲酶活性位点中金属离子结合,即可使之失活㊂脲酶抑制剂开发的早期,主要是研究开发氧肟酸类化合物,特别是针对乙酰氧肟酸的研究较多,这是因为其化学结构相对简单,脲酶抑制效果良好,因而得到了广泛的应用㊂但乙酰氧肟酸具有一定的局限性,体外瘤胃菌体培养试验证明,添加乙酰氧肟酸会降低挥发性脂肪酸的生成并改变乙酸㊁丙酸㊁丁酸间的摩尔比[45]㊂乙酰氧肟酸是医用领域唯一经美国食品和药物管理局(FDA)批准上市的㊁用于治疗幽门螺旋杆菌感染的药用脲酶抑制剂,但治疗的剂量大(成人至少1000mg/d),以致引起副作用[46]㊂因此,近年来有关脲酶抑制剂的研究主要集中于解析氧肟酸类化合物的有效基团,评估其作用效果与机制,并利用这些信息合成新型脲酶抑制剂,以期改善其副作用㊂通常氧肟酸类化合物与脲酶活性中心的作用机制为:化学结构中羟肟酸酯的羰基氧与脲酶活性中心的1个镍离子结合,并进一步与活性中心的WB位点结合,同时去除自身结构中-OH基团,从而桥接另一个镍离子形成双齿络合物㊂形成的过渡态中间体有类似于底物尿素与脲酶结合时形成的结构,因此能阻止底物尿素与脲酶活性中心的结合,从而抑制脲酶活性(图1)㊂㊀㊀Rajicᶄ等[12]通过合成氧肟酸的衍生物发现只有含有-OH基团的衍生物才具有脲酶抑制作用㊂Xiao等[11]通过研究类黄酮类化合物,建立了一种理想脲酶抑制剂模型㊂该模型由3个 环状 结构组成(图2-a),结合乙酰氧肟酸的化学结构(图2-b)提出氧肟酸的部分化学结构可以模拟类黄酮类化合物模型中的环状结构(图2-c)㊂因此,通过利用乙酰氧肟酸作为化学结构骨架模拟结构a中的环A(图2-a)以及结构a中具有b-羟基羰基部分的环C(图2-a),可设计出复合型脲酶抑制剂(图2-d)㊂经此组合设计,最终得到脲酶抑制效果最好的化合物为3-(3-氯苯基)-3-羟基丙酰基-异羟肟酸(图2-e)㊂其IC50值为(0.083ʃ0.004)μmol/L㊁ki值为(0.014ʃ0.003)μmol/L,是一种混合性脲酶抑制剂㊂㊀㊀基于上述理想脲酶抑制剂模型,Shi等[10]将水杨酸衍生物的苯甲酸结构㊁黄酮类三环结构和乙酰氧肟酸的羟肟酸结构组合建立新型化合物支架结构,合成了24种衍生物,其中3-(2-苄氧基-5-氯苯基)-3-羟基丙酰异羟肟酸的脲酶抑制活性最强,IC50值为(0.15ʃ0.05)μmol/L,比参比脲酶抑制剂乙酰氧肟酸强20倍,是一种混合性脲酶抑制剂㊂用NMe取代该化合物羟肟酸部分的-NH导致脲酶抑制效果的降低,表明-NH基团对于氧肟类化合物的脲酶抑制功能非常重要㊂分子对接表明该化合物中的NHO-中O原子部分以双齿方式配位2个镍离子并与His221建立氢键,而NHO-中H原子部分分别与Asp362的COO-和Ala365的CO-的3个氧原子形成3个氢键㊂该化合物中的5-氯水杨酸骨架分别与氨基酸残基Met317和Met366形成的疏水作用力以及苄基分别与酶表面的Asn168和Ala169残基所建立的额外疏水接触,均增加了该化合物的脲酶抑制效果(图3)㊂该研究提出,氧肟酸类化合物中额外的带有苯环结构的修饰能够增加氧肟酸类化合物与脲酶蛋白表面氨基酸残基形成疏水作用的概率㊂需要特别指出的是,不是所有对氧肟酸类化合物的化学修饰都是有利的,例如:氧肟酸类化合物中插入N-甲基结构会干扰氧肟酸类化合物与活性中心的结合㊂通过去除该类化合物中羟肟酸部分的甲基得到的3-(2-苄氧基-5-氯苯基)-3-羟基丙酰异羟肟酸等化合物,较之前化合物脲酶抑制效果提高了30 800倍㊂7943㊀动㊀物㊀营㊀养㊀学㊀报32卷表1㊀脲酶抑制剂分类Table1㊀Classificationofureaseinhibitors分类Classifications抑制剂类型Typeofinhibitor代表抑制剂Representativeinhibitor抑制类型Inhibitiontypeki值kivalue/(nmol/L)IC50值IC50value抑制对象Inhibitionobjects参比抑制剂Referenceinhibitor重要基团Importantgroup参考文献References氧肟酸类化合物Hydroxamicacidcompounds3-芳基丙酰异羟肟酸衍生物3-(2-苄氧基-5-氯苯基)-3-羟基丙酰异羟肟酸混合性0.13ˑ103(0.15ʃ0.05)μmol/L幽门螺旋杆菌脲酶乙酰氧肟酸IC50=(23.8ʃ1.5)μmol/L苄基㊁5-氯水杨酸骨架[10]β-羟基β-苯基丙酰基异羟肟酸3-(3-氯苯基)-3-羟基丙酰基-异羟肟酸混合性0.014ʃ0.003(0.083ʃ0.004)μmol/L幽门螺旋杆菌脲酶乙酰氧肟酸IC50=(27.6ʃ2.5)μmol/L氯取代苯环[11]甲基和O-乙基非甾体异羟肟酸2-[(2,6-二氯苯基)氨基]-N-羟基苯乙酰胺37.4μmol/L刀豆脲酶双氯芬酸[12]硫脲及其衍生物ThioureaanditsderivativesN,Nᶄ-二取代硫脲N-苯基-N-(3-吡啶基)硫脲竞争性(8.43ʃ0.02)μmol/L刀豆脲酶硫脲IC50=(21.00ʃ0.11)μmol/L带有孤电子对指向化合物中心的取代基团[13]硫脲二硫化物类似物1,1ᶄ-[二硫代二基双(2,1-亚苯基)]双[3-(4-氟苯基)硫脲]0.4μmol/L刀豆脲酶硫脲IC50=(19.46ʃ1.20)μmol/L富电子取代基[14]硫脲苯并噻唑类似物2-[4-(苯并[d]噻唑-2-基)苯甲酰基]-N-(3,4-二氯苯基)肼甲硫代酰胺(2.10ʃ0.24)μmol/L刀豆脲酶硫脲IC50=(19.46ʃ1.20)μmol/L吸电子类取代基团[15]苯甲酰硫脲衍生物苯甲酰硫脲衍生物20混合性(475.2ʃ166.0)ˑ103化合物浓度为500μmol/L时抑制率为65.2%刀豆脲酶正丁基硫代磷酸三胺浓度为500μmol/L时抑制率为40%苯甲酰基[16]1-酰基-3-芳基硫脲衍生物1-(3-氯苯基)-3-十四烷酰基-硫脲非竞争性0.021ˑ103(0.0391ʃ0.0028)μmol/L刀豆脲酶硫脲IC50=(18.195ʃ0.382)μmol/L酰基[17]89438期张震宇等:细菌脲酶抑制剂及其作用机理的研究进展续表1分类Classifications抑制剂类型Typeofinhibitor代表抑制剂Representativeinhibitor抑制类型Inhibitiontypeki值kivalue/(nmol/L)IC50值IC50value抑制对象Inhibitionobjects参比抑制剂Referenceinhibitor重要基团Importantgroup参