反比例函数单元测试题

合集下载

反比例函数-单元测试题

反比例函数-单元测试题

第二十六章反比例函数单元测试题(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分)1.下列函数是反比例函数的是()A.y=x B.y=kx﹣1 C.y=-8x D.y=28x2.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是()A.两条直角边成正比例B.两条直角边成反比例C.一条直角边与斜边成正比例 D.一条直角边与斜边成反比例3.在双曲线y=1-kx的任一支上,y都随x的增大而增大,则k的值可以是()A.2 B.0 C.﹣2 D.14.函数y=﹣x+1与函数y= -2x在同一坐标系中的大致图象是()CBAy yyy5.若正比例函数y=﹣2x与反比例函数y=kx图象的一个交点坐标为(﹣1,2),则另一个交点的坐标为()A.(2,﹣1) B.(1,﹣2) C.(﹣2,﹣1) D.(﹣2,1)6.如图,过反比例函数y=kx(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()x3 C.4 D.57.若反比例函数y=kx(k≠0)的图象经过点(﹣1,2),则这个函数的图象一定经过点()A.(1,﹣1)B.(﹣12,4) C.(﹣2,﹣1)D.(12,4)8.图象经过点(2,1)的反比例函数是()A.y=﹣2x B.y=2xC.y=12xD.y=2x9.若一次函数y=mx+6的图象与反比例函数y=nx在第一象限的图象有公共点,则有()A.mn≥﹣9 B.﹣9≤mn≤0 C.mn≥﹣4 D.﹣4≤mn≤010.一个三角形的面积是12cm2,则它的底边y(单位:cm)是这个底边上的高x(单位:cm)的函数,它们的函数关系式(其中x>0)为()A.y=12x B.y=6x C.y=24xD.y=12x二、填空题(共6小题,每小题3分,共18分)11.若反比例函数y=(m+1)22m x-的图象在第二、四象限,m 的值为 .12.若函数y=(3+m )28m x -是反比例函数,则m= .13.已知反比例函数y=k x (k >0)的图象与经过原点的直线L 相交于点A 、B 两点,若点A 的坐标为(1,2),14.反比例函数y=k x的图象过点P (2,6),那么k 的值是 .15.已知:反比例函数y=k x的图象经过点A (2,﹣3),那么k= .16.如图,点A 在双曲线y=4x 上,点B 在双曲线y=k x(k ≠0)上,AB ∥x 轴,分别过点A 、B 向x 轴作垂线,垂足ABCD 的面积是8,则k 的值为 .x三、解答题(共8题,共72分)17.(本题8分)当m 取何值时,函数y=2m 113x 是反比例函数?18.(本题8分)如图,在矩形OABC 中,OA=3,OC=2,F 是AB 上的一个动点(F 不与A ,B 重合),过点F 的反比例函数y=k x (k >0)的图象与BC 边交于点E .当F 为AB 的中点时,求该函数的解析式;y 1、y 2在第一象限的图象,1y =4x,过y 1上的任意一点A ,作x 轴的平行线交y 2于S △AOB =1,求双曲线y 2的解析式.=4xC在反比例函数y=kx的图象上,过点C作CD⊥y轴,交y轴负半轴于点D,且△ODCx的解析式;(2)若CD=1,求直线OC的解析式.21.(本题8分)(1)点(3,6)关于y轴对称的点的坐标是.(2)反比例函数y=3x关于y轴对称的函数的解析式为.(3)求反比例函数y=kx(k≠0)关于x轴对称的函数的解析式.22.(本题10分)如图,Rt△ABC的斜边AC的两个顶点在反比例函数y=1kx 的图象上,点B在反比例函数y=2kx的图象上,AB与x轴平行,BC=2,点A的坐标为(1,3).(1)求C点的坐标;(2)求点B所在函数图象的解析式.y=x+b的图象与反比例函数y=kx(k为常数,k≠0)的图象交于点A(﹣1,4)和点B(a,1).(1)求反比例函数的表达式和a、b的值;(2)若A、O两点关于直线l对称,请连接AO,并求出直线l与线段AO的交点坐标.24.(本题12分)如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与x轴,垂足为点B,反比例(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,函数y=kx(1)求反比例函数y=k的解析式;x(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.第26章《反比例函数》单元测试卷解析一、选择题1. 【答案】A 、y=x 是正比例函数;故本选项错误;B 、y=kx ﹣1当k=0时,它不是反比例函数;故本选项错误;C 、符合反比例函数的定义;故本选项正确;D 、y=28x 的未知数的次数是﹣2;故本选项错误.故选C .2.【答案】设该直角三角形的两直角边是a、b,面积为S.则ab.S=12∵S为定值,∴ab=2S是定值,则a与b成反比例关系,即两条直角边成反比例.故选:B.3.【答案】∵y都随x的增大而增大,∴此函数的图象在二、四象限,∴1﹣k<0,∴k>1.故k可以是2(答案不唯一),故选A.分布在第二、四象限.4.【答案】函数y=﹣x+1经过第一、二、四象限,函数y=﹣2x故选A.5.【答案】∵正比例函数与反比例函数的图象均关于原点对称,∴两函数的交点关于原点对称,∵一个交点的坐标是(﹣1,2),∴另一个交点的坐标是(1,﹣2).故选B.图象上一点,且AB⊥x轴于点B,6.【答案】∵点A是反比例函数y=kx∴S△AOB=1|k|=2,2解得:k=±4.∵反比例函数在第一象限有图象,∴k=4.故选C.(k≠0)的图象经过点(﹣1,2),7.【答案】∵反比例函数y=kx∴k=﹣1×2=﹣2,A、1×(﹣1)=﹣1≠﹣2,故此点不在反比例函数图象上;×4=﹣2,故此点,在反比例函数图象上;B、﹣12C、﹣2×(﹣1)=2≠﹣2,故此点不在反比例函数图象上;×4=2≠﹣2,故此点不在反比例函数图象上.D、12故选B.8.【答案】设反比例函数解析式y=k,x把(2,1)代入得k=2×1=2,.所以反比例函数解析式y=2x故选B.9.【答案】依照题意画出图形,如下图所示.xmx2+6x﹣n=0,∴△=62+4mn≥0,∴mn≥﹣9.故选A.10.【答案】由题意得y=2×12÷x=24.故选C.x二、填空题11.【答案】由题意得:2﹣m2=﹣1,且m+1≠0,解得:m=∵图象在第二、四象限,∴m+1<0,解得:m<﹣1,∴m=故答案为:12.【答案】根据题意得:8-m2= -1,3+m≠0,解得:m=3.故答案是:3.13.【答案】∵点A(1,2)与B关于原点对称,∴B点的坐标为(﹣1,﹣2).故答案是:(﹣1,﹣2).的图象过点P(2,6),∴k=2×6=12,故答案为:12.14.【答案】:∵反比例函数y=kx15.【答案】根据题意,得﹣3=k 2,解得,k=﹣6. 16. 【答案】过点A 作AE ⊥y 轴于点E ,∵点A 在双曲线y=4x 上,∴矩形EODA 的面积为:4,∵矩形ABCD 的面积是8,∴矩形EOCB 的面积为:4+8=12,则k 的值为:xy=k=12.故答案为:12.x17.【解答】∵函数y=2m 113x 是反比例函数,∴2m+1=1,解得:m=0.18.【解答】∵在矩形OABC中,OA=3,OC=2,∴B(3,2),∵F为AB的中点,∴F(3,1),∵点F在反比例函数y=kx (k>0)的图象上,∴k=3,∴该函数的解析式为y= 3x(x>0);19.【解答】设双曲线y2的解析式为y2=kx,由题意得:S△BOC﹣S△AOC=S△AOB,k 2﹣42=1,解得;k=6;则双曲线y2的解析式为y2=6x.20.【解答】(1)设C点坐标为(x,y),∵△ODC的面积是3,∴12 OD•DC=12x•(﹣y)=3,∴x•y=﹣6,而xy=k,∴k=﹣6,∴所求反比例函数解析式为y=﹣6x;(2)∵CD=1,即点C ( 1,y ),把x=1代入y=﹣6x,得y=﹣6.∴C 点坐标为(1,﹣6),设直线OC的解析式为y=mx,把C (1,﹣6)代入y=mx得﹣6=m,∴直线OC的解析式为:y=﹣6x.21.【解答】(1)由于两点关于y轴对称,纵坐标不变,横坐标互为相反数;则点(3,6)关于y轴对称的点的坐标是(﹣3,6);(2)由于两反比例函数关于y轴对称,比例系数k互为相反数;则k=﹣3,即反比例函数y=3x 关于y轴对称的函数的解析式为y=﹣3x;(3)由于两反比例函数关于x轴对称,比例系数k互为相反数;则反比例函数y=kx (k≠0)关于x轴对称的函数的解析式为:y=﹣kx.22.【解答】(1)把点A(1,3)代入反比例函数y=1kx得k1=1×3=3,所以过A点与C点的反比例函数解析式为y=3x,∵BC=2,AB与x轴平行,BC平行y轴,∴B点的坐标为(3,3),C点的横坐标为3,把x=3代入y=3x得y=1,∴C点坐标为(3,1);(2)把B(3,3)代入反比例函数y=2kx得k2=3×3=9,所以点B所在函数图象的解析式为y=9x.23.【解答】(1)∵点A(﹣1,4)在反比例函数y=kx(k为常数,k≠0)的图象上,∴k=﹣1×4=﹣4,∴反比例函数解析式为y=﹣4x.把点A(﹣1,4)、B(a,1)分别代入y=x+b中,解得:a= -4,b=5.(2)连接AO,设线段AO与直线l相交于点M,如图所示.M 为线段OA 的中点,,∴点M 的坐标为(﹣12,2).∴直线l 与线段AO 的交点坐标为(﹣12,2).24..【解答】(1)设点D 的坐标为(4,m )(m >0),则点A 的坐标为(4,3+m ),∵点C 为线段AO 的中点,∴点C 的坐标为(2,3m2+).∵点C 、点D 均在反比例函数y=kx 的函数图象上,解得:m=1,k=4.∴反比例函数的解析式为y=4x .(2)∵m=1,∴点A 的坐标为(4,4),∴OB=4,AB=4.在Rt △ABO 中,OB=4,AB=4,∠ABO=90°,∴,cos∠OAB=ABOA ==.(3))∵m=1,∴点C 的坐标为(2,2),点D 的坐标为(4,1).设经过点C 、D 的一次函数的解析式为y=ax+b ,解得:a= -12,b=3.∴经过C 、D 两点的一次函数解析式为y=﹣12x+3. 第二十六章 反比例函数全章测试一、填空题1.反比例函数xm y 1+=的图象经过点(2,1),则m 的值是______. 2.若反比例函数xk y 1+=与正比例函数y =2x 的图象没有交点,则k 的取值范围是____ __;若反比例函数xk y =与一次函数y =kx +2的图象有交点,则k 的取值范围是______. 3.如图,过原点的直线l 与反比例函数xy 1-=的图象交于M ,N 两点,根据图象猜想线段MN 的长的最小值是____________.4.一个函数具有下列性质:①它的图象经过点(-1,1); ②它的图象在第二、四象限内;③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为____________.5.如图,已知点A 在反比例函数的图象上,AB ⊥x 轴于点B ,点C (0,1),若△ABC 的面积是3,则反比例函数的解析式为____________.6.已知反比例函数xk y =(k 为常数,k ≠0)的图象经过P (3,3),过点P 作PM ⊥x 轴于M ,若点Q 在反比例函数图象上,并且S △QOM =6,则Q 点坐标为______.二、选择题7.下列函数中,是反比例函数的是( ). (A)32x y = (B 32x y = (C)x y 32= (D)xy -=32 8.如图,在直角坐标中,点A 是x 轴正半轴上的一个定点,点B 是双曲线x y 3=(x >0)上的一个动点,当点B 的横坐标逐渐增大时,△OAB 的面积将会( ).(A)逐渐增大 (B)不变 (C)逐渐减小(D)先增大后减小9.如图,直线y =mx 与双曲线xk y =交于A ,B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM ,若S △ABM =2,则k 的值是( ).(A)2(B)m -2(C)m (D)410.若反比例函数xk y =(k <0)的图象经过点(-2,a ),(-1,b ),(3,c ),则a ,b ,c 的大小关系为( ).(A)c >a >b (B)c >b >a (C)a >b >c(D)b >a >c11.已知k 1<0<k 2,则函数y =k 1x 和xk y 2=的图象大致是( ).12.当x <0时,函数y =(k -1)x 与xk y 32-=的y 都随x 的增大而增大,则k 满足( ).(A)k >1 (B)1<k <2 (C)k >2(D)k <113.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (kPa)是气体体积V (m 3)的反比例函数,其图象如图所示.当气球内的气压大于140kPa 时,气球将爆炸.为了安全起见,气体体积应( ).(A)不大于3m 3524 (B)不小于3m 3524(C)不大于3m 3724(D)不小于3m 372414.一次函数y =kx +b 和反比例函数axky =的图象如图所示,则有( ).(A)k >0,b >0,a >0 (B)k <0,b >0,a <0 (C)k <0,b >0,a >0(D)k <0,b <0,a >015.如图,双曲线xk y =(k >0)经过矩形OABC 的边BC 的中点E ,交AB 于点D 。

反比例函数单元测试题(含答案)

反比例函数单元测试题(含答案)

反比例函数练习题一. 选择题1. 函数y m x m m =+--()2229是反比例函数,则m 的值是( )A. m =4或m =-2B. m =4C. m =-2D. m =-1 2. 下列函数中,是反比例函数的是( ) A. y x =-2 B. y x =-12 C. y x =-11 D. y x =123. 函数y kx =-与y k x=(k ≠0)的图象的交点个数是( ) A. 0 B. 1 C. 2 D. 不确定 4. 函数y kx b =+与y k x kb =≠()0的图象可能是( )A B C D5. 若y 与x 成正比,y 与z 的倒数成反比,则z 是x 的( )A. 正比例函数B. 反比例函数C. 二次函数D. z 随x 增大而增大6. 下列函数中y 既不是x 的正比例函数,也不是反比例函数的是( )A. y x =-19B. 105=-x y :C. y x =412 D.152xy =- 二. 填空题7. 一般地,函数__________是反比例函数,其图象是__________,当k <0时,图象两支在__________象限内。

8. 已知反比例函数y x=2,当y =6时,x =_________。

9. 反比例函数y a x a a =---()3224的函数值为4时,自变量x 的值是_________。

10. 反比例函数的图象过点(-3,5),则它的解析式为_________11. 若函数y x =4与y x =1的图象有一个交点是(12,2),则另一个交点坐标是_________。

三. 解答题12. 直线y kx b =+过x 轴上的点A (32,0),且与双曲线y k x =相交于B 、C 两点,已知B 点坐标为(-12,4),求直线和双曲线的解析式。

13. 已知一次函数y x =+2与反比例函数y k x =的图象的一个交点为P (a ,b ),且P 到原点的距离是10,求a 、b 的值及反比例函数的解析式。

