刘徽与割圆术61407PPT课件

合集下载

千古绝技割圆术ppt课件

千古绝技割圆术ppt课件
13
刘徽是怎样割圆的
割之弥细 失之弥少 割之又割 以至于不可割 则与圆合体 而无所失矣
14
深邃的极限思想
古希腊人在精神上对“无穷” 怀有恐惧
阿基米德的著作总是谨慎地回 避“取极限”
“割圆术” 涵盖大学高等数 学教材中 有关数列极限的 基本知识 诸如 极限的定 义 收敛性的判别 无穷 小量概念等
“中国的牛顿”?
史称古率
从现有的史料来看 首创圆周率精密计算的是 古希腊的阿基米德(约公元前287-前212年)
阿基米德用正96边形逼近圆周 求得 3.14
公元前3世纪 古希腊遭到罗马人的摧残 叙拉
古王国灭亡 古希腊文明衰落 西方圆周率计算
就此沉寂一千多年
8
焚书坑儒留下历史空白
在阿基米德被罗马士兵野蛮杀害的公元前212年 秦始皇正耀武扬威地巡视着那空前规模的大帝国 大一统的秦王朝屹立在世界的东方 秦始皇在全国统一了度量衡 刘徽据秦汉量器测算 发现 当时所使用的圆周率约为 3.14 中国上古时代科技相当发达 然而关于圆周率的记 载却是一片空白 这是否与秦始皇的焚书坑儒有关 呢?
S2n + 0 (S2n - Sn ) < S * < S2n +1 (S 2n - Sn )
加速逼近 S* ≈ S2n + ω (S2n - Sn )
0< ω<1
关键在于松弛因子ω 的选择
刘徽适当选取 ω 考察加速公式
S* S192 + ω (S192 - S96 )
其中数据 S96 ,S192 很粗糙 阿基米德早已掌握 21
标准的计算机程序 19
一份珍贵的文化遗产
用算筹实施的一项伟大的计算工程 标准的计算机程序 简单的重复生成复杂

刘徽割圆术精品PPT课件

刘徽割圆术精品PPT课件
如图所示,四边形 OADB的面积和△OAB 的面积的差等于以AD和 DB为弦的两个直角三角 形面积,而OADB的面 积再加上这样两个直角 三角形的面积,就有一 部分超出圆周了。
第五,刘徽指出:“割之弥细,所失 弥少。割之又割,以至于不可割,则与 圆周合体而无所失矣。”(《九章算术》 方田章圆田术刘徽注)这就是说,圆内 接正多边形的边数无限增加的时候,它 的周长的极限是圆周长,它的面积的极 限是圆面积。
发,求得正十二边形的边长。根据勾股 定理,从圆内接正n边形每边的长,可以 求出圆内接正2n边形每边的长。
第三,从圆内接正n边形每边的长, 可以直接求出圆内接正2n边形面积。如 图所示,四边形OADB的面积等于半径 OD和正n边形边长AB乘积的一半。
第四,圆面积S满足不等式 S2n<S<S2n+(S2n-Sn)。
因为《缀术》失传了,祖冲之究竟是用什么方法将π算 到小数点后第七位,又是怎样找到既精确又方便的密 率的呢?这至今仍是困惑数学家的一个谜。
祖冲之曾写过一本数学著作《缀术》,记录了他 对圆周率的研究和成果。但当时“学官莫能究其 深奥,是故废而不理”,以致后来失传。
很多人都知道用密率355/113表示π的近似值,是 一项了不起的贡献。密率355/113传到了日本后, 1913年日本数学史家三上一夫建议将祖冲之圆周 率的密率数值命名为“祖率”,得到一致赞同。 祖冲之对圆周率的求索,超过了世界水平整整 1000年!直到16世纪德国人V·奥托和荷兰人A·安 托尼斯才发现了圆周率的密率355/113。 但是 “祖率”的妙处,和给今人留下的困惑,不少人 却说不出来。
(二)圆周率的定义
指平面上圆的周长与直径之比。早 在一千四百多年以前,我国古代著名 的数学家祖冲之,就精密地计算出圆 的周长是它直径的3.1415926--3.1415927倍之间。这是当时世界上 算得最精确的数值----圆周率。

高中数学人教A版必修3第一章算法初步阅读与思考割圆术教学课件共13张PPT含视频等素材 (3份打包)

高中数学人教A版必修3第一章算法初步阅读与思考割圆术教学课件共13张PPT含视频等素材 (3份打包)