考文献References棕榈酰硫脲衍生物1-(4-氯苯基)-3棕榈酰硫脲非竞争性0.0136ˑ1030.0701μmol/L刀豆脲酶硫脲IC50=4.72μmol/L4-氯取代苯环㊁酰基[18]N,N,Nᶄ-三取代硫脲与二价镍的复合物Ni(Ⅱ)N,N-甲基苯基-Nᶄ-苯甲酰基硫脲(1.17ʃ0.12)μmol/L刀豆脲酶硫脲IC50=(23.0ʃ11.0)μmol/L镍离子配位基团[19]芳基硫脲衍生物1-(2,3-二氯苯基)-3-[2-(4-异丁基苯基)丙酰基]硫脲竞争性0.00120.0081ˑ10-6μmol/L刀豆脲酶硫脲IC50=18.501ˑ10-3μmol/L1,3-二取代硫脲基团[20]杂环类化合物Heterocycliccompounds4-芳基噻吩-2-醛衍生物4-(3-氯-4-氟苯基)噻吩-2-乙醛27.1μg/mL硫脲IC50=27.5μg/mL二卤代基团[21]5-芳基噻吩衍生物N-(5-苯基噻吩-2-磺酰基)乙酰胺(38.40ʃ0.32)μg/mL刀豆脲酶硫脲IC50=43μg/mL三氟甲基[22]吡唑啉磺酰胺衍生物(S)-3-(1,3-二甲基-1H-吡唑啉[4,3-e][1,2,4]三嗪-5-基)-4-乙氧基-N-(1-羟基-丙-2-基)苯磺酰胺混合性0.01ˑ1030.037μmol/L刀豆脲酶硫脲IC50=20.9μmol/L(S)-2-羟基-1-甲基乙二胺取代基[23]7-氮杂吲哚类似物7-[2-(4-甲氧基-苯基)-2-氧代乙基]-1吡咯并[2,3-b]吡啶-7-鎓(2.19ʃ0.37)μmol/L刀豆脲酶硫脲IC50=(21.00ʃ0.11)μmol/L甲氧基苯甲酰基[24]有机硒化合物化合物4d(原文献中编号)竞争性1007ʃ9625.4μmol/L巴氏生孢八叠球菌脲酶乙酰氧肟酸ki=(3300ʃ400)nmol/L甲酯基㊁苯基[25]5-取代-8-甲基-2H-吡啶[1,2-a]嘧啶-2,4(3H)-二酮及其苯胺㊁氨基吡啶和肼衍生物8-甲基-3-[(2-磺酰苯胺)亚甲基]-2H-吡啶[1,2-a]嘧啶-2,4-二酮化合物浓度为100μmol/L时抑制率为97%刀豆脲酶硫脲浓度为100μmol/L时抑制率为94%4-硝基苯甲酰肼基团[26]9943㊀动㊀物㊀营㊀养㊀学㊀报32卷续表1分类Classifications抑制剂类型Typeofinhibitor代表抑制剂Representativeinhibitor抑制类型Inhibitiontypeki值kivalue/(nmol/L)IC50值IC50value抑制对象Inhibitionobjects参比抑制剂Referenceinhibitor重要基团Importantgroup参考文献References二氢嘧啶的肼衍生物等4类杂环类化合物乙基2-肼基-1,4-二甲基-6-(对硝基苯基)-1,6-二氢嘧啶-5-羧酸二盐酸盐混合性(14.63ʃ0.02)ˑ103(15.0ʃ0.6)μmol/L刀豆脲酶硫脲IC50=21μmol/L游离S原子㊁肼基[27]半硫代碳酰肼衍生物1-[4-(3-溴苯基)-6-甲基-2-硫代-3,4-二氢嘧啶-5-羰基]-4-(4-甲氧基苯基)氨基硫脲(0.58ʃ0.03)μmol/L刀豆脲酶硫脲IC50=21μmol/L氨基硫脲㊁靛红基团[28]三唑基苯甲酰胺衍生物N-(1-{5-巯基-4-[(4-甲氧基苄叉)氨基]-4H-1,2,4-三唑-3-基}-2-苯乙基)苯甲酰胺非竞争性抑制剂(0.0137ʃ0.0008)μmol/L刀豆脲酶硫脲IC50=(15.151ʃ1.270)μmol/L氧和甲氧基官能团[29]二羟基嘧啶衍生物5-(2,3-二甲氧基亚苄基)-2-硫代二氢嘧啶-4,6(1H,5H)-二酮混合性(11.900ʃ0.011)ˑ103(22.60ʃ1.14)μmol/L刀豆脲酶硫脲IC50=(21.2ʃ1.3)μmol/L苯基[30]槲皮素及其类似物槲皮素非竞争性抑制剂(11.2ʃ0.9)μmol/L幽门螺旋杆菌脲酶乙酰氧肟酸IC50=(19.4ʃ2.0)μmol/L羟基[31]巴比妥酸盐类化合物Barbituratecompounds5-芳基-N,N-二甲基巴比妥酸衍生物化合物7(原文献中编号)(28.63ʃ1.11)μmol/L硫脲IC50=(21.00ʃ0.11)μmol/L内环NH结构㊁侧链苯环的邻位添加取代基[32]硫代巴比妥酸化合物5-(3,4-二羟基苄叉)-2-硫代二氢-4,6(1H,5H)-嘧啶二酮(1.61ʃ0.18)μmol/L巴氏生孢八叠球菌脲酶硫脲IC50=(21.00ʃ0.11)μmol/L羟基㊁硫原子㊁吡啶基团[33]巴比妥酸的二乙基铵盐的两性离子加合物5,5ᶄ-(对甲苯亚甲基)双[6-羟基嘧啶-2,4(1H,3H)-二酮]二乙胺盐(17.60ʃ0.23)μmol/L刀豆脲酶硫脲IC50=(21.2ʃ1.3)μmol/L醛基[34]00538期张震宇等:细菌脲酶抑制剂及其作用机理的研究进展续表1分类Classifications抑制剂类型Typeofinhibitor代表抑制剂Representativeinhibitor抑制类型Inhibitiontypeki值kivalue/(nmol/L)IC50值IC50value抑制对象Inhibitionobjects参比抑制剂Referenceinhibitor重要基团Importantgroup参考文献References双硫代巴比妥衍生物5,5ᶄ-{[(3,5-二甲氧基苯基)亚甲基]双(1,3-二乙基-2-硫代二氢嘧啶)-4,6(1H,5H)-二酮}(7.45ʃ0.12)μmol/L巴氏生孢八叠球菌脲酶硫脲IC50=(21.10ʃ0.12)μmol/L给电子基团[35]巴比妥酸盐和硫代巴比妥酸盐化合物衍生物2-{[(4,6-二氧-2-硫代四氢嘧啶-5(2H)-亚叉基)甲基]氨基}-4-硝基苯甲酸(8.530ʃ0.027)μmol/L刀豆脲酶硫脲IC50=(21.000ʃ0.011)μmol/L(硫代)巴比妥基部分的NH基团[36]巴比妥酸化合物衍生物化合物1a(原文献中编号)41.6μmol/L幽门螺旋杆菌脲酶羟基脲IC50=100μmol/L芳内酯[37]磷酰胺类化合物Phosphamidecompounds磷酰胺类化合物的衍生物N-(1,3-苯并噻唑-2-基)磷酸三酰胺2ˑ10-3μmol/L刀豆脲酶N-正丁基硫代磷酸三酰胺(NBPT)IC50=100nmol/L次膦酸基团[38]磷酰胺类化合物的N,二甲基衍生物N,N-二甲氨基甲烷膦酸竞争性(82ʃ26)ˑ103(21.0ʃ5.7)μmol/L刀豆脲酶甲基