九年级数学下册《第二十六章反比例函数》单元测试卷附答案解析-人教版

九年级数学下册《第二十六章反比例函数》单元测试卷附答案解析-人教版

九年级数学下册《第二十六章反比例函数》单元测试卷附答案解析-人教版班级:___________姓名:___________考号:____________一、单选题1.如果反比例函数的图象经过点P (﹣3,﹣1),那么这个反比例函数的表达式为( ) A .y =3xB .y =﹣3xC .y =13xD .y =﹣13x2.若反比例函数2y x=的图像经过(),n n ,则n 的值是( )A .2±B .CD .3.如图,点A 在x 轴正半轴上,B (5,4).四边形AOCB 为平行四边形,反比例函数y =8x的图象经过点C和AB 边的中点D ,则点D 的坐标为( )A .(2,4)B .(4,2)C .(83,3)D .(3,83)4.对于反比例函数4y x=,下列说法错误的是( ) A .它的图象与坐标轴永远不相交 B .它的图象绕原点旋转180°能和本身重合 C .它的图象关于直线y x =±对称D .它的图象与直线y x =-有两个交点5.如图是同一直角坐标系中函数12y x =和22y x=的图象.观察图象可得不等式22x x >的解集为( )A .11x -<<B .1x <-或1x >C .1x <-或01x <<D .10x -<<或1x >6.如图,在平面直角坐标系中直线y mx =(0m ≠,m 为常数)与双曲线ky x=(0k ≠,k 为常数)交于点A ,B ,若()1,A a -和(),3B b -,过点A 作AM x ⊥轴,垂足为M ,连接BM ,则ABM ∆的面积是( )A .2B .1m -C .3D .67.如图,在平面直角坐标系中函数()0ky x x=>的图象经过点P 、Q 、R ,分别过这个三个点作x 轴、y 轴的平行线,阴影部分图形的面积从左到右依次为若OE ED DC ==,1310S S +=则k 的值为( )A .6B .12C .18D .24二、填空题8.平面直角坐标系xOy 中已知点(,6),(3,2),(3,2)--A m m B m n C m n 是函数(0)ky k x =≠图象上的三点.若2ABC S =△,则k 的值为___________.9.如图,△AOB 中AO =AB ,OB 在x 轴上C ,D 分别为AB ,OB 的中点,连接CD ,E 为CD 上任意一点,连接AE ,OE ,反比例函数y k x=(x >0)的图象经过点A .若△AOE 的面积为2,则k 的值是___.10.在平面直角坐标系xOy 中过一点分别作坐标轴的垂线,若垂线与坐标轴围成矩形的周长的值与面积的值相等,则这个点叫做“和谐点”.已知直线y =﹣2x +k 1与y 轴交于点A ,与反比例函数y 2k x=的图象交于点P (52-,m ),且点P 是“和谐点”,则△OAP 的面积为___.11.不透明的袋子里装有除标号外完全一样的四个小球,小球上分别标有-1,2,3,4四个数,从袋子中随机抽取一个小球,记标号为k ,不放回,将袋子摇匀,再随机抽取一个小球,记标号为b ,两次抽取完毕后,则直线y kx =与反比例函数by x=的图象经过的象限相同的概率为______. 12.如图,点()2,A m ,B 分别在双曲线()60y x x =>和()0ky x x=>上,AB x ∥轴,作AC x ⊥轴于点C ,交OB 于点D .若2OD BD =,则k 的值是______.13.如图所示,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数y =﹣6x(x <0)和y=8x(x >0)的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为__.14.一定质量的二氧化碳,其密度()3kg /m ρ=是体积()3m V 的反比例函数,请你根据图中的已知条件,写出反比例函数的关系式___________,当33m V =时,则ρ=_______3kg /m .三、解答题15.如图1,反比例函数()0my x x=>的图象过点()4,3M .(1)求反比例函数my x=的表达式,判断点()2,8在不在该函数图象上,并说明理由; (2)反比例函数()16my x x=≤≤的图象向左平移2个单位长度,平移过程中图象所扫过的面积是______; (3)如图2,直线:8l y x =-+与x 轴、y 轴分别交于点A 、点B ,点P 是直线l 下方反比例函数my x=图象上一个动点,过点P 分别作PC x ∥轴交直线l 于点C ,作PD y ∥轴交直线l 于点D ,请判断AC BD ⋅的值是否发生变化,并说明理由,如果不变化,求出这个值. 16.阅读下列材料定义运算min ,a b ,当a b ≥时,则min ,a b b =;当a b <时,则min ,a b a =.例如:min 1,31-=-与min 1,22--=-.完成下列任务(1)①()0min 3,2-= _________;②min 4--=_________ (2)如图,已知反比例函数1ky x=和一次函数22y x b =-+的图像交于A 、B 两点.当20x -<<时,则()()2min,213kx b x x x x-+=+--.求这两个函数的解析式. 17.在如图平面直角坐标系中矩形OABC 的顶点B 的坐标为(4,2),OA 、OC 分别落在x 轴和y 轴上,OB 是矩形的对角线.将△OAB 绕点O 逆时针旋转,使点B 落在y 轴上,得到△ODE ,OD 与CB 相交于点F ,反比例函数y =kx(x >0)的图象经过点F ,交AB 于点G .(1)求k 的值和点G 的坐标;(2)连接FG ,则图中是否存在与△BFG 相似的三角形?若存在,请把它们一一找出来,并选其中一种进行证明;若不存在,请说明理由;(3)在线段OA 上存在这样的点P ,使得△PFG 是等腰三角形.请直接写出点P 的坐标.18.我们不妨约定:在平面直角坐标系中若某函数图象上至少存在不同的两点关于直线x n =(n 为常数)对称,则把该函数称之为“()X n 函数”.(1)在下列关于x 的函数中是“()X n 函数”的是________(填序号); ①6y x=,②4y x =,③225y x x =-- (2)若关于x 的函数y x h =-(h 为常数)是“()3X 函数”,与my x=(m 为常数,0m >)相交于A (A x ,A y )、B (B x ,B y )两点,A 在B 的左边,5B A x x -=,求m 的值;(3)若关于x 的“()X n 函数”24y ax bx =++(a ,b 为常数)经过点(1-,1),且1n =,当1t x t -≤≤时,则函数的最大值为1y ,最小值为2y ,且1212y y -=,求t 的值. 19.如图,在平面直角坐标系中四边形ABCD 为正方形,已知点A (0,﹣6)、D (﹣3,﹣7),点B 、C 在第三象限内.(1)求点B 的坐标;(2)在y 轴上是否存在一点P ,使ABP 是AB 为腰的等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.(3)将正方形ABCD 沿y 轴向上平移,若存在某一位置,使在第二象限内点B 、D 两点的对应点B '、D 正好落在某反比例函数的图象上,求该反比例函数的解析式.参考答案与解析1.【答案】A【分析】根据点P 的坐标,利用待定系数法即可得.【详解】解:设这个反比例函数的表达式为(0)ky k x =≠ 由题意,将点(3,1)P --代入得:3(1)3k =-⨯-= 则这个反比例函数的表达式为3y x =故选:A .【点睛】本题考查了求反比例函数的解析式,熟练掌握待定系数法是解题关键. 2.【答案】B【分析】将(),n n 代入解析式中即可求出n 的值. 【详解】解:将(),n n 代入2y x =中得2n n=解得:n =故选B.【点睛】此题考查的是根据点所在的图像求点的坐标,将点的坐标代入解析式求点的坐标是解决此题的关键.3.【答案】B【分析】作CE ⊥OA 于E ,依据反比例函数系数k 的几何意义求得OE ,即可求得C 的坐标,从而求得点A 坐标,再根据中点坐标公式即可求得D 的坐标. 【详解】解:作CE ⊥OA 于E ,如图∵B(5,4),四边形AOCB为平行四边形∴CE=4∵反比例函数y=8x的图象经过点C∴S△COE=12OE•CE=12×8∵CE=4∴OE=2∴C(2,4),OA=BC=5-2=3 ∴A(3,0)∵点D是AB的中点∴点D的坐标为(3+50+422,),即D(4,2)故选:B.【点睛】本题考查了平行四边形的性质,反比例函数系数k的几何意义等,求得点C和点A的坐标是解题的关键.4.【答案】D【分析】当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小,根据反比例函数的性质对四个选项进行逐一分析即可.【详解】解:A.∵反比例函数4yx=中4>0,∴此函数图象在一、三象限,故本选项正确;B.∵反比例函数4yx=的图象双曲线关于原点对称,故本选项正确;C.反比例函数的图象可知,图象关于直线y x=±对称,故本选项正确;D.∵反比例函数4yx=的图象位于第一、三象限,直线y x=-经过第二、四象限,所以直线y x=-与双曲线4yx=无交点,故本选项错误;故选D.【点睛】本题考查了反比例函数的性质,熟知反比例函数的增减性是解答此题的关键. 5.D【分析】根据图象进行分析即可得结果; 【详解】解:∵22x x> ∴12y y >由图象可知,函数12y x=和22y x =分别在一、三象限有一个交点,交点的横坐标分别为11x x ==-, 由图象可以看出当10x -<<或1x >时,则函数12y x=在22y x =上方,即12y y >故选:D .【点睛】本题主要考查一次函数和反比例函数的应用,掌握一次函数和反比例函数图象的性质是解本题的关键. 6.【答案】C【分析】根据直线y mx =与双曲线k y x =都经过点A ,得出1a mk a =-⎧⎪⎨=⎪⎩-,进而得到k m =,再由直线y mx =与双曲线k y x =都经过点B ,得到33k b bm ⎧-=⎪⎨⎪-=⎩,进而得到2b m k =,进而求出b 的值,得到点A 的坐标,即可得到答案.【详解】由题,直线y mx =与双曲线ky x=都经过点A ∴1a m k a =-⎧⎪⎨=⎪⎩- ,得:k m =直线y mx =与双曲线ky x=都经过点B 33bm k b -=⎧⎪∴⎨-=⎪⎩,得:2b m k = 21b ∴=0b >1b ∴=13B ∴-(,)将点B 代入y mx =,得:3m -=3y x ∴=-13A ∴-(,)111313322ABM S ∆∴=⨯⨯+⨯⨯=故选:C【点睛】本题考查一次函数与反比例函数的图像问题,根据两者的交点结合解析式求出点的坐标是解题关键.7.【答案】B【分析】设未知数,表示出点P 、Q 、R 的坐标,进而表示S 1、S 2、S 3,由S 1+S 3=10列方程求解即可. 【详解】解:设OE =ED =DC =a ∵函数ykx =(x >0)的图象经过点P 、Q 、R∴点P (3k a ,3a ),Q (2k a ,2a ),R (ka ,a )∴OF 3k a =,OG 2k a =,OA k a =∴S 1=OF •CD 3k a =⨯a 3k =S 3=AG •OE =(2k k a a -)×a 2k =又∵S 1+S 3=10 ∴32k k +=10 解得k =12 故选:B .【点睛】本题考查反比例函数系数k 的几何意义以及反比例函数图象上点的坐标特征,用坐标表示线段的长是解决问题的关键. 8.【答案】34##0.75 【分析】由点A 、B 、C 的坐标可知260k m =>,m =n ,点B 、C 关于原点对称,求出直线BC 的解析式,不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D ,根据2ABC S =△列式求出2m ,进而可得k 的值. 【详解】解:∵点(,6),(3,2),(3,2)--A m m B m n C m n 是函数(0)ky k x=≠图象上的三点 ∴260k m => 6k mn = ∴m =n∴(3,2)B m m (3,2)C m m -- ∴点B 、C 关于原点对称∴设直线BC 的解析式为()0y kx k =≠ 代入(3,2)B m m 得:23m mk = 解得:23k =∴直线BC 的解析式为23y x =不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D 把x =m 代入23y x =得:23y m =∴D (m ,23m )∴AD =216633m m m -=∴()11633223ABCSm m m =⨯⋅+= ∴218m =∴2136684k m ==⨯=而当m <0时,则同样可得34k =故答案为:34【点睛】本题考查了反比例函数与几何综合,中心对称的性质,待定系数法求函数解析式,熟练掌握反比例函数的图象和性质,学会利用数形结合的数学思想解答是解题的关键.9.【答案】4【分析】根据等腰△AOB,中位线CD得出AD⊥OB,S△AOE=S△AOD=2,应用|k|的几何意义求k.【详解】解:如图:连接AD△AOB中AO=AB,OB在x轴上,C、D分别为AB,OB的中点∴AD⊥OB,AO∥CD∴S△AOE=S△AOD=2∴k=4.故答案为:4.【点睛】本题考查了反比例函数图象、等腰三角形以及中位线的性质、三角形面积,解题的关键是灵活运用等腰三角形的性质.10.【答案】254或754【分析】先根据“和谐点”的定义求出m的值,进而可求出点A的坐标,根据三角形的面积可求出△OAP的面积.【详解】解:∵点P(52-,m)是“和谐点”∴5+2|m|52=|m|,解得m=±10当m=10时,则P(52-,10)把点P的坐标代入一次函数和反比例的解析式得:k1=5,k2=﹣25∴A(0,5)∴S△OAP15255224=⨯⨯=.当m =﹣10时,则P (52-,﹣10)∴k 1=﹣15,k 2=25 ∴A (0,﹣15) ∴S △OAP 12=⨯1557524⨯=. 故答案为:254或754. 【点睛】本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k |,读懂题意,明确和谐点的定义是解题的关键. 11.【答案】12【分析】画树状图,共有12个等可能的结果,直线y kx =与反比例函数by x=的图象经过的象限相同的结果有6个,再由概率公式求解即可. 【详解】解:画树状图如图:∵从袋子中随机抽取一个小球,记标号为k ,不放回后将袋子摇匀,再随机抽取一个小球,记标号为b ,共有12个数组∴直线y kx =与反比例函数by x=的图象经过的象限相同的数组有(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),共有6组∴k ,b 直线y kx =与反比例函数b y x=的图象经过的象限相同的概率为61122=.故答案为:12【点睛】此题考查了用列表法或树状图法求概率及一次函数与反比例函数的性质,熟练掌握利用列表法或树状图列出所有等可能的结果以及一次函数与反比例函数的性质是解题的关键. 12.【答案】9【分析】先求解A 的坐标,再表示B 的坐标,再证明,ABD COD ∽利用相似三角形的性质列方程求解即可.【详解】解: 点()2,A m ,B 分别在双曲线()60y x x =>和()0ky x x=>上,AB x ∥轴 63,,3,23kmB2,3,AAC x ⊥轴2,0,CAB x ∥轴,ABD COD ∽,ABBDOC OD而2OD BD = 213,22k 解得:9,k = 故答案为:9【点睛】本题考查的是反比例函数的性质,相似三角形的判定与性质,掌握“反比例函数的图像与性质”是解本题的关键. 13.【答案】7【分析】连接OA ,OB ,利用同底等高的两三角形面积相等得到三角形AOB 面积等于三角形ACB 面积,再利用反比例函数k 的几何意义求出三角形AOP 面积与三角形BOP 面积,即可得到结果. 【详解】解:如图,连接OA ,OB∵△AOB 与△ACB 同底等高 ∴S △AOB =S △ACB ∵AB ∥x 轴∴AB ⊥y 轴∵A 、B 分别在反比例函数y =﹣6x (x <0)和y =8x (x >0)的图象上∴S △AOP =3,S △BOP =4∴S △ABC =S △AOB =S △AOP +S △BOP =3+4=7. 故答案为:7.【点睛】本题考查的是反比例函数系数k 的几何意义,即在反比例函数y =kx的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k |,且保持不变.也考查了三角形的面积. 14.【答案】10V ρ=103【分析】由函数图像信息可得反比例函数过点(5,2),根据待定系数法求解析式;将3V =代入即可求得ρ. 【详解】反比例函数过点(5,2) 设反比例函数解析式为kVρ= 则10k =∴反比例函数解析式为10Vρ=当3V =时,则103ρ= 故答案为:10V ρ=103【点睛】本题考查了反比例函数的应用,待定系数法求反比例函数的解析式,根据解析式求函数值,从图像获取信息是解题的关键.15.【答案】(1)不在,理由见解析 (2)20 (3)不变化,24【分析】对于(1),利用待定系数法求出函数关系式,再代入判断即可;对于(2),设点E 的横坐标和点F 的横坐标,再分别表示出点E ,F ,G ,H 的坐标,进而得出线段的长度,再根据平行四边形面积公式得出答案;对于(3),设点P 的横坐标为t ,分别表示点C ,点D 的坐标,再根据两点之间的距离公式得出AC 和BD 的长,进而得出答案.(1)将点()4,3M 代入m y x =得34m= 12m =∴12y x=;当2x =时,则6y = ∵68≠∴点()2,8不在函数图象上;(2)设点E 的横坐标是1,点F 的横坐标是6,点G ,H 分别对应点E ,F ,如图所示.图形扫过的面积即为平行四边形EFHG 的面积.令12y x=中1x =,则12y = 所以(112)E , -1,12G ()令12y x=中6x =,则2y = 所以(62)F ,,(4,2)H . 因为EG FH ∥,且EM FH = 所以四边形EGHF 为平行四边形所以=()2(122)20E F S EG y y ⋅-=⨯-=. 故答案为:20;(3)不变化,理由如下:因为直线l :8y x =-+与x 轴,y 轴分别交于点A ,点B 所以点A (8,0),B (0,8). 设点P 的横坐标是t 所以12(,)P t t.因为PC x ∥轴交直线l 于点C ,PD y ∥轴交直线l 于点D 所以1212(8,)C tt-+ (,8)D t t -+所以AC =BD =即24AC BD ⋅=⋅=所以AC BD ⋅为定值,为24..【点睛】本题主要考查了反比例函数图象上点的坐标特征,待定系数法求函数关系式,求平行四边形面积等,掌握数形结合思想是解题的关键.16.【答案】(1)①1;②4- (2)12y x=- 223y x =--【分析】(1)根据材料中的定义进行计算,即可求出答案; (2)由函数图像可知当20x -<<时,则2kx bx ,则min ,22k x b x b x-+=-+,结合已知可得()()2213x b x x x -+=+--,即可求出b ,得到一次函数解析式,求出点A 的坐标,再利用待定系数法求出反比例函数解析式. (1)解:根据题意∵min ,a b ,当a b ≥时,则min ,a b b =;当a b <时,则min ,a b a = ∴①()0min 3,21-=;∵4-∴②min 44-=-; 故答案为:①1;②4-;(2)解:由函数图像可知当20x -<<时,则2k x bx∴min,22kx b x b x-+=-+ 又∵()()2min,213kx b x x x x-+=+-- ∴()()2213x b x x x -+=+-- ∴3b =-∴一次函数223y x =-- 当x =-2时21y = ∴A (-2,1) 将A (-2,1)代入1ky x=得212k =-⨯=-∴反比例函数12y x=-.【点睛】本题考查了新定义的运算法则,零次幂,反比例函数与一次函数的综合问题,解题的关键是掌握题意,正确的运用数形结合的思想求解.17.【答案】(1)k =2,点G 的坐标为(4,12);(2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG ,证明详见解析;(3)点P 的坐标为(40)或(158,00). 【分析】(1)证明△COF ∽△AOB ,则CF OCAB OA=,求得:点F 的坐标为(1,2),即可求解; (2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG .证△OAB ∽△BFG :43AO BF = 24332AB BG ==即可求解.(3)分GF =PF 、PF =PG 、GF =PG 三种情况,分别求解即可. 【详解】解:(1)∵四边形OABC 为矩形,点B 的坐标为(4,2) ∴∠OCB =∠OAB =∠ABC =90°,OC =AB =2,OA =BC =4 ∵△ODE 是△OAB 旋转得到的,即:△ODE ≌△OAB ∴∠COF =∠AOB ,∴△COF ∽△AOB ∴CF OC AB OA =,∴2CF =24,∴CF =1∴点F 的坐标为(1,2) ∵y =kx(x >0)的图象经过点F∴2=1k ,得k =2 ∵点G 在AB 上 ∴点G 的横坐标为4对于y =2x ,当x =4,得y =12∴点G 的坐标为(4,12);(2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG . 下面对△OAB ∽△BFG 进行证明: ∵点G 的坐标为(4,12),∴AG =12 ∵BC =OA =4,CF =1,AB =2∴BF=BC﹣CF=3BG=AB﹣AG=32.∴43AOBF=24332ABBG==∴AO AB BF BG=∵∠OAB=∠FBG=90°∴△OAB∽△FBG.(3)设点P(m,0),而点F(1,2)、点G(4,12)则FG2=9+94=454,PF2=(m﹣1)2+4,PG2=(m﹣4)2+14当GF=PF时,则即454=(m﹣1)2+4,解得:m;当PF=PG时,则同理可得:m=158;当GF=PG时,则同理可得:m=4综上,点P的坐标为(40)或(158,00).【点睛】本题考查的是反比例函数综合运用,涉及到旋转的性质、三角形相似、等腰三角形的性质等,其中(3),要注意分类求解,避免遗漏.18.【答案】(1)②③( 2)4 (3)t=2或t=1【分析】(1)根据定义分析判断即可;(2)作出图形,y=x﹣3与x轴交于C点,与y轴交于D点,作AM⊥x轴交于M点,BN⊥x轴交于N点,由xB﹣xA=5,设CN=x,则MC=5﹣x,则B(3+x,x),A(x﹣2,5﹣x),根据轴对称的性质以及反比例函数的性质可得(3+x)x+(x﹣2)(5﹣x)=0,继而求得x的值,即可求得B的坐标,根据反比例函数的意义即可求得m的值;(3)根据题意以及二次函数的性质,待定系数求二次函数解析式,进而分类讨论,根据121 2y y-=,即可求得t的值.(1)解:根据定义,函数关于直线x n=(n为常数)对称,即该函数图象是轴对称图形①6yx=的图象是中心对称图象,不符合题意;②4y x=,③225y x x=--的图象是轴对称图形,符合题意故答案为:②③(2)∵y=|x-h|是“X(3)”函数∴h=3如图,y=x﹣3与x轴交于C点,与y轴交于D点,作AM⊥x轴交于M点,BN⊥x轴交于N点∴C(3,0),D(0,﹣3)∴∠BCN=∠OCD=45°由对称性可知,∠ACM=∠OCD=45°∴AM=CM,BN=CN∵xB﹣xA=5∴MN=5设CN=x,则MC=5﹣x∴B(3+x,x),A(x﹣2,5﹣x)∴(3+x)x+(x﹣2)(5﹣x)=0∴x=1∴B(4,1)∴m=4;(3)由题意得4112a bba-+=⎧⎪⎨-=⎪⎩解得12 ab=-⎧⎨=⎩∴此“X(n)函数”为y=﹣x2+2x+4①当t<1时x=t时,则y1=﹣t2+2t+4x=t﹣1时,则y2=﹣(t﹣1)2十2(t﹣1)+4y1﹣y2=(﹣t2+2t+4)﹣[﹣(t﹣1)2+2(t﹣1)+4]=﹣2t+3=12∴t=54(舍);②当t﹣1≥1,即t≥2时x=t﹣1时,则y1=﹣(t﹣1)2十2(t﹣1)+4x=t时,则y2=﹣t2+2t+4y1-y2=﹣(t﹣1)2+2(t﹣1)+4﹣(﹣t2+2t+4)=2t﹣3=12∴t=74(舍);③当1≤t<32时x=1时,则y1=5x=t﹣1时,则y2=﹣(t﹣1)2十2(t﹣1)+4y1﹣y2=5﹣[﹣(t﹣1)2+2(t﹣1)+4]=t2﹣4t+4=12∴t=2±,又因为1≤t<3 2∴t=2-④32≤t<2时x=1时,则y1=5x=t时,则y2=﹣t2十2t+4y1﹣y2=5﹣(﹣t2+2t+4)=t2﹣4t+4=12∴t=1,又因为32≤t<2∴t=1综上所述:t=2-t=1【点睛】本题考查了新定义,一次函数的性质,反比例函数的性质,二次函数的性质,根据新定义以及轴对称的性质求解是解题的关键.19.【答案】(1)B (-1,-3)(2)存在,(06-,或(06-,或()00,(3)6y x =-【分析】(1)过点B 作BE ⊥y 轴于点E ,过点D 作DF ⊥y 轴于点F ,证明ADF BAE ≅得出BE 与OE 的长度便可求得B 点坐标;(2)先求出AB 的值,再根据题意可得分类讨论,分为当AB =AP 时有两种情况和当AB =BP 时有一种情况进行求解即可;(3)先设向上平移了m 表示B '和D 的坐标,再根据B 、D 两点的对应点B '、D 正好落在某反比例函数的图象上得B '和D 点的横、纵坐标的积相等,列出关于m 的方程即可求解.(1)过点B 作BE ⊥y 轴于点E ,过点D 作DF ⊥y 轴于点F ,如下图则90AFD AEB ∠=∠=︒∵点A (0,-6),D (-3,-7)∴DF =3,AF =1∵四边形ABCD 是正方形∴AB =AD 90BAD ∠=︒∴90DAF BAE DAF ADF ∠+∠=∠+∠=︒∴ADF BAE =∠∠∵ADF BAE F EAD BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADF BAE ≅∴DF =AE =3,AF =BE =1∴OE=OA-AE=6-3=3∴B(-1,-3).(2)存在3种情况由(1)得ADF BAE≅且在Rt AFD中AB=AD①当AB=AP时的等腰三角形,如图则AP∵A为(0,-6)∴P点的坐标为(0,);②当AB=AP时,则如下图则AP∵A 为(0,-6)∴P 点的坐标为(0,);③当AB =BP 时,则如下图则BP ,且过B 作BE ⊥AP 于点E∵AB BP BE AP =⊥,∴3PE AE ==∴P 点在原点上则P 为(0,0).综上所述点P 的坐标为(06-,或(06-,或()00,. (3)设向上平移了m 可得B '为(-1,-3+m ),D 为(-3,-7+m ) 反比例函数关系式为k y x=()0k ≠ ∴()()1337k m m =-⨯-+=-⨯-+解得m =9∴k =()13166m -⨯-+=-⨯=- ∴反比例函数解析式为:6y x=- 【点睛】此题是反比例函数与正方形结合的综合体,主要考查了反比例函数的性质、待定系数法、全等三角形的性质和判定和等腰三角形的性质和判定,解决本题的关键是证明全等三角形和分类讨论.。

