细胞生物学研究方法
举例说明细胞生物学的研究方法的种类
举例说明细胞生物学的研究方法的种类细胞生物学是研究细胞结构、功能和生理过程的学科,它使用多种方法来进行研究。
下面列举了十种常见的细胞生物学研究方法。
1. 光学显微镜观察:光学显微镜是一种常用的工具,用于观察细胞的形态、结构和功能。
通过调节镜头和使用染色剂,可以更清晰地观察细胞的细节。
2. 电子显微镜观察:电子显微镜是一种高分辨率的显微镜,可以观察到更小的细胞结构,如细胞器、细胞膜等。
它可以提供细胞的高分辨率图像。
3. 细胞培养:细胞培养是将细胞从生物体中分离出来,在含有营养物质的培养基中进行培养的过程。
这种方法可以研究细胞的生长、增殖和功能。
4. 免疫细胞化学:免疫细胞化学是通过使用抗体来标记和检测特定蛋白质的方法。
这种方法可以帮助研究人员了解细胞内不同蛋白质的位置和功能。
5. 细胞分离和纯化:细胞分离和纯化是将特定类型的细胞从混合细胞群中分离出来的方法。
这种方法可以帮助研究人员研究特定细胞类型的功能和特性。
6. 分子生物学技术:分子生物学技术包括PCR、DNA测序、基因克隆等,可以帮助研究人员了解细胞的基因组、基因表达和遗传变异。
7. 蛋白质分析:蛋白质分析是研究细胞内蛋白质的种类、结构和功能的方法。
常用的蛋白质分析方法包括SDS-PAGE、Western blot 等。
8. 细胞生物物理学:细胞生物物理学是研究细胞力学、细胞形态学和细胞力学等方面的学科。
常用的方法包括细胞变形实验、细胞力学模拟等。
9. 高通量筛选:高通量筛选是一种通过自动化实验系统进行大规模筛选的方法。
它可以帮助研究人员快速筛选和鉴定特定分子对细胞的影响。
10. 生物信息学分析:生物信息学分析是利用计算机和统计学方法对细胞数据进行分析的方法。
它可以帮助研究人员从大量数据中提取有用的信息,揭示细胞的复杂性。
细胞生物学的研究方法
细胞生物学的研究方法
细胞生物学是研究细胞的结构、功能和生理过程的科学。
在细胞生物学的研究中,有许多常用的方法。
以下是其中一些常见的研究方法:
1. 细胞培养:将细胞从其天然环境中分离出来,并在实验室中以适当的培养基中培养细胞。
细胞培养使得研究人员能够对细胞进行控制和观察。
2. 显微镜观察:使用光学显微镜或电子显微镜观察细胞的形态、结构和运动。
光学显微镜可以用来观察活细胞,而电子显微镜则能够提供更高分辨率的细胞图像。
3. 免疫细胞化学:使用特异性抗体与细胞中的特定蛋白质结合,然后通过染色或荧光探针,观察并分析这些蛋白质在细胞中的分布和表达水平。
4. 分子生物学技术:包括PCR、DNA克隆、基因测序和蛋白质表达等技术,可以用于研究细胞中的基因和蛋白质。
5. 细胞色素分析:利用生物化学检测方法,测定细胞内特定生物分子的含量和代谢活性,以研究细胞功能和代谢过程。
6. 分离和纯化细胞器:通过细胞破碎和离心技术,将细胞内不同的细胞器分离和纯化出来,以研究它们的结构和功能。
7. 基因编辑技术:如CRISPR/Cas9,可以对细胞中的基因进行精确编辑和改变,以研究基因对细胞功能的影响。
8. 活体成像:利用荧光探针或标记的蛋白质,观察和记录活细胞的动态变化,如细胞分裂、运动和细胞内信号传导等。
以上只是细胞生物学研究中的一些常见方法,实际研究中可能还会使用其他特定的技术和方法,具体取决于研究的目的和需要。
细胞生物学的实验方法和技术
细胞生物学的实验方法和技术细胞生物学是研究细胞结构、功能和生命活动的学科,可以帮助我们了解生命的起源和本质。
在细胞生物学领域,实验是非常重要的,因为只有通过实验才能获取丰富的数据和信息。
接下来,我们将介绍一些常用的细胞生物学实验方法和技术。
1. 细胞培养细胞培养是一种将细胞放置在含有营养物的培养基上的实验方法。
这种方法可以被应用于很多方面,例如研究基因表达、病理生理学和新药发现等领域。
细胞培养通常要求细胞处于可能生长和分裂的特定生长条件下,培养基的配方和组成要根据细胞类型进行调整。
2. 免疫荧光染色免疫荧光染色是一种将抗体特异性地与待检测蛋白质结合,然后用荧光染色剂标记抗体的实验方法。
这种方法被广泛应用于检测蛋白质的组织学定位、蛋白质相互作用和细胞信号传导等方面的研究。
3. 细胞色素c释放实验细胞色素c释放实验是通过检测细胞色素c的释放来检测细胞凋亡状况的实验方法。
这种实验需要将细胞暴露在合适的刺激条件下,然后收集细胞,用针头机械破碎并分离出线粒体,接着用色素c检测试剂。
此方法可以被应用于癌症治疗、新药研发和基础细胞生物学研究等领域。
4. 网格溶解实验网格溶解实验是一种检测细胞侵袭和扩散能力的实验方法,常用于研究细胞恶性生长、转移和肿瘤治疗等领域。
这种实验需要在培养皿中放置一层含有孔的膜,将预处理好的细胞悬浮在孔上方的区域,然后留置一段时间等待细胞穿过孔隙层次,最后收集并处理细胞样本,通过各种方式检测细胞侵袭和扩散的情况。
5. 蛋白-蛋白相互作用实验蛋白-蛋白相互作用实验是一种检测蛋白质互相作用的实验方法。
这种实验有几种方法,包括酵母对二杂交法、共免疫沉淀法和化学交联法等。
这些方法可以帮助我们了解蛋白质相互作用的机制,为研究信号转导、基因表达和疾病机理等领域提供参考资料。
以上是几种常用的细胞生物学实验方法和技术。
每一种方法都有自己独特的适用范围和步骤,研究者们需要根据具体的实验内容选择合适的方法。
细胞生物学的研究方法
细胞生物学的研究方法细胞生物学是研究生物体内细胞结构、功能和生理过程的科学。
细胞是生命的基本单位,它们构成了所有生物体的组织和器官。
细胞生物学的研究方法包括许多实验技术和技术工具,以便观察和理解细胞的结构和功能。
一种用于研究细胞结构的重要方法是光学显微镜。
使用光学显微镜可以观察细胞的形态、大小和内部结构。
通过显微镜观察细胞样本时,常使用特殊染色剂来突出显示细胞内的不同结构。