[39]席夫碱类化合物Schiffbasescompounds席夫碱类化合物(E)-1-(3-硝基亚苄基)硫代氨基脲竞争性0.09ˑ103(0.102ʃ0.500)μmol/L刀豆脲酶硫脲IC50=(21.00ʃ0.11)μmol/L苯环间位吸电子基团[40]席夫碱类化合物Cu2Cl4(L2)2混合性-15ˑ103(0.03ʃ0.78)μmol/L刀豆脲酶乙酰氧肟酸IC50=(37.2ʃ4.0)μmol/L金属离子[41]氟化苯甲醛㊁异烟肼(一种抗结核药)及它们的二价铜化合物衍生得到的席夫碱Cu⁃L1(0.49ʃ0.01)μmol/L刀豆脲酶乙酰氧肟酸IC50=(185.0ʃ6.2)μmol/L铜(Ⅱ)配合基团[42]席夫碱铜(Ⅱ)配合物(拥有平坦四结合铜离子中心)Cu(L4)2(3.62ʃ0.27)μmol/L刀豆脲酶乙酰氧肟酸IC50=(63.70ʃ0.13)μmol/L铜(Ⅱ)配合基团[43]铜(Ⅱ)和镍(Ⅱ)与席夫碱配体的有二齿的配合物Cu(L3)21.45μmol/L刀豆脲酶乙酰氧肟酸IC50=63μmol/L金属离子[44]1053㊀动㊀物㊀营㊀养㊀学㊀报32卷图1㊀乙酰氧肟酸与脲酶活性中心相互作用模式图Fig.1㊀Schematicdiagramofinteractionbetweenacetohydroxamicacidandureaseactivitysite[47]图2㊀基于类黄酮结构的理想性氧肟酸类脲酶抑制剂设计Fig.2㊀Designofidealhydroxamicacidureaseinhibitorbasedonstructureofflavonoids[11]㊀㊀a㊁b中氨基酸残基由紫色实线表示,化合物由绿色棍状图表示㊂b中红色圈出部分为2个化合物结构不同之处㊂㊀㊀Theaminoacidresiduesareshownaspurplelines,whilethecompoundsareshownasgreensticksinfiguresaandb.Theredcycleinfigurebhighlightthestructuraldifferencebe⁃tweentwocompounds.图3㊀化合物3-(5-氯-2-羟基苯基)-3-羟基丙酰异羟肟酸(a)㊁3-(2-苄氧基-5-氯苯基)-3-羟基丙酰异羟肟酸(b)与脲酶的结合模式Fig.3㊀Bindingmodeof3⁃(5⁃chloro⁃2⁃hydroxyphenyl)⁃3⁃hydroxy⁃N⁃methylpropionylhydroxamicacid(a)and3⁃(5⁃chloro⁃2⁃hydroxyphenyl)⁃3⁃hydroxypropionylhydroxamicacid(b)withurease[10]1.2㊀硫脲及其衍生物㊀㊀硫脲最早应用于土壤,它既是硝化抑制剂,又是脲酶抑制剂㊂硫脲是典型的尿素类似物,与脲酶反应的机理和尿素类似㊂其碳-硫双键中的硫与脲酶活性中心中1个镍离子结合,并进一步去除自身结构中-OH基团,与活性中心的另一镍离子的羟基消去1个水分子以与另一镍离子结合形成桥状结构㊂硫脲的脲酶抑制效果良好,有关其衍生物的研究较多㊂Khan等[13]发现硫脲衍生物的脲酶抑制效果要优于相同侧链的尿素衍生物,取代链上是否含有单电子对其是否具有脲酶抑制作用具有决定性作用㊂该研究发现,抑制效果最强的化合物为N-苯基-Nᶄ-(3-吡啶基)硫脲,其结构中具有3个吡啶取代基团,其IC50值为8.43μmol/L㊂Taha等[14]筛选出了一系列具有二硫基的对称双取代硫脲衍生物,发现其在两端氮原子上连接有苯环的该类化合物都具有刀豆脲酶抑制活性,且在苯环侧链的任意位置上连接有氟原子的,均能显著增强这类化合物的脲酶抑制效果(IC50值在0.4 1.7μmol/L)㊂该研究中还发现,具有相同脲酶抑制效果且无细胞毒性的硫脲衍生物均含有邻-CL-苯基㊁对-CF3-苯基,或含有给电子基团甲基或甲氧基㊂之后Taha等[15]将苯并噻唑与氨基硫脲组合进行新型脲酶抑制剂的开发,所合成的18种化合物的IC50值均优于硫脲㊂这表明化合物芳香环上有吸电子类取代基团存在时,其极性和脲酶抑制效果均比没有吸电子类取代基团存在时强㊂㊀㊀Brito等[16]利用苯甲酰基取代硫脲氮原子上的氢,合成了单苯甲酰基硫脲衍生物,再经刀豆脲酶抑制试验,证明在硫脲中引入苯甲酰基能有效提高硫脲的脲酶抑制能力㊂㊀㊀Saeed等[17-18]通过对肉豆蔻素和棕榈酸进行酰基修饰合成了2类硫脲衍生物,发现这些化合物的IC50值在0.01 0.09μmol/L,此2类衍生物中,脲酶抑制效果最强的化合物在其第2氮端的苯环上都含有氯原子㊂当肉豆蔻素硫脲衍生物中肉豆蔻酸基团与苯环上的氯原子为间位时该类化合物的脲酶抑制活性最高㊂而棕榈酸硫脲衍生物中棕榈酸基团与苯环上的氯原子为对位时,此类化合物的脲酶抑制活性最高,且这2类化合物均为非竞争性抑制剂㊂因此,硫脲衍生物2个氮端上是否连接有吸电子基团对于此类化合物是否具20538期张震宇等:细菌脲酶抑制剂及其作用机理的研究进展有脲酶抑制效果至关重要㊂㊀㊀Pervez等[48]筛选出了大量硫脲的二羟吲哚衍生物,发现衍生物中甲氧基与二羟吲哚基团为对位或衍生物中的氯取代基与二羟吲哚基团为间位时,其脲酶抑制效果较其他化合物好㊂Pervez等[48]还发现,在硫脲衍生物的侧链苯环的任意位置上加上诱导吸电子基团,均能提高这类化合物的脲酶抑制效果㊂例如,含有三氟代甲氧基或三氟代甲基的化合物(抑制率41% 78%)与含有甲氧基及甲基的化合物(抑制率8% 29%)相比,具有更强的脲酶抑制活性㊂1.3㊀杂环类化合物1.3.1㊀五元杂环类化合物㊀㊀杂环化合物是环状分子中含有除碳原子外含有至少1个其他原子的有机化合物㊂对于杂环类脲酶抑制剂,化合物侧链及苯环上连接的基团的类性与它们的排列位置对该化合物的脲酶抑制效果均有很大的影响,各基团在空间上排列的位置对于该化合物的脲酶抑制效果亦很重要㊂Ali等[21]发现侧链中含有吸电子基团的化合物比相同位置为给电子基团的化合物的脲酶抑制活性更强,其中抑制效果最好的化合物含有二卤代基团㊂Noreen等[22]对该类化合物进行了追踪研究,以刀豆脲酶为靶标,最终获得了3种脲酶抑制效果强于硫脲的脲酶抑制剂,其中效果最好的化合物为N-{[5-(4-氯苯基)噻吩-2-基]磺酰基}乙酰胺㊂在进行杂环类脲酶抑制剂开发时常用到咪唑基团㊂Naureen等[49]测试了15种四芳基咪唑-吲哚化合物,这些化合物的脲酶抑制效果都优于硫脲,其中抑制效果最好的2类化合物中均含有二取代卤素基团或在化合物的芳基吲哚部分连有三氟甲基基团㊂Mojzych等[23]利用五元杂环吡唑并三嗪与磺酰胺杂交合成了一系列候选化合物,这些化合物的脲酶抑制IC50值为0.037 