《反比例函数》单元测试题(含答案)-

《反比例函数》单元测试题(含答案)-

第十七章《反比例函数》单元测试题(检测时间:100分钟 满分:150分) 班级:________ 姓名:_________ 得分:_______一、选择题(4分×10分=40分)1.在下列函数表达式中,x 均表示自变量:①y=-25x,②y=2x ,③y=-x -1,④xy=2,⑤y=11x +,⑥y=0.4x,其中反比例函数有( ) A .3个 B .4个 C .5个 D .6个2.反比例函数y=mx的图象两支分布在第二、四象限,则点(m ,m-2)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.如果反比例函数y=kx的图象经过点(-2,-1),那么当x>0时,图象所在象限是(• •) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.如果双曲线y=kx经过点(-2,3),那么此双曲线也经过点( ) A .(-2,-3) B .(3,2) C .(3,-2) D .(-3,-2) 5.下列函数中,当x>0时,y 随x 的增大而减小的是( ) A .y=3x+4 B .y=13x-2 C .y=-4x D .y=12x6.如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例 7.如图,某个反比例函数的图象经过点P ,则它的解析式为( )A .y=1x (x>0)B .y=-1(x>0) C .y=1(x<0) D .y=-1x(x<0)(第7题) (第8题) (第9题)1-1y xP O y xD C B A O8.如图是三个反比例函数y=1k x ,y=2kx ,y=3k x在x 轴上方的图象,由此观察得到k 1、k 2、k 3•的大小关系为( )A .k 1>k 2>k 3B .k 3>k 2>k 1C .k 2>k 3>k 1D .k 3>k 1>k 2 9.如图,正比例函数y=x 和y=mx (m>0)的图象与反比例函数y=kx(k>0)的图象分别交于第一象限内的A 、C 两点,过A 、C 两点分别向x 轴作垂线,垂足分别为B 、D ,•若Rt △AOB 与Rt△COD 的面积分别为S 1和S 2,则S 1与S 2的关系为( ) A .S 1>S 2 B .S 1<S 2 C .S 1=S 2 D .与m 、k 值有关10.面积为2的△ABC,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示大致是( )二、填空题(4分×8=32分) 11.如果一个反比例函数y=kx的图象经过点(2,-1),那么这个反比例函数的解析式为_________. 12.要使函数y=kx(k 是常数,k≠0)的图象的两个分支分别在第、三象限内,则k•的值为________.(请写出两个符号上述要求的数值).13.已知反比例函数图象上有一点P (m ,n ),且m+n=5,试写出一个满足条件的反比例函数的表达式_________.14.如果双曲线y=kx在一、三象限,则直线y=kx+1不经过________象限. 15.如果点(a ,-2a )在双曲线y=kx上,那么双曲线在第_______象限.16.当x>0时,反比例函数y=m 2236m m x +-随x 的减小而增大,则m 的值为________,•图象在第_______象限.(1,4)yxAO 32yx BO (1,4)yxCO 44yxDO17.已知y与3m成反比例,比例系数为k1,m又与6x成正比例,比例系数为k2,那么y 与x成________函数,比例系数为_______.18.如果一次函数y=mx+n与反比例函数y=3n mx的图象相交于点(12,2),那么该直线与双曲线的另一个交点的坐标为_________.三、解答题(8分,8分,10分,10分,10分,10分,12分,计78分)19.在同一坐标系内,画出函数y=8x与y=2x的图象,并求出交点坐标.20.已知一次函数y=kx+b的图象与双曲线y=-2x交于点(1,m),且过点(0,1),•求此一次函数的解析式.21.关于x的一次函数y=-2x+m和反比例函数y=1nx的图象都经过点A(-2,1).求:(1)一次函数和反比例函数的解析式;(2)两函数图象的另一个交点B的坐标;(3)△AOB的面积.22.已知三角形的面积为30cm2,一边长为acm,这边上的高为hcm.(1)写出a与h的函数关系式.(2)在坐标系中画出此函数的简图.(3)若h=10cm,求a的长度?23.在2米长的距离内测试某种昆虫的爬行速度.(1)写出爬行速度v (米/秒)随时间t (秒)变化的函数关系式. (2)画出该函数的图象.(3)根据图象求t=3秒、4秒、5秒时昆虫的爬行速度.(4)利用函数式检验(3)的结果.24.如图,点A 、B 在反比例函数y=kx的图象上,且点A 、B 的横坐标分别为a ,2a (a>0),AC 垂直x 轴于c ,且△AOC 的面积为2. (1)求该反比例函数的解析式.(2)若点(-a ,y 1),(-2a ,y 2)在该反比例函数的图象上,试比较y 1与y 2的大小.yxCBAO25.如图,已知Rt△ABC 的锐角顶点A 在反比例函数y=mx的图象上,且△AOB 的面积为3,OB=3,求:(1)点A 的坐标;(2)函数y=mx的解析式;(3)直线AC 的函数关系式为y=27x+87,求△ABC 的面积? 四、应用题27.某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,•室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧后,y 与x 成反比例(•如图所示),现测得药物8min 燃毕,此时室内空气中每立方米的含药量为6mg ,•请你根据题中所提供的信息,解答下列问题.(1)药物燃烧时y 关于x 的函数关系式为________,自变量x 的取值范围是______;药物燃烧后y 与x 的函数关系式为__________.(2)研究表明,当空气中每立方米的含药量低于1.6mg 时学生方可进教室,那么从消毒开始,至少多少分钟后学生才能回到教室?(3)研究表明,当空气中每立方米的含药量不低于3mg 且持续时间不低于10min 时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?yxCBAOx/miny/mg8O答案:1.B 2.C 3.A 4.C 5.D 6.B 7.D 8.B 9.C 10.C 11.y=2x - 12.略 13.略 14.第四 15.二、四 16.1 一 17.反比例;1218kk18.(-1,-1) 19.图象略,交点坐标为(2,4),(-2,-4) 20.y=-3x+121.(1)y=-2x-3,y=2x -;(2)B (12,-4);(3)S △AOB =334• 22.(1)a=60h 或h=60a ;(2)图略;(3)a=6(cm )23.(1)v=2t (t>0);(2)图略;(3)v=23,12,25;(4)略24.(1)y=4x;(2)y 1<y 225.(1)A (3,2);(2)y=6x;(3)S △ABC =726.(1)设正比例函数的解析式为y=k 1x ,反比例函数的解析式为y=2k x ,将(8,6)•分别代入这两个解析式中求出k 1=34,k 2=48,∴正比例函数的解析式为y=34x (0≤x≤8)(•即燃烧时的关系式);反比例函数(即药物燃烧后)的关系式为y=48x.(2)将y=1.6代入y=48x 中可求得x=30,即至少30分钟后学生才能回到教室.(3)将y=3分别代入y=34x 和y=48x中,得x=•4和x=16.∵16-4>10,∴此次消毒有效.。

反比例函数》单元测试题(含答案)-

反比例函数》单元测试题(含答案)-

反比例函数》单元测试题(含答案)-1.给定双曲线经过点(-2,3),求解析式。

解析:双曲线的一般式为y=k/x,代入点(-2,3)可得3=k/(-2),解得k=-6,所以双曲线的解析式为y=-6/x。

2.已知y与x成反比例,且y=1时,x=4,求x=2时的y 值。

解析:由反比例函数的定义可知,y1*x1=y2*x2,代入y=1,x=4可得1*4=y2*2,解得y2=2,所以当x=2时,y=2.3.已知反比例函数和正比例函数的图象都经过点A(-1,-2),求它们的解析式。

解析:正比例函数的图象为直线y=kx,代入点A可得-2=k*(-1),解得k=2,所以正比例函数的解析式为y=2x。

反比例函数的图象为双曲线y=k/x,代入点A可得-2=k/(-1),解得k=2,所以反比例函数的解析式为y=2/x。

4.某厂有1500吨煤,求这些煤能用的天数y与每天用煤的吨数x之间的函数关系式。

解析:假设每天用煤的吨数为x,那么1500吨煤能用的天数为y=1500/x,所以函数关系式为y=1500/x。

5.若点(3,6)在反比例函数y=k/x(k≠0)的图象上,那么下列各点在此图象上的是()解析:由反比例函数的图象可知,其图象为双曲线,因此点(3,6)在图象上,而点(-3,-6)、(2.-9)、(2.9)、(3.-6)不在图象上。

6.已知反比例函数的图象过(2,-2)和(-1,n),求n的值。

解析:反比例函数的图象为双曲线,过点(2,-2)和(-1,n)的双曲线有两个分支,分别为y=k/x和y=-k/x,因此可列出方程组-2=k/2和n=-k/-1,解得k=4,n=4,所以n的值为4.7.反比例函数y=k^3/x的图像经过(-,5)点、(a,-3)及(10,b)点,求k、a、b的值。

解析:代入三个点可得5=k^3/-,-3=k^3/a^3,b=k^3/10,解得k=∛(-50),a=∛(k^3/-3),b=10∛(-50)。

反比例函数 》单元测试

反比例函数 》单元测试

10题《第十七章反比例函数》诊断测试卷(满分:150分,90分钟完卷)一、选择题(每小题4分,共计40分) 1.下列函数中,y 是x 的反比例函数是( )A.21x y=B.8=xyC.32-=x yD.23-=xy2. 某反比例函数的图象经过点(23)-,,则此函数图象也经过点( )A .(23)-,B .(33)--,C .(23),D .(46)-,3.如果直线)0(≠+=ab b ax y 不经过第三象限,那么反比例函数xay =的图象位于( ) A .第一、三象限 B.第二、四象限 C.第三、四象限 D.第一、二象限 4.反比例函数4y x=-的图象大致是( )5.若1m <-,则下列函数①(0)m y x x=>,②y =-mx+1,③y =mx ,④y =(m+1)x 中,y 随x 增大而增大的是( )A. ①②B. ②③ C . ①③ D . ③④ 6.如图,某个反比例函数的图像经过点P ,则它的解 析式为( )A.1(0)y x x => B.1(0)y x x =->C. 1(0)y x x=<D. )0(1<-=x xy7.某村的粮食总产量为a (a 为常数)吨,设该村的人均粮食产量为y 吨,人口数为x ,则y 与x 之间的函数关系式的大致图像应为( )8.若()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为( ) A .b c > B .b c <C .b c =D .无法判断9.若M(12-,y 1)、N(14-,y 2)、P(12,y 3)三点都在函数ky x=(k>0)的图象上,则y l 、y 2、y 3的大小关系是( )A.y 2>y 3>y 1B. y 2>y 1>y 3C. y 3>y 1>y 2D. y 3>y 2>y 110.如图,P P P 123、、是双曲线上的三点,过这三点分别作y 轴的垂线,得三个三角形P A O P A O P A O 112233、、,设它们的面积分别是S S S 123、、,则A .S S S 123<<B .S S S 213<< C . S S S 132<<D .S S S 123==二、填空题(每小题4分,共40分)11.已知xy2=,当0<x 时,函数的图象在 象限. 12.如果反比例函数xm y 42+=的图象在第一、三4题图6题图7题图象限 ,那么m 的取值范围是 . 13. 如果反比例函数xm y 12-=的图象经过(2,-1),则=m ,函数关系式为 . 14.已知反比例函数ky x=的图象经过点(3)m m ,,则此反比例函数的图象在第 象限。

第26章反比例函数单元测试(含答案)2024-2025学年数学人教版九年级下册

第26章反比例函数单元测试(含答案)2024-2025学年数学人教版九年级下册

第26章反比例函数一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.如图是反比例函数的图象,它的函数表达式是( ).A. y=5xB. y=2x C. y=−1xD. y=−2x2.对于反比例函数y=−5x,下列说法错误的是( )A. 图象经过点(1,−5)B. 图象位于第二、四象限C. 当x<0时,y随x的增大而减小D. 当x>0时,y随x的增大而增大3.如图,点A在双曲线y=kx上,B在y轴上,且AO=AB.若△ABO的面积为6,则k的值为 ( )A. 6B. −6C. 12D. −124.如图,直线y1=kx+1与反比例函数y2=2x的图象在第一象限交于点P(1,t),与x轴、y轴分别交于A,B 两点,则下列结论错误的是 ( )A. t=2B. △AOB是等腰直角三角形C. k=1D. 当x>1时,y2>y15.当x<0时,函数y=(k−1)x与y=2−k的y值都随x的增大而增大,则k的取值范围是( ).3xA. k>1B. 1<k<2C. k>2D. k<16.函数y=k和y=−kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是( )xA. B.C. D.7.若点A(−3,y1),B(−1,y2),C(2,y3)都在反比例函数y=k(k<0)的图象上,则y1,y2,y3的大小关系是( )xA. y3<y1<y2B. y2<y1<y3C. y1<y2<y3D. y3<y2<y18.在大棚中栽培新品种的蘑菇,在18℃的条件下生长最快,因此用装有恒温系统的大棚栽培,如图是某天恒温系统从开启升温到保持恒温及关闭,大棚内温度y(℃)随时间x(时)变化的函数图象,其中BC段是函数(k>0)图象的一部分.若该蘑菇适宜生长的温度不低于12℃,则这y=kx天该品种蘑菇适宜生长的时间为( )A. 18小时B. 17.5小时C. 12小时D. 10小时9.设A,B,C,D是反比例函数y=k图象上的任意四点,现有以下结论:x①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是( ).A. ①②B. ①④C. ②③D. ③④10.如图,点P、Q是反比例函数y=k(k≠0)图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥xx轴于点M,QB⊥y轴于点B,连接PB、QM.记SΔABP=S1,SΔQMN=S2,则S1与S2的大小关系为 ( )A. S1>S2B. S1<S2C. S1=S2D. 无法判断二、填空题:本题共6小题,每小题3分,共18分。

反比例函数单元测试题及答案(供参考)

反比例函数单元测试题及答案(供参考)

第17章反比例函数综合检测题一、选择题(每小题3分,共30分)1、反比例函数y =x n 5+图象经过点(2,3),则n 的值是( ). A 、-2 B 、-1 C 、0 D 、12、若反比例函数y =xk(k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ). A 、(2,-1) B 、(-21,2) C 、(-2,-1) D 、(21,2) 3、(08双柏县)已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )、若y 与x 成正比例,x 与z 成反比例,则y 与z 之间的关系是( ). A 、成正比例 B 、成反比例 C 、不成正比例也不成反比例 D 、无法确定、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =x k 满足( ). A 、当x >0时,y >0 B 、在每个象限内,y 随x 的增大而减小 C 、图象分布在第一、三象限 D 、图象分布在第二、四象限6、如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂 线PQ 交双曲线y =x1于点Q ,连结OQ ,点P 沿x 轴正方向运动时,Rt △QOP 的面积( ).A 、逐渐增大B 、逐渐减小C 、保持不变D 、无法确定7、在一个可以改变容积的密闭容器内,装有一定质量m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变. ρ与V 在一定范围内满足ρ=Vm ,它的图象如图所示,则该 气体的质量m 为( ).A 、1.4kgB 、5kgC 、6.4kgD 、7kg8、若A (-3,y 1),B (-2,y 2),C (-1,y 3)三点都在函数y =-x1的图象上,则y 1,y 2,y 3的大小关系是( ).A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 1=y 2=y 3D 、y 1<y 3<y 29、已知反比例函数y =xm 21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ). A 、m <0 B 、m >0 C 、m <21 D 、m >21 10、如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是( ).A 、x <-1B 、x >2C 、-1<x <0或x >2D 、x <-1或0<x <2Q p xy o t /h O t /h O t /hO t /h v /(km/h) OA .B .C .D .二、填空题(每小题3分,共30分)11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式为 . 12、已知反比例函数x k y =的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而 (填“增大”或“减小”或“不变”).13、若反比例函数y =xb 3-和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b = .14、反比例函数y =(m +2)x m 2-10的图象分布在第二、四象限内,则m 的值为 .15、有一面积为S 的梯形,其上底是下底长的31,若下底长为x ,高为y ,则y 与x 的函数关系是 .16、如图,点M 是反比例函数y =xa (a ≠0)的图象上一点, 过M 点作x 轴、y 轴的平行线,若S 阴影=5,则此反比例函数解析式为 .17、使函数y =(2m 2-7m -9)x m 2-9m +19是反比例函数,且图象在每个象限内y 随x 的增大而减小,则可列方程(不等式组)为 .18、过双曲线y =x k (k ≠0)上任意一点引x 轴和y 轴的垂线,所得长方形的面积为______.19. 如图,直线y =kx(k >0)与双曲线xy 4=交于A (x 1,y 1), B (x 2,y 2)两点,则2x 1y 2-7x 2y 1=___________.20、如图,长方形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为B (-320,5),D 是AB 边上的一点, 将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图象上,那么该函数的解析式是 .三、解答题(共60分)21、(8分)如图,P 是反比例函数图象上的一点,且点P 到x轴的距离为3,到y 轴的距离为2,求这个反比例函数的解析式.22、(9分)请你举出一个生活中能用反比例函数关系描述的实例,写出其函数表达式,并画出函数图象.举例:函数表达式:23、(10分)如图,已知A (x 1,y 1),B (x 2,y 2)是双曲线y =xk 在第一象限内的分支上的两点,连结OA 、OB .(1)试说明y 1<OA <y 1+1y k ; (2)过B 作BC ⊥x 轴于C ,当m =4时,求△BOC 的面积.24、(10分)如图,已知反比例函数y =-x8与一次函数 y =kx +b 的图象交于A 、B 两点,且点A 的横坐标和点B 的纵坐标都是-2.求:(1)一次函数的解析式;(2)△AOB 的面积.25、(11分)如图,一次函数y =ax +b 的图象与反比例函数y =xk的图象交于M 、N 两点.(1)求反比例函数与一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.26、(12分)如图, 已知反比例函数y =xk 的图象与一次函 数y =a x +b 的图象交于M (2,m )和N (-1,-4)两点.(1)求这两个函数的解析式;(2)求△MON 的面积;(3)请判断点P (4,1)是否在这个反比例函数的图象上,并说明理由.参考答案:一、选择题1、D ;2、A ;3、C ;4、B ;5、D ;6、C7、D ;8、B ;9、D ; 10、D .二、填空题11、y =x 1000; 12、减小; 13、5 ; 14、-3 ;15、y =xs 23 ; 16、y =-x 5; 17、⎩⎨⎧---=+-0972119922>m m m m ; 18、|k|; 19、 20; 20、y =-x 12. 三、解答题21、y =-x6. 22、举例:要编织一块面积为2米2的矩形地毯,地毯的长x (米)与宽y (米)之间的函数关系式为y =x2(x >0). x… 1 2 …y … 4 2 1 …(只要是生活中符合反比例函数关系的实例均可)画函数图象如右图所示.23、(1)过点A 作AD ⊥x 轴于D ,则OD =x 1,AD =y 1,因为点A (x 1,y 1)在双曲线y =xk 上,故x 1=1y k ,又在Rt △OAD 中,AD <OA <AD +OD ,所以y 1<OA <y 1+1y k ; (2)△BOC 的面积为2.24、(1)由已知易得A (-2,4),B (4,-2),代入y =kx +b 中,求得y =-x +2;(2)当y =0时,x =2,则y =-x +2与x 轴的交点M (2,0),即|OM|=2,于是S △AOB=S △AOM +S △BOM =21|OM|·|y A |+21|OM|·|y B |=21×2×4+21×2×2=6. 25、(1)将N (-1,-4)代入y =x k ,得k =4.∴反比例函数的解析式为y =x 4.将M (2,m )代入y =x 4,得m =2.将M (2,2),N (-1,-4)代入y =ax +b ,得⎩⎨⎧-=+-=+.b a ,b a 422解得⎩⎨⎧-==.b ,a 22∴一次函数的解析式为y =2x -2. (2)由图象可知,当x <-1或0<x <2时,反比例函数的值大于一次函数的值. 26、解(1)由已知,得-4=1-k ,k =4,∴y =x 4.又∵图象过M (2,m )点,∴m =24=2,∵y =a x +b 图象经过M 、N 两点,∴,422⎩⎨⎧-=+-=+b a b a 解之得,22⎩⎨⎧-==b a ∴y =2x -2. (2)如图,对于y =2x -2,y =0时,x =1,∴A (1,0),OA =1,∴S △MON =S △MOA +S △NOA =21OA ·MC +21OA ·ND =21×1×2+21×1×4=3. (3)将点P (4,1)的坐标代入y =x 4,知两边相等,∴P 点在反比例函数图象上.。