除了光学显微镜外,还有电子显微镜,它能够提供更高分辨率的图像,可以观察到更小的细胞结构,如细胞器和细胞膜。
除了显微镜技术,细胞生物学研究还经常使用细胞培养技术。
通过将细胞以培养物中的无菌条件下培养,可以进行各种实验,如细胞增殖、细胞分化和细胞信号传导等。
细胞培养技术也是生物医学研究的关键手段,可以用于体外药物筛选、细胞治疗等。
分子生物学技术在细胞生物学研究中也扮演着重要的角色。
PCR技术可以扩增DNA片段,从而方便进行基因克隆和表达分析。
蛋白质的表达和定位可以通过免疫荧光染色或原位杂交等技术进行观察。
另外,基因编辑技术如CRISPR/Cas9也为细胞生物学研究提供了新的手段,可以用于精确编辑细胞基因组,从而研究基因功能。
细胞生物学研究中,流式细胞仪也是不可或缺的工具。
流式细胞仪可以快速检测单个细胞的大小、形状、表面标记和内部分子表达等信息。
这对于研究那些需要分析大量细胞的生物学问题是特别有用的。
除了实验技术外,计算生物学和生物信息学也在细胞生物学研究中发挥了重要作用。
生物信息学技术可以用于分析大规模生物学数据,如基因组、转录组和蛋白质组等数据。
这些数据分析可以帮助研究者理解细胞内分子的互作关系、信号通路、基因调控等重要生物学过程。
细胞生物学的研究方法是不断发展和进步的,随着技术的不断更新,研究者可以更准确、全面地理解细胞的结构和功能。
通过综合运用这些方法,可以更深入地探索细胞的生物学特性,为生命科学领域的发展做出更大的贡献。
细胞生物学的研究方法及其应用
细胞生物学的研究方法及其应用细胞生物学是一门研究生物体最基本单位——细胞的科学,它的研究对象是细胞的形态、结构、功能及其相互作用等。
随着科技的发展,细胞生物学的研究手段也在不断更新,使我们对细胞的了解更加深入。
本文将介绍细胞生物学的几种研究方法及其应用。
一、细胞培养技术细胞培养技术是细胞生物学中比较基础的研究手段,它是将组织和细胞移植到含有营养物质和生长因子的培养基中进行培养和繁殖,使其在体外长期存活和生长。
通过细胞培养,研究人员可以从难以获得的生物材料中获得大量的细胞,进行多种实验和研究。
细胞培养技术在药物筛选、细胞变异、细菌感染等方面都有广泛的应用。
例如,在肿瘤治疗中,通过培养患者的肿瘤细胞,可以对其进行敏感性测试,筛选出最佳的治疗方案。
此外,还可以通过细胞培养的方法提取细胞内的 mRNA 或 DNA 进行一系列的分子生物学实验。
二、细胞分离技术细胞分离技术是指将复杂的细胞混合物中的不同类型的细胞分离出来,以便进一步研究。
细胞分离技术有多种方法,比较常用的有洗涤法、筛选法和离心法等。
细胞分离技术的应用十分广泛,如在干细胞移植中,为了避免移植的细胞类型过于复杂,需要先将干细胞分离出来。
此外,在癌症研究中,通过分离出癌细胞和正常细胞,可以更好地研究其生长机理和治疗方法。
三、光学显微镜技术光学显微镜技术是最基础的细胞观察手段,通过光学显微镜可以观察到细胞的形态、结构和运动等。
随着测量技术和计算机视觉的不断发展,现在研究人员可以对细胞及其内部结构进行三维成像和动态观察。
光学显微镜技术可用于对细胞的形态、生理学特征、代谢和运动等状态进行观察。
例如,在生长发育的研究中,光学显微镜可以被用来跟踪细胞分裂和发育过程的中间几个阶段,从而更好地理解细胞生长与分裂的机理。
四、电镜技术电镜技术是对细胞结构和形态的高级观察手段。
通过电镜技术可以观察细胞超微结构,如细胞核、内质网、线粒体和细胞膜等。
电子显微镜技术主要有透射电镜和扫描电镜两种。
细胞生物学的研究方法与技术
细胞生物学的研究方法与技术细胞生物学是研究细胞结构、功能及其在生物过程中作用的学科。
细胞生物学的发展离不开许多研究方法和技术的支持,这些方法和技术涉及多方面的学科,包括生物学、化学、物理学等,为细胞生物学的研究提供了有力的工具和手段。
常见的细胞生物学研究方法包括显微镜技术、细胞培养、各种分离和纯化技术、蛋白质组学、基因组学、转基因技术以及细胞途径和信号传导的研究等。
显微镜技术是细胞生物学的基础工具之一,早在17世纪就有学者发现了显微镜的作用。
如今,显微镜已经发展到了高倍率、高分辨率水平,并且应用范围越来越广。
荧光显微镜能够将酶标法和细胞组织学高效结合,使得研究人员能够看到细胞中特定蛋白质的位置及其在细胞内的转移过程,这种技术促进了细胞和分子生物学的研究进展。
另一个广泛应用的细胞生物学技术是细胞培养技术。
细胞培养可以使研究人员通过体外实验的方法来探究细胞生物学的许多方面,例如细胞增殖、代谢、分化以及感染和治疗等方面。
同时,细胞培养技术也为其他科学领域如医学和药物研发提供了重要工具和方法。
分离和纯化技术也是细胞生物学研究的重要方法之一。
这些技术用于从细胞中分离出不同的细胞结构和分子,以便对它们进行研究和分析。
例如,对蛋白质的分离和纯化可使研究人员了解蛋白质的功能和结构,以及它们如何参与到多种细胞过程中。
蛋白质组学和基因组学是近年来迅速发展起来的研究领域。
随着研究的深入,我们了解到不同细胞中的蛋白质和基因组成具有多种不同的功能。
可以通过分析这些蛋白质和基因组以探究它们在不同疾病中的作用,并且这些研究可为新药物的开发提供重要参考。
转基因技术是一种较新兴的细胞生物学研究方法。
通过转基因技术,研究人员可将指定的基因嵌入宿主细胞,以进一步研究这些基因的功能和影响。
转基因技术在药物研发和基因工程等领域有着广泛的应用,并是细胞生物学领域的重要组成部分。
最后一个细胞生物学研究方法是研究细胞途径和信号传导。
细胞途径和信号传导可使研究人员了解到不同的生物分子之间相互作用的机制,以及它们如何在生物过程中发挥作用。
细胞生物学研究的新方法及其应用
细胞生物学研究的新方法及其应用细胞生物学,是一门研究细胞结构、功能、发育、分化、演变及生理生化过程等方面的学科。
随着科学技术的不断进步,细胞生物学的研究方法也在不断创新和更新。