hn )
割圆术 用圆的外切正多边形的面积逼近圆的面积
割圆术
平面图形的面积为: S6 2 S12 S6
Sn 2S2n Sn S2n S2n Sn
小结
化圆为方 内外夹逼
谢谢观看
我们很容易遭遇逆境,也很容易被一次次的失败打垮。但是人生不容许我们停留在失败的瞬间,如果不前进,不会自我激励的话,就注定只能被这个世界抛弃。自我激励能力是人自我调节系统中重要 的组成部分,主要表现在对于在压力或者困境中,个体自我安慰、自我积极暗示、自我调节的能力,在个体克服困难、顶住压力、勇对挑战等情况下,都发挥着关键性的作用。具备自我激励能力的人, 富有弹性,经常表现出反败为胜、后来居上、东山再起的倾向,而缺乏这种能力的人,在逆境中的表现就大打折扣,表现为过分依赖外界的鼓励和支持。一个小男孩在自家的后院练习棒球。在挥动球 棒前,对自己大喊:“我是世界上最棒的棒球手!”然后扔出棒球,挥动……但是没有击中。接着,他又对自己喊:“我是世界上最棒的棒球手!”扔出棒球,挥动依旧没有击中。男孩子停下来,检查了球 棒和球,然后用更大的力气对自己喊:“我是世界上最棒的棒球手!”可是接下来的结果,并未如愿。男孩子似乎有些气馁,可是转念一想:我抛球这么刁,一定是个很棒的挥球手。接着男孩子又对自 己喊:“我是世界上最棒的挥球手!”其实,大多数情况下,很多人做不到这看似荒谬的自我鼓励,可是,这故事却深深反映了这个男孩子自我鼓励下的执著,而这执著是很多人并不具备的 ……而许多奇 迹往往是执著者造成的。许多人惊奇地发现,他们之所以达不到自己孜孜以求的目标,是因为他们的主要目标太小、而且太模糊不清,使自己失去动力。如果你的主要目标不能激发你的想象力,目标 的实现就会遥遥无期。因此,真正能激励你奋发向上的是确立一个既宏伟又具体的远大目标。实现目标的道路绝不是坦途。它总是呈现出一条波浪线,有起也有落,但你可以安排自己的休整点。事先 看看你的时间表,框出你放松、调整、恢复元气的时间。即使你现在感觉不错,也要做好调整计划。这才是明智之举。在自己的事业波峰时,要给自己安排休整点。安排出一大段时间让自己隐退一下, 即使是离开自己挚爱的工作也要如此。只有这样,在你重新投入工作时才能更富激情。困难对于脑力运动者来说,不过是一场场艰辛的比赛。真正的运动者总是盼望比赛。如果把困难看作对自己的诅 咒,就很难在生活中找到动力,如果学会了把握困难带来的机遇,你自然会动力陡生。所以,困难不可怕,可怕的是回避困难。大多数人通过别人对自己的印象和看法来看自己。获得别人对自己的反 映很不错,尤其正面反馈。但是,仅凭别人的一面之辞,把自己的个人形象建立在别人身上,就会面临严重束缚自己的。因此,只把这些溢美之词当作自己生活中的点缀。人生的棋局该由自己来摆。 不要从别人身上找寻自己,应该经常自省。有时候我们不做一件事,是因为我们没有把握做好。我们感到自己“状态不佳”或精力不足时,往往会把必须做的事放在一边,或静等灵感的降临。你可不要 这样。如果有些事你知道需要做却又提不起劲,尽管去做,不要怕犯错。给自己一点自嘲式幽默。抱一种打趣的心情来对待自己做不好的事情,一旦做起来了尽管乐在其中。所以,这次犯错,是为了 下次接受挑战后,要尽量放松。在脑电波开始平和你的中枢神经系统时,你可感受到自己的内在动力在不断增加。你很快会知道自己有何收获。自己能做的事,放松可以产生迎接挑战的勇气。事过境 迁,面对人生,面对社会,面对工作,一切的未来都需要自己去把握。人一定要靠自己。命运如何眷顾,都不会去怜惜一个不努力的人,更不会去同情一个懒惰的人,一切都需要自己去努力。谁都不 可能一生一世的帮你,一时的享受也只不过是过眼云烟,成功需要自己去努力。当今社会的快速发展,各行各业的疲软,再加上每年几百万毕业生涌向社会,社会生存压力太大,以至于所有稍微有点 意识的年轻人都想努力提高自己。看着身边一个个同龄人那么优秀,看着朋友圈的老同学个个事业有成、买房买车,我们心急如梵,害怕被这个社会抛弃。所以努力、焦躁、急迫这些名词缠绕着越来 越多的年轻人,我们太想改变自己,太想早一日成为自己梦想中的那个自己。收藏各种技能学习资料,塞满了电脑各大硬盘;报名流行的各种付费社群,忙的人仰马翻;于是科比看四点钟的洛杉矶成 为大家励志的手段,纷纷开始早起打卡行动。其实……其实我们不觉得太心急了吗?这是有一次自己疲于奔命,病倒了,在医院打点滴时想到的。我时常恐慌,害怕自己浪费时间,就连在医院打点滴的 时候,都觉得是对时间的一种浪费。想快点结束,所以乘着护士不在,自己偷偷的拨快了点滴速度。刚开始自己还能勉强受得了,过了差不多十分钟,真心忍不住了,只好叫护士帮我调到合适的速度。 打完点滴走在回家的路上,我就在想,平时做事和打点滴何尝不是一样,都是有一个度,你太急躁了、太想赶超,身体是受不了的。身体是革命的本钱,我们还年轻,还有大把的时间够我们改变,够 我们学习成长。身体就像是1000前面的那个若是1都不存在了,后面再多的0又有什么用?我是一个急性子,做事风风火火的,所以对于想改变自己,是比任何人都要心急。这次病倒了,个人感觉完全 是没有方向、不分主次的一通乱忙乎才导致的,病倒换来的努力根本是一钱不值。生病的那几天,我跟自己的大学老师打了一个电话,想让老师帮我解惑一下,自己到底是怎么了。别人也很努力啊, 而且他们取得的成就远远超过我了,为啥他们反到身体倍棒而一无所获的自己却病倒了?老师开着电脑,给我分享了两个小故事讲的第一个故事是“保龄球效应”,保龄球投掷对象是 10个瓶子,你如果 每次砸倒9个瓶子,最终得分是90分,而你如果每次能砸倒10个瓶子,最终得分是240分。故事讲完,老师问我明白啥意思没?我说大概猜到一点,你让我再努力点,对吗?不对!你已经够努力了,都 累病了,我讲这个故事是告诉你,你现在就是那个每次砸倒9个瓶子的人。你累倒的原因是因为你同时在几个场馆玩,每一个场馆得分都是90分,而有些人,则是只在一个场馆玩,玩多了,他就能砸倒 10个瓶子,他就能比你轻松十倍,得分却还是远远超过你。老师讲的第二故事是“挖水井”,一个人选择好一处地基,就在那里一直坚持不懈的挖下去,而另一个人则是到处选地基,这边挖几米,那边 挖几米。第一个人早早的就挖出水来了,而另一个人则是直到累死也没有挖出一滴水。首先,你必须承认努力是必须的,只要你比别人努力了那么一点,你确实能超过一些人。只是人的精力也是有限 的,你这样分散精力去努力,最终得到的结果只会是永远装不满水桶的半桶水。和老师通完电话后,我调整了几天,也对自己手头上的事物做一些大改变。将目前摆在面前的计划一一列出来,挑出最 重要的、最必须的,写在第一行,再以此类推,排完手中所有的计划。对于那些不是很急的,对目前生活和工作不是特别重要的,先果断放弃。我现在最迫切的目标是什么?当然是七月份的转行新媒 体咯,那么学习历练新媒体技能就是第一位。而新媒体所需学习的技能又有很多,那怎么办呢?先挑自己有点底子的,有点基础的,把巩固持续加强。个人感觉自己写还是有点小基础的,所以就给自 己一个小目标,每周必须持续输出几篇文字,加强文案方面的训练。而另外PS也是做运营的必备条件之一,所以在训练文案的同时,还得练习PS,给自己的要求是每天练习PS半小时。还有别的吗?不 敢有了,两样训练加上还要上班已经差不多了。一直很喜欢作家刘瑜的一段话:每当我一天什么也没干的时候,我就开始焦虑。每当我两天什么都没干的时�

六年级数学上册第一单元圆周率的历史优秀PPT课件1

六年级数学上册第一单元圆周率的历史优秀PPT课件1
355
,7
密率为 1 1 3,并且精确地算出圆周率在3.1415926和
3.1415927之间。
这一成就,使中国在圆周率的计算方面 在世界领先1000年。
电子计算机的出现带来了计算方面的革命, 的小数
点后面的精确数字越来越多。
到2002年,圆周率已经可以计算到小数点后 12411亿位。
与同学交流阅读后的感觉,你又知道了哪些有关圆周率的 知识?
刘徽用这种方法不断地“割圆”,一直算到圆内 接正192边形,得到圆周率的近似值是3.14.
我国南北朝时期的数学家祖冲之使用“缀
术”计算圆周率。可惜这种方法早已失传。
据专家推测,“缀术”类似“割圆术”,通
过对正24576边形周长的计算来推导。计算
相当繁杂,当时还没有算盘。
22
最后得出了 的 两个分数形式的近似值:约率为
收集其他有关圆周率的历史资料,在班上进行展示。

1、一个人幸运的前提,其实是他有能 力改变 自己。


2、经营自己的长处,能使你人生增值 ;经营 你的短 处,能 使你人 生贬值 。


3、把事情变复杂很简单,把事情变简 单很复 杂。


4、真正的财富是一种思维方式,而不 是一个 月收入 数字。


用测量的方法计算圆周率,圆周率的精确程度取决 于测量的精确程度,而有许多实际困难限制了测量的 精度。
古希腊数学家阿基米德发现: 当正多边形的边数增加时,它的形状就越
来越接近圆。
223<圆周率<22
71
7
我国魏晋时期的数学家刘徽创造了用“割 圆术”求圆周率的方法,在数学史上占有重 要的地位。刘徽是怎样“割圆”的呢?

刘徽与割圆术

刘徽与割圆术
圆周率最早的科学方法一直为人们所称道。
▪ 刘徽由正六邊形開始,不斷倍增正多邊形的邊數。
正6邊形
正12邊形
正24邊形
邊數愈多,正多邊形愈接近圓形。 最後,劉徽求得π≈ 3.1416。 BG
正48邊形
7
谢谢观看
BG
8
BGΒιβλιοθήκη 4②刘徽原理在《九章算术•阳马术》注中,他在用无限分割的方法解决锥体体积时, 提出了关于多面体体积计算的刘徽原理。
③“牟合方盖”说 在《九章算术•开立圆术》注中,他指出了球体积公式V=9D3/16(D为球直径) 的不精确性,并引入了“牟合方盖”这一著名的几何模型。“牟合方盖”是 指正方体的两个轴互相垂直的内切圆柱体的贯交部分。
▪ 成就
▪ 刘徽的成就大致为两方面:
一是清理中国古代数学体系并奠定了它的理论基础。这方面集中体现在《九章算
术注》中。它实已形成为一个比较完整的理论体系: ①在数系理论方面 用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的
运算法则;在开方术的注释中,他从开方不尽的意义出发,论述了无理方根 的存在,并引进了新数,创造了用十B进G 分数无限逼近无理根的方法。 3
④方程新术 在《九章算术•方程术》注中,他提出了解线性方程组的新方法,运用了 比率算法的思想。 ⑤重差术 在白撰《海岛算经》中,他提出了重差术,采用了重表、连索和累矩等 测高测远方法。他还运用“类推衍化”的方法,使重差术由两次测望,发展 为“三望”、“四望”。而印度在7世纪,欧洲在15~16世纪才开始研究两次 测望的问题。
二是在继承的基础上提出了自己的创见。这方面主要体现为以下几项有代表性的
创见: ①割圆术与圆周率 他在《九章算术•圆田术》注中,用割圆术证明了圆面积的精确公式,并