北京市九年级数学下册第一单元《反比例函数》测试(包含答案解析)

北京市九年级数学下册第一单元《反比例函数》测试(包含答案解析)

一、选择题1.正比例函数1y 的图像与反比例函数2y 的图像相交于点(2,4)A ,下列说法正确的是( )A .反比例函数2y 的解析式是28y x =-B .两个函数图像的另一个交点坐标为(2,4)C .当2x <-或02x <<时,12y y <D .正比例函数1y 与反比例函数2y 都随x 的增大而增大2.下列函数中,y 随x 的增大而减少的是( )A .1y x =-B .2y x =-C .()30y x x =->D .4y x =()0x < 3.关于反比例函数3y x =,下列说法错误的是( ) A .图象关于原点对称 B .y 随x 的增大而减小C .图象分别位于第一、三象限D .若点(,)M a b 在其图象上,则3ab = 4.已知反比例函数k y x =的图像过点(2,3)-,那么下列各点也在该函数图像上的是( ) A .(2,3) B .(2,3)-- C .(1,6) D .(6,1)-5.已知()()()112233,,,,,A x y B x y C x y 是反比例函数2y x=上的三点,若123x x x <<,213y y y <<,则下列关系式不正确的是 ( ) A .120x x < B .130x x < C .230x x <D .120x x +< 6.如图,菱形ABCD 的边AD 与x 轴平行,A 、B 两点的横坐标分别为1和3,反比例函数y=3x的图象经过A 、B 两点,则菱形ABCD 的面积是( )A .2B .4C .2D .27.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-8.如图,直线l x ⊥轴于点P ,且与反比例函数11(0)k y x x=>及22(0)k y x x =>的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为2,则12k k -的值为( )A .2B .3C .4D .59.已知0k >,函数y kx k =+和函数k y x=在同一坐标系内的图象大致是( ) A . B .C .D .10.如图,OABC 是平行四边形,对角线OB 在轴正半轴上,位于第一象限的点A 和第二象限的点C 分别在双曲线y =1k x和y =2k x 的一支上,分别过点A 、C 作x 轴的垂线,垂足分别为M 和N ,则有以下的结论:①12||AM CN ||k k =;②阴影部分面积是12(k 1+k 2);③当∠AOC =90°时,|k 1|=|k 2|;④若OABC 是菱形,则两双曲线既关于x 轴对称,也关于y 轴对称.其中正确的结论是( )A .①②B .①④C .③④D .①②③ 11.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴上,顶点B 在第一象限,AB=1.将线段OA 绕点O 按逆时针方向旋转600得到线段OP ,连接AP ,反比例函数y=k x过P 、B 两点,则k 的值为( )A .23B .23C .43D .43 12.如图直线y 1=x+1与双曲线y 2=k x交于A (2,m )、B (﹣3,n )两点.则当y 1>y 2时,x 的取值范围是( )A .x >﹣3或0<x <2B .﹣3<x <0或x >2C .x <﹣3或0<x <2D .﹣3<x <2二、填空题13.已知函数3(2)m y m x -=-是反比例函数,则m =_________.14.如图,在平面直角坐标系中,反比例函数(0)k y x x=>经过矩形ABOC 的对角线OA 的中点M ,己知矩形ABOC 的面积为24,则k 的值为___________15.如图,已知正比例函数11(0)y k x k =≠与反比例函数22(0)k y k x=≠的图像交于两点M ,N ,若点N 的坐标是(1,2)--,则点M 的坐标为________16.如图,已知双曲线()0k y x x=>经过矩形OABC 边BC 的中点E ,与AB 交于点F ,且四边形OEBF 的面积为3,则k=________.17.已知()221a y a x -=-是反比例函数,则a =________________.18.如图,直线AB 过原点分别交反比例函数6y x=,于A .B ,过点A 作AC x ⊥轴,垂足为C ,则△ABC 的面积为______.19.如图,点P ,Q 在反比例函数y=k x (k>0)的图像上,过点P 作PA ⊥x 轴于点A ,过点Q 作QB ⊥y 轴于点B .若△POA 与△QOB 的面积之和为4,则k 的值为_________.20.如图,点A 在反比例函数k y x=的图象上,AB 垂直x 轴于B ,若AOB S ∆=2,则这个反比例函数的解析式为_______________.三、解答题21.如图(1),点A 是反比例函数4y x=的图象在第一象限内一动点,过A 作AC x ⊥轴于点C ,连接OA 并延长到点B ,过点B 作BD x ⊥轴于点D ,交双曲线于点E ,连结OE .(1)若6OBE S =△,求经过点B 的反比例函数解析式.(2)如图(2),过点B 作BF y ⊥轴于点F ,交双曲线于点G .①延长OA 到点B ,当AB OA =时,请判断FG 与BG 之间的数量关系,并说明理由. ②当AB nOA =时,请直接写出FG 与BG 之间的数量关系.22.在平面直角坐标系xOy 中,直线l :1y x =-与双曲线k y x =相交于点(2,)A m . (1)求点A 坐标及反比例函数的表达式;(2)若直线l 与x 轴交于点B ,点P 在反比例函数的图象上,当OPB △的面积为1时,求点P 的坐标.23.如图,在平面直角坐标系xOy 中,一次函数y =kx +b 的图象与反比例函数y =6x 的图象相交于点A (m ,3)、B (–6,n ),与x 轴交于点C .(1)求一次函数y =kx +b 的关系式;(2)结合图象,直接写出满足kx +b >6x 的x 的取值范围; (3)若点P 在x 轴上,且S △ACP =32BOC S △,求点P 的坐标.24.如图,在平面直角坐标系中,一次函数1(0)y kx b k =+≠的图象与反比例函数()2m y m 0x=≠的图象相交于第一、三象限内的A (3,5),B (a ,﹣3)两点,与x 轴交于点C .(1)求该反比例函数和一次函数的解析式; (2)直接写出当1y >2y 时,x 的取值范围;(3)在y 轴上找一点P 使PB ﹣PC 最大,求PB ﹣PC 的最大值及点P 的坐标.25.如图,在平面直角坐标系中,一次函数()1y kx b k 0=+≠的图象与反比例函数()2m y m 0x=≠ 的图象相交于第一、三象限内的()()A 3,5,B a,3-两点,与x 轴交于点C .⑴求该反比例函数和一次函数的解析式;⑵在y 轴上找一点P 使PB PC -最大,求PB PC -的最大值及点P 的坐标; ⑶直接写出当12y y >时,x 的取值范围.26.如图,在平面直角坐标系中,Rt △ABC 的边AB ⊥x 轴,垂足为A,C 的坐标为(1,0),反比例函数y=k x(x>0)的图象经过BC 的中点D,交AB 于点E.已知AB=4,BC=5.求k 的值【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由题意可求正比例函数解析式和反比例函数解析式,由正比例函数和反比例函数的性质可分别进行判断求解,即可得出结论.【详解】解:∵正比例函数y1的图象与反比例函数y2的图象相交于点A(2,4),∴正比例函数12y x=,反比例函数28yx=,∴两个函数图象的另一个交点为(−2,−4),∴A,B选项错误;∵正比例函数12y x=中,y随x的增大而增大,反比例函数28yx=中,在每个象限内y随x的增大而减小,∴D选项错误;∵当x<−2或0<x<2时,y1<y2,∴选项C正确;故选:C.【点睛】本题考查了反比例函数与一次函数的交点问题,熟练运用反比例函数与一次函数的性质解决问题是本题的关键.2.D解析:D【分析】根据反比例函数kyx=中k>0,在每个象限内,y随着x的增大而减小;k<0,在每个象限内,y随着x的增大而增大求解.【详解】-1<0,在每个象限内,y随着x的增大而增大,故A选项错误;-2<0,在每个象限内,y随着x的增大而增大,故B选项错误;-3<0且x>0,y随着x的增大而增大,故C选项错误;4>0且x<0,y随着x的增大而减小,故D选项正确;故选D.【点睛】本题考查反比例函数的性质,解题的关键是掌握反比例函数的性质.3.B解析:B【分析】根据题目中的函数解析式和反比例函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:∵反比例函数3yx =,∴该函数图象关于原点轴对称,故选项A正确;在每个象限内,y随x的增大而减小,故选项B错误;该函数图象为别位于第一、三象限,故选项C正确;若点M(a,b)在其图象上,则ab=3,故选项D正确;故选:B.【点睛】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.4.D解析:D【分析】先根据反比例函数kyx=经过点(-2,3)求出k的值,再对各选项进行逐一分析即可.【详解】解:∵反比例函数kyx=经过点(-2,3),∴k=-2×3=-6.A、∵2×3=6≠-6,∴此点不在函数图象上,故本选项错误;B、∵(-2)×(-3)=6≠-6,∴此点不在函数图象上,故本选项错误;C、∵1×6=6≠-6,∴此点不在函数图象上,故本选项错误;D、∵6×(-1)=-6,∴此点在函数图象上,故本选项正确.故选:D.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.A解析:A【分析】根据反比例函数2yx=和x1<x2<x3,y2<y1<y3,可得点A,B在第三象限,点C在第一象限,得出x1<x2<0<x3,再选择即可.【详解】解:∵反比例函数2yx=中,2>0,∴在每一象限内,y随x的增大而减小,∵x1<x2<x3,y2<y1<y3,∴点A,B在第三象限,点C在第一象限,∴x1<x2<0<x3,∴x1•x2>0,x1•x3<0,x2•x3<0,x1+x2<0,故选:A.【点睛】本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.6.A解析:A【分析】作AH⊥BC交CB的延长线于H,根据反比例函数解析式求出A的坐标、点B的坐标,求出AH、BH,根据勾股定理求出AB,根据菱形的面积公式计算即可.【详解】如图,作AH⊥BC交CB的延长线于H,∵反比例函数y=3的图象经过A、B两点,A、B两点的横坐标分别为1和3,x∴A、B两点的纵坐标分别为3和1,即点A的坐标为(1,3),点B的坐标为(3,1),∴AH=3﹣1=2,BH=3﹣1=2,由勾股定理得,AB=22+=,2222∵四边形ABCD是菱形,∴BC=AB=22,∴菱形ABCD的面积=BC×AH=42,故选A.【点睛】本题考查的是反比例函数的系数k的几何意义、菱形的性质,根据反比例函数解析式求出A的坐标、点B的坐标是解题的关键.7.C解析:C【详解】∵A(﹣3,4),∴22+,34∵四边形OABC 是菱形,∴AO=CB=OC=AB=5,则点B 的横坐标为﹣3﹣5=﹣8,故B 的坐标为:(﹣8,4),将点B 的坐标代入k y x=得,4=8k -,解得:k=﹣32.故选C . 考点:菱形的性质;反比例函数图象上点的坐标特征. 8.C解析:C【分析】据反比例函数k 的几何意义可知:△AOP 的面积为12k ,△BOP 的面积为22k ,由题意可知△AOB 的面积为12k −22k . 【详解】根据反比例函数k 的几何意义可知:△AOP 的面积为12k ,△BOP 的面积为22k , ∴△AOB 的面积为12k −22k , ∴12k −22k =2, ∴k 1-k 2=4,故选:C .【点睛】本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于中等题型,9.D解析:D【解析】根据题意,在函数y=kx+k 和函数k y x=中, 有k >0,则函数y=kx+k 过一二三象限. 且函数k y x=在一、三象限, 则D 选项中的函数图象符合题意;故选D .10.B解析:B【分析】作AE ⊥y 轴于点E ,CF ⊥y 轴于点F ,根据平行四边形的性质得S △AOB =S △COB ,利用三角形面积公式得到AE=CF ,则有OM=ON ,再利用反比例函数k 的几何意义和三角形面积公式得到S△AOM=12|k1|=12OM•AM,S△CON=12|k2|=12ON•CN,所以有12kAMCN k=;由S△AOM=12|k1|,S△CON=12|k2|,得到S阴影部分=S△AOM+S△CON=12(|k1|+|k2|)=12(k1-k2);当∠AOC=90°,得到四边形OABC是矩形,由于不能确定OA与OC相等,则不能判断△AOM≌△CNO,所以不能判断AM=CN,则不能确定|k1|=|k2|;若OABC是菱形,根据菱形的性质得OA=OC,可判断Rt△AOM≌Rt△CNO,则AM=CN,所以|k1|=|k2|,即k1=-k2,根据反比例函数的性质得两双曲线既关于x轴对称,也关于y轴对称.【详解】作AE⊥y轴于E,CF⊥y轴于F,如图,∵四边形OABC是平行四边形,∴S△AOB=S△COB,∴AE=CF,∴OM=ON,∵S△AOM=12|k1|=12OM•AM,S△CON=12|k2|=12ON•CN,∴12kAMCN k=,故①正确;∵S△AOM=12|k1|,S△CON=12|k2|,∴S阴影部分=S△AOM+S△CON=12(|k1|+|k2|),而k1>0,k2<0,∴S阴影部分=12(k1-k2),故②错误;当∠AOC=90°,∴四边形OABC是矩形,∴不能确定OA与OC相等,而OM=ON,∴不能判断△AOM≌△CNO,∴不能判断AM=CN,∴不能确定|k1|=|k2|,故③错误;若OABC是菱形,则OA=OC,而OM=ON ,∴Rt △AOM ≌Rt △CNO ,∴AM=CN ,∴|k 1|=|k 2|,∴k 1=-k 2,∴两双曲线既关于x 轴对称,也关于y 轴对称,故④正确.故选:B .【点睛】本题属于反比例函数的综合题,考查了反比例函数的图象、反比例函数k 的几何意义、平行四边形的性质、矩形的性质和菱形的性质.注意准确作出辅助线是解此题的关键. 11.D解析:D【分析】本题先设A 点坐标(x ,0),则点B (x ,1),由等边三角性质可知P (12x,2 x )代入函数表达式即可求出结果.【详解】由题意设A 点坐标(x ,0),则点B (x ,1),将点B 代入函数式得k=x ,又由题意将线段OA 绕点O 按逆时针方向旋转60°得到线段OP ,∴OP=OA ,则△AOP 为等边三角形,∴由等边三角形性质设点P (12k),把点P=12kk , ∴k=2 k 12⨯k=2122k ⨯, ∵k 0≠,∴k=3,即选D . 【点睛】此题考查反比例函数,等边三角形性质,解题关键是找出点P 坐标,即运用等边三角形性质解题.12.B解析:B【分析】当y 1>y 2时,x 的取值范围就是y 1的图象落在y 2图象的上方时对应的x 的取值范围.【详解】根据图象可得当y 1>y 2时,x 的取值范围是:﹣3<x <0或x >2.故选:B .【点睛】本题考查了反比例函数与一次函数图象的交点问题,“数形结合”是解题的关键.二、填空题13.-2【分析】让x 的指数为-1系数不为0列式求值即可【详解】依题意得且解得故答案为:-2【点睛】考查反比例函数的定义;反比例函数解析式的一般形式y =(k≠0)也可转化为y=kx-1(k≠0)的形式特别解析:-2【分析】让x 的指数为-1,系数不为0列式求值即可.【详解】 依题意得31m -=-且20m -≠,解得2m =-.故答案为:-2.【点睛】考查反比例函数的定义;反比例函数解析式的一般形式y =k x(k≠0),也可转化为y=kx -1(k≠0)的形式,特别注意不要忽略k≠0这个条件. 14.6【分析】设A (ab )由矩形的面积求得ab 再根据中点定义求得M 点坐标进而用待定系数法求得k 【详解】解:设A (ab )则ab=24∵点M 是OA 的中点∴∵反比例函数经过点M ∴故答案为:6【点睛】本题主要考解析:6【分析】设A (a ,b ),由矩形的面积求得ab ,再根据中点定义求得M 点坐标,进而用待定系数法求得k .【详解】解:设A (a ,b ),则ab=24,∵点M 是OA 的中点, ∴1122M a b ⎛⎫ ⎪⎝⎭,, ∵反比例函数(0)k y x x =>经过点M , ∴1111•2462244k a b ab =⨯===, 故答案为:6【点睛】本题主要考查了矩形的性质,反比例函数的图象与性质,关键是通过A 点坐标与已知矩形面积和未知k 联系起来.15.(12)【分析】直接利用正比例函数与反比例函数的性质得出MN 两点关于原点对称进而得出答案【详解】解:∵正比例函数y =k1x (k1≠0)与反比例函数y =(k2≠0)的图象交于MN 两点∴MN 两点关于原点解析:(1,2)【分析】直接利用正比例函数与反比例函数的性质得出M ,N 两点关于原点对称,进而得出答案.【详解】解:∵正比例函数y =k 1x (k 1≠0)与反比例函数y =2k x(k 2≠0)的图象交于M ,N 两点, ∴M ,N 两点关于原点对称,∵点N 的坐标是(﹣1,﹣2),∴点M 的坐标是(1,2).故答案为:(1,2).【点睛】此题主要考查了反比例函数与正比例函数的交点问题,正确得出M ,N 两点位置关系是解题关键. 16.3【分析】设表示点B 坐标再根据四边形OEBF 的面积为3列出方程从而求出k 的值【详解】设则均在反比例函数图象上解得故答案为:3【点睛】本题的难点是根据点E 的坐标得到其他点的坐标准确掌握反比例函数k 值的 解析:3【分析】设(),E a b ,表示点B 坐标,再根据四边形OEBF 的面积为3,列出方程,从而求出k 的值.【详解】设(),E a b ,则k ab =,()2,B a b ,F E 、均在反比例函数图象上,2COE AOF k S S ∴==△△, COE AOF OABC OEBF S S S S =--△△矩形四边形,2OABC S OA AB ab ==矩形3222k k k ∴=--,解得3k =, 故答案为:3.【点睛】本题的难点是根据点E 的坐标得到其他点的坐标,准确掌握反比例函数k 值的几何意义是解决本题的关键.17.【分析】根据反比例函数的定义列出方程不等式即可求解【详解】解:∵是反比例函数∴且∴且∴故答案是:【点睛】本题考查了反比例函数的定义解方程解不等式等知识点能根据反比例函数的定义正确列出方程和不等式是解 解析:1-【分析】根据反比例函数的定义列出方程、不等式即可求解.【详解】解:∵()221ay a x -=-是反比例函数 ∴221a -=-且10a -≠∴1a =±且1a ≠∴1a =-.故答案是:1-【点睛】本题考查了反比例函数的定义、解方程、解不等式等知识点,能根据反比例函数的定义正确列出方程和不等式是解题的关键. 18.6;【分析】通过反比例函数与一次函数交点关于原点成中心对称得到OA 与OB 相等得到△AOC 与△BOC 面积相等再通过反比例函数的几何意义得到△AOC 的面积等于即可得到结果【详解】解:∵反比例函数与正比例 解析:6;【分析】通过反比例函数与一次函数交点关于原点成中心对称,得到OA 与OB 相等,得到△AOC 与△BOC 面积相等,再通过反比例函数的几何意义得到△AOC 的面积等于12k ,即可得到结果.【详解】解:∵反比例函数与正比例函数的图象相交于A 、B 两点,∴A 、B 两点关于原点对称,∴OA=OB,∴S △BOC =S △AOC ,又∵A 是反比例函数上的点,且AC ⊥x 轴于点C , ∴△AOC 的面积=12k =12×6=3, ∴△ABC 的面积=6故答案为:6.【点睛】 本题考查反比例函数与一次函数的交点问题,反比例函数几何意义,充分理解反比例的几何意见是快速解题的关键.19.4【分析】根据反比例函数的性质确定△POA 与△QOB 的面积均为2然后根据反比例函数的比例系数的几何意义确定其值即可【详解】根据题意得:点P 和点Q 关于原点对称所以△POA 与△QOB 的面积相等∵△POA解析:4【分析】根据反比例函数的性质确定△POA 与△QOB 的面积均为2,然后根据反比例函数的比例系数的几何意义确定其值即可.【详解】根据题意得:点P 和点Q 关于原点对称,所以△POA 与△QOB 的面积相等,∵△POA 与△QOB 的面积之和为4,∴△POA 与△QOB 的面积均为2, ∴2k=2,∴|k|=4,∵反比例函数的图象位于一、三象限,∴k=4,故答案为4.【点睛】此题考查了反比例函数的比例系数的几何意义及反比例函数的图象上点的坐标特征的知识,解题的关键是求得△POA 与△QOB 的面积,难度不大.20.【分析】因为过双曲线上任意一点引x 轴y 轴垂线所得矩形面积S 是个定值|k|△AOB 的面积为矩形面积的一半即|k|【详解】由于点A 在反比例函数的图象上则S △AOB=|k|=2∴k=±4;又由于函数的图象 解析:4y x=- 【分析】因为过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积S 是个定值|k|,△AOB 的面积为矩形面积的一半,即12|k|. 【详解】由于点A 在反比例函数k y x =的图象上, 则S △AOB =12|k|=2, ∴k=±4;又由于函数的图象在第二象限,k <0,∴k=-4,∴反比例函数的解析式为4y x=-;故答案为:4y x=-. 【点睛】 此题主要考查了反比例函数k y x=中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.三、解答题21.(1)16y x =;(2)①13FG BG =,理由见解析;②(21)FG n BG =+ 【分析】(1)根据题意求出OBD S △,根据反比例函数k 的几何意义求出过点B 的反比例函数解析式;(2)①设OC a =,用a 表示出点A 的坐标,根据相似三角形的性质表示出点B 的坐标,求出FG 和BG ,计算即可;②用与①相似的方法分别求出FG 和BG ,计算即可.【详解】解:(1)设点E 的坐标为(,)x y ,∵点E 在反比例函数4y x =的图象上, ∴4xy =, 则122xy =, ∴2ODE S =△,又6OBE S =△,∴8OBD S =△,∴过点B 的反比例函数解析式为:16y x=; (2)①设OC a =,则点A 的坐标为4,a a ⎛⎫ ⎪⎝⎭, ∵AB OA =,∴点B 的坐标为82,a a ⎛⎫ ⎪⎝⎭, ∵84a x =,2a x =, ∴2a FG =,又2FB a =,∴32BG a =, ∴13FG BG =; ②设OC b =,则点A 的坐标为4,b b ⎛⎫ ⎪⎝⎭,∵AB nOA =, ∴11OA OB n =+, ∴点B 的坐标为4(1)(1),n n b b +⎛⎫+ ⎪⎝⎭, ∵4(1)4n b x +=,1b x n =+, ∴1b FG n =+,又2FB b =, ∴211n BG b n +=+, ∴(21)FG n BG =+.【点睛】本题考查的是反比例函数知识的综合运用,掌握待定系数法求反比例函数解析式、反比例函数k 的几何意义是解题的关键.22.(1)点(2,1)A ,反比例函数2y x =;(2)点()P 12,或(-1,-2) 【分析】(1)代入坐标点先求坐标,再求反比例函数表达式;(2)作图,根据图像求出P 点纵坐标,再代入反比例函数即可求出坐标.【详解】(1)∵A 在y=x-1上,∴当x=2时,y=1,即m=1,点(2,1)A ,再把A 的坐标代入反比例函数解得:2y x=; (2)由函数表达式可求得点(1,0)B ,∵1OPB S =△, 即12OB ||1p y =, ∴||1p y =,点()P 12,或(-1,-2); 【点睛】此题考查反比例函数与一次函数相关知识,结合图像是关键.23.(1)122y x =+;(2)-6<x <0或2<x ;(3)(-2,0)或(-6,0) 【分析】(1)利用反比例函数图象上点的坐标特征可求出点A 、B 的坐标,再利用待定系数法即可求出直线AB 的解析式;(2)根据函数图像判断即可;(3)利用一次函数图象上点的坐标特征可求出点C 的坐标,设点P 的坐标为(x ,0),根据三角形的面积公式结合S △ACP =32S △BOC ,即可得出|x+4|=2,解之即可得出结论. 【详解】(1)∵点A (m ,3),B (-6,n )在双曲线y=6x上, ∴m=2,n=-1,∴A (2,3),B (-6,-1).将(2,3),B (-6,-1)带入y=kx+b , 得:3216k b k b +⎧⎨--+⎩==,解得,122k b ==⎧⎪⎨⎪⎩. ∴直线的解析式为y=12x+2. (2)由函数图像可知,当kx +b >6x 时,-6<x <0或2<x ;(3)当y=12x+2=0时,x=-4, ∴点C (-4,0).设点P 的坐标为(x ,0),如图,∵S △ACP =32S △BOC ,A (2,3),B (-6,-1), ∴12×3|x-(-4)|=32×12×|0-(-4)|×|-1|,即|x+4|=2, 解得:x 1=-6,x 2=-2.∴点P 的坐标为(-6,0)或(-2,0).【点睛】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出直线AB 的解析式;(2)根据函数图像判断不等式取值范围;(3)根据三角形的面积公式以及S △ACP =32S △BOC ,得出|x+4|=2. 24.(1)一次函数的解析式为12y x =+;反比例函数的解析式为215y x=;(2)﹣5<x <0或x >3.(3)P (0,2),32【分析】(1)用待定系数法求反比例函数的解析式:把点A 坐标代入反比例函数解析式中,求得m 的值,即可知反比例函数解析式,将点B 坐标代入,可解得a 的值及点B 的坐标,再将点B 的坐标代入一次函数解析式,解关于,k b 的二元一次方程组,即可求得一次函数的解析式; (2)观察图象,结合一次函数与反比例函数图象的交点坐标可以解题;(3)先求一次函数与两坐标轴的交点坐标, 此时,PB ﹣PC =BC 最大,P 即为所求,根据勾股定理求得=32BC 【详解】解:(1)把A (3,5)代入2(0),m y m x =≠可得m =3×5=15, ∴反比例函数的解析式为215y x=;把点B (a ,﹣3)代入215y x=,可得a =﹣5, ∴B (﹣5,﹣3). 把A (3,5),B (﹣5,﹣3)代入1y x b =+,可得3553k b k b +=⎧⎨-+=-⎩, 解得12k b =⎧⎨=⎩, ∴一次函数的解析式为12y x =+;(2)当1y >2y 时,﹣5<x <0或x >3.(3)一次函数的解析式为12y x =+,令x =0,则y =2,∴一次函数与y 轴的交点为P (0,2),此时,PB ﹣PC =BC 最大,P 即为所求,令y =0,则x =﹣2,∴C (﹣2,0),∴BC ==【点睛】本题考查待定系数法求一次函数、反比例函数的解析式、二元一次方程组的解法、一次函数与反比例函数图象的性质、一次函数图象与两坐标轴的交点坐标求法、线段差的最值、勾股定理等,知识点难度一般,是常见题型,掌握相关知识是解题关键.25.⑴15y x=,2y x =+;⑵PB PC -的最大值为()P 0,2 ;⑶5x 0-<<或3x >.【分析】(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;(2)根据一次函数y 1=x+2,求得与y 轴的交点P ,此交点即为所求;(3)根据AB 两点的横坐标及直线与双曲线的位置关系求x 的取值范围.【详解】⑴.∵()A 3,5在反比例函数()2m y m 0x =≠上 ∴m 3515=⨯=∴反比例函数的解析式为15y x =把()B a,3-代入15y x =可求得()a 1535=÷-=- ∴()B 5,3--.把()()A 3,5,B 5,3--代入y kx b =+为3553k b k b +=⎧⎨-+=-⎩ 解得12k b =⎧⎨=⎩.∴一次函数的解析式为2y x =+.⑵PB PC -的最大值就是直线AB 与两坐标轴交点间的距离.设直线2y x =+与y 轴的交点为P .令0y =,则20x +=,解得2x =- ,∴()C 2,0-令0x =,则y 022=+=,,∴()P 0,2 ∴22PB 5552=+=,22PB 2222=+=∴PB PC -的最大值为522232-= .⑶根据图象的位置和图象交点的坐标可知:当12y y >时x 的取值范围为;5x 0-<<或3x >.【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求反比例函数和一次函数的解析式,根据点的坐标求线段长,正确掌握反比例函数的性质是解题的关键.26.k=5【分析】先由勾股定理求出AC 的长度,得到点C 坐标,再确定出点B 的坐标,由中点坐标公式得出点D 的坐标,最后把点D 坐标代入反比例函数解析式中即可求得k 的值.【详解】∵在Rt △ABC 中,AB=4,BC=5,∴22BC AB -2516-, ∵点C 坐标(1,0),∴OC=1,∴OA=OC+AC=4,∴点A 坐标(4,0),∴点B (4,4),∵点C (1,0),点B (4,4),∴BC 的中点D (52,2), ∵反比例函数y=k x(x >0)的图象经过BC 的中点D ,∴k=xy=52=52【点睛】本题考查了反比例函数图象上点的坐标特征,勾股定理,中点坐标公式,熟练运用反比例函数图象性质是解决问题的关键.。