本文将介绍细胞生物学研究的新方法及其应用。
一、荧光显微镜技术荧光显微镜技术是目前常用于观察生物学分子、细胞和组织结构的主要手段之一。
通过生物发光分子的特异性荧光信号,使细胞产生明亮的荧光,从而获得有关于细胞的有关信息。
该方法还可以通过对细胞进行染色,使得不同结构的细胞产生不同的荧光,从而实现对细胞内部细节的研究。
目前,荧光显微镜技术已被广泛应用于生命科学的各个领域,如细胞和分子生物学、免疫学、药理学和神经生物学等,特别是在微生物和细胞培养、组织切片和活体成像方面,更是有着较为广泛的应用。
二、蛋白质组学技术蛋白质组学技术是一种研究蛋白质表达和功能的方法,特别是通过分析蛋白质组,研究蛋白质在细胞内的相互作用、修饰、降解等方面的过程。
目前,蛋白质组学技术主要包括蛋白质质谱、二维蛋白质电泳、DNA微阵列等多种方法。
与传统的单核苷酸多态性和序列分析相比,蛋白质组学技术具有许多优势。
它能够全面地研究一个细胞、一个组织或一个生物样品中的所有蛋白质,并确定关键的调控蛋白质。
这种方法结合基因组学技术,能够更准确地分析分子之间的关系,以及它们如何影响细胞、组织和生物体的发育和功能。
三、单细胞测序技术传统的DNA测序取决于从足够数量细胞中提取DNA,并将其扩增成足够的数量。
这种方法忽略了每一个细胞的特异性,因为每个单一细胞都有自己不同的表达模式,其中包括转录水平和基因组学特征。
随着单细胞测序技术的发展,我们现在可以了解良好血液细胞含有那一组基因,以及为什么他们在个别人或群体中都有不同表达特征。
单细胞测序技术的特点是无需大量的数据点或分析,就可以深入了解每个细胞内部的变化。
这项技术已经被广泛应用于癌症、免疫学、神经学和衰老等领域,这已经产生了一些有想象力的研究,帮助人们更好地理解人类生命的组成部分。
细胞生物学研究方法
细胞生物学研究方法细胞生物学是研究细胞结构、功能和过程的科学学科,主要研究对象是细胞的组成、分裂、分化、代谢、运动、增殖和死亡等。
为了深入研究细胞相关问题,细胞生物学采用了多种研究方法。
第一,显微镜观察法。
显微镜是细胞生物学中最常用的工具之一。
通过显微镜观察,可以观察到细胞的形态、结构和各种细胞器的分布情况。
常用的显微镜有光学显微镜和电子显微镜。
光学显微镜适用于观察活细胞,电子显微镜适用于观察细胞内部细节,如细胞核、线粒体和内质网等。
第二,细胞培养法。
细胞培养是指将细胞在无菌条件下培养于含有营养物质的培养基中,使其持续生长和繁殖。
通过细胞培养,可以研究细胞的生长特性、分裂过程以及对外界刺激的反应。
常用的细胞培养方法有原代培养、细胞株培养和三维培养等。
第三,细胞分离和纯化法。
细胞分离和纯化是将不同类型的细胞从混合细胞群中分离出来,以便对某种细胞进行独立的研究。
常用的方法有细胞悬浮液经过离心分离、细胞表面标记技术以及细胞排序等。
第四,分子生物学技术。
分子生物学技术可以用于研究细胞的基因表达、代谢等分子机制。
其中,PCR技术可以复制DNA序列,用于检测细胞内特定基因的存在和表达水平。
原位杂交技术可以检测细胞内特定mRNA的定位和表达情况。
第五,蛋白质分析技术。
蛋白质分析技术主要用于研究细胞内蛋白质的分布、结构和功能。
常用的方法有蛋白质电泳、质谱分析、免疫印迹等。
第六,遗传学方法。
遗传学方法可以用于研究细胞的遗传特征和突变。
如基因敲除和基因敲入技术可以研究基因在细胞中的作用;细胞杂交技术可以研究细胞核酸的互补性和杂交情况。
细胞生物学研究方法的不断更新和发展,使我们对细胞的理解越来越深入。
这些方法的应用使得我们能够更好地揭示细胞的机制和功能,为解决许多重大疾病和生物学问题提供了有力的工具。
细胞生物学的重要性及研究方法
细胞生物学的重要性及研究方法细胞生物学是一门研究细胞结构、功能及生命周期的学科。
细胞是组成我们身体的最基本单位,所有生命过程都是由细胞完成的。
因此,细胞生物学对我们了解生命的本质及疾病的发生机制非常重要。
本文将介绍细胞生物学的研究方法以及其重要性。
一、光学显微镜光学显微镜是细胞学研究中最常用的一种工具。
通过放大镜片将目标物体放大到可见范围内,进而观察其形态、结构及位置。
然而,由于光的折射率限制,光学显微镜只能放大物体的某些特定结构,不能表现其整体结构。
但是,在技术不发达的古代,这是唯一的方法来研究细胞,为细胞学的基础研究奠定了基础。
二、电子显微镜电子显微镜是光学显微镜的补充。
通过利用电子束代替光线进行成像,提高了分辨率,从而可以更详细的观察细胞结构,更好的理解细胞的基本组成,例如胞质、细胞核、线粒体等。
但是,这种方法需要非常复杂的前期处理工作,如切片、刺激、固定等。
而且该方法需要专业的助手操作,在电子显微镜的磨损和束缚之间平衡,以保持高质量的图像。
三、蛋白质表达与重组技术蛋白质是细胞机体最基本的组成部分之一,通过研究蛋白质的合成、结构和功能,可以深入了解细胞的生命活动和疾病机制。
蛋白质表达与重组技术是蛋白质生产的基础。
该技术通过基因克隆,重新构建蛋白质的基因序列。
这种方法可以让研究者精确控制蛋白质的类型和数量,也有助于了解蛋白质的归属、结构和功能,解决一些蛋白质影响人体健康的问题。
此技术在疾病治疗方面也具有广泛的应用前景,例如目前的新冠疫苗制备就使用了该技术。
四、单细胞分析传统的细胞学研究是基于大量细胞进行的。
然而,人体的组成和结构非常复杂,个体差异显著,因此探索单个细胞的分子机制和转录组在的研究日趋重要。
单细胞分析技术通过对单个细胞的加工和测量,可以更深入地了解到不同细胞在生命过程中的差异,为进一步探究细胞的功能和机制提供了有力的工具。
五、细胞动力学模拟细胞动力学模拟是一种模拟技术,可以模拟细胞定性或定量的表现,了解或预测生物过程发展,用于弥补实验技术的不足。
细胞生物学研究方法
细胞生物学研究方法细胞生物学是生物学的重要分支,它研究细胞的结构、功能和活动特征。