刘徽和割圆术

刘徽和割圆术

刘徽和割圆术中国向来以文明古国自称,谈到中国古代文明,我们一定会说起以“经世致用”为信条,以筹算为主的中国古代数学史。

在这段曲折发展的历史中,我们的古代数学跟其他古文明一样,在一定程度上获得了发展,特别是在算法的深度和广度上有着卓越的发展。

但我们不得不提及,在中国古代长达2000多年的封建制度统治下,数学研究一直停留在计算层面,理论的严谨和系统却不尽如人意,这同时也导致了一些错误的结果的出现。

在这样的数学背景下,刘徽可谓是中国数学史上的一朵奇葩,他有着“为数学而数学”的价值观,曾令中国古代数学的严谨与系统达到前所未有的高度。

下面我将主要介绍刘徽及其最耐人寻味的一段成就——割圆术。

刘徽,生于公元250年左右,是魏晋时人。

他的一生为数学刻苦探求,虽然地位低下,但人格高尚。

他所撰的《九章算术注》是中国最宝贵的数学遗产。

刘徽思想敏捷,方法灵活,既提倡推理又主张直观,是中国最早明确主张用逻辑推理的方式来论证数学命题的人。

他不是沽名钓誉的庸人,而是学而不厌的伟人。

由于篇幅有限,对刘徽卓越的成就不能一一介绍,只能介绍其最耐人寻味的割圆术。

割圆术可谓是中国古代数学的奇迹,在后面与阿基米德求圆面积方法的比较中,您将发现割圆术的精妙与美丽。

在《九章算术》中曾提到“圆田术”---半周半径相乘得积步。

这就是著名的圆面积公式:(1) 其中S 表示圆面积,C 表示周长,R 表示半径。

我们今天可以得出这个公式是正确的,但在《九章算术》中只是提到了这一结论,却未给出严谨的证明。

在刘徽之前人们以圆内接正六边形的周长代替圆周长C ,以圆内接正十二边形的面积代替圆面积S ,用出入相补原理将正十二边形拼补成一个以正六边形的周长的一半作为长,以圆半径作为宽的长方形来推证上述公式。

在今天,我们可以看出用圆内12S CR接正六边形和圆内接正十二边形来近似代替圆是相当粗糙的,但在当时很少有人能指出这一算法的不严谨性,而刘徽却说此方法“合径率一而外周率三也”,一针见血的指出了这一方法的不严格性。

《刘徽割圆术》课件

《刘徽割圆术》课件
形状,从而方便计算和推导。
割圆术与极限思想的关系
极限思想是数学中一个重要的 概念,它描述了当某量变化时 ,其极限的存在性。
割圆术体现了极限思想的应用 ,即通过不断增加多边形的边 数,使得多边形的周长无限接 近于圆的周长。
这种极限思想的应用使得刘徽 能够利用有限的手段来逼近无 限的数值,从而得到圆周率的 近似值。
感谢您的观看
THANKS
计算机图形学
在现代计算机图形学中,刘徽割圆术 的思想被广泛应用于生成平滑的曲线 和曲面,例如在制作动画、游戏、电 影等领域。
数值分析
刘徽割圆术中的数值计算方法也被广 泛应用于现代科学中的数值分析领域 ,例如在计算物理、工程等领域中, 可以利用刘徽割圆术的方法进行数值 模拟和计算。
04
刘徽割圆术的局限性与挑战
在数学史上的地位
推动了中国古代数学的发展
刘徽割圆术是中国古代数学发展史上的重要里程碑,它的出现标志着中国古代数学从经验型向理论型的转变。
对世界数学史的影响
刘徽割圆术的提出和应用,不仅对中国古代数学产生了深远影响,也对世界数学史的发展产生了重要影响,为后 来的数学家提供了宝贵的启示和借鉴。
在现代科学中的应用
古代科学技术的局限性
缺乏精确的测量工具
古代科学技术的限制使得刘徽在进行 割圆术时无法获得精确的数值和比例 。
缺乏数学理论支持
受限于经验和实践
由于历史背景和知识体系的限制,刘 徽只能通过直观和实践来验证割圆术 ,这使得其结果的可靠性和准确性存 在一定问题。
当时的数学理论尚未发展到能够完全 支撑刘徽割圆术的证明,这使得该方 法在理论上的可靠性受到质疑。
刘徽割圆术在现代科学中的应用前景
数学建模
刘徽割圆术的基本思想和技巧可以应用 于数学建模中,为解决实际问题提供新 的思路和方法。例如,在物理、工程、 经济等领域中,可以利用刘徽割圆术的 思想来建立数学模型,解决复杂的问题 。

高中数学人教A版必修3第一章算法初步阅读与思考割圆术教学课件共13张PPT含视频等素材 (3份打包)

高中数学人教A版必修3第一章算法初步阅读与思考割圆术教学课件共13张PPT含视频等素材 (3份打包)
割圆术
圆周率的历史
The history of PI
无论怎样改变
车轮的大小, π
周长/直径 = K
实测法
工具:细线、直尺
任务:测量3个圆片的周长和直径, 并求出它们的比值。
历史纪实
点击请替换文字内容
邢云路
邢云路是中国明代天文学家, 著有《古今履历考》72卷,他通过 36年冬至时刻的实测工作,算出了 回归年长度值为365.24219日,与 理论值之差仅为2秒,是中国古代、 亦是当今世界上的最佳值。
刘徽的割圆术