反比例函数单元测试卷含答案

反比例函数单元测试卷含答案

反比例函数单元测试卷含答案一、选择题1. 反比例函数的一般形式是:A. y = kxB. y = ax + bC. y = k/xD. y = mx + c答案: C2. 当x为0时,反比例函数的值为:A. 0B. 1C. 无定义D. 任意值答案: C3. 若反比例函数的k值为正数,x趋近于无穷大,y会趋近于:A. 正无穷大B. 负无穷大C. 0D. 不存在极限答案: B4. 反比例函数的图像是一条:A. 直线B. 抛物线C. 余弦曲线D. 双曲线答案: D5. 若反比例函数的x值为正数,y值为负数,那么k值是:A. 正数B. 负数C. 零D. 无法确定答案: B二、计算题1. 已知反比例函数y = 5/x,当x = 2时,求y的值。

答案: 2.52. 已知反比例函数y = 3/x,当y = 6时,求x的值。

答案: 0.5三、简答题1. 什么是反比例函数?答案: 反比例函数是一种函数关系,当自变量x的值增大时,因变量y的值会减小,并且二者之间呈现出一种倒数关系。

它的一般形式为y = k/x,其中k为常数。

2. 反比例函数的图像有什么特点?答案: 反比例函数的图像是一条双曲线。

当x趋近于无穷大或无穷小时,函数的值趋近于零。

两支曲线的对称轴为y轴,并在y 轴上有一个渐近线。

3. 如何确定反比例函数的常数k的值?答案: 可以通过已知点的坐标进行求解。

将已知的x和y的值代入反比例函数的一般形式中,解方程得到k的值。

以上就是反比例函数单元测试卷的答案。

希望能对你的学习有所帮助!。

第六章 反比例函数单元测试2024-2025学年北师大版数学九年级上册

第六章 反比例函数单元测试2024-2025学年北师大版数学九年级上册

第六章反比例函数单元测试2024-2025学年北师大版数学九年级上册一、选择题(每题3分,共24分)1.如图,在Rt△AOB中,∠ABO=90°,点B在x轴上,点C(1,a)为OA的中点,反比例函数y=的图象经过点C,交AB于点D,且∠AOD=∠BOD,则k=()A.8B.2C.D.22.如图,在△ABC中,点D、E分别是边AC,AB的中点,BD,CE相交于点O,连接O在AO上=12,则四边形OCDF的面积为()取一点F,使得OF=AF若S△ABCA.2B.C.3D.3.如图,分别过反比例函数图象上的点P1(1,y1),P2(2,y2),…P n(n,y n),作x轴的垂线,垂足分别为A1,A2,…A n,连结A1P2,A2P3,…A n-1P n,再以A1P1,A1P2为一组邻边画一个平行四边形A1P1B1P2,以A2P2,A2P3为一组邻边画一个平行四边形A2P2B2P3……,以此类推,则点B20的坐标是()A.B.C.D.4.如图是由四个全等的三角形和一个正方形组成的大正方形,连结与交于,射线交于点,交于点,交于点,连接,则与面积相等的图形是()A.B.C.D.5.已知A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=上的三点,若x1<x2<x3,y2<y1<y3,则下列关系式不正确的是()A.x1•x2<0B.x1•x3<0C.x2•x3<0D.x1+x2<06.如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A′O′B.若反比例函数的图象恰好经过斜边A′B的中点C,S△ABO=4,tan∠BAO=2,则k的值为()A.3B.4C.6D.87.如图,直线l是经过点(1,0)且与y轴平行的直线.Rt△ABC中直角边AC=4,BC=3.将BC 边在直线l上滑动,使A,B在函数y=的图象上.那么k的值是()A.3B.6C.12D.8.如图所示,、都是等边三角形,且均在第一象限,若双曲线经过、两点,,则点的坐标为()A.B.C.D.二、填空题(每题3分,共15分)9.一个等腰三角形和一个正方形如图摆放,被分割成了5个部分.①,②,③这三块的面积比为1:4:41,那么④,⑤这两块的面积比是10.已知△ABC的三个顶点为A,B,C,将△ABC向右平移m()个单位后,△ABC某一边的中点恰好落在反比例函数的图象上,则m的值为. 11.已知是在第一象限的图像上的两个点,若是等边三角形,则等边的面积是.12.如图,在▱中,,,点P在边上以每秒的速度从点A向点D运动,点Q在边上以每秒的速度从点C出发,在间往返运动.两个点同时出发,当点P到达点D时停止运动(同时点Q也停止运动).在这段时间内,当运动时间为时,线段.13.如图,在中,,、分别为和的角平分线,的周长为20,,则的长为.三、解答题(共7题,共61分)14.如图,直线y=x+2交x轴于点A,交y轴于点B,点P(x,y)是线段AB上一动点(与A,B不重合),△PAO的面积为S,求S与x的函数关系式,并写出自变量的取值范围.15.如图,在矩形中,,点P从点A沿向点B以的速度移动,同时点Q从点B沿边向点C以的速度移动.当其中一点达到终点时,另一点也随之停止.设P,Q两点移动的时间为,求:(1)当x为何值时,为等腰三角形;(2)当x为何值时,的面积为;(3)当x为何值时,为等腰三角形.16.通过实验研究发现:初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散学生注意力指标y随时间x(分钟)变化的函数图象如图所示,当0≤x<10和10≤x<20时,图象是线段;当20≤x≤45时,图象是反比例函数图象的一部分.(1)求点A对应的指标值(2)王老师在一节数学课上讲解一道数学综合题需要17分钟,他能否经过适当的安排,使学生在听这道综合题讲解时,注意力指标都不低于36?请说明理由.17.如图,在中,,,,,动点P 从点A 出发,沿方向以每秒6个单位长度的速度向终点B 运动,连结,作点A 关于的对称点,连结,.设点P 的运动时间为t 秒.(1)__________,__________;(2)连结,则的最小值为__________;(3)连结,当在边上时(不包括的顶点),求的长;(4)当时,直接写出的值.18.如图,在并联电路中,电源电压为U 总=6V ,根据“并联电路分流不分压”的原理得到:I 总=I 1+I 2(I 1=,I 2=).已知R 1为定值电阻,当R 变时,路电流I 总也会发生变化,且干路电流I 总与R之间满足如下关系:I 总=1+.(1)【问题理解】定值电阻R 1的阻值为Ω.(2)【数学活动】根据学习函数的经验,参照研究函数的过程与方法,对比反比例函数I 2=来探究函数I 总=1+的图象与性质.①列表:下表列出I 总与R 的几组对应值,请写出m 的值:m =▲.R…3456…I2=…2 1.5 1.21…I总=1+…3m 2.22…②描点、连线:在平面直角坐标系中,以①给出的R的取值为横坐标,以I总相对应的值为纵坐标,描出相应的点,并将各点用光滑曲线顺次连接起来.(3)【数学思考】=1+的图象是由I2=的图象向平移个单位而得观察图象发现:函数I总到.(4)【数学应用】若关于x的方程|1+|=kx+6在实数范围内恰好有两个解,直接写出k的值.19.已知点A(3,2)、点B(m,n)在反比例函数y=(x>0)图象上,点C是x轴上的一个动点.(1)求k的值;(2)若m=1,C(﹣1,0),试判断△ABC的形状,并说明理由;(3)若点C在x轴正半轴上,当△ABC为等腰直角三角形时,求出点C的坐标.20.如图,一次函数的图象与反比例函数的图象相交于点,与x轴交于点C,且.(1)求反比例函数与一次函数关系式;(2)线段AC上是否存在一点D,使以点O、C、D为顶点的三角形是等腰三角形,若存在请求出D点坐标;若不存在,请说明理由.(3)点P是x轴上一点,是否存在以点A、C、P为顶点的三角形与相似,若存在,请求出P点坐标;若不存在,请说明理由.答案解析部分1.【答案】B2.【答案】B3.【答案】D4.【答案】D5.【答案】A6.【答案】C7.【答案】D8.【答案】B9.【答案】9:1410.【答案】0.5或411.【答案】12.【答案】3或6或913.【答案】814.【答案】解:∵令y=x+2=0,解得:x=-4,∴点A的坐标为(-4,0),∵令x=0,得y=2,∴点B的坐标为(0,2),∴OA=4,OB=2,∵点P(x,y)是线段AB上一动点(与A,B不重合),∴点P的坐标可表示为(x,x+2),如图,作PC⊥AO于点C,∵点P(x,x+2)在第二象限,∴x+2>0∴PC=x+2∴S=AO•PC=×4×(x+2)=x+4.∴S与x的函数关系式为S=x+4(-4<x<0)15.【答案】(1)当时,是等腰三角形(2)x为1或5时,的面积为(3)x为或时,是等腰三角形16.【答案】(1)设当20≤x≤45时,反比例函数的表达式为y=",将C(20,45)代入,得45=-,解得k=900,∴反比例函数的表达式为y=当x=45时,y==20,∴D(45,20),∴A(0,20),即点A对应的指标值为20.(2)解:设当0≤x<10时,AB的表达式为y=mx+n,将A(0,20),B(10,45)代入,得,解得∴AB的表达式为y=x+20.当y≥36时,x+20≥36,解得x≥,∴≤x<10.当10≤x<20时,y显然大于36.当20≤x≤45时,由(1)得反比例函数的表达式为y=,当y≥36时,≥36,解得x≤25,∴20≤x≤25.综上,当≤x≤25时,注意力指标都不低于36,而25-=>17,∴张老师能经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于36.17.【答案】(1)90,10(2)(3)或(4)或18.【答案】(1)6(2)①2.5,②先描出点(3,3),(4,2.5),(5,2.2),(6,2),再顺次连接这些点即可画出所求函数图象,(3)上;1(4)由函数与方程的关系可知,当k<0时,y=|1+|,y=kx+6的函数图象在第一象限恰有一个交点时满足恰有两个实数解;∴1+=kx+6,化简得:kx2+5x﹣6=0,Δ=b2﹣4ac=25+24k=0,∴k=,当k>0时,y=|1+|,y=kx+6的函数图象在第二象限恰有一个交点时满足恰有两个实数解;∴-1-=kx+6,化简得:kx2+7x+6=0Δ=b2﹣4ac=49﹣24k=0,∴k=,当k=0时,y=|1+|,y=kx+6的图象恰好有两个交点.∴k=0或或.19.【答案】(1)解:∵点A(3,2)在反比例函数y=图象上,∴k=3×2=6.(2)解:∵点B(m,n)在反比例函数y=图象上,m=1,∴n=6,∴点B(1,6),∵A(3,2),C(-1,0),∴AB==2,AC==2,BC==2,∴AB=AC,AB2+AC2=BC2,∴△ABC的形状为等腰直角三角形.(3)解:①如图1,当∠ACB=90°时,过点A作AH⊥x轴于点H,过点B作BG⊥x轴于点G,∵A(3,2),∴OH=3,AH=2,又∵△ABC的形状为等腰直角三角形,∴AC=BC,∵∠AHC=∠ACB=∠BGC=90°,∴∠CAH=∠BCG,∴△AHC≌△CGB(AAS),∴CG=AH=2,CH=BG,设CH=BG=m,则OG=OH+HG=3+m+2=5+m,∴点B(5+m,m),∵点B在反比例函数y=图象上,∴m(5+m)=6,整理,解得:m=-6(舍去)或m=1,∴CH=BG=1,∴OC=4,∴C(4,0);②如图2,当∠CAB=90°时,过点B作BG⊥x轴于点G,再过点A作AE⊥GB的延长线交于点E,过点C作CD⊥EA的延长线于点D,同①方法,易证△ADC≌△BEA(AAS),∴CD=AE=2,AD=EB,设AD=EB=m,则OG=3+AE=5,BG=CD-EB=2-m,∴点B(5,2-m),∵点B在反比例函数y=图象上,∴5(2-m)=6,整理,解得:m=,∴AD=EB=,∴OC=OA-AD=3-=,∴C(,0);③如图3,当∠ABC=90°时,过点B作BG⊥x轴于点G,再过点A作AE⊥GB的延长线交于点E,同①方法,易证△AEB≌△BGC(AAS),∴AE=BG,EB=CG,∴EG=2,设EB=CG=m,则AE=BG=EG-EB=2-m,∴OG=3+2-m=5-m∴点B(2-m,5-m),∵点B在反比例函数y=图象上,∴(2-m)(5-m)=6,整理,解得:m=(舍去,不符合题意)或m=,∴EB=CG=,OG=,∴OC=OG-CG=-=-2,∴C(-2,0),综上所述,点C坐标为(4,0)或(,0)或(-2,0).20.【答案】(1)解:作轴于点B,由点可知,,,.又,,所以.即,所以,则,所以反比例函数与一次函数关系为,.(2)解:当时,,则,当时,点D在OC的垂直平分线上,故,当时,设,则,又,则,即,所以,综上,,或(3)解:存在.设,则,又,,则,则。