而现代细胞生物学的研究方法却是非常多样化的。
一、细胞培养技术细胞培养技术是现代细胞生物学最重要的实验手段之一。
它可以用来研究细胞的生长、分裂、分化和死亡等基本生物学过程,同时也可以用来筛选和测试新药物。
在细胞培养方面,流行的方法包括传统的水平指向法、悬浮式培养法、三维培养法等。
其中,三维培养法是比较新的技术,它可以用来模拟体内的三维环境,提高细胞培养的成功率。
二、显微镜技术显微镜是细胞生物学研究中必不可少的工具。
根据不同的研究目标,可以使用不同的显微镜。
光学显微镜用于观察细胞表面结构和细胞内分子分布,而电子显微镜用于观察细胞的内部结构和纳米级别的分子组成。
与传统显微镜相比,近年来兴起的超分辨率显微镜则更加革命性。
超分辨率显微镜可以在纳米级别下观察细胞内部的生物活动,这种技术又被称为“光学雷达”。
三、基因编辑技术基因编辑技术是一种能够修改基因的方法,它可以用于研究某些基因在细胞生物学中的作用。
最著名的一种基因编辑技术是CRISPR/Cas9,它可以精确地切割DNA序列,进而实现基因的精准编辑。
基因编辑技术的核心技术是分子生物学,分子生物学技术的快速发展促进了基因编辑技术的加速发展。
同时,这些技术也正在被用于战胜某些遗传疾病。
四、蛋白质组学技术蛋白质组学技术是一种研究细胞内蛋白质分布、结构和功能的技术。
目前,主要的蛋白质组学技术包括蛋白质电泳、蛋白质质谱和蛋白质芯片技术等。
在这些技术中,蛋白质质谱技术是一个较为常用的技术。
蛋白质质谱技术可以快速而准确地识别和定量细胞内蛋白质。
它可以被用作生物医学和生命科学的研究手段,推动蛋白质研究的发展。
总之,在现代细胞生物学研究中,许多方法都得到了迅速发展。
这些方法的应用广泛,它们推动着细胞生物学的不断前进。
未来,我们相信这些工具将继续提高我们对细胞结构、功能及疾病机制的认识。
细胞生物学名词解释
细胞生物学名词解释一.绪论细胞生物学是从细胞的整体水平,亚显微水平,分子水平3 个层次,以整体与动态的观点研究细胞的结构,功能,以及各种生命活动本质和基本活动的科学。
二.细胞生物学的研究方法1.细胞培养(cell culture):从活体中取出的细胞或其他建系细胞,在体外无菌条件下,给予一定的条件进行培养,使其能继续生存、生长和繁殖的一种方法。
2.原代培养(primary culture):直接取材于有机体组织的细胞培养。
3.传代培养(secondary culture):将原代培养的细胞取出,以1:2以上的比例转移到另一盛有新鲜培养液的器皿中进行培养的过程称传代培养。
用这种方法可重复传代。
4.接触抑制:一般分散的细胞悬液在培养瓶中很快就贴壁铺展并进行分裂繁殖,形成紧密的单层细胞,当这些细胞表面互相接触时,就停止分裂增殖,不再进入S期,这种现象称细胞的接触抑制。
5.细胞系(cell line):原代培养细胞成功传代即为细胞系。
有限细胞系(50代以内)6.细胞融合:是指用自然或人工的方法使两个或几个不同细胞融合为一个细胞的过程。
7.Southern杂交:是体外分析特异DNA序列的方法,操作时先用限制性内切酶将核DNA或线粒体DNA切成DNA片段,经凝胶电泳分离后,转移到醋酸纤维薄膜上,再用探针杂交,通过放射自显影,即可辨认出与探针互补的特殊核苷序列。
8.Northern杂交9.PCR技术:是在体外快速扩增特异性DNA片段的技术,它利用DNA半保留复制原理,通过控制温度,使DNA 处于“变性—复性—合成”反复循环中。
每一个循环的产物又作为下一个循环的模板,每循环一次,DNA分子就按2n指数倍增,结果可获得数百万个拷贝的目的DNA片段。
三.细胞概述细胞是一切有机体的基本结构和功能单位,各种生命活动都是以细胞为单位进行的,细胞的形态结构和功能特异,但其化学组成基本相似。
1.生物大分子:细胞内由小分子物质聚合而成的结构复杂,具独特特性,负责装配细胞组成,催化细胞内化学变化,产生运动,反应以及遗传变异的生命活动的物质。
细胞生物学的发展历程和研究方法
细胞生物学的发展历程和研究方法细胞生物学是研究生命的基本单位——细胞的结构、功能、发育和遗传等方面的科学。
它以显微镜观察细胞、利用生化、基因工程等手段揭示细胞内分子和生物化学反应,为研究生命现象、疾病治疗和生物技术的发展提供了重要的理论基础和技术手段。
本文将就细胞生物学的发展历程和研究方法进行简要的阐述。
一、细胞生物学的发展历程1. 17世纪与18世纪:原型显微镜的发明,发现单细胞生物在17世纪,由于荷兰人李文虎和哈特索克等人的努力,最早使用玻璃球制成的原型显微镜诞生了。
随后,苏黎世的伯格和莱顿的利韦内虎等人分别发现了像酿酒酵母、线虫等单细胞生物。
这些研究奠定了细胞生物学这一学科的基础。
2. 19世纪:发明透射电子显微镜和光学显微镜随着微生物学和生物学的发展,透射电子显微镜和光学显微镜的出现,让人们能够更加清晰地观察到细胞的内部结构和组成成分。
格兰特、维特格伦、施万等人发现了细胞核和细胞质等细胞内结构,揭示了细胞内分子的组成和排列方式,推动了细胞生物学的进一步发展。
3. 20世纪初:发现细胞分裂的遗传基础1902年,神经生理学家瓦尔贝格首次提出了“染色体”一词,为细胞分裂的遗传基础奠定了基础。
1905年,孟德尔的遗传定律被发现,并在1920年代得到了证实。
当时,指出“基因位于染色体上”也成为了一个共识。
随后,施泰因和沃兰陶著述了第一个关于细胞分裂的教材,并开创了遗传方面的研究。
这些基础方面的研究成果,为细胞分裂、遗传等方面的研究奠定了基础。
4. 20世纪60年代:发现DNA是遗传物质1944年,奥塞尔和阿弗里等人通过一系列实验,证明了DNA 是遗传物质,而这个发现对于进一步的研究将有非常大的启示。
50年代后期,克里克和沃森发现了DNA的结构,揭示了遗传信息的储存和传递机制,为现代遗传学和生物技术领域的研究,奠定了重要的基础。