正六边形
正十二边形
用内接正多边形的面积无限逼近圆的面积
割圆术
E
H
A
B
F
1
O
割圆术
E
A
x2n
设圆内接正n边形边长为 xn ,面积为 Sn ,
你能表示出圆内接正2n边形的面积 S2n吗?
hn
1
xn 2
2
x2n
xn 2
2
1
hn
2
S2n
Sn
n
1 2
xn (1
hn )
割圆术 用圆的外切正多边形的面积逼近圆的面积
割圆术
平面图形的面积为: S6 2 S12 S6
Sn 2S2n Sn S2n S2n Sn
小结
化圆为方 内外夹逼
谢谢观看
读一本好书,就是和许多高尚的人谈话读书时,我愿在每一个美好思想的面前停留,就像在每一条真理面前停留一样。书籍是在时代的波涛中航行的思想之船,它小 心翼翼地把珍贵的货物运送给一代又一代。好的书籍是最贵重的珍宝是唯一不死的东西。书籍使人们成为宇宙的主人。书中横卧着整个过去的灵书不仅是生活,而且 是现在、过去和未来文化生活的源泉。书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。书籍便是这种改造灵魂的工具。人类所需要的,是富有启发 性的养料。而阅读,则正是这种养料。不敢妄为些子事,只因曾读数行书。只是对于一件事情很长时间很热心地去考虑罢了。只要愿意学习,就一定能够学会一个爱 书的人,他必定不致缺少一个忠实的朋友一个良好的导师一个可爱的伴侣一个优婉的安慰者。读书当将破万卷;求知不叫一疑存。读书如吃饭,善吃者长精神,不善 吃者长疾瘤。读书不趁早,后来徒悔懊。 读书是易事,思索是难事,但两者缺一,便全无用处。 读书何所求?将以通事理。伟大的成绩和辛勤劳动是成正比例的,有 一分劳动就有一分收获,日积月累,从少到多,奇迹就可以创造出来。敏而好学,不耻下问。不学,则不明古道,而能政治太平者未之有也。 若不抽出时间来创造 自己想要的生活,你最终将不得不花费大量的时间来应付自己不想要的生活。社会上要想分出层次,只有一个办法,那就是竞争,你必须努力,否则结局就是被压在 社会的底层。身后还有那么多期许的目光,怎么可以轻易放弃。什么叫做失败?失败是到达较佳境地的第一步。什么时候也不要放弃希望,越是险恶的环境越要燃起 希望的意志。生活呆以是甜的,也可以是苦的,但不能是没味的。你可以胜利,也可以失败,但你不能屈服。 人生四然:来是偶然,去是必然,尽其当然,顺其自 然。人生舞台的大幕随时都可能拉开,关键是你愿意表演,还是选择躲避。人生最精彩的不是实现梦想的一瞬间,而是坚持梦想的过程。人与人之间的差距,是天生 就这么大,还是因为不能狠下心来逼自己日出东海落西山,愁也一天,喜也一天;遇事不钻牛角尖,人也舒坦,心也舒坦。如果你坚信自己最优秀,那么你就最聪明。 如果你真心选择去做一件事,那么全世界都是帮助你的。头脑是日用品,而不是装饰品。我要的未来,要靠我自己去拼。想成功就要和成功者的思想、脚步和时间重 叠。想干的人永远在找方法,不想干的人永远在找理由。要感谢痛苦与挫折,它是我们的功课,我们要从中训练,然后突破,这样才能真正解脱。要纠正别人之前, 先反省自己有没有犯错。 也许终点只有绝望和失败,但这绝不是停止前行的理由。一个人的快乐,不是因为他拥有的多,而是因为他计较的少。一个人只有亲眼看 到自己伤疤的时候才知道什么是痛,什么是对与错。一个一味沉溺于往事的人,是不能张开双臂去拥抱今天的。一切事无法追求完美,唯有追求尽力而为。这样心无 压力,出来的结果反而会更好有人说,世界上最美的是梦,最长的是路;最易做的是梦,最难走的是路。愿你像那石灰,别人越是浇你冷水,你越是沸腾。真正懂得 微笑的人,总是容易获得比别人更多的机会。如果缺少破土面出并与风雪拼搏的勇气,种子的前途并不比落叶美妙一分。生活会辜负努力的人,但不会一直辜负努力 的人。失败的历程也是成功的历程。时间会告诉你一切真相。有些事情,要等到你渐渐清醒了,才明白它是个错误;有些东西,要等到你真正放下了,才知道它的沉 重。实现自己既定的目标,必须能耐得住寂寞单干。输在犹豫,赢在行动。树苗如果因为怕痛而拒绝修剪,那就永远不会成材。13.在我们的生活中,如果没有了书 籍,就好像小鸟在天空中飞翔时断了翅膀一样,永远不能前进。战士的意志要象礁石一样坚定,战士的性格要像和风一样温柔。站起来的次数能够比跌倒的次数多一 次,你就是强者。真正的爱,应该超越生命的长度、心灵的宽度、灵魂的深度。真正的强者不是没有眼泪的人,而是含着眼泪奔跑的人。只会幻想而不行动的人,永 远也体会不到收获果实时的喜悦。志坚智达言信行果,失败的尽头是成功努力的终点是辉煌。志在峰巅的攀登者,不会陶醉在沿途的某个脚印之中竹根 ——即使被埋 在地下无人得见,也决然不会停止探索而力争冒出新笋。总要有一个人要赢,为什么不能是我。最坚固的捆绑是习惯。最可怕的不是有人比你优秀,而是比你优秀的 人还比你更努力。最有希望的成功者,并不是才干出众的人而是那些最善利用每一时机去发掘开拓的人。昨天如影——记住你昨天的挫折和失败的教训;今天如画— —美好的生活、快乐和幸福的人生要靠你自己去描绘;明天如梦——珍惜今天,选择好自己的目标,努力地为自己的明天去寻求和拼搏。不曾扬帆,何以至远方。不 论你在什么时候开始,重要的是开始之后就不要轻言放弃。不去耕耘,不去播种,再肥的沃土也长不出庄稼,不去奋斗,不去创造,再美的青春也结不出硕果。不要 盘算太多,要顺其自然。该是你的终会得到。成功也就不会太远了。趁着年轻,不怕多吃一些苦。这些逆境与磨练,才会让你真正学会谦恭。不然,你那自以为是的 聪明和藐视一切的优越感,迟早会毁了你。成功的法则极为简单,但简单并不代表容易。成功的秘诀就是每天都比别人多努力一点。生命如自助餐厅,要吃什么菜自 己选择。生命像流水,这些不快的事总要过去,如果注定一辈子要这么过,再不开心也没有用。如果你看到前面的阴影,别怕,那是因为你背后有阳光。如果为了安 全而不和大海在一起,船就失去了存在的意义。山高路遥不足惧,最怕贪图安逸心。少壮不努力,老大徒伤悲。犹如一条船 ,每人都要有掌舵的准备。生活对于智者 永远是一首昂扬的歌,它的主旋律永远是奋斗。金钱难买健康,健康大于金钱,金钱难买幸福,幸福必有健康,生命的幸福不在名利在健康,身体的强壮不在金钱在 运动!尽管人生有那么多的徒劳无功,梦想,我还是要一次次全力以赴。经过大海的一番磨砺,卵石才变得更加美丽光滑。就算全世界都说我漂亮,但你却说我不漂 亮,那么我就是不漂亮。可怕的是,比你优秀的人比你还要努力。空谈不如实干。踱步何不向前行。