九年级数学《反比例函数》单元测试卷

九年级数学《反比例函数》单元测试卷

九年级数学《反比例函数》单元测试卷一、选择题1.(3分)下列表达式中,表示y是x的反比例函数的是()①;②y=3﹣6x;③;④(m是常数,m≠0)A.①②④B.①③④C.②③D.①③2.(3分)甲乙两地相距s,汽车从甲地以v(千米/时)的速度开往乙地,所需时间是t(小时),则正确的是()A.当t为定值时,s与v成反比例B.当v为定值时,s与t成反比例C.当s为定值时,v与t成反比例D.以上三个均不正确3.(3分)已知y=(m+1)x m﹣2是反比例函数,则函数图象在()A.第一,三象限B.第二,四象限C.第一,二象限D.第三,四象限4.(3分)函数y=的图象经过点(﹣4,6),则下列各点中在y=图象上的是()A.(3,8 )B.(﹣3,8)C.(﹣8,﹣3)D.(﹣4,﹣6)5.(3分)如图,P是反比例函数图象在第二象限上的一点,且矩形PEOF的面积为8,则反比例函数的表达式是()A.y=﹣B.y=C.y=D.y=﹣6.(3分)在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m3)是体积V(单位:m3)的反比例函数,它的图象如图所示,当V=10m3时,气体的密度是()A.5kg/m3B.2kg/m3C.100kg/m3D.1kg/m37.(3分)反比例函数y=(m﹣1),当x<0时,y随x的增大而增大,则m的值是()A.﹣1B.3C.﹣1或3D.28.(3分)反比例函数y=与正比例函数y=2x图象的一个交点的横坐标为1,则反比例函数的图象大致为()A.B.C.D.9.(3分)在反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当x1<x2<0时,有y1<y2,则m的取值范围是()A.m<0B.m>0C.m<D.m>10.(3分)直线y=﹣x﹣1与反比例函数(x<0)的图象交于点A,与x轴相交于点B,过点B作x轴垂线交双曲线于点C,若AB=AC,则k的值为()A.﹣2B.﹣4C.﹣6D.﹣8二、填空题11.(3分)反比例函数的图象经过点(﹣2,3),则此反比例函数的关系式是.12.(3分)写出一个图象位于第一、三象限的反比例函数的表达式:.13.(3分)已知反比例函数的图象经过点(3,2)和(m,﹣2),则m的值是.14.(3分)反比例函数的图象的两个分支关于对称.15.(3分)已知y与x成反比例,并且当x=2时,y=﹣1,则当y=3时,x的值是.16.(3分)如果反比例函数y=的图象位于第二,四象限内,那么满足条件的正整数k 是.17.(3分)如果点(a,﹣2a)在函数是的图象上,那么k0(填“>”或“<”).18.(3分)已知y=(m+1)是反比例函数,则m=.19.(3分)若函数y=4x与y=的图象有一个交点是(,2),则另一个交点坐标是.20.(3分)已知(x1,y1),(x2,y2)为反比例函数y=图象上的点,当x1<x2<0时,y1<y2,则k的一个值可为.(只需写出符合条件的一个k的值)三、解答题21.已知函数y=y1﹣y2,y1与x成反比例,y2与x﹣2成正比例,且当x=1时,y=﹣1;当x=3时,y=5,求y与x的函数关系式,并求当x=5时y的值.22.某气球内充满了一定质量的气球,当温度不变时,气球内气球的气压p(千帕)是气球的体积V(米2)的反比例函数,其图象如图所示.(千帕是一种压强单位)(1)写出这个函数的解析式;(2)当气球的体积为0.8立方米时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?23.某商场出售一批进价为2元的贺卡,在市场营销中发现,此商品的日销售单价x(单位:元)与日销售数量y(单位:张)之间有如下关系:销售单价x(元)3456日销售量y(张)20151210(1)根据表中数据在平面直角坐标系中描出实数对(x,y)的对应点;(2)确定y与x之间的函数关系式,并画出图象;(3)设销售此贺卡的日纯利润为w元,试求出w与x之间的函数关系式.若物价局规定该贺卡售价最高不超过10元/张,请你求出日销售单价x定为多少元时,才能获得最大日销售利润?24.已知一次函数y1=x+m的图象与反比例函数y2=的图象交于A、B两点.已知当x>1时,y1>y2;当0<x<1时,y1<y2.(1)求一次函数的解析式;(2)已知双曲线在第一象限上有一点C到y轴的距离为3,求△ABC的面积.。

反比例函数单元测试题及答案

反比例函数单元测试题及答案

反比例函数综合测试题一、选择题(每小题3分,共30分) 1、反比例函数y =xn 5+图象经过点(2,3),则n 的值是( ). A 、-2 B 、-1 C 、0 D 、12、若反比例函数y =xk(k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ).A 、(2,-1)B 、(-21,2) C 、(-2,-1) D 、(21,2) 3、(08双柏县)已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )4、若y 与x 成正比例,x 与z 成反比例,则y 与z 之间的关系是( ).A 、成正比例B 、成反比例C 、不成正比例也不成反比例D 、无法确定 5、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk满足( ). A 、当x >0时,y >0 B 、在每个象限内,y 随x 的增大而减小 C 、图象分布在第一、三象限 D 、图象分布在第二、四象限6、如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂 线PQ 交双曲线y =x1于点Q ,连结OQ ,点P 沿x 轴正方向运动时, Rt △QOP 的面积( ).A 、逐渐增大B 、逐渐减小C 、保持不变D 、无法确定 7、在一个可以改变容积的密闭容器内,装有一定质量m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变. ρ与V 在一定范围内满足ρ=Vm,它的图象如图所示,则该 气体的质量m 为( ).A 、1.4kgB 、5kgC 、6.4kgD 、7kg8、若A (-3,y 1),B (-2,y 2),C (-1,y 3)三点都在函数y =-x1的图象上,则y 1,y 2,y 3的大小关系是( ).A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 1=y 2=y 3D 、y 1<y 3<y 2 9、已知反比例函数y =xm21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ).A .B .C . .A 、m <0B 、m >0C 、m <21 D 、m >21 10、如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围 是( ).A 、x <-1B 、x >2C 、-1<x <0或x >2D 、x <-1或0<x <2 二、填空题(每小题3分,共30分)11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式为 . 12、已知反比例函数xky =的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而 (填“增大”或“减小”或“不变”). 13、若反比例函数y =x b 3-和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b = . 14、反比例函数y =(m +2)xm 2-10的图象分布在第二、四象限内,则m 的值为 .15、有一面积为S 的梯形,其上底是下底长的31,若下底长为x ,高为y ,则y 与x 的函数关系是 .16、如图,点M 是反比例函数y =xa(a ≠0)的图象上一点, 过M 点作x 轴、y 轴的平行线,若S 阴影=5,则此反比例函数解析 式为 .17、使函数y =(2m 2-7m -9)xm 2-9m +19是反比例函数,且图象在每个象限内y 随x 的增大而减小,则可列方程(不等式组)为 .18、过双曲线y =xk(k ≠0)上任意一点引x 轴和y 轴的垂线,所得长方形的面积为______.19. 如图,直线y =kx(k >0)与双曲线xy 4=交于A (x 1,y 1), B (x 2,y 2)两点,则2x 1y 2-7x 2y 1=___________.20、如图,长方形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为B (-320,5),D 是AB 边上的一点, 将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的 点E 处,若点E 在一反比例函数的图象上,那么该函数的解析 式是 .三、解答题(共60分) 21、(8分)如图,P 是反比例函数图象上的一点,且点P 到x 轴的距离为3,到y 轴的距离为2,求这个反比例函数的解析式.22、(10分)如图,已知反比例函数y =-x8与一次函数 y =kx +b 的图象交于A 、B 两点,且点A 的横坐标和点B 的 纵坐标都是-2. 求:(1)一次函数的解析式; (2)△AOB 的面积.25、(11分)如图,一次函数y =ax +b 的图象与反比例函数y =xk的图象交于M 、N 两点. (1)求反比例函数与一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.26、(12分)如图, 已知反比例函数y =xk的图象与一次函 数y =a x +b 的图象交于M (2,m )和N (-1,-4)两点. (1)求这两个函数的解析式; (2)求△MON 的面积;(3)请判断点P (4,1)是否在这个反比例函数的图象上, 并说明理由.参考答案:一、选择题1、D ;2、A ;3、C ;4、B ;5、D ;6、C7、D ;8、B ;9、D ; 10、D . 二、填空题11、y =x 1000; 12、减小; 13、5 ; 14、-3 ;15、y =xs 23 ; 16、y =-x 5; 17、⎩⎨⎧---=+-0972119922>m m m m ; 18、|k|; 19、 20; 20、y =-x 12.三、解答题 21、y =-x6. 22、举例:要编织一块面积为2米2的矩形地毯,地毯的长x (米)与宽y (米)之间的函数关系式为y =2(x >0).(只要是生活中符合反比例函数关系的实例均可)画函数图象如右图所示. 23、(1)过点A 作AD ⊥x 轴于D ,则OD =x 1,AD =y 1,因为点A (x 1,y 1)在双曲线y =x k 上,故x 1=1y k ,又在Rt △OAD 中,AD <OA <AD +OD ,所以y 1<OA <y 1+1y k; (2)△BOC 的面积为2. 24、(1)由已知易得A (-2,4),B (4,-2),代入y =kx +b 中,求得y =-x +2; (2)当y =0时,x =2,则y =-x +2与x 轴的交点M (2,0),即|OM|=2,于是S △AOB=S △AOM +S △BOM =21|OM|·|y A |+21|OM|·|y B |=21×2×4+21×2×2=6.25、(1)将N (-1,-4)代入y =xk ,得k =4.∴反比例函数的解析式为y =x 4.将M(2,m )代入y =x 4,得m =2.将M (2,2),N (-1,-4)代入y =ax +b ,得⎩⎨⎧-=+-=+.b a ,b a 422解得⎩⎨⎧-==.b ,a 22∴一次函数的解析式为y =2x -2.(2)由图象可知,当x <-1或0<x <2时,反比例函数的值大于一次函数的值.26、解(1)由已知,得-4=1-k ,k =4,∴y =x 4.又∵图象过M (2,m )点,∴m =24=2,∵y =a x +b 图象经过M 、N 两点,∴,422⎩⎨⎧-=+-=+b a b a 解之得,22⎩⎨⎧-==b a ∴y =2x -2.(2)如图,对于y =2x -2,y =0时,x =1,∴A (1,0),OA =1,∴S △MON =S △MOA +S △NOA =21OA ·MC +21OA ·ND =21×1×2+21×1×4=3. (3)将点P (4,1)的坐标代入y =x4,知两边相等,∴P 点在反比例函数图象上.。

2024-2025北师大版九年级(上)第六单元 反比例函数 单元测试卷(含答案)

2024-2025北师大版九年级(上)第六单元 反比例函数 单元测试卷(含答案)

第六单元反比例函数测试卷(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分,下列各小题均有四个答案,其中只有一个是正确的)1.下列函数中,y 是x 的反比例函数的是 ( )A. x(y-1)=1B.y =1x +1 C.y =1x2 D.y =13x 2.已知甲、乙两地相距s( km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度 v( km/h)的函数关系图象大致是 ( )3.已知反比例函数 y =kx(k ≠0)的图象经过点(2,3),若点(1,n)在反比例函数的图象上,则n 等于( )A.(-2,3)B.(-2,-3)C.(2,3)D.(3,2)5.已知反比例函数 y =−3x,则下列描述不正确的是 ( )A.图象位于第二、第四象限B.图象必经过点(-3,1)C.图象不可能与坐标轴相交D. y 随x 的增大而增大6.如果等腰三角形的面积为10,底边长为x ,底边上的高y ,则y 与x 的函数关系式为( )A.y =10xB.y =5xC.y =20xD.y =x 207.如图,在同一平面直角坐标系中,直线y =k ₁x (k ₁≠0)与双曲线y =k 2x(k 2≠0)相交于A ,B 两点,已知点 A 的坐标为(1,2),则点B 的坐标为 ( )A.(-1,-2) B.(-2,-1) C.(-1,-1) D.(-2,-2)8.如图所示,A ,B 是函数 y =1x的图象上关于原点O 的任意一对对称点,AC 平行于y 轴,BC平行于x 轴,△ABC 的面积为S ,则 ( )A. S=1 B. S=2 C.1<S<2 D. S>29.在同一直角坐标系中,函数y= kx-k 与 y =kx (k ≠0)的图象大致是 ( )10.如图,在第一象限内,A 是反比例函数y= k1x (k 1⟩0)图象上的任意一点,AB 平行于 y 轴交反比例函数 y =k 2x(k 2<0)的图象于点 B ,作以 AB 为边的平行四边形 ABCD,其顶点 C,D在 y 轴上,若 S ABCD =7,则这两个反比例函数可能是 ( )A.y =2x 和y =−3x B.y =3x 和y =−4x C.y =4x 和y =−5x D.y =5x和y =−6x 二、填空题(本大题共5小题,每小题3分,共15分)11.反比例函数 y =(m +2)x m 2−10的图象分布在第二、四象限内,则m 的值为 .12.若A(-2,y ₁),B(--1,y ₂),C(1,y ₃)三点都在函数 y =kx(k<0)的图象上,则 y ₁,y ₂,y ₃的大小关系是 (用“>”“<”或“=”连接)。