0.084μmol/L,其中脲酶抑制效果最好的化合物为化合物(S)-3-(1,3-二甲基-1H-吡唑啉[4,3-e][1,2,4]三嗪-5-基)-4-乙氧基-N-(1-羟基-丙-2-基)苯磺酰胺,它含有(S)-2-羟基-1-甲基乙二胺取代基,是一种手性化合物㊂它的对映异构体(R)-3-(1,3-二甲基-1H-吡唑啉[4,3-e][1,2,4]三嗪-5-基)-4-乙氧基-N-(1-羟基-丙-2-基)苯磺酰胺的脲酶抑制效果为这些化合物中最弱,表明化学结构完全相同的杂环类脲酶抑制剂,其手性化合物的对映异构体之间的脲酶抑制效果也可能相差甚远㊂Saify等[24]报道了一系列7-偶氮吲哚衍生物,其IC50值为2.19255.11μmol/L㊂其中脲酶抑制效果最好的化合物为7-[2-(4-甲氧基-苯基)-2-氧代乙基]-1H吡咯[2,3-b]吡啶-7-鎓具有4-甲氧基苯甲酰基基团,IC50值为(2.19ʃ0.37)μmol/L㊂而抑制效果第2好的化合物为7-[2-(4-氯-苯基)-2-氧代-乙基)-1H吡咯[2,3-b]吡啶-7-鎓,IC50值仅为(133.31ʃ0.46)μmol/L,表明结构相近的杂环类脲酶抑制的抑制效果不一定相近㊂㊀㊀Tabuchi等[50]报道依布硒啉对脲酶具有抑制作用,可用于预防胃肠道溃疡㊂Macegoniuk等[25]研究了不同基团修饰依布硒啉化学结构中氮原子对其脲酶抑制效果的影响,发现当氮原子上存在羧酸基团时,依布硒啉对脲酶的抑制活性显著降低,以致此类衍生物中大部分没有脲酶抑制效果,其编号为4a的化合物的脲酶抑制效果最好,其IC50值为25.4μmol/L㊂在相同位置上用甲酯基或苯基取代羧酸基团后,化合物的脲酶抑制效果恢复到正常水平,IC50值在3.3 4.7μmol/L㊂1.3.2㊀六元杂环类化合物㊀㊀六元杂环化合物主要包括吡啶酮㊁吡啶并嘧啶以及吡啶酮类化合物,由于其广泛的生物活性,在脲酶抑制剂的开发中报道较多㊂Rauf等[26]评估了一系列的吡啶并嘧啶衍生物,发现是否存在金属螯合基团(如-SH或4-硝基苯甲酰肼基团)决定了这些化合物的脲酶抑制效果,通过对其中8-甲基-3-[(2-磺酰苯胺)亚甲基]-2H-吡啶[1,2-a]嘧啶-2,4-二酮和4-羟基-N0-{[8-甲基-2,4-二氧代-2H-吡啶基[1,2-a]嘧啶-3(4H)-亚烷基]甲基}苯并酰肼的互变异构化研究发现,杂环原子的负电荷量与化合物的脲酶抑制效果呈正相关㊂Khan等[27]报道了一系列具有脲酶抑制活性的二氢嘧啶(DHPM)的衍生物,发现这类化合物能同时与脲酶活性中心的镍离子以及活性中心周围的氨基酸残基互作而发挥抑制脲酶活性的作用,是一种混合性脲酶抑制剂㊂Iftikhar等[28]跟踪研究了二氢嘧啶的衍生物,发现这类衍生物中含有氨基硫脲或靛红基团的化合物的脲酶抑制效果较好㊂1.4㊀巴比妥酸盐类化合物㊀㊀Khan等[32]对巴比妥酸盐类化合物结构中的3053㊀动㊀物㊀营㊀养㊀学㊀报32卷氮原子及芳基侧链上连接取代基团对其脲酶抑制效果的影响进行了评价㊂发现内环具有-NH结构的衍生物的抑制效果最好,在这类化合物的侧链苯环的邻位添加取代基团能提高其脲酶抑制活性㊂在对硫代巴比妥酸化合物的研究中发现,将能与镍离子结合的基团取代芳基能提高该化合物的脲酶抑制活性,如Khan等[33]通过将-OH㊁硫原子㊁吡啶基团取代硫代巴比妥酸化合物中的苯基上对位的氢,增加了其脲酶抑制活性㊂其他一些较大的基团由于空间位阻较大,若将其取代该化合物苯基上对位的氢,反而降低该合物的脲酶抑制活性㊂Rahim等[35]报道了双硫代巴比妥衍生物的合成及其脲酶抑制效果,其中最有效的化合物的苯基上具有取代基团,而吲哚和萘基等基团的衍生物对脲酶的表现出较弱的抑制活性㊂㊀㊀Barakat等[34]筛选了几种双巴比妥酸盐类衍生物㊂其中脲酶抑制效果最好的化合物为5,5ᶄ-(对甲苯亚甲基)双[6-羟基嘧啶-2,4(1H,3H)-二酮]二乙胺盐,IC50值为(17.6ʃ0.23)μmol/L,强于硫脲㊂这类化合物与脲酶活性中心的作用模式为:巴比妥酸的羰基与脲酶的KCX219和Arg338形成了氢键,并与KCX219和羰基相邻的Ala169㊁Gly279㊁Asp362形成氢键;醛基与His323之间有亲水作用力(图4)㊂1.5㊀磷酰胺类化合物㊀㊀磷酸二胺及磷酸三胺类抑制剂是一种目前已知的活性最强的脲酶抑制剂,应用较多的有丁基磷酰三胺(NBPTO)㊁正丁基硫代磷酰三胺(NB⁃PT),这类化合物的脲酶抑制活性非常强,但在酸性条件下不稳定,因此不能在临床上应用㊂㊀㊀磷酰胺类化合物的作用机理在于其结构中的1个氧原子取代脲酶活性位点中W1位点水分子并取代Ni1结合的羟基,另外1个氧原子和1个氮原子共同取代活性位点中WB及W2的2个水分子(图5)㊂㊀㊀磷酰二胺类化合物易水解,难以应用到实际生产中㊂近年来,有关磷酰二胺类化合物改造和修饰的报道较多㊂Dominguez等[38]以磷酰二胺类化合物为基本骨架合成了一系列衍生物,这类化合物不含不稳定的P N键,在生物体内能稳定存在㊂此类新合成的化合物与脲酶的结合自由能与磷酰二胺类化合物与脲酶的结合自由能大小相近,因此认为它们具有类似的脲酶抑制性质,此类化合物通常是细菌脲酶的可逆竞争性抑制剂㊂此类化合物结构中含有对甲基硫代次膦酸的脲酶抑制活性要高于对甲基次膦酸,可能是因为对甲基硫代次膦酸中硫原子与酶活性位点中镍离子的相互作用较强㊂以刀豆脲酶为抑制对象,这类化合物抑制效果最好的能达到2nmol/L(参比抑制剂NBPT的IC50值为100nmol/L)[52]㊂此类化合物的抑制模式为:次膦酸基团与酶活性中心残基His222和Asp363形成2个氢键,并与2个镍离子相互作用㊂此外,此类化合物的酰胺基与脲酶Ala366氨基酸残基的羰基形成氢键[39,51]㊂㊀㊀氨基酸残基由黄色棍状表示,配体(化合物)由紫色棍状表示㊂㊀㊀Theaminoacidresiduesarepresentedinyellowsticks,whiletheligandsareshowninpurplesticks.图4㊀一种巴比妥酸盐类化合物与刀豆脲酶的结合模式图Fig.4㊀BindingmodediagramofbarbituricacidandJackbeanurease[34]图5㊀活性脲酶(a)㊁磷酰胺类化合物抑制脲酶(b)的骨架结构Fig.5㊀Schematicstructuresofactiveurease(a)andphosphoramidesinhibitedurease(b)[8]4053。