《刘徽割圆术》课件

《刘徽割圆术》课件

刘徽割圆术在中国数学史上具有重要的地位,它不仅为后来 的数学家提供了研究圆周率的方法,而且对整个数学的发展 产生了深远的影响。
刘徽割圆术的提出标志着中国古代数学的发展达到了一个新 的高度,为后来的数学家提供了研究数学的新思路和新方法 。
01
刘徽割圆术的数学 原理
圆周率的定义
圆周率:圆的周长与其直径的比值,记作π。 圆周率在数学和科学中具有广泛的应用,是研究圆和其他几何图形的基础。
传承价值
刘徽割圆术的传承价值不仅在于其数学成果,更在于其背 后所蕴含的数学思想和智慧,对于中国古代数学的发展和 现代数学的研究都具有重要的意义。
刘徽割圆术的发展现状
学术研究
现代学者对刘徽割圆术的研究主 要集中在对其数学思想和方法的 探讨,以及其在现代数学中的应
用等方面。
普及教育
刘徽割圆术作为中国古代数学的瑰 宝,已经被纳入到中小学数学教材 中,成为学生了解中国古代数学的 重要内容。
国际影响
随着中国数学文化的传播,刘徽割 圆术也逐渐受到国际数学界的关注 和认可,成为世界数学史上的重要 篇章。
刘徽割圆术的未来展望
学术研究深化
随着数加深入,有望在数 学史和数学思想方面取得更多的
突破。
文化传承与创新
刘徽割圆术作为中国传统文化的 重要组成部分,未来需要在传承 的基础上进行创新,以适应现代
03
刘徽割圆术的提出,使得中国数学在当时的国际数学界获得了
高度评价和认可。
对世界数学的影响
丰富了世界数学文化宝库
刘徽割圆术作为一种独特的数学思想和算法,为世界数学的发展 做出了重要贡献,丰富了世界数学文化宝库。
促进了东西方数学的交流
刘徽割圆术的传播,使得东西方数学在圆周率研究方面得以相互借 鉴和交流,推动了数学的发展。

人教A版高中数学必修3《一章 算法初步 阅读与思考 割圆术》示范课课件_10

人教A版高中数学必修3《一章 算法初步  阅读与思考 割圆术》示范课课件_10
50 失传的《缀术》
但是刘徽只算到这里就没有继 续算,南北朝时期数学家祖冲之继 承并发展了刘徽的“割圆术”,求
出 的范围为: 3.1415926< <3.1415927
需要计算到圆内接正12288边形, 是当时世界上算得最精确的数值。
(四) 刘徽“割圆术”的意义
刘徽的割圆术,为圆周率研究工作奠定了 坚实可靠的理论基础,在数学史上占有十分重 要的地位。他所得到的结果在当时世界上也是 很先进的。刘徽的计算方法只用圆内接多边形 面积,而无须外切多边形面积,这比古希腊数 学家阿基米德(前287—前212)用圆内接和外 切正多边形计算,在程序上要简便得多,可以 收到事半功倍的效果。同时,为解决圆周率问 题,刘徽所运用的初步的极限概念和直曲转化 思想,这在一千五百年前的古代,也是非常难 能可贵的。
以直代曲,无限趋近,内外夹逼
中国古代创造了辉煌的数学成就,在数学发展的 历史长河中涌现了许多杰出的数学家。先哲们分析和 解决问题的历史背景、内容和方法都值得我们研究。 他们的丰功伟绩值得我们崇敬,他们百折不挠的治学 精神值得我们学习。
作业:
1. 修改和完善程序语句,提现“割圆术” 中“内外夹逼”。
2. 查看相关资料,了解圆周率的发展史和 刘徽、祖冲之等数学家的主要贡献
/a/1709221816388 74557008.html?qid=01359
(二)“割圆术”的含义
所谓“割圆术”,是当圆内接正多边形的边数无 限增加时,多边形面积可无限逼近圆面积,即“割之 弥细,所失弥少,割之又割,以至于不可割,则与圆 周合体而无所失矣”;
(直径为1,周长为3),实际上就是将圆的内接正六 边形周长作为圆的周长,从而求出圆周率。后来,人 们发现这个说法并不准确。东汉的大科学家张衡认为 应该是3.162。三国到西晋时期的数学家刘徽经过计 算,求出了3. 14159的圆周率,这在当时是最先进的。