鲁教版数学九上第一章 反比例函数 单元测试卷

鲁教版数学九上第一章  反比例函数  单元测试卷

鲁教版九年级数学上册第一章《反比例函数》检测题一.选择题:1.下面四个关系式中,y 是x 的反比例函数的是( ) A .3y x =B .22y x =C .3y x=D .21y x=2.正比例函数y kx =与反比例函数k y x=在同一坐标系中的图象为( )A .B .C .D .3.反比例函数k y x=的图象经过点()1,3-,则k 的值为( ) A .3B .32C .32-D .3-4.在反比例函数1k y x-=的图象的每个象限内,y 随x 的增大而增大,则k 值可以是( ) A .-1B .1C .2D .35.对于反比例函数3y x =,下列说法错误的是( )A .图象经过点()1,3B .图象在第一、三象限C .0x >时,y 随x 的增大而增大D .x 0<时,y 随x 增大而减小 6.点()11,A x y 和点()22,B x y 是反比例函数()11k y k x-=≠图像上的两点,当120x x <<时,120y y <<,则k 的取值范围( ) A .1k >B .1k <C .0k >D .0k <7.在平面直角坐标系xOy 中,一次函数y =m (x ﹣1)(m >0)与y =m ﹣xm (m >0)都经过x 轴上一点A ,则m 的值是( ) A .1B .﹣1C .2D .﹣2ky x =8.已知反比例函数图象如图所示,下列说法正确的是( )A .k >0B .y 随x 的增大而减小C .若矩形OABC 面积为2,则k =﹣2D .若图象上两个点的坐标分别是 M (﹣2,y 1 ),N (﹣1,y 2 ),则 y 1>y 29.如图,两个反比例函数y =和y =在第一象限内的图象分别是C 1和C 2,设点P 在C 1上,P A ⊥x 轴于点A ,交C 2于点B ,则△POB 的面积为( ) A .1 B .2C .4D .无法计算10.已知函数6y x -=与y =﹣x+1的图象的交点坐标是(m ,n ),则11m n +的值为( ) A .﹣16B .16C .﹣6D .611.某学校要种植一块面积为100m 2的长方形草坪,要求两边长均不小于5m ,则草坪的一边长为y (单位:m )随另一边长x (单位:m )的变化而变化的图象可能是( )A .B .C .D .12.如图,在AOBC 中,对角线AB OC 、交于点E ,双曲线ky x=经过AE 、两点,若AOBC 的面积为18,则k 的值是( )A .5 B .6 C .7 D .8二、填空题: 13.函数是y 关于x 的反比例函数,则m = .14.如果点A(1,m)与点B(3,n)都在反比例函数y=3x(k >0)的图象上,那么代数式m -3n +6的值为 .15.已知反比例函数y=k x与一次函数y=2x+k 的图象的一个交点的纵坐标是-4,则k 的值是 .16.已知如图,()40A -,,()14C -,,过点C 作DB x ⊥轴,垂足为B (D 在C 上方),AF 平分BAC CE ∠,平分ACD ∠,直线EC 交射线AF 于点F .若反比例函数k y x=(0x >)的图像经过点F ,则k 的值为 .17.如图,矩形ABCD 的对角线经过原点,各边分别平行于坐标轴,点C 在反比例函数y=2k 5kx-的图象上.若点A 的坐标为(﹣2,﹣3),则k 的值为 .121221 2AOB k k y y k k AB x x xA B S k k ==18.如图,是反比例函数和(<)在第一象限的图象,直线∥轴,并分别交两条曲线于、两点,若=,则﹣的值为 _______.三、解答题:19.已知y +1与x 成反比例函数关系,且x =4时,y =2.(1)求y 与x 之间的函数关系式; (2)当x =﹣2时,求y 的值.20.已知反比例函数y =5m x-的图象位于第一、三象限. (1)求m 的取值范围;(2)若该反比例函数的图像与一次函数y =x +1的图象的交点为A (2,n ),求m 的值.21.如图,一次函数与反比例函数的图象在第一、三象限分别交于A (6,2),B (﹣3,n )两点,连接OA ,OB . (1)求一次函数和反比例函数的表达式;(2)根据图象,直接写出一次函数值大于反比例函数值时x 的取值范围.22.如图所示,函数1(0)y x x =≥,24(0)y x x=>的图象交于点A . (1)求出A 点的坐标;(2)直线1x =与函数1y ,2y 的图象交于点C 、B 两点,求BC 的长度.23.如图,一次函数112y x =-的图象与反比例函数(0)k y k x=≠的图象交于()(),12,A a B b -,两点,与x 轴相交于点C .(1)求反比例函数的表达式;(2)若(),0P m 为x 轴上的一动点,连接AP ,当APC △的面积为52时,求点P 的坐标.。

第六章反比例函数 单元测试 2024-2025学年北师大版数学九年级上册

第六章反比例函数 单元测试 2024-2025学年北师大版数学九年级上册

第六章反比例函数(单元测试)2024-2025学年九年级上册数学北师大版一、单选题1.反比例函数y =mx的图象如图所示,以下结论:①常数m <﹣1;②在每个象限内,y 随x 的增大而增大;③若点A(﹣1,h),B(2,k)在图象上,则h <k ;④若点P(x ,y)在上,则点P′(﹣x ,﹣y)也在图象.其中正确结论的个数是()A .1B .2C .3D .42.如图,Rt AOC 的直角边OC 在x 轴上,90ACO ∠=︒,反比例函数3y x=经过AC 的中点D ,则AOC △的面积为()A .2B .3C .4D .63.如图,正比例函数11y k x =的图象与反比例函数22k y x=的图象相交于A ,B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是()A .2x <-或2x >B .22x -<<C .20x -<<或02x <<D .20x -<<或2x >4.若函数()54m y m x -=+是反比例函数,则m 的值为()A .4B .4-C .4或4-D .05.关于反比例函数1y x=,下列说法不正确的是()A .函数图象分别位于第二、四象限B .函数图象关于原点成中心对称C .函数图象经过点()11,D .当x >0时,y 随x 的增大而减小6.已知正比例函数()0y mx m =≠的图象与反比例函数()0ky k x=≠的图象的一个交点坐标为()24,,则它们的另一个交点坐标是()A .()24-,B .()42,C .()24-,D .()24--,7.反比例函数y 1=kx和正比例函数y 2=mx 的图象如图,根据图象可以得到满足y 1<y 2的x 的取值范围是()A .x >1B .-<x <1或x <-1C .-1<x <0或x >1D .x >2或x <18.在函数(0)ky k x=>的图象上有1122,,A x y B x y ()、()两点,已知120x x <<,则下列各式中,正确的是()A .12y y <B .120y y <<C .12y y >D .120y y >>9.如图,在平面直角坐标系中,函数6y x =-(0x <)与23y x =-+的图像交于点(),P a b ,则代数式12a b+的值为()A .12-B .12C .2-D .210.反比例函数(0)ky k x=>图象上有三个点()()()112233,,,,,A x y B x y C x y ,其中1230x x x <<<,则123,,y y y 的大小关系是()A .123y y y <<B .231y y y <<C .321y y y <<D .132y y y <<二、填空题11.如图,正方形ABOC 的边长为2,反比例函数y=kx过点A ,则k 的值是.12.如图,在平面直角坐标系中有Rt ABC ,90BAC ∠=︒,45B ∠=︒,A (3,0)、C (1,12),将ABC V 沿x 轴的负方向平移,在第二象限内B 、C 两点的对应点1B 、1C 正好落在反比例函数ky x=的图象上,则k =.13.写出一个反比例函数y =kx(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而增大,这个函数的解析式为.14.正比例函数1y k x =的图象经过点()1,2A -和点(),4B m -,反比例函数2k y x=的图象经过点B ,则此反比例函数的解析式为.15.已知点()())1232,1,3A y B y y --,,,都在反比例函数4y x=的图像上,用“<”表示123,,y y y 的大小关系:16.A 、B 两地相距120千米,一辆汽车从A 地去B 地,则其速度v (千米/时)与行驶时间t (小时)之间的函数关系可表示为;17.已知直线(0)y mx m =≠与反比例函数(0)ky k x=≠的图象的一个交点坐标为()3,4,则它们的另一个交点坐标为.18.反比例函数2y x-=(0)x >的图象经过第象限,y 随x 的增大而;19.如图,第一象限内的点E 在反比例函数(0)ky k x=≠的图象上,点F 在x 轴的正半轴上,O 是坐标原点,若EO EF =,EOF 的面积等于2,则k =.20.定义:若一个矩形中,一组对边的两个三等分点...........在同一个反比例函数ky x=的图象上,则称这个矩形为“奇特矩形”.如图,在直角坐标系中,矩形ABCD 是第一象限内的一个“奇特矩形”、且点()4,2A ,()7,2D ,则AB 的长为.三、解答题21.如图:一次函数y ax b =+的图象与反比例函数ky x=的图象交于(2,)A m 、(1,6)B --两点.(1)求反比例函数和一次函数的解析式;(2)求AOB V 的面积;(3)根据图象直接写出,当x 为何值时,0kax b x+->.22.九年级某数学兴趣小组研究了函数2y x=的图象与性质,其探究过程如下:(1)绘制函数图象,如图1.列表:下表是x 与y 的几组对应值,其中m =_________;x…3--2-112-12123…y…2312442m23…描点:根据表中各组对应值(),x y ,在平面直角坐标系中描出了各点;连线:用平滑的曲线顺次连接各点,画出了部分图象.请你把图象补充完整;(2)通过观察图1,写出该函数的两条性质:①___________________;②___________________;(3)①观察发现:如图2,若直线2y =交2y x=的图象于A ,B 两点,连接OA ,OB ,则OAB S =△___________;②探究思考:将①中“直线2y =”改为“直线()0y a a =>”,其他条件不变,则OAB S =△___________;③类比猜想:若直线()0y a a =>交函数()0ky k x=>的图象于A ,B 两点,连接OA ,OB ,则OAB S =△___________.23.一次函数y kx b =+的图象经过点()A 2,0,且与二次函数2y ax =的图象相交于B 、()C 2,4-两点.(1)求这两个函数的表达式及B 点的坐标;(2)在同一坐标系中画出这两个函数的图象,并根据图象回答:当x 取何值时,一次函数的函数值小于二次函数的函数值;(3)求△BOC 的面积.24.如图,一次函数()1y kx b k 0=+≠与反比例函数()2my m 0x=≠的图像交于点()1,2A 和(),1B a -,与y 轴交于点M .(1)求一次函数和反比例函数的解析式.(2)在x 轴上求一点N ,当ABN 的面积为3时,则点N 的坐标为______.(3)将直线1y 向下平移2个单位后得到直线3y ,当函数值123y y y >>时,求x 的取值范围.25.商场出售一批进价为2元的贺卡,在市场营销中发现此商品日销售单价x (元)与日销售量y (张)之间有如下关系:x /元3456y /张20151210(1)写出y 关于x 的函数解析式______;(2)设经营此贺卡的日销售利润为W (元),试求出W 关于x 的函数解析式,若物价局规定此贺卡的日销售单价最高不能超过10元/张,请你求出当日销售单价x 定为多少元时,才能获得最大日销售利润,并求出最大日销售利润.参考答案:1.B 2.B 3.D 4.A 5.A 6.D 7.C 8.D 9.A 10.D 11.-412.53-/213-13.1y x=-(答案不唯一)14.8y x=-15.213y y y <<16.v =120t17.()3,4--18.四增大19.220.95或1321.(1)6y x=;33y x =-;(2)92;(3)10x -<<或2x >.22.(1)1(2)①函数的图象关于y 轴对称(答案不唯一);②当0x <时,y 随x 的增大而增大,当0x >时,y 随x 的增大而减小(答案不唯一)(3)①2;②2;③k23.(1)y =﹣x +2,y =x 2,B (1,1);(2)2x <-或>1;(3)324.(1)11y x =+,22y x=(2)()1,0或()3,0-(3)2<<1x --或12x <<25.(1)60y x=(2)W =60﹣120x,当日销售单价x 定为10元时,才能获得最大日销售利润,最大日销售利润为48元.。

人教版九年级数学下册《第26章 反比例函数》单元测试卷-带参考答案

人教版九年级数学下册《第26章 反比例函数》单元测试卷-带参考答案

人教版九年级数学下册《第26章 反比例函数》单元测试卷-带参考答案(考试时间:90分钟 试卷满分:100分)一、选择题:(本大题共10小题,每小题3分,满分30分) 1.在下列函数中,y 是x 的反比例函数的是( ) A .2y x = B .2x y =C .2y x=D .21yx【答案】C【详解】A .该函数是正比例函数,故本选项错误; B .该函数是正比例函数,故本选项错误; C .该函数符合反比例函数的定义,故本选项正确; D .y 是()1x -的反比例函数,故本选项错误; 故选:C . 2.若双曲线(0)ky k x=<,经过点()12,A y -,()25,B y -则1y 与2y 的大小关系为( ) A .12y y < B .12y y > C .12y y = D .无法比䢂1y 与2y 的大小 【答案】B【详解】解: (0)ky k x=< ∴ 在同一象限内,y 随着x 的增大而增大即可求解()12,A y -,()25,B y -都在第二象限,且25->-∴12y y >.故选:B .3.已知反比例函数4y x=,则它的图象经过点( ) A .(2,8) B .(1,4)- C .(4,1) D .(2,2)-【答案】C【详解】解:由反比例函数4y x=可得:4xy = 2816⨯=,故A 选项不符合题意; 144-⨯=-,故B 选项不符合题意; 414⨯=,故C 选项符合题意;()224⨯-=-,故D 选项不符合题意.故选:C4.反比例函数5m y x-=的图象在第一、三象限,则m 的取值范围是( ) A .5m ≥ B .5m > C .5m ≤ D .5m <【答案】B【详解】解:∵反比例函数5m y x-=图象在第一、三象限 50m ∴->解得5m >. 故选:B5.如图,一次函数1y ax b 的图象与反比例函数2ky x=图象交于()2,A m 、()1,B n -两点,则当12y y >时,x 的取值范围是( )A .1x <-或2x >B .10x -<<或2x >C .12x -<<D .1x <-或02x <<【答案】B【详解】解:∵图象交于()2,A m 、()1,B n -两点 ∵当12y y >时,10x -<<或2x >. 故选B .6.若0ab >,则反比例函数aby x=与一次函数y ax b =+在同一坐标系中的大致图象可能是( )A .B .C .D .【答案】A【详解】解:0ab > ∴aby x=的图象在第一、三象限,排除B ,D ; 0ab >∴a ,b 同号当0a >,0b >时,y ax b =+的图象经过第一、二、三象限 当a<0,0b <时,y ax b =+的图象经过第二、三、四象限 综上可知,只有A 选项符合条件 故选A .7.在平面直角坐标系中,若反比例函数()0ky k x=≠的图像经过点()1,2A 和点()2,B m -,则m 的值为( ) A .1 B .1- C .2 D .2-【答案】B【详解】解:根据题意,将点()1,2A 代入()0ky k x =≠中得:21k =解得:2k =∵反比例函数解析式为2y x =将()2,B m -代入2y x =中得212m ==--故选:B .8.如图1是一个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图2是该台灯的电流(A)I 与电阻()R Ω成反比例函数的图像,该图像经过点()880,0.25P .根据图像可知,下列说法正确的是( )A .当0.25I <时,880R <B .I 与R 的函数关系式是()2000I R R=> C .当1000R >时,0.22I >D .当8801000R <<时,I 的取值范围是0.220.25I <<【答案】D【详解】解:设I 与R 的函数关系式是(0)UI R R=>∵该图像经过点()880,0.25P ∵0.25880U= ∵220U =∵I 与R 的函数关系式是220(0)I R R=>,故选项B 不符合题意; 当0.25I =时,880R =,当1000R =时0.22I = ∵反比例函数(0)UI R R=>I 随R 的增大而减小 当0.25R <时880I >,当1000R >时0.22I <,故选项A ,C 不符合题意; ∵0.25R =时880I =,当1000R =时0.22I =∵当8801000R <<时,I 的取值范围是0.220.25I <<,故D 符合题意; 故选:D .9.正比例函数y x =与反比例函数1y x=的图象相交于A 、C 两点,AB x ⊥轴于点B ,CD x ⊥轴于点D (如图),则四边形ABCD 的面积为( )A .1B .32C .2D .52【答案】C【详解】解:解方程组1y xy x =⎧⎪⎨=⎪⎩,得:11x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩ 即:正比例函数y x =与反比例函数1y x=的图象相交于两点的坐标分别为(1,1)A (1,1)C -- ∵AB x ⊥ CD x ⊥ ∵(1,0)D - (1,0)B ∵1111212122222四边形=⋅+⋅=⨯⨯+⨯⨯=ABCD S BD AB BD CD 即:四边形ABCD 的面积是2. 故选:C10.如图,正方形ABCD 的顶点分别在反比例函数11(0)k y k x=>和22(0)ky k x =>的图象上.若BD y ∥轴,点C 的纵坐标为4,则12k k +=( )A .32B .30C .28D .26【答案】A【详解】解:连接AC 交BD 于E ,延长BD 交x 轴于F ,连接OD 、OB 如图:四边形ABCD 是正方形AE BE CE DE ∴===设AE BE CE DE m ==== (,4)C aBD y ∥轴(,4)B a m m ∴++ (2,4)A a m + (,4)D a m m +-A ,B 都在反比例函数11(0)k y k x=>的图象上 14(2)(4)()k a m m a m ∴=+=++0m ≠4m a ∴=- (4,8)B a ∴-()4,D a(4,8)B a -在反比例函数11(0)k y k x=>的图象上,(4,)D a 在22(0)ky k x =>的图象上14(8)324k a a ∴=-=- 24k a =12324432k k a a ∴+=-+=;故选:A .二、填空题:(本大题共6小题,每小题3分,满分18分)11.已知反比例函数(0)ky kx=≠ 当x = y =- 则比例系数k 的值是______.【答案】4-【详解】解:把x = y =-4k =-=-;故答案为4-.12.如图 若反比例函数(0)ky x x=<的图像经过点A AB x ⊥轴于B 且AOB 的面积为5 则k =______.【答案】10-【详解】解:∵反比例函数(0)ky x x=<的图像经过点A AB OB ⊥ ∵设,k A a a ⎛⎫ ⎪⎝⎭∵12AOB k S a a=△ ∵反比例函数的图像在第二象限 ∵0k < a<0 则0ka> ∵11522AOB k S a k a ===△ ∵10k =- 故答案为:10-. 13.已知反比例函数3ky x-=的图像在每一个象限内 y 随x 的增大而增大 则k 的取值范围是_____.【答案】3k >##3k < 【详解】解:∵反比例函数3ky x-=的图像在每一个象限内 y 随x 的增大而增大 ∵30k -< ∵3k >.故答案为:3k >.14.如图 点M 和点N 分别是反比例函数a y x =(0x <)和by x=(0x >)的图象上的点MN x ∥轴 点P 为x 轴上一点 若4b a -= 则MNP S △的值为_______.【答案】2【详解】解:如图 连接,OM ON∵MN x ∥轴 ∵ ||||22MNP MNO a b S S ∆∆==+ ∵点M 和点N 分别是反比例的数(0)ay x x =<和(0)b y x x=> 的图象上的点 ∵0,0a b <> ∵||||4222222a b a b b a -+=-+== ∵2MNP S =△; 故答案为:2.15.已知点(3,)C n 在函数ky x=(k 是常数 0k ≠)的图象上 若将点C 先向下平移2个单位 再向左平移4个单位 得点D 点D 恰好落在此函数的图象上 n 的值是______. 【答案】12##0.5【详解】解:点(3,)C n 向下平移2个单位 再向左平移4个单位得(,)n --12; ∵(,)D n --12 ∵点C 、点D 均在函数k y x=上 ∵3k n = ()k n =--2 ∵()n n =--32 解得:12n =故答案为:1216.如图 正方形ABCD 的边长为5 点A 的坐标为(4,0) 点B 在y 轴上 若反比例函数(0)ky k x=≠的图象过点C 则k 的值为_______.【答案】3-【详解】解:如图 过点C 作CE y ⊥轴于E 在正方形ABCD 中 AB BC = 90ABC ∠=︒90ABO CBE ∴∠+∠=︒ 90OAB ABO ∠+∠=︒ OAB CBE ∴∠=∠点A 的坐标为(4,0)4∴=OA 5AB =3OB ∴= 在ABO 和BCE 中OAB CBE AOB BEC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABO BCE ∴≌4OA BE ∴== 3CE OB ==431OE BE OB ∴=-=-= ∴点C 的坐标为(3,1)-反比例函数(0)ky k x=≠的图象过点C 313k xy ∴==-⨯=-故答案为:3-.三、解答题(本大题共6题 满分52分) 17.(8分)已知反比例函数12y x=-. (1)说出这个函数的比例系数和自变量的取值范围. (2)求当3x =-时函数的值.(3)求当y =x 的值. 【答案】(1)12,0k x =-≠ (2)4(3)【详解】(1)解:∵12y x=- ∵12,0k x =-≠;(2)解:把3x =- 代入12y x =-得:1243y =-=-; ∵当3x =-时函数的值为:4;(3)解:把y = 代入12y x =-得:12x - 解得:43x ;∵当y =x 的值为:18.(9分)已知一次函数y =kx +b 与反比例函数y mx=的图像交于A (﹣3 2)、B (1 n )两点.(1)求一次函数和反比例函数的表达式; (2)求∵AOB 的面积;(3)结合图像直接写出不等式kx +b mx>的解集. 【答案】(1)一次函数的解析式为y =﹣2x ﹣4 反比例函数的解析式为y 6x=- (2)8(3)x <﹣3或0<x <1【详解】(1)解:∵反比例函数y mx =的图象经过点A (﹣3 2)∵m =﹣3×2=﹣6∵点B (1 n )在反比例函数图象上 ∵n =﹣6. ∵B (1 ﹣6)把A B 的坐标代入y =kx +b 则326k b k b -+=⎧⎨+=-⎩ 解得k =﹣2 b =﹣4∵一次函数的解析式为y =﹣2x ﹣4 反比例函数的解析式为y 6x=-; (2)解:如图 设直线AB 交y 轴于C则C (0 ﹣4)∵S △AOB =S △OCA +S △OCB 12=⨯4×312+⨯4×1=8; (3)解:观察函数图象知 不等式kx +b mx>的解集为x <﹣3或0<x <1. 19.(6分)某气球内充满一定质量的气体 当温度不变时 气球内气体的压强(kPa)p 与气体的体积()3m V 成反比例.当气体的体积30.8m V =时 气球内气体的压强112.5kPa p =.(1)当气体的体积为31m 时 它的压强是多少?(2)当气球内气体的压强大于150kPa 时 气球就会爆炸.问:气球内气体的体积应不小于多少气球才不会爆炸?【答案】(1)当气体的体积为31m 时 它的压强是90kPa (2)当气球内气体的体积应不小于30.6m 时 气球才不会爆炸 【详解】(1)解:设k V p=由题意得:0.8112.5k= ∵90k = ∵90V p=∵当1V =时 90p =∵当气体的体积为31m 时 它的压强是90kPa ; (2)解:当150p =时 900.6150V == ∵900k =>∵V 随p 的增大而增大∵要使气球不会爆炸 则0.6V ≥∵当气球内气体的体积应不小于30.6m 时 气球才不会爆炸.20.(9分)如图 一次函数28y x =-+与函数(0)ky x x=>的图像交于(,6)A m (,2)B n 两点 AC y ⊥轴于C BD x ⊥轴于D .(1)求k 的值;(2)连接OA OB 求AOB 的面积;(3)在x 轴上找一点P 连接AP BP 使ABP 周长最小 求点P 坐标. 【答案】(1)6 (2)8 (3)5,02⎛⎫ ⎪⎝⎭【详解】(1)解:∵一次函数28y x =-+与函数(0)k y x x=>的图像交于(,6)A m (,2)B n 两点 ∵628m =-+ 228n =-+ 解得1m = 3n = ∵点(1,6)A (3,2)B 代入反比例函数得 61k= ∵616k =⨯=.(2)解:如图所示设一次函数图像与x 轴的交点为M 在一次函数28y x =-+中 令0y = 则4x = ∵(4,0)M 且(1,6)A (3,2)B∵114642822AOB AOM BOM S S S =-=⨯⨯-⨯⨯=△△△.(3)解:已知(1,6)A (3,2)B 则点A 关于x 轴的对称点A '的坐标(1,6)- 如图所示 A P AP '= 则ABP 的周长为AP BP AB A P BP AB '++=++设直线BA '的解析式为y kx b =+将点(3,2)B 、(1,6)A '-代入 得326k b k b +=⎧⎨+=-⎩解得410k b =⎧⎨=-⎩ ∵直线BA '的解析式为410=-y x 当0y =时 则4100x -= 解方程得 52x = ∵点P P 的坐标为5,02⎛⎫⎪⎝⎭.21.(10分)已知一次12y x a =-+的图象与反比例函数()20ky k x=≠的图象相交. (1)判断2y 是否经过点(),1k .(2)若1y 的图象过点(),1k 且25a k +=. ∵求2y 的函数表达式.∵当0x >时 比较1y 2y 的大小. 【答案】(1)过 (2)∵21=y x;∵当01x <<时 12y y < 当1x >时 12y y > 当1x =时 12y y = 【详解】(1)∵()20ky k x =≠∵把点(),1k 代入反比例函数 得1kk= ∵2y 经过点(),1k . (2)①∵1y 的图象过点(),1k∵把点(),1k 代入12y x a =-+ 得12k a =-+ 又∵25a k += ∵解得2a = 1k = ∵21=y x∵2y 的函数表达式为:21=y x②如图所示:由函数图象得 当01x <<时 12y y <;当1x >时 12y y >;当1x =时 12y y =.22.(10分)图1 已知双曲线(0)ky k x=>与直线y k x '=交于A 、B 两点 点A 在第一象限 试回答下列问题:(1)若点A 的坐标为(3,1) 则点B 的坐标为 ;(2)如图2 过原点O 作另一条直线l 交双曲线(0)ky k x=>于P Q 两点 点P 在第一象限.∵四边形ABPQ 一定是 ;∵若点A 的坐标为(3,1) 点P 的横坐标为1 求四边形ABPQ 的面积.(3)设点A 、P 的横坐标分别为m 、n 四边形ABPQ 可能是矩形吗?可能是正方形吗?若可能 直接写出m 、n 应满足的条件;若不可能 请说明理由. 【答案】(1)(3,1)-- (2)∵平行四边形;∵16(3)mn k =时 四边形ABPQ 是矩形 不可能是正方形 理由见解析 【详解】(1)A 、B 关于原点对称 (3,1)A ∴点B 的坐标为(3,1)--故答案为:(3,1)--(2)∵A 、B 关于原点对称 P 、Q 关于原点对称 ∴OA OB = OP OQ = ∴四边形ABPQ 是平行四边形故答案为:平行四边形 ∵点A 的坐标为(3,1) ∴313k =⨯=∴反比例函数的解析式为3y x=点P 的横坐标为1 ∴点P 的纵坐标为3∴点P 的坐标为(1,3)由双曲线关于原点对称可知 点Q 的坐标为(1,3)-- 点B 的坐标为(3,1)--如图 过点A 、B 分别作y 轴的平行线 过点P 、Q 分别作x 轴的平行线 分别交于C 、D 、E 、F则四边形CDEF 是矩形 6CD = 6DE = 4DB DP == 2CP CA ==则四边形ABPQ 的面积=矩形CDEF 的面积-ACP △的面积-PDB △的面积-BEQ 的面积-AFQ △的面积36282816=----=(3)当AB PQ ⊥时四边形ABPQ 是正方形 此时点A 、P 在坐标轴上 由于点A P 不可能在坐标轴上且都在第一象限故不可能是正方形 即90POA ∠≠︒ PO AO BO QO ===时 四边形ABPQ 是矩形此时P 、A 关于直线y x =对称 即22k k m n m n ++=化简得mn k =∴mn k =时 四边形ABPQ 是矩形 不可能是正方形。