5. 20世纪80年代以后:生物技术的发展,细胞生物学入门简易在20世纪80年代之后,随着基因工程、免疫学、细胞培养、影像学等技术的发展,使得细胞生物学变得更加容易入门,同时也提高了对细胞的认识,对癌症、代谢疾病等方面的诊断和治疗提供了新的思路和方向。
细胞生物学研究方法
细胞生物学研究方法细胞生物学是研究细胞结构、功能和行为的科学学科。
细胞是生物体的基本组成单位,研究细胞生物学可以帮助我们揭示生物体内部的复杂机制,并对疾病的发生和治疗提供重要的指导。
在细胞生物学的研究中,有许多重要的实验方法和技术。
下面将介绍几种主要的细胞生物学研究方法。
1. 细胞培养:细胞培养是一种最基本的细胞生物学实验方法。
它通过在培养基中提供适当的营养物质和条件,使细胞在体外生长和繁殖。
细胞培养可以用于研究细胞的生理功能、生长和分化等过程。
2. 细胞染色:细胞染色是观察和研究细胞结构和组成的重要方法。
常用的细胞染色方法包括荧光染色、核酸染色、蛋白质染色等。
例如,核酸染色可以使用荧光染料如荧光素染色DNA,观察细胞的染色体结构和DNA复制过程。
3. 细胞分离与纯化:细胞分离与纯化是将混合细胞群体中的细胞单独分离出来并获得纯净的细胞群体的方法。
常用的细胞分离与纯化方法包括离心、差速离心、密度梯度离心等。
这些方法可以帮助研究者获得纯净的细胞样本,便于后续的分析和实验。
4. 细胞显微镜观察:细胞显微镜观察是研究细胞结构和功能的主要方法之一。
通过使用显微镜,研究者可以观察到细胞的内部结构和细胞器。
随着光学显微镜和电子显微镜技术的发展,观察细胞的分辨率和细节越来越高。
5. 免疫学技术:免疫学技术在细胞生物学研究中扮演了重要的角色。
常用的免疫学技术包括免疫组织化学、流式细胞术、免疫沉淀等。
这些技术可以用来检测和定量细胞表面标记物、细胞内蛋白质和核酸等,以研究细胞的功能和代谢过程。
6. 分子生物学技术:分子生物学技术是研究细胞基因表达和遗传信息的重要工具。
常用的分子生物学技术包括PCR、蛋白质电泳、蛋白质质谱等。
这些技术可以帮助研究者检测和分析细胞中的DNA、RNA和蛋白质等分子成分,以了解细胞基因表达和调控的机制。
7. 基因编辑技术:基因编辑技术如CRISPR-Cas9已经成为细胞生物学研究中的重要工具。
细胞生物学研究方法总结
细胞生物学研究方法总结细胞生物学是研究细胞的结构、功能和活动的学科领域。
在细胞生物学研究中,科学家们使用了多种方法和技术来观察和探索细胞的奥秘。
本文将总结几种常见的细胞生物学研究方法,包括显微镜技术、细胞培养和基因编辑等。
一、显微镜技术显微镜技术是细胞生物学研究中最基础也是最常用的方法之一。
通过显微镜,科学家能够观察到细胞和细胞内各种结构的微观细节。
常见的显微镜技术包括:1. 光学显微镜:利用光线聚焦成像的原理,可以观察到细胞核、细胞质以及细胞膜等基本结构。
2. 电子显微镜:通过利用电子束的原理,将样品进行电子显微镜投射,可以观察到细胞内更细微的结构,如线粒体、高尔基体等。
3. 共聚焦激光显微镜:利用激光光源和经过滤波的探测器,可以在三维空间内重建出细胞内的结构和分子分布。
二、细胞培养细胞培养是研究细胞生物学的常用方法之一。
通过将人类或动植物组织中的细胞分离并生长在培养皿中,科学家可以观察到细胞在不同生长条件下的行为和反应。
常见的细胞培养技术包括:1. 原代细胞培养:从活体组织中分离出来的原代细胞,可以用于观察细胞的形态、增殖和代谢等。
2. 细胞系:将原代细胞进行传代培养并永久保存,形成细胞系,可用于长期的细胞研究。
3. 三维细胞培养:将细胞种植在具有三维结构的培养基中,如凝胶、支架等,模拟体内环境,有助于研究细胞的生长、分化和功能。
三、基因编辑基因编辑技术是近年来迅速发展的一种研究方法。
通过人工干预细胞的基因组,科学家们能够修改细胞的遗传信息,探索基因与细胞功能之间的关系。
常见的基因编辑技术包括:1. CRISPR-Cas9系统:通过引入特定的CRISPR RNA和Cas9蛋白质,可以实现对细胞基因组的定点突变和修复。
2. TALEN:利用转录激活样效应子核酸酶(TALEN)来剪切和编辑细胞基因组。
3. RNA干扰(RNAi):通过引入特定的小分子RNA序列,可以靶向特定基因的mRNA分解,从而实现基因的沉默。
细胞生物学研究的方法和技术
细胞生物学研究的方法和技术细胞生物学是一个非常重要的领域,它关注的是生命的基本单位——细胞。
在细胞生物学中,有很多不同的方法和技术可以用来研究细胞。
以下是一些关于细胞生物学研究方法和技术的讨论。
1、显微镜显微镜是细胞生物学家最常用的工具。
它们可以使科学家们观察到微小的细胞结构和细胞功能。
有很多种类型的显微镜,如光学显微镜、透射电子显微镜和扫描电子显微镜。
每种显微镜都有其特定的用途,因此细胞生物学家可能会使用数个显微镜来观察细胞。
2、细胞培养为了处理细胞,细胞生物学家需要将它们培养在一种特定的培养基中。
培养基通常由营养物质和生长因子组成,可以促进细胞生存和生长。
细胞培养技术使细胞生物学家能够从细胞的分子水平到细胞的行为和功能水平来研究细胞。
3、流式细胞术流式细胞术是一种分析单个细胞与分离的蛋白质、RNA或DNA的技术。
通过流式细胞术,细胞生物学家可以确定一个细胞群体中不同类型的细胞数量,或者确定单个细胞中不同类型的蛋白质或RNA的相对浓度。
流式细胞术已被广泛用于各种细胞生物学研究中。
4、免疫学技术免疫学技术是一组工具和方法,用于分析和表征一种细胞的蛋白质或其他分子的存在和表达。
这些技术的应用范围包括抗体染色、免疫印迹、酶联免疫吸附试验(ELISA)以及免疫沉淀等。
5、基因编辑技术CRISPR-Cas9技术是一种用于编辑基因的技术。
它允许科学家精确地从细胞或生物体的基因组中删除、添加或更改基因序列。