2019年最新-人教版高中数学必修三刘徽割圆术ppt课件

2019年最新-人教版高中数学必修三刘徽割圆术ppt课件

(二)“割圆术”的含义
所谓“割圆术”,是用圆内接正多边形的周 近圆周并以此求取圆周率的方法。这个方法,是 总结了数学史上各种旧的计算方法之后,经过深 造出来的一种崭新的方法。
(三)刘徽“割圆术”的主要内容和
第一,圆内接正六边形每边的长等于半径。
第二,作正十二边形,从勾股定理出发, 二边形的边长。根据勾股定理,从圆内接正 的长,可以求出圆内接正2n边形每边的长。
祖冲之的圆周率
No Image
(一)祖冲之简介
祖冲之(公元429——500年)字文远 郡遒县(今河北省保定市涞水县)人,是我国南 代一位成绩卓著的科学家。他不仅在天文、数学 有过闻名世界的贡献,而且在机械制造等方面也 发明创造。他的发明为促进社会生产的发展,建 可磨灭的功绩,受到了中国人民和世界人民的尊
因为《缀术》失传了,祖冲之究竟是用什么方法将π算 又是怎样找到既精确又方便的密率的呢?这至今仍是困 谜。
祖冲之曾写过一本数学著作《缀术》,记录了他对圆周 成果。但当时“学官莫能究其深奥,是故废而不理”, 传。
很多人都知道用密率355/113表示π的近似值,是一项了 密率355/113传到了日本后,1913年日本数学史家三上 将祖冲之圆周率的密率数值命名为“祖率”,得到一致 之对圆周率的求索,超过了世界水平整整1000年!直到 国人V·奥托和荷兰人A·安托尼斯才发现了圆周率的密率 但是“祖率”的妙处,和给今人留下的困惑,不少人却
在当时的情况下,不但没有计算机,也没有笔算,只能用长4寸 计算。工作是艰巨的,这时祖冲之的儿子也能帮助他了。
父子俩算了一天又一天,眼睛熬红了,人也渐渐瘦了下来,可大 越多,3072边、6144边……边数越多,边长越短。父子俩蹲在地上 一个细心地算,谁也不敢走神。

割圆术 PPT

割圆术 PPT
割圆术
圆周率的历史
The history of PI
无论怎样改变
车轮的大小, π
周长/直径 = K
实测法
工具:细线、直尺
任务:测量3个圆片的周长和直径, 并求出它们的比值。
历史纪实
点击请替换文字内容
邢云路
邢云路是中国明代天文学家, 著有《古今履历考》72卷,他通过 36年冬至时刻的实测工作,算出了 回归年长度值为365.24219日,与 理论值之差仅为2秒,是中国古代、 亦是当今世界上的最佳值。
hn )
割圆术 用圆的外切正多边形的面积逼近圆的面积
割圆术
平面图形的面积为: S6 2 S12 S6
Sn 2S2n Sn S2n S2n Sn
小结
化圆为方 内外夹逼
谢谢观看
刘徽的割圆术

正六边形
正十二边形
用内接正多边形的面积无限逼近圆的面积
割圆术
E
H
A
B
F
1
O
割圆术
E
A
x2n
xn
B
F
hn
1
O
设圆内接正n边形边长为 xn ,面积为 Sn ,
你能表示出圆内接正2n边形的面积 S2n吗?
hn
1
xn 2
2
x2n
xn 2
2
1hnBiblioteka 2S2nSn
n
1 2
xn (1

刘徽数学成就PPT课件

刘徽数学成就PPT课件
刘徽是这样解的: (1)×2,(2)×5,得
(4)-(3),得 21y=20(下略). 显然,这种方法与现代加减消元法一致,不过那时用
的是筹算.刘徽认为,这种方法可以推广到多元,“以小 推大,虽四、五行不异也.”他还进一步指出,“相消” 时要看两方程首项系数的同异,同则相减,异则相加.刘 7 徽的工作,大大减化了线性方程组解法.
这种方法可以求得任意精度的圆周率近似值,刘徽对 这一点是很清楚的.不过,他根据当时的需要,运算 中只取到两位小数. 割圆术的创立是数学史上的一件大事.古希腊的阿基 米德(Archimedes,公元前287---前212)也曾用割圆术 求圆周率,他的方法是以圆内接正多边形和外切正多 边形同时逼近圆,比刘徽的方法麻烦一些.刘徽的成 就晚于阿基米德,但是独立取得的.
另外,他又提出筹算中表示正负数的两种方法:一种 是用红筹表正数,黑筹表负数;再一种是以算筹摆法 的正、斜来区别正、负数.这两种方法,对后世数学 都有深远影响.
6
.
2.代数
(2)对线性方程组解法的改进 《九章算术》中用直除法解线性方程组,比较麻
烦.刘徽在方程章的注释中,对直除法加以改进,创立了 互乘相消法.例如方程组
在刘徽之前,计算中遇到奇零小数时,就用带分 数表示,或者四舍五入.刘徽首创十进分数,用 以表示无理根的近似值.这种计数与现代
刘徽用忽来表示,但a后各位就不必再命名了, 刘徽称它们为“微数”,说:“微数无名者以为 分子,其一退以十为母,其再退以百为母.退之 弥下,其分弥细.”这种方法,与我们现在开平 方求无理根的十进小数近似值的方法一致,即
刘徽在研究开方不尽的问题时,认为求出的位数越多,就 越接近真值,但永远不会达到真值,只能根据需耍,求到 “虽有所弃之数,不足言之也”的程度.刘徽正是在这种 极限观念的基础上创立十进分数的.他在征明有关体积的 定理(如阳马定理)时也用到极限,并深刻地指出,极限问 题“谓以情推,不用筹算”,就是说研究极限靠思维和推 理而不靠具体计算.