乙酰氧肟酸质量标准

乙酰氧肟酸质量标准
7、脲酶抑制剂的用量和使用方法
7.1用量
每天每头肉牛饲喂AHA50-150毫克,或每千克日粮干物质含AHA5-25mg;每天每头奶牛饲喂AHA50-150毫克,或每千克日粮干物质含AHA5-30mg;每天每只羊饲喂AHA10-50毫克,或每千克日粮干物质含AHA5-30mg。
7.2使用方法
按照对不同反刍动物的用量,将AHA用载体均匀稀释,可配制成为预混料、浓缩料或配合饲料,然后使用。
3.1.2 10%的三氯乙酸
称取10g三氯乙酸,用水定容至100ml,即为10%的三氯乙酸。
3.1.3标准溶液的配置
准确称取1.0000g脲酶抑制剂标准品,用水定容至1000ml,配成1mg/L溶液,从中分别量取10ml、5ml、2.5ml、2ml、1ml、0.5ml、和0ml,用水分别定容至100ml,配制成标准浓度梯度为每毫升含AHA 0.1000mg、0.0500mg、0.0250mg、0.0200mg、0.0100mg、0.0050mg、0.0000mg。
3.4公式与计算
脲酶抑制剂纯度(%)=A*V*100/(m*1000)=A*1000/m
式中:
A=对应标准曲线吸光值查得的样品质量,mg/ml;
m=称取样品的质量,g
V=待测样品稀释的总体积=1000*10=10000ml
4、脲酶抑制剂酸度测定方法
称取0.0751gAHA,放入100ml容量瓶内,用蒸馏水定容至刻度。从中取1ml放入100ml容量瓶内,用蒸馏水定容至刻度,混合均匀即配制成0.1mol/L溶液,用吸管吸取数滴滴在广泛pH试纸(1-14)上,用标准比色板对比pH。
3.2.2分光光度计
用500nm波长可见光比色。
3.3测定方法
取2ml的标准溶液或待测样品溶液,用10%的三氯乙酸稀释到10ml,静置20min,然后在12800xg离心15min,取2ml上清液,加入1ml蒸馏水和1ml含2%FeCl3的0.1mol/L的HCl溶液。将该溶液混匀,当出现葡萄酒红色时立即在500nm下比色,从加入FeCl3开始,这种红色能够稳定20min。参比溶液的配制方法相同,只是用2ml水取代2ml的待测样品,在比色过程中用每次都用参比溶液调节满度和零点。

脲酶抑制剂在反刍动物饲养中的应用

脲酶抑制剂在反刍动物饲养中的应用

脲酶抑制剂在反刍动物饲养中的应用云南农业大学动科院营养实验室510-畜牧人论坛网友:东方-159********(24小时开机)1、尿素在饲料中的使用和存在的问题牛羊等反刍动物有独特的消化系统,能充分利用青绿饲料、农副产品等饲料来生产肉、奶畜产品而日益受到畜牧业的重视。

但这些非常规饲料资源营养上不平衡,造成我国反刍动物的生产发展缓慢,以粗饲料为主的日粮满足了家畜的能量需要,但蛋白质需要量不足。

目前,普遍采用尿素作为非氮白蛋添加在反刍动物饲料之中,因为反刍家畜瘤胃能产生很强的尿酶,尿素进入后很快地被尿酶水解,产生氨和二氧化碳,氨在瘤胃微生物的作用下生成微生物蛋白而被动物消化吸收。

所以,在反刍动物饲养中,大力推广应用尿素是一条缓解蛋白饲料紧缺价高的有效途径。

但是在反刍动物饲料中单纯添加尿素却存在着很大的问题。

由于瘤胃内控制尿素分解速度的脲酶活性过高,导致了瘤胃微生物分解尿素的速度比利用速度快4倍,产生的大量氨不能被利用,并通过肠壁进入血液,使血液中酸碱平衡发生变化,神经系统受影响,易造成家畜的氨中毒,严重时会死亡,尤其是食入尿素后不能立即饮水,以防止加快尿素分解速度时更易中毒。

所以,尿素的利用效率只有60%,远低于豆饼的90%,较低的利用率和可能的中毒危险等因素都影响了尿素饲料的应用。

2、脲酶抑制剂的作用及应用如何降低脲酶活性,控制尿素速度,是避免反刍动物氨中毒和提高尿素利用率的重要措施。

脲酶抑制剂是降低脲酶活性的专用物质,可抑制反刍动物瘤胃微生物脲酶活性,减慢氨氮释放速度,使瘤胃微生物有平衡的氨氮供应,从而提高反刍动物对氨的利用率,避免氨中毒,增加微生物蛋白质的合成量,使反刍动物对氨的利用率提高,在降低日粮中蛋白质水平,节约蛋白质饲料的同时,增加了肉、奶的产量。

脲酶抑制剂即降低了饲养成本,又增加了经济效益,是反刍动物一种理想的饲料添加剂。

脲酶抑制剂的推广应用己被列为国家农业部和国家科技部的推广项目,成为跨世纪新技术的重点工程之一。

脲酶抑制剂在畜牧生产中的应用浅析

脲酶抑制剂在畜牧生产中的应用浅析

脲酶抑制剂在畜牧生产中的应用浅析【摘要】脲酶抑制剂在畜牧生产中具有重要的应用价值。

本文首先介绍了畜牧生产的重要性和脲酶抑制剂的概念。

随后详细解析了脲酶抑制剂的作用机理、在饲料中的应用、在畜牧生产中的效果评价、使用注意事项以及对畜牧生产的影响。

结论部分探讨了脲酶抑制剂对畜牧生产的重要意义以及未来的发展趋势。

通过本文的研究,可以更深入了解脲酶抑制剂在畜牧生产中的作用和价值,为畜牧生产的发展提供理论支持和实践指导。

【关键词】关键词:畜牧生产、脲酶抑制剂、作用机理、饲料、效果评价、注意事项、影响、重要意义、发展趋势。

1. 引言1.1 畜牧生产的重要性畜牧生产在农业产业中扮演着至关重要的角色,不仅能为人类提供丰富的肉类、奶制品和其他动物性食品,还能提供皮毛、毛发等重要原材料。

畜牧业也是农村经济的重要支柱,能够为农民提供就业机会和稳定收入。

畜牧业也是维持生态平衡和实现农业可持续发展的重要组成部分,通过畜牧业的发展可以有效利用草原资源,保护植被,促进土地生态恢复。

畜牧业不仅为人类提供丰富的食物和生活用品,还在环境保护和农村经济发展中发挥着重要的作用。

提高畜牧生产的效率和质量,促进畜牧业的可持续发展具有重要意义。

1.2 脲酶抑制剂的概念脲酶抑制剂是一种可以抑制脲酶活性的化合物,广泛应用于畜牧生产中。

脲酶是一种酶类,在动物体内负责将尿素分解成氨氮和二氧化碳。

在有机饲料中,尿素含量较高,如果不能有效地将尿素分解,就会对动物的生长和健康造成不利影响。

脲酶抑制剂的作用就是能够抑制脲酶的活性,减少尿素在动物体内的分解,使得尿素在动物体内得以保留,从而提高了动物对蛋白质的利用率。

通过使用脲酶抑制剂,可以降低饲料中蛋白质的含量,减少生产成本,同时可以改善动物生长发育的效率和品质。

在畜牧生产中,脲酶抑制剂被广泛应用于各类动物的饲料中,如家禽、猪、牛等。

通过合理地使用脲酶抑制剂,可以有效提升动物的生产性能和经济效益。

对脲酶抑制剂的研究和应用具有重要意义,为畜牧生产的发展起到了积极的促进作用。

脲酶抑制剂在畜牧生产中的应用浅析

脲酶抑制剂在畜牧生产中的应用浅析

X u m u s h o u y i在畜牧生产当中,蛋白质对于提高畜牧业产量具有重要作用。

对于反刍动物来说,尿素是一种可以利用的蛋白质资源。

为了促进其对尿素的有效利用,可以通过应用脲酶抑制剂降低尿素的分解速度,能够有效促进畜牧业产量的提高。

一、脲酶抑制剂的类型与作用机理1、脲酶抑制剂的类型(1)氧肟酸类化合物氧肟酸类化合物中,乙酰氧肟酸与辛酰氧肟酸是两种较为常见的脲酶抑制剂,目前我国已批准将乙酰氧肟酸用于饲料添加剂,具有十分明显的应用效果。