这项技术为研究细胞生物学提供了一个全新的工具箱,使得细胞及其功能可以被更精确和深入地研究。
6、蛋白质纯化和分析蛋白质是细胞中非常重要的分子,因为它们负责一系列重要的生物过程。
因此,细胞生物学家通常需要纯化和分析蛋白质,以了解细胞的功能。
蛋白质纯化技术包括更分、层析、电泳和质谱分析等方法。
结论最后,细胞生物学家在研究细胞的时候使用很多不同的技术和方法。
以上列举了一些最常见的技术,包括显微镜、细胞培养、流式细胞术、免疫学技术、基因编辑技术和蛋白质纯化和分析等。
细胞生物学及其研究方法
细胞生物学及其研究方法细胞是生命的基本单位,是构成生物体的组成部分。
细胞生物学是研究细胞的结构、功能及其在生物体中的作用的学科。
细胞生物学的研究方法主要包括显微术、分子生物学与遗传工程、细胞培养和细胞成像等。
显微术是研究细胞生物学的起点。
早在17世纪,荷兰科学家安东尼·范·莱文虽然没有能看到活细胞,但是用普通显微镜可以看到大量的组织细胞。
随着显微告诉的不断升级,人们可以越来越清晰的观察到细胞的变化。
后来,人们发现了两种新的显微方法:电子显微术和荧光显微术。
电子显微术是采用电子束代替了可见光束,可以提供比普通光学显微镜更高分辨率的细节,可以看到细胞更小的结构,如各种病毒、某些蛋白质和酶等细胞器,能够帮助细胞生物学家研究细胞结构的形态、成分及其内部组成。
而荧光显微术则是一种主要用于显示细胞中蛋白质、细胞器等分子的成像方法。
在荧光显微术中,将染色体、生物标记物标记上荧光染料,再用启动器在激发荧光染料后引诱波长,并从接收信号孔中分离荧光。
分子生物学和遗传工程是另外一个用于研究细胞生物学的方法。
分子生物学是指用分子方法研究细胞的生物学性质的学科。
近年来,分子生物学的发展极大地推动了生物化学和遗传工程的进步。
现在,分子生物学通过逆转录聚酰酶(RT-PCR)、互补DNA技术(reverse genetics)、DNA测序、GeneChip技术等方法,已经能够用细胞DNA的序列来推断细胞的含义、生命特征和进化历程等。
细胞培养是指在特定的药品、培养液、温度、湿度等条件下,培养细胞,并研究其生物学特性和遗传转录特性。
细胞培养在许多实验中是令人难以替代的手段,特别是细胞生物学和生物技术方面。
常常的,研究人员需要在特定的培养液中,进行细胞培养,并通过增减试剂、药品和调整细胞的生物环境,来探究细胞的各种生物学变化及分子内部组板。
----------最后,细胞成像是指通过显微镜、荧光显微镜等设备来获取细胞的图像。
细胞生物学的研究方法与应用
细胞生物学的研究方法与应用细胞生物学是生物学中的一个重要分支,研究细胞结构、功能及其在生命活动中的作用。
随着科技的不断发展,细胞生物学的研究方法和应用也不断地发展和创新。
本文将就细胞生物学的研究方法和应用进行探讨,并展望未来的研究方向。
一、光学显微镜光学显微镜是细胞学中最广泛使用的技术之一。
人们用它来观察细胞的形态和结构,以及细胞与组织的相互作用。
这种显微镜通过凸透镜和凹透镜来将生物样本的细节放大,以便观察。
近年来,革命性的技术改进使得显微镜的分辨率越来越高。
例如,超分辨率显微镜技术(如STED和PALM)通过使显微镜的焦点变若干倍,大大提高了细胞成像的分辨率。
这项技术不仅使科学家们能够更清晰地看到细胞和组织的结构,还让他们能够更好地研究一些生物学方面的问题,比如癌症的分子机理和神经元形态改变等。
二、流式细胞仪流式细胞仪是通过细胞中的荧光物质来检测和分离不同类型的细胞的一种技术。
通过流式细胞仪,可以快速而准确地测定细胞的大小、形状、数量、荧光强度和光散射性质等。
流式细胞仪的应用范围非常广泛。
医生们可以用它来检查血液样本中的白细胞,以便更好地了解病情或治疗效果。
研究人员可以用它来检测肿瘤细胞的数量、分布和特征,以便更好地了解肿瘤的性质和治疗方法。
三、原位杂交技术原位杂交技术是一种通过探针来标记细胞中的分子,并用显微镜观察的方法。
通过这种技术,科学家们可以了解细胞中不同基因的表达情况。
原位杂交技术可用于研究人类遗传疾病、病毒感染、癌症等复杂疾病的发病机制。
其他应用包括了解动物和植物中基因转录的模式和细胞分化的机制。
四、电镜电镜是一种高分辨率显微镜,可以提供比光学显微镜更清晰的图像。
电镜可以看到细胞中小于光波长的细节。
这种技术通过将样本放在真空中,并用电子束替代光线来形成图像。
电镜可用于研究细胞内小细胞器、小分子的组成和位置,以及复杂分子的结构。
这项技术被广泛应用于生物学、药学和材料科学等领域。
五、蛋白质检测技术蛋白质是细胞中最重要的分子之一,控制了大部分细胞活动。
细胞生物学的现代研究技术和方法
细胞生物学的现代研究技术和方法细胞生物学作为生物学的重要分支领域,研究细胞的结构、功能和生物过程对于深入理解生命的本质至关重要。
随着科技的不断进步,现代细胞生物学的研究技术和方法也在不断发展和创新。
本文将探讨一些在细胞生物学领域中常用的现代研究技术和方法。
一、光学显微镜技术光学显微镜是细胞生物学中最基本的工具之一,用于观察和研究细胞的结构和功能。
随着技术的发展,光学显微镜也得到了不断改进。
例如,荧光显微镜技术利用特定的荧光标记物使细胞的某些结构或分子可见,从而更好地研究细胞的动态过程。
二、电子显微镜技术电子显微镜是利用电子束和电磁透镜代替光线、将细胞的图像放大万倍的一种显微镜技术。
相比光学显微镜,电子显微镜具有更高的分辨率和放大倍数。
透射电子显微镜(TEM)可用于观察细胞的超微结构,如细胞核、线粒体和内质网等。
扫描电子显微镜(SEM)则能提供细胞表面的高清图像。
三、蛋白质分析技术蛋白质是细胞中最重要的分子之一,影响着细胞的功能和代谢过程。
蛋白质分析技术被广泛应用于细胞生物学研究中。
其中,聚丙烯酰胺凝胶电泳(SDS-PAGE)是常用的分离蛋白质的方法,可以根据蛋白质的分子质量进行分析和定量。