北师大版小学6年级数学上册第一单元(圆周率的历史+圆的面积(一))PPT教学课件

北师大版小学6年级数学上册第一单元(圆周率的历史+圆的面积(一))PPT教学课件
最后得出了π的两个分数形式的近似值: 约率为272 ,密率为315153 ,并且精确地算出圆 周率在3.1415926和3.1415927之间。
这一成就,使中国在圆周率的计算方面 在世界领先1000年。
圆周率的历史
电子计算机的出现带来了计算方面的革命, π的小数点后面的精确数字越来越多。
到2002年,圆周率已经可以计算到小数点后 12411亿位。
这个直径是20m 圆形草坪的占 地面积是多少?
圆的面积(1)
2、求下面各圆的面积。(口头列式)
3.14×12
3.14×(4÷2)2
圆的面积(1)
3、一个雷达屏幕的直径是40厘米,它的 面积是多少平方厘米?
半径:40÷2=20(厘米) 面积: 3.14×202
=3.14×400 =1256(平方厘米)
(2)
其中一个圆的周长是(9.42)cm, 长方形的周长是( 21 )cm。
圆周率的历史
2.在一个周长为100cm的正方形纸片内,要剪一个 最大的圆,这个圆的半径是多少厘米?
100÷4÷2=12.5(厘米)
答:这个圆的半径是12.5厘米。
圆周率的历史
3.李明家一扇门上要装上形状如右图所示的装 饰木条,需要木条多少米?
三 十 二 等 分
圆的面积(1)
以拼成的近似平行四边形为例:
圆面8等分时:
圆面16等分时:
圆面32等分时:
圆的面积(1)
分的份数越多,拼成的图形越接近平行四边形。
圆的面积(1)
从上图中可以看出圆的半径是r,平行四边形的高近似 ( 圆的半径 ),底近似于( 圆周长的一半 )。
因为平行四边形的面积=( 底 )×( 高 )
课前导入

刘徽数学成就PPT课件

刘徽数学成就PPT课件
刘徽在研究开方不尽的问题时,认为求出的位数越多,就 越接近真值,但永远不会达到真值,只能根据需耍,求到 “虽有所弃之数,不足言之也”的程度.刘徽正是在这种 极限观念的基础上创立十进分数的.他在征明有关体积的 定理(如阳马定理)时也用到极限,并深刻地指出,极限问 题“谓以情推,不用筹算”,就是说研究极限靠思维和推 理而不靠具体计算.
“每一行中,虽复赤黑异算,无伤”,即方程各项 同时变号,不改变方程组的解;
“举率以相减,不害余数之课也,即两方程对应项 相减,不改变方程组的解.
很明显,刘徽对于线性方程组的初等变换,已经基 本掌握了.
不过,他没有考虑交换两个方程的位置,因为不进 行这种变换亦可顺利求出方程组的解,而且调换算 筹的位置是不方便的.
.
刘徽在研究立体几何时,发现“邪解堑堵,其一为阳马,一为鳖臑,
阳马居二,鳖臑居一,不易之率也”.即“过对角面分割堑堵为一个
阳马(图4·16中ABCDE)和一个鳖臑(图4·16中DEFC),则阳马与鳖臑的体
积之比恒为二比一.”为叙述方便,我们称之为阳马定理.刘徽从长
方体体积公式出发证明了这一定理,然后用它证明了各种多面体的体
17
பைடு நூலகம்
.
按题意画图如下:
因当时1步为6尺,故标杆高5步.由刘徽术文,得
若用字母表示,则
18
.
因公式中用到d(两杆与岛的距离差)和a1-a2两差之比, 所以叫重差术.这是书中最简单的一题,只须测望二 次.其他问题往往要测望三次或四次,但原理与本题 相同.刘徽曾著《重差图》和《重差注》,可能是用 来推导术文的,已佚.估计刘徽的推导方法不外两种, 一是利用出入相补,二是利用相似三角形.
15
.
例如,刘徽的割圆术便建立在极限理论的基础上.他说: “割之弥细,所失弥少,割之又割,以至于不可割,则与 圆合体而无所失矣.”就是说当圆内接正多边形的边数无 限增加时,正多边形面积的极限便是圆的面积.他还把割 圆术用于求弓形面积.如图4.19,刘徽在弓形内作以a1 为底,h1为高的等腰三角形,求出其面积,再以此三角形 的两腰为底作小弓形的内接等腰三角形,每个小三角形的 面积为,如此类推,刘徽把这些等腰三角形面积之和的极 限定义为弓形面积.显然,用此方法可使弓形面积达到任 何需要的精确度.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

刘徽首创“割圆术” 的方法,可以说他是中国古 代极限思想思想的杰出代表,不仅为200年后祖 冲之圆周率的计算提供了思想方法与理论依据, 也对中国古代的数学研究产生了很大影响。
在生活中,我们也要善于观察、勤于思考, 养成爱动脑的好习惯。你们也有可能成为数一块 方石,经石匠师 傅凿去四角,就 变成了八角形的 石头。再去八个 角,又变成了十 六边形。”
一斧一斧地凿下去,一块方形石料就被加工成了一根圆柱。
谁会想到,在一般人看来非常普通的事情,却触发 了刘徽智慧的火花。他想:“石匠加工石料的方法, 可不可以用在圆周率的研究上呢?”
于是,刘徽采用这个方法,把圆逐渐分割下去, 一试果然有效。他发明了亘古未有的“割圆术”。

徽与
割 圆 术




屯 明 德 小
季 亚 丽

刘徽是公元三世纪世 界上最杰出的数学家, 他在公元263年撰写 的著作《九章算术注》 以及后来的《海岛算 经》,是我国最宝贵 的数学遗产,从而奠 定了他在中国数学史 上的不朽地位。
我国古代的刘徽他为了圆周率的计算一直潜 心钻研着。
一次,刘徽看到石匠在加工石头,觉得 很有趣就仔细观察了起来。
他沿着割圆术的思 路,从圆内接正六 边形算起,边数依 次加倍,相继算出 正12边形,正24边 形……直到正192边 形的面积,得到圆 周率兀的近似值为 157/50 (3.14);后 来,他又算出圆内 接正3 072边形的面 积,从而得到更精 确的圆周率近似值: 兀≈3927/1 250(3.1416)。
相关文档
最新文档