氧肟酸类化合物主要是通过分子内部的-NHOH结构发挥脲酶活性抑制作用,其抑制作用受化合物链的长度影响,乙酰氧肟酸的抑制作用最为明显。

根据相关研究,乙酰氧肟酸对于瘤胃尿素分解速度能够降低55.3%,提升利用率16.7%。

目前主要用于奶牛、肉牛和肉羊的养殖。

(2)重金属盐对于脲酶的抑制作用较为显著的重金属离子包括Mn2+、Ba2+、Cu2+、Fe2+、Mg2+等,上述重金属离子中以Mn2+、Ba2+的抑制作用最强。

目前重金属盐类已很少应用于脲酶抑制剂,主要原因为其对于其他类型的酶也具有抑制作用。

(3)二胺、三胺类化合物二胺、三胺类化合物在结构上与尿素具有较高的相似性,因此能够发挥对脲酶的竞争性抑制作用。

以N-丁基硫代磷酸三酰胺、环己磷酰三胺较为常见。

在关于N-丁基硫代磷酸三酰胺的研究中,随着用量的增加,脲酶活性具有显著下降趋势,当用量为26mg时,脲酶活性下降46.7%;用量52mg时活性下降64.4%。

(4)丝兰类提取物丝兰类提取物主要是指天然类固醇萨酒皂角苷,该种物质不直接发挥对脲酶的抑制作用,根据相关研究,其原理在于与脲酶分解所生成的氨气相结合,起到降低氨气含量的效果。

(5)醌类化合物常用于脲酶抑制剂的醌类化合物包括氢醌、对苯醌。

其作用方式中,能够将脲酶的巯基氧化为二硫桥使其活性下降。

一般氢醌的用量为30-60mg/kg。

(6)异位酸类化合物异位酸类化合物主要为支链脂肪酸,具体包括异已酸、异丁酸和异戊酸等,此外还包括一种胺磷酸,能够有效抑制瘤胃微生物脲酶,同时不对有机物消化以及挥发性脂肪酸浓度构成影响。

脲酶抑制剂在畜牧生产中的应用浅析

脲酶抑制剂在畜牧生产中的应用浅析

脲酶抑制剂在畜牧生产中的应用浅析脲酶是一种对动物体内蛋白质及其他氨基酸物质进行降解和再利用的酶,是动物机体内重要的代谢酶。

针对脲酶的抑制剂主要是阻断脲酶的作用,从而减缓或抑制蛋白质代谢和氮代谢过程,进而减少动物体内氮的排放、降低粪便挥发性氮的排放量,降低氮肥的用量,同时改善口粮转化率,提升肉类质量。

下面将从脲酶抑制剂的应用、优缺点以及未来发展方向等方面进行浅析。

1、稳定饲料氮素含量由于动物嗜好性的原因,饲料中普遍含有较高的蛋白质成分,导致氮的排放和浪费。

添加脲酶抑制剂可以稳定饲料中蛋白质含量,减少氮的排放和浪费,提高氮的利用率。

一些研究证明,在饲料中添加1%的脲酶抑制剂即可降低粪便氮的排放量;同时,添加脲酶抑制剂还能够使饲料的蛋白质利用率提高4-8%,提高动物体重和生产性能。

2、抑制氨基酸的氧化分解氨基酸的分解会产生氮氧化物和亚硝酸等有害物质,同时也会降低蛋白质的利用率。

添加脲酶抑制剂可以抑制氨基酸的氧化分解,避免有害物质的产生,增加蛋白质的利用率,提高动物体重和生产性能。

3、保护环境氮排放是人类活动中主要的污染源之一,特别是在畜禽养殖业中,粪便排放和施肥过程中产生的氮往往成为环境污染的主要来源。

使用脲酶抑制剂减少粪便中氮的排放,可以改善饲料对环境的影响,缓解环境压力。

二、脲酶抑制剂的优缺点优点:1、提高蛋白质利用率和动物生产性能;2、减少氮的排放和浪费;3、保护环境,减少氮肥的使用。

1、脲酶抑制剂的添加量需要精确控制,过多或过少会影响动物的健康和生产性能;2、长期大量使用可能会引起脲酶的功能失调,进而影响动物代谢和生理功能。

随着人们对环境保护和动物健康的关注度越来越高,脲酶抑制剂的应用前景十分广阔。

目前,国内外科学家已经成功研制出一批高效、低剂量、低毒性的脲酶抑制剂,并且应用于畜牧、农业等领域。

未来,脲酶抑制剂的发展方向主要体现在以下几个方面:1、开发更高效的脲酶抑制剂,能够在尽量低的剂量下达到最佳的抑制效果;2、优化抑制剂的组合使用方式,最大限度地提高功效,减少负面影响;3、探索脲酶抑制剂在不同饲料类型和动物品种中的应用,进一步优化其使用效果,为畜牧、农业等领域的可持续发展提供有力保障。