第二十六章 反比例函数数学九年级下册-单元测试卷-人教版(含答案)

第二十六章 反比例函数数学九年级下册-单元测试卷-人教版(含答案)

第二十六章反比例函数数学九年级下册-单元测试卷-人教版(含答案)一、单选题(共15题,共计45分)1、下列语句.①横坐标与纵坐标互为相反数的点在直线y=-x上;②直线y=-x+2不经过第三象限;③除了用有序实数对,我们也可以用方向和距离来确定物体的位置;④若点P的坐标为(a,b),且ab=0,则P点是坐标原点;⑤函数中y的值随x的增大而减小.其中叙述正确的有()A.2个B.3个C.4个D.5个2、反比例函数的图象如图所示,则K的值可能是()A. B.1 C.2 D.-13、如图,反比例函数的图象与矩形ABCO的边AB、BC相交于E、F两点,点A、C 在坐标轴上.若,则四边形OEBF的面积为()A.1B.2C.3D.44、设P是函数在第一象限的图象上的任意一点,点P关于原点的对称点为P′,过P作PA平行于y轴,过P′作P′A平行于x轴,PA与P′A交于A点,则△PAP′的面积()A.随P点的变化而变化B.等于1C.等于2D.等于45、若反比例函数y=﹣的图象上有3个点A(x1, y1),B(x2, y2),C(x3,y3),且满足x1<x2<0<x3,则y1、y2、y3的大小关系是()A.y3<y2<y1B.y3<y1<y2C.y1<y2<y3D.y2<y1<y36、已知点A(1,2)在反比例函数y=的图象上,则该反比例函数的解析式是( )A.y=B.y=C.y=D.y=2x7、关于函数,下列说法中错误的是()A.函数的图象在第二、四象限B. 的值随值的增大而增大C.函数的图象与坐标轴没有交点D.函数的图象关于原点对称8、已知反比例函数y=﹣,下列各点中,在其图象上的有()A.(﹣2,﹣3)B.(2,3)C.(2,﹣3)D.(1,6)9、已知蓄电池的电压U为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.若此蓄电池为某用电器的电源,限制电流不能超过12A,那么用电器的可变电阻R应控制在什么范围?()A.R≥3ΩB.R≤3ΩC.R≥12ΩD.R≥24Ω10、已知双曲线y=过点A(1,1),那么过点A的直线y=kx+b经过()A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限11、如图,一块含有30°的直角三角板的直角顶点和坐标原点重合,30°角的顶点在反比例函数的图象上,顶点B在反比例函数的图象上,则k的值为()A.-4B.4C.-6D.612、反比例函数是y= 的图象在()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限13、在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度(单位:)与体积(单位:)满足函数关系式(为常数,),其图象如图所示,则的值为()A. B. C. D.14、如图,A、B两点在双曲线上,分别经过点A、B两点向x、y轴作垂线段,已知,则( )A.6B.5C.4D.315、已知y=2x,z=,那么z与x之间的关系是()A.成正比例B.成反比例C.有可能成正比例有可能成反比例D.无法确定二、填空题(共10题,共计30分)16、如图,点A是反比例函数(x>0)图象上一点,过点A作x轴的平行线,交反比例函数(x>0)的图象于点B,连接OA、OB,若△OAB的面积为2,则k的值为________.17、如图,已知点A的坐标为(,3),AB⊥x轴,垂足为B,连接OA,反比例函数y= (k>O,x>O)的图象与线段OA、OB分别交于点C、D,过点C作CE⊥x轴于E.若AB=3BD,则△COE的面积为________.18、某公司有500吨煤,这些煤所用天数y(天)与平均每天用煤量x(吨)的函数解析式为________ ,自变量x的取值范围是________ .19、如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数y =的图象交于A,B两点,则四边形MAOB的面积为________.20、为预防传染病,某校定期对教室进行“药熏消毒”,已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(分钟)成正比例;燃烧后,y与x成反比例(如图所示).现测得药物10分钟燃烧完,此时教室内每立方米空气含药量为6mg.研究表明当每立方米空气中含药量低于1.2mg时,对人体方能无毒害作用,那么从消毒开始,至少需要经过________分钟后,学生才能回到教室.21、如图,直线与轴、轴分别相交于点A,B,四边形ABCD是正方形,曲线在第一象限经过点D,则=________.22、若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则这个反比例函数的表达式为________23、司机老王驾驶汽车从甲地去乙地,他以80km/h的平均速度用6h达到目的地.当他按原路匀速返回时,汽车的速度v与时间t之间的函数关系式为________ .24、已知y与 2x成反比例,且当x=3时,y=,那么当x=2时,y=________,当y=2时,x=________ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例函数综合检测题
一、选择题(每小题3分,共30分)
1、反比例函数y=
x
n5
图象经过点(2,3),则n的值是().
A、-2
B、-1
C、0
D、1
2、若反比例函数y=
x
k
(k≠0)的图象经过点(-1,2),则这个函数的图象一定经过点().
A、(2,-1)
B、(-
2
1
,2)C、(-2,-1)D、(
2
1
,2)
3、(08双柏县)已知甲、乙两地相距s(km),汽车从甲地匀速行驶到乙地,则汽车行驶的
时间t(h)与行驶速度v(km/h)的函数关系图象大致是()
第6题图
4、若y与x成正比例,x与z成反比例,则y与z之间的关系是().
A、成正比例
B、成反比例
C、不成正比例也不成反比例
D、无法确定
5、一次函数y=kx-k,y随x的增大而减小,那么反比例函数y=
x
k
满足().
A、当x>0时,y>0
B、在每个象限内,y随x的增大而减小
C、图象分布在第一、三象限
D、图象分布在第二、四象限
6、如图,点P是x轴正半轴上一个动点,过点P作x轴的垂线PQ交双曲线y=
x
1
于点Q,
连结OQ,点P沿x轴正方向运动时,Rt△QOP的面积().
A、逐渐增大
B、逐渐减小
C、保持不变
D、无法确定
第7题图第10题图第16题图第19题图
7、在一个可以改变容积的密闭容器内,装有一定质量m的某种气体,当改变容积V时,气
体的密度ρ也随之改变.ρ与V在一定范围内满足ρ=
V
m
,它的图象如图所示,则该
气体的质量m为().A、B、5kg C、D、7kg
8、若A(-3,y1),B(-2,y2),C(-1,y3)三点都在函数y=-
x
1
的图象上,则y1,
y2,y3的大小关系是().
A、y1>y2>y3
B、y1<y2<y3
C、y1=y2=y3
D、y1<y3<y2
Q
p x
y
o t/h
O
t/h
O
t/h
O
t/h
v/(km/h
O
A.B.C..
9、已知反比例函数y =
x
m
21-的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ).A 、m <0 B 、m >0 C 、m <21 D 、m >2
1
10、如图,一次函数与反比例函数的图象相交于A 、B 两
点,则图中使反比例函数的值小于一次函数的值的x 的取值范围 是( ).A 、x <-1 B 、x >2 C 、-1<x <0或x >2 D 、x <-1或0<x <2
二、填空题(每小题3分,共30分)
11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式为 . 12、已知反比例函数x
k
y =
的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而 (填“增大”或“减小”或“不变”).
13、若反比例函数y =x
b 3
-和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐
标为6,则b = . 14、反比例函数y =(m +2)x m
2
-10
的图象分布在第二、四象限内,则m 的值为 .
15、有一面积为S 的梯形,其上底是下底长的3
1
,若下底长为x ,高为y ,则y 与x 的函数关系是 . 16、如图,点M 是反比例函数y =
x
a
(a ≠0)的图象上一点,过M 点作x 轴、y 轴的平行线,若S 阴影=5,则此反比例函数解析式为 . 17、使函数
y =(2m 2-7m -9)x m
2
-9m +19
是反比例函数,且图象在每个象限内y 随x 的增
大而减小,则可列方程(不等式组)为 .
18、过双曲线y =x
k
(k ≠0)上任意一点引x 轴和y 轴的垂线,所得长方形的面积为______. 19. 如图,直线y =kx(k >0)与双曲线x
y 4
=
交于A (x 1,y 1),B (x 2,y 2)两点,则2x 1y 2-7x 2y 1=___________.
20、如图,长方形AOCB 的两边OC 、OA 分别位于x 轴、 y 轴上,点B 的坐标为B (-
3
20
,5),D 是AB 边上的一点, 将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的 点E 处,若点E 在一反比例函数的图象上,那么该函数的解析 式是 .
三、解答题(共60分) 21、(8分)如图,P 是反比例函数图象上的一点,且点P 到x 轴的距离为3,到y 轴的距离为2,求这个反比例函数的解析式. 22、(9分)请你举出一个生活中能用反比例函数关系描 述的实例,写出其函数表达式,并画出函数图象. 举例:
函数表达式:
23、(10分)如图,已知A (x 1,y 1),B (x 2,y 2)是双曲线y =x
k
在第一象限内的分支上的两点,连结OA 、OB . (1)试说明y 1<OA <y 1+
1
y k ; (2)过B 作BC ⊥x 轴于C ,当m =4时, 求△BOC 的面积.
24、(10分)如图,已知反比例函数y =-
x
8
与一次函数 y =kx +b 的图象交于A 、B 两点,且点A 的横坐标和点B 的 纵坐标都是-2. 求:(1)一次函数的解析式; (2)△AOB 的面积.
25、(11分)如图,一次函数y =ax +b 的图象与反比例函数y =
x
k
的图象交于M 、N 两点.
(1)求反比例函数与一次函数的解析式; (2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.
26、(12分)如图, 已知反比例函数y =
x
k
的图象与一次函 数y =a x +b 的图象交于M (2,m )和N (-1,-4)两点. (1)求这两个函数的解析式; (2)求△MON 的面积;
(3)请判断点P (4,1)是否在这个反比例函数的图象上, 并说明理由.
参考答案:
一、选择题
1、D ;
2、A ;
3、C ;
4、B ;
5、D ;
6、C
7、D ;
8、B ;
9、D ; 10、D . 二、填空题
11、y =x 1000; 12、减小; 13、5 ; 14、-3 ;15、y =x
s
23 ; 16、y =-x 5; 17、⎩⎨⎧---=+-0
97211992
2>m m m m ; 18、|k|; 19、 20; 20、y =-x 12

三、解答题
21、y =-
x
6
.22、举例:要编织一块面积为2米2的矩形地毯,地毯的长x (米)与宽y (米)之间的函数关系式为y =x 2
(x >0).
x … 21 1 2
3 2 … y …
4 2 3
4 1 … 画函数图象如右图所示. 23、(1)过点A 作AD ⊥x 轴于D ,则OD =x 1,AD =y 1,因为点A (x 1,y 1)在双曲线y =
x
k
上,故x 1=1y k ,又在Rt △OAD 中,AD <OA <AD +OD ,所以y 1<OA <y 1+1y k ;
(2)△BOC 的面积为2.
24、(1)由已知易得A (-2,4),B (4,-2),代入y =kx +b 中,求得y =-x +2; (2)当y =0时,x =2,则y =-x +2与x 轴的交点M (2,0),即|OM|=2,于是S △AOB
=S △AOM +S △BOM =21|OM|·|y A |+2
1|OM|·|y B |=21
×2×4+21×2×2=6.
25、(1)将N (-1,-4)代入y =x
k ,得k =4.∴反比例函数的解析式为y =x 4
.将M
(2,m )代入y =
x 4
,得m =2.将M (2,2),N (-1,-4)代入y =ax +b ,得⎩⎨⎧-=+-=+.
b a ,b a 422解得⎩
⎨⎧-==.b ,
a 22∴一次函数的解析式为y =2x -2.
(2)由图象可知,当x <-1或0<x <2时,反比例函数的值大于一次函数的值.
26、解(1)由已知,得-4=
1-k ,k =4,∴y =x 4.又∵图象过M (2,m )点,∴m =2
4=2,∵y =a x +b 图象经过M 、N 两点,∴,4
22⎩⎨
⎧-=+-=+b a b a 解之得,22
⎩⎨
⎧-==b a ∴y =2x -2. (2)如图,对于y =2x -2,y =0时,x =1,∴A (1,0),OA =1,∴S △MON =S △MOA +S △
NOA =
21
OA ·MC +21OA ·ND =21×1×2+2
1×1×4=3. (3)将点P (4,1)的坐标代入y =x
4
,知两边相等,∴P 点在反比例函数图象上.。

相关文档
最新文档