Western blotting(免疫印迹)则能检测特定蛋白质的存在和定量。
四、基因编辑技术基因编辑技术是近年来在细胞生物学领域中崭露头角的重要工具。
CRISPR-Cas9技术是一种高效的基因编辑技术,可用于修改细胞中的基因序列。
通过CRISPR-Cas9技术,研究人员可以研究基因在细胞中的功能,甚至对特定基因进行精确编辑。
五、细胞培养技术细胞培养技术是研究细胞生物学的基础,能够让研究者以人工方式培养出体外细胞。
细胞培养技术可广泛应用于研究细胞生长、分化和药物筛选等领域。
常用的细胞培养方法有悬浮培养和附着培养,具体选择哪种方法取决于研究的目的和细胞类型。
六、高通量测序技术高通量测序技术是近年来取得突破性进展的细胞生物学研究方法之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.细胞生物学研究方法生命科学是实验科学,它的很多成果都是通过实验得以发现和发展的。
方法上的突破,对于理论和应用上的发展具有巨大的推动作用。
2.1显微成像技术最早的光学显微镜是1590年Z.J a n s s en和他的侄子H.J a n s s e n共同研制的。
其后,R o b e r t H o o k e和An t o n i e v a n L e e u we n h o e k对光学显微镜的分辨本领进行了极大的改进,由此发现了细胞。
20世纪30年代发展起来的电子显微镜导致细胞结构和功能研究发生了一次革命,使生物学家得以从亚显微水平上重新认识细胞(图2-1)。
图2-1光学显微镜和电子显微镜下的细胞结构2.1.1光学和电子显微镜成像原理不管是何种显微镜,镜像的形成都需要三个基本要素:①照明系统,②被观察的样品,③聚焦和成像的透镜系统(图2-2)。
图2-2光学和电子显微镜的基本结构在光学显微镜中,照明系统是可见光,使用的是玻璃透镜系统,可直接通过目镜观察镜像。
在电子显微镜中,照明系统为电子束,使用电磁透镜,通过荧光屏观察样品的镜像。
照明系统的波长是显微镜成像的一个重要因素,因为波长决定能被检测样品的最小极限。
波长越长,波幅的跨度就越大,所能观察到的物体极限就越大(图2-3)。
图2-3波的移动、波长和干扰●光学和电子显微镜成像的光学原理是相同的,其中最重要的是光子和电子都具有波的行为。
当光子和电子穿过透镜到达聚焦点时,由于波的干涉(i n t e r fe r e n c e)性质而成像。
实际上通过透镜观察到的样品的镜像是通过透镜波的干涉累加或消除,即衍射(d i ffr a c t i o n)的结果。
●焦距与角孔径焦距(fo c a l l e n g t h)是透镜的中心平面到焦点的距离(图2-4),而角孔径(a n g u l a r a p e r t u r e)是光从样品进入显微镜的物镜半角α(图2-5),因此角孔径实际表示有多少光离开样品通过透镜,最好的光学显微镜的角孔径大约是700。
图2-4透镜的焦距图2-5透镜的角孔径角孔径是光从样品进入透镜的半角α。
(a)小孔径透镜;(b)大角孔径透镜。
角孔径越大,透过透镜的信息越多,最好的玻璃透镜的角孔径大约是700■分辨率(r e s o l u t i o n)透镜最重要的性质就是它的分辨率,分辨率(R)可用以下公式计算:R=0.61λ/n S i nα其中:n=聚光镜和物镜之间介质的折射率.空气为 1.油为 1.5;α=样品对物镜角孔径的半角,s i nα的最大值为1;λ=照明光源的波长。
0.61是一个恒定的参数,表示成像的点虽被重叠但仍能被区别的程度。
上式中n S i nα的量称为物镜的数值孔径(n u me r i c a p e r t u r e),缩写为N A,因此显微镜的分辨率的表示公式可改为:R=0.61λ/N A从上式可知,角孔径越大,进入物镜的光越多;介质的折射率越大,则数值孔径越大,这些都可以使分辨率提高。
由于分辨率表示的是能够区别两个点间最近距离的能力,所以R值越小,分辨率越高。
从分辨率的表达式来看,N A越大,分辨率越高,或者波长越短,分辨率越高。
■分辨极限(l i mi t r e s o l u t i o n)与放大率(ma g n i f i c a t i o n)●一般地说,一定波长的射线不能用以探查比它本身波长短得多的结构细节,这是一切显微镜的一个基本限度。
对可见光来说,能清楚地分辨出相邻两点之间的最小间隔是0.2μm,称之为分辨极限(l i mi t r e s o l u t i o n)。
●最终成像的大小与原物体大小的比值称为放大率。
总放大率=物镜放大率×目镜放大率,放大率同样受分辨极限的限制。
一般来说,光学显微镜的最大放大率只能是透镜的数值孔径的1000倍。
由于透镜的数值孔径的范围是 1.0~1.4,所以光学显微镜在用空气作介质时最大放大倍数为1000倍,用油镜则为1400倍。
●增大角孔径或缩短波长可提高光学显微镜的分辨率。
如果用波长比普通波长短得多的电子波代替光波,分辨率可大大提高,电子显微镜就是在这种需求下被发明的。
表2-1是光学显微镜与电子显微镜某些特性的比较。
表2-2电子显微镜与光学显微镜的基本区别2.1.2常用的光学显微镜光学显微镜(l i g h t mi c r o s c o p e)是光学显微技术的主要工具,自问世以来已有400多年历史。
光学显微镜是利用光线照明,使微小物体形成放大影像的仪器。
现今使用的光学显微镜都是由几个透镜组合而成,所以又称为复合显微镜(c o mp o u n d mi c r o s c o p e)(图2-6)。
图2-6普通光学显微镜的基本结构■普通双筒显微镜(b i n o c u l a r mi c r o s c o p e)比较高级的显微镜上都设有倾斜式的双目镜筒(图2-7)。