脲酶抑制剂在畜牧生产中的应用浅析

脲酶抑制剂在畜牧生产中的应用浅析

脲酶抑制剂在畜牧生产中的应用浅析1. 引言1.1 脲酶抑制剂在畜牧生产中的应用浅析脲酶抑制剂是一类可以抑制脲酶活性的化合物,它在畜牧生产中发挥着重要作用。

通过抑制脲酶,脲酶抑制剂可以改善动物对蛋白质的利用率,增加饲料的蛋白质利用效率,降低饲料成本,提高养殖效益。

脲酶抑制剂对畜牧生产的影响主要体现在两个方面:一是促进畜禽生长发育,提高生产性能;二是改善饲料质量,减少氮排放,降低环境污染。

脲酶抑制剂的应用范围非常广泛,包括饲料添加剂、预混合饲料、浓缩饲料等多个方面。

它可以应用于各类畜禽养殖中,如猪、鸡、牛等,对不同品种的动物都有显著的效果。

在使用方法上,脲酶抑制剂通常添加在动物饲料中,按照一定的比例混合搅拌后喂养动物。

也可以通过直接注射或喷洒方式进行应用。

通过案例分析可以看出,脲酶抑制剂在畜牧生产中发挥着重要作用,对提高养殖效益,改善饲料利用效率有显著效果。

脲酶抑制剂在畜牧生产中的应用具有广阔的发展前景,对提升畜禽养殖的效益具有重要意义。

未来,随着科技的不断进步,脲酶抑制剂的研究和应用将会得到更好的发展,为畜牧生产贡献更大的力量。

2. 正文2.1 脲酶抑制剂的定义与作用脲酶抑制剂是一类能够抑制蛋白质分解酶(脲酶)活性的化合物。

脲酶是一种在动物体内起到重要调节作用的酶,能够分解蛋白质中的氨基酸,帮助动物消化吸收营养。

在畜牧生产中,过多的脲酶活性可能导致蛋白质分解过快,影响动物对饲料中蛋白质的利用效率,造成养殖效益的下降。

脲酶抑制剂的作用主要是通过抑制脲酶的活性,减缓蛋白质的分解速度,延长蛋白质在动物体内的停留时间,提高蛋白质的利用率。

这种作用有助于改善畜禽的生长发育速度、增加饲料的蛋白质利用率,并且减少对蛋白质的浪费。

脲酶抑制剂还可以调节动物体内的氮平衡,减少氮排泄量,减轻对环境的污染。

脲酶抑制剂在畜牧生产中具有重要的意义,可以有效提高饲料的利用效率,降低饲料成本,促进畜禽的健康生长。

在合理应用的前提下,脲酶抑制剂可以成为畜牧生产的有益辅助工具,为畜牧业的可持续发展做出贡献。

脲酶抑制剂综述

脲酶抑制剂综述

脲酶抑制剂综述抑制剂研究进展1、脲酶抑制剂研究进展1.1脲酶抑制剂种类及作用原理脲酶是氨基水解酶的一类酶的通称,是一种作用于线型酰胺C-N键(非肽)的水解酶。

土壤脲酶抑制剂是对土壤脲酶活性有抑制作用的化合物或元素。

Conrad早在1940年就指出向土壤中加入某些物质可以抑制脲酶活性并延缓尿素水解。

在随后的几十年里,脲酶抑制剂的研究取得很大进展,包括对尿素水解、NH3挥发、尿素N土壤转化、尿素利用率、作物产量的影响等。

脲酶抑制剂主要有无机物和有机物二大类。

无机物中主要是分子量大于50的重金属化合物如Cu、Ag、Pb、Hg、Co、Ni、Au、As、Cr等元素的不同价态离子;有机化合物中包括对氨基苯磺酰胺、二硫代氨基甲酸盐、羟基草氨酸盐、有机汞化合物、酚类、醌及取代醌类、磷胺类化合及其转化物等。

Bremner 和Douglas证明二元酚和醌是当时最有效的有机化合物,银和汞盐是最有效的无机化合物[62]。

Mulvaney和Bremner(1981)、Byrnes和Freney 等(1995)指出,最有效的脲酶抑制剂是醌如 -苯醌和氢醌(HQ)、二元酚和磷胺类化合物如N-丁基硫代磷酰三胺(NBPT)、苯基磷酰二胺(PPD)、环己基磷酰三胺(CHPT)等[65]。

其中HQ被认是较有效并经济的,而NBPT、PPD、CHPT等磷胺化合物的抑制效果则是最好的。

对脲酶抑制剂的筛选,通常注意的只是该化合物使用后尿素在一定培养时间内的残留量,而对脲酶抑制剂的作用机制研究的较少。

重金属离子和醌类物质的脲酶抑制作用机理相同,它们均能作用于脲酶蛋白上对酶促有重要的作用的巯基(-SH)),抑制作用的效果与金属-锍化物和醌-锍化物复合体的解离能力呈反比。

磷胺类化合物的作用机理为该类化合物与尿素分子有相似的结构,可与尿素竞争与脲酶的结合位点,而且其与脲酶的亲和力极高,此种结合使得脲酶减少了作用尿素的机会,达到了抑制尿素水解的目的。

脲酶抑制剂对粪便中微生物的作用

脲酶抑制剂对粪便中微生物的作用

综述与专论 | Summarize and reviews312019.01·0 引言集约化畜禽生产中产生了大量的畜禽粪污废弃物,在粪尿接触的表面,尿素可与粪中微生物产生的脲酶接触并立即分解产生氨气[1]。

中国作为重要的养殖大国,由畜牧业排放的氨气占中国氨气排放总量的60%,占全球人为氨气排放总量的13.6%[2]。

氨气浓度过高可直接对畜禽的气管、肺组织造成损伤,氨气对呼吸系统的损害程度与畜舍中氨气的浓度和畜禽在其中暴露的时间长短有关[3]。

当肉鸡舍中氨气浓度达到20 mg/m3时,6周后会造成肉鸡肺水肿;氨气浓度达到70 mg/kg 时,发现肉仔鸡的气管和肺黏膜纤毛出现脱落现象,同时肺部炎性细胞数量急剧增加[4]。

氨气不仅会对呼吸道造成损坏,还会导致舍内空气中微生物气溶胶浓度升高、有害病原体数量增加。

探究氨气浓度与猪舍内PM2.5含量及猪肺组织病变的关系时,发现随着氨气浓度的增加,生长猪死亡率和支原体肺炎的患病率都显著增加[5]。

同时氨气浓度过高对畜禽的神经系统、肝脏组织和消化系统也会造成不同程度的损伤。

《农业部财政部关于做好畜禽粪污资源化利用项目实施工作的通知》中强调畜禽粪污处理及资源化利用,是重大的民生工程和民心工程,因此,减少畜舍氨气的排放对国家和畜牧业发展具有重大意义。

而脲酶抑制剂可以直接或者间接抑制脲酶的活性,减少尿素分解为氨的量。

但是目前关于脲酶抑制剂的研究多用于反刍动物,在单胃动物方面的应用较少,通常用于研究脲酶抑制剂对脲酶活性的影响,而脲酶抑制对产脲酶菌的作用还未见综述。

1 畜舍内氨气来源单胃动物畜舍内的氨气主要来源于3个方面:体内蛋白质代谢、残渣垫草的腐败分解和畜禽排泄物的分解。

一头成年猪每天粪便排泄总量为5.67 kg ,其中固体部分为2.44 kg ,液体部分为3.22 kg ,含氮0.5%~0.6%[6];一只成年蛋鸡每天粪便排泄量为0.12 kg ,含氮2.34%[7];一个万头生猪养殖场年排污量 3万t 左右,年排氮 108 t [8]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

脲酶抑制剂、硝化抑制剂、磷素活化剂应用
生产长效、缓释新型稳定型复合肥新产品
推广缓控释肥顺应现代农业
缓控释肥推广有四个方面重要意义:
1、大力示范推广缓控释肥是发展现代农业的客观要求,进入新世纪以来,提出
建设中国特色的现代农业,总体方向的要求,那就是高产、高效、优质、生态、安全。

缓控释肥对这五个指标和要求都是十分符合,它符合发展现代农业的发展要求,因为它符合现代农业发展方向。

2、七届五中全会提出农业发展方式的转变要由资源消耗型,转变为资源节约型
和环境友好型。

中国农资对农业的贡献很大,同时负面影响也很大,化肥、农药、水利用率一般只有30%。

经过十年努力,我们还是没有解决这个问题。

要解决这个问题有两个方面:一是农资产品特性可以改变,例如缓控释肥;
另一个是测土配方施肥。

现代农资的理念是四位一体:(1)、要求农资产品长效,高效,生态一体化,这是现代农资新理念。

(2)、数量、质量效益一体化,特别是在效益方面不要讲用了多少肥料,而是讲它的利用率提高多少,这才是硬道理。

(3)、产品品牌文化一体化,一流的企业是卖标准,二流的企业是卖品牌,三流企业是卖产品。

要把三点结合起来,这才是现代农资发展的需要。

(4)、现代农资推广要生产、技术、营销、服务一体化,实现四个方面的一体化才符合现代农资的发展要求,才能实现现代农业的发展方式的转变。

3、缓控释肥是发展新型农业技术的迫切需要。

现在我们的农业、农村、农民发
生了很大的变化:即生产规模化、生产多元化、营销产业化、服务专业化、技术新型化,这是现代农业发展的要求,而缓控释肥完全符合这些要求,所以它是发展现代农业的迫切需要。

4、大力示范推广缓控释肥是确保国家粮食安全的重要举措。

现在农民种田的成
本增长非常快,土地流转的费用高,劳动力成本高,农资的价位高,在这种情况下,一定要优质,节能,降耗的产品技术应运而生。

缓控释肥可以说是
一马当先,走在了前面,它保障了粮食的安全。

2011年4月份,肥业集团与中科院沈阳应用生态研究所实行院厂合作,引进沈阳中科新型肥料有限公司总经理、博士生导师石元亮研究员开发的专利技术,共同开发生产新型长效缓释复合肥新产品并获得成功。

目前已生产销售了3000吨,与传统同样养分的复合肥相比,增加经济效益52.437万元,在企业增收的同时,也获得较好的社会效益。

长效缓释复合肥是利用脲酶抑制剂、硝化抑制剂、磷素活化剂与保护剂相结合,使施入土壤中的肥料具有长效、缓释功能的技术,其英文缩写为NAM。

其技术特点是:
1、肥效期长:具有一定可控性(90—130天内可控),应用NAM可使肥料达到
一次性基施免追肥。

2、养分利用率高(长效、缓释)。

3、增长幅度大,作物活杆成熟(增产10%—18%)。

4、肥料物理性能好。

5、大幅度降低环境污染(减少流失60%)。

一、脲酶抑制剂、硝化抑制剂的作用机理
众所周知,硝态氮肥和铵态氮肥是植物吸收氮素的两种主要形式。

目前,世界上施用的全部氮肥品种中,铵态氮肥和酰态氮肥数量占到90%以上。

酰态氮由微生物转化为铵态氮方可为作物吸收。

但是施入土壤中的铵态氮只有30%—50%被植物吸收,其余部分因种种原因而损失。

其中最主要的原因是在硝化细菌的作用下转化为硝态氮。

北方旱作土壤中施入的铵态氮和酰态氮肥在土壤中1—2周后就会转化为硝态氮,由于作物不可能全部吸收,若被雨水或漫灌,则会被淋洗到深层土壤和地下水中,进而造成地下水污染。

因此,研究如何控制土壤中铵态氮的硝化作用对减少土壤过量硝态氮残留所造成的污染具有重要意义。

基于越来越多的硝酸盐污染问题,以及硝化作用的机理,许多科学工作者都将硝化抑制剂和脲酶抑制剂加入肥料施入土壤,以提高氮肥利用率。

1、脲酶抑制剂:
脲酶是在土壤中水解尿素的一种酶。

当尿素施入土壤后,脲酶将其水解为铵态氮才能被作物吸收。

脲酶抑制剂可以抑制尿素的水解速度,减少铵态氮的挥发
和硝化。

其作用机理有:
①脲酶抑制剂堵塞了土壤脲酶对尿素水解的活性位置,使脲酶活性降低。

②脲酶抑制剂本身还是还原剂,可以改变土壤中微生态环境的氧化还原条
件,降低土壤脲的活性。

③疏水性物质作为脲酶抑制剂,可以降低尿素的水溶性,减慢尿素的水解速
率。

④抗代谢物质类脲酶抑制剂打乱了能产生脲酶的微生物的代谢途径,使合成
脲酶的途径受阻,降低了脲酶在土壤中分布的密度,从而使尿素的分解速度降低。

⑤脲酶抑制剂本身是一些与尿素物理性质相似的化合物。

在土壤中与尿素分
子一起同步移动,保护尿素分子,使尿素分子免遭脲酶催化分解。

在使用尿素的同时施加一定量的脲酶抑制剂,使脲酶的活性受到一定的限制,尿素分解的速度变慢,从而减少尿素的无效降解。

2、硝化抑制剂:
硝化抑制剂可以抑制土壤铵态氮向硝态氮的转化,减少硝态氮在土壤中的积累,从而减少铵态氮硝化所造成的各种污染问题。

在硝化作用的两个阶段中,有些硝化抑制剂对铵氧化细菌产生毒性,导致NH4+氧化为NO3-的过程被抑制;有些硝化抑制剂可抑制硝化杆菌属细菌的活动,即抑制硝化反应过程中NO2氧化为NO3-。

这一步,有些还可以抑制反硝化作用。

综上所述,脲酶抑制剂和硝化抑制剂的配合使用在作物的整个生长季起到很大的作用。

脲酶抑制剂不仅能延缓尿素的水解,还能在一定程度上抑制尿素水解后的硝化过程。

二者配合使用调节了尿素氮的转化过程,能延缓土壤中尿素的水解并使水解后释出的氨在土壤中得以更多和更长时间的保持,还能减少土壤中硝酸盐的积累。

提高氮肥利用率以获得作物高产。

同时减少肥料水溶流失对环境造成的危害,真正实现环境友好型。

二、缓控释新型肥料与常规肥料投入产出情况对比表
现以三元素复合肥(28-6-6)同等养分为例,对其常规与缓控释新型长效肥料的投入产出进行对比,原料均以现行市场价格为依据。

其效益情况如下表:
由上表可以看出每产销一吨长效缓控释复合肥,在同等养分的基础上,可为企业增收174元/T。

若全年能产销这样的复合肥20万吨,可为企业增收3480万元,经济效益确实可观。

三、经济效益和社会效益同步增多
刚才对投入产出作了对比分析,企业经济效益是显而易见的。

那么长效缓控释新型复合肥的生产会带来怎样的社会效益呢?不妨由我一一道来:
1、减少了肥料流失对环境水土带来的损害:长效缓控释新型肥利用脲酶和硝化
抑制剂,根据农作物的生长周期天数,抑制土壤微生物的分解、硝化功能各种配方,分别有控制天数的功能,根据农作物返青、催苗、分蘖、成熟的天数。

其NAM添加剂的配方中也有时间梯度与作物的各生长周期相适应,呈线性关系,即作物生长一阶段,抑制剂也消亡一部分,使氮素释放;过一阶段,又有一部分抑制剂失效,氮素又释放一阶段,到分蘖、成熟阶段,所有抑制剂失效,所剩的氮素全部释放完,分别保证了农作物从生长、发育全阶段的用肥需要。

从而做到一季播种、一次施肥,减轻了农民朋友在施常规复合肥时,一定时段还可要施追肥的劳动投入。

因此,农民朋友形象的比喻长效复合肥为“懒汉”肥。

2、由于脲酶和硝化抑制剂对肥料有固氮作用,改变了传统的施肥:肥料施到田
中,不管农作物处于何种阶段,需肥多少与否,土壤中的微生物均将肥料进行转化和硝化,一场大雨或一次浇灌会将作物吸收不了的肥料带入江河湖海,造成水系富营养化、水质变坏、环境受到污染。

3、一次施肥,终季收益,不再施用追肥便可获得高产。

另外,减少追肥减少了
投入,减少了资源的浪费。

众所周知,我国的氮肥合成氨生产均为煤和石油这类化石能源,而这类能源均不能再生。

假定所有肥料由于未实现长效控释,农作物生长中,后期还要施用追肥,造成肥料用量增加,而作物产量仍是一个定数,这显然不符合资源节约型生产方式的要求。

4、江河水系一旦造成富营养化,还要动用大量的人力、物力、财力去综合治理,
实可谓“亡羊补牢”。

无锡太湖污染治理的现状便是一个最好的例证。

从建设环境友好型社会的要求看,生产和使用长效缓释复合肥,是时代的需要,是
历史的必然。

5、根据中科院沈阳应用生态研究所在做田间对比试验费料显示施用,使用长效缓释复合肥与施用常规复合肥进行对比,在施用肥料养分和重量相同的前提下,作物亩产可提高10—18%,即同等投入可获得增产增收。

综上所述,“长效缓释复合肥”这个新产品的成功开发,可谓功在当代、利在千秋。

既为企业创新走出了一条新路,又为企业的增收树立了一个增长点。

为建设“资源节约型、环境友好型”的社会,贡献出了企业的一份力量。

开门子肥业集团技术中心
2011年6月。

相关文档
最新文档