在物镜转换器上方装有四个棱镜,使经过物镜的光线平分为两路到达目镜,故双筒显微镜的亮度要比单筒者为暗。
双筒显微镜的优点为同时用两眼观察,有较强的立体感。
图2-7双筒显微镜■荧光显微镜(f l u o r e s c e n c e mi c r o s c o p e)荧光显微镜的工作原理是利用紫外线发生装置(如弧光灯、水银灯等)发出强烈的紫外线光源,通过照明设备把显微固定的切片或活染的细胞透视出来,基本成像原理示于图2-8。
图2-8荧光显微镜的光通路■相差显微镜(p h a s e c o n t r a s t mi c r o s c o p e)相差显微镜在结构上进行了特别设计,尤其是光学系统有很大的不同(图2-9),可用于观察未染色的活细胞(图2-10)。
图2-9相差显微镜的光学部件及光线通路图2-10相差显微镜观察的活细胞■暗视野显微镜(d a r k f i e l d mi c r o s c o p e)暗视野显微镜是利用特殊的聚光器使照明光线不能进入物镜被放大,在黑暗的背景下呈现明亮的像。
这种特殊的照明方式,使反差增大,分辨率提高,用以观察未经染色的活体或胶体粒子(图2-11)。
图2-11暗视野显微镜的光学暗视野显微镜主要观察的是物体的轮廓,分辨不清内部的微细构造,适合于观察活细胞内的细胞核、线粒体、液体介质中的细菌和霉菌等。
■倒置显微镜倒置显微镜的结构组成与普通显微镜一样,所不同的只是它的物镜与照明系统的位置颠倒过来。
前者置于载物台之下,而后者在载物台的上方。
集光器与载物台之间的工作距离提高,可以放置培养皿、培养瓶等容器,直接对培养的细胞进行照明和观察(图2-12)图2-12倒置显微镜2.1.3光学显微镜的样品制备与观察由于大多数细胞的成分不影响光线的穿透,无法形成反差,所以在一般光学显微镜下,几乎看不清未经处理的细胞。
为了看清细胞内含物,就必须对细胞样品进行一些特殊的处理,为此建立和发展了样品的各种制备技术。
■样品的固定(f i x a t i o n)●目的:生物组织在染色前先进行固定的目的是杀死细胞,稳定细胞的化学成份,并且使样品硬化以便在进一步的处理和切片时不会受到破坏。
●做法:样品固定的最简单做法是将样品直接浸泡在固定液中。
固定使得大分子交联而保持在一定的位置上,不致于在以后的染色等处理过程中移位或丢失而产生人工假象。
一般用具有缓冲作用的醛类固定液,用甲醛或戊二醛作固定剂,能够与蛋白质的游离氨基形成共价键,从而将邻近的蛋白质分子牢固地交联在一起。
■包埋和切片(e mb e d d i n g a n d s e c t i o n i n g)样品制备的第二步是将固定的组织制备成切片。
为此,样品首先要被包埋在介质中,通常用液态的石蜡或树脂做包埋剂,使之渗入整块组织,然后将之硬化成固体的包埋块,随后用专门的切片机切割包埋块,制备成薄切片(图2-13)。
适用于光学显微镜观察的切片厚度为l~10μm。
图2-13用切片机进行样品切片■染色(s t a i n i n g)大多数细胞总重量的70%是水,对可见光几乎是透明的,只有很少的内含物不透光。
染色的目的就是给细胞的不同组分带上可区别的颜色特征。
19世纪初,发现某些有机染料可染生物组织,并对细胞特殊部位的着色具有选择性。
如苏木精(h e ma t o x y l i n)对负电荷分子有亲和性,能显示出细胞内核酸的分布;酸性染料如伊红(e o s i n)可使细胞质染色;苏丹染料(S u d a n d y e s)在脂肪中的溶解度比在乙醇中大,所以苏丹染料的乙醇饱和溶液能使脂肪着色。
但对许多染料的特异性染色机理尚不清楚。
■细胞化学技术(c y t o c h e mi s t r y)●采用比有机染料更为特异的染色剂及酶细胞化学方法,可以了解细胞和组织中大致的化学组成,及某些活性基团或酶的存在。
●为了测定蛋白质、核酸、多糖和脂类,常利用一些显色剂与所检测物质中特殊基团的特异性结合,通过显色剂在细胞中出现的部位和颜色显示的程度,从而判断被检物质在细胞中的分布和含量。
例如,利用F e u l g e n反应(图2-14)可特异性检测细胞中的D N A,P AS反应可用于检测植物中的淀粉、纤维素及动物细胞中的糖原、粘蛋白等。
●将细胞或组织切片与适宜的底物共同温育,切片中的酶会水解底物,再将所释放物质转变成不溶性有色化合物,后者所在部位即是组织细胞中酶的活性部位。
图2-14F e u l g e n反应■放射自显影技术是用感光胶片测定细胞内某种被放射性标记的物质在细胞固定时所在的位置,基本过程如图2-15所示。
图2-15放射自显影术2.1.4电子显微镜(e l e c t r o n mi c r o s c o p e)光源与分辨率的关系同样适于电子束,由于电子束的波长比光的波长短100,000倍,因而用电子束代替光波,可大大提高显微镜的分辨率。
1932年德国学者M a x K n o l l s和E rn s t Ru s k a发明了第一台电子显微镜,开拓了超微世界,发现了许多光镜下看不到的结构,如细胞膜、线粒体、细胞核、高尔基体、中心粒等细胞器的细微结构。
将在光学显微镜中观察不到而只能在电子显微镜下观察的结构称为亚显微结构(s u b mi c r o s c o p e s t r u c t u r e),或超微结构(u l t r a s t r u c t u r e)。
电子显微镜与光学显微镜在总体结构的设计上有很大的差别(图2-16)。
在种类上,电镜可分为两大类:透射电子显微镜和扫描电子显微镜。
图2-16光镜与电子显微镜(透射电镜)的结构■透射电子显微镜(t r a n s mi s s i o n e l e c t r o n mi c r o s c o p e,T E M)透射电子显微镜主要是让电子束穿透样片而成像。