初中数学易错易忘易混的知识点和题

合集下载

(易错题精选)初中数学函数基础知识易错题汇编及解析(1)

(易错题精选)初中数学函数基础知识易错题汇编及解析(1)

(易错题精选)初中数学函数基础知识易错题汇编及解析(1)一、选择题1.如图,点M 为▱ABCD 的边AB 上一动点,过点M 作直线l 垂直于AB ,且直线l 与▱ABCD 的另一边交于点N .当点M 从A→B 匀速运动时,设点M 的运动时间为t ,△AMN 的面积为S ,能大致反映S 与t 函数关系的图象是( )A .B .C .D .【答案】C【解析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N 和点D 重合之前以及点M 和点B 重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,2AB=4,则MN=t ,当0≤t≤2时,AM=MN=t ,则S=212t ,为二次函数;当2≤t≤4时,S=t ,为一次函数,故选C . 点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.2.下列说法:①函数6y x =-x 的取值范围是6x >;②对角线相等的四边形是矩形;③正六边形的中心角为60︒;④对角线互相平分且相等的四边形是菱形;⑤计算92|-的结果为7:⑥相等的圆心角所对的弧相等;1227理数.其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】B【解析】【分析】根据正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围解答即可.【详解】解:①函数6y x =-的自变量x 的取值范围是6x ≥;故错误;②对角线相等且互相平分的四边形是矩形;故错误;③正六边形的中心角为60°;故正确;④对角线互相平分且垂直的四边形是菱形;故错误;⑤计算|9-2|的结果为1;故错误;⑥同圆或等圆中,相等的圆心角所对的弧相等;故错误;⑦122723333-=-=-是无理数;故正确.故选:B .【点睛】本题考查了正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围,熟练掌握各知识点是解题的关键.3.如图,在边长为3的菱形ABCD 中,点P 从A 点出发,沿A→B→C→D 运动,速度为每秒3个单位;点Q 同时从A 点出发,沿A→D 运动,速度为每秒1个单位,则APQ ∆的面积S 关于时间t 的函数图象大致为( )A .B .C .D .【答案】D【解析】【分析】根据动点的运动过程分三种情况进行讨论解答即可.【详解】解:根据题意可知:3AP t =,AQ t =,当03t <<时,2133sin sin 22S t t A t A =⋅⋅=⋅ 0sin 1A <<∴此函数图象是开口向上的抛物线;当36t <<时,133sin sin 22S t A t A =⋅⋅=⋅ ∴此时函数图象是过一、三象限的一次函数;当69t <<时,2139(93)sin ()sin 222S t t A t t A =⋅⋅-=-+. ∴此时函数图象是开口向下的抛物线.所以符号题意的图象大致为D .故选:D .【点睛】本题考查了动点问题的函数图象,解决本题的关键是根据动点运动过程表示出函数解析式.4.函数2x y x =-中自变量x 的取值范围是( ) A .x≠2B .x≥2C .x≤2D .x >2【答案】A【解析】【分析】根据分式的意义,进行求解即可.【详解】解:根据分式的意义得2-x≠0,解得x≠2故选:A【点睛】本题考查了求自变量的取值范围,函数自变量的范围一般从几个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.5.若A(﹣3,y 1)、B(0,y 2)、C(2,y 3)为二次函数y =(x+1)2+1的图象上的三点,则y 1、y 2、y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 2【答案】B【解析】【分析】把三个点的坐标代入二次函数解析式分别计算出则y1、y2、y3的值,然后进行大小比较.【详解】解:∵A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,∴y1=(﹣3+1)2+1=5,y2=(0+1)2+1=2,y3=(2+1)2+1=10,∴y2<y1<y3.故选:B.【点睛】本题考查了比较函数值大小的问题,掌握二次函数的性质、代入法是解题的关键.6.一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分钟)之间的部分关系如图象所示,从开始进水到把水放完需要多少分钟.()A.20 B.24 C.18 D.16【答案】A【解析】【分析】先根据函数图象求出进水管每分钟的进水量和出水管每分钟的出水量,然后再求出关闭进水管后出水管放完水的时间即可解决问题.【详解】解:由函数图象得:进水管每分钟的进水量为:20÷4=5升,设出水管每分钟的出水量为a升,由函数图象,得:302058a--=,解得:a=154,∴关闭进水管后出水管放完水的时间为:30÷154=8分钟,∴从开始进水到把水放完需要12+8=20分钟,故选:A .【点睛】本题考查从函数的图象获取信息和用一元一次方程解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象列出算式和方程是解题的关键.7.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+,由此即可判断.【详解】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+, 故选D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.8.如图,2020D 次哈尔滨至幸福镇的动车需要匀速通过一条隧道(隧道长大于火车长),火车在隧道内的长度与火车进入隧道的时间x 之间的关系用图象描述大致是( )A .B .C .D .【答案】A【解析】【分析】 火车通过隧道分为3个过程:逐渐进入隧道,完全进入隧道并在其中行驶,逐渐出隧道【详解】火车在逐渐进入隧道的过程中,火车在隧道内的长度逐渐增加;火车完全进入隧道后,还在隧道内行驶一段时间,因此在隧道内的长度是火车长,且保持一段时间不变;火车在逐渐出隧道的过程中,火车在隧道内的长度逐渐减少;符合上述分析过程的为:A故选:A【点睛】本题考查函数图像在生活中的应用,解题关键是分析事件变化的过程,并能够匹配对应函数图像变化9.如图,在矩形ABCD 中,AB 4=,BC 6=,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边MP 始终经过点A ,设直角三角板的另一直角边PN 与CD 相交于点Q.BP x =,CQ y =,那么y 与x 之间的函数图象大致是( )A .B .C.D.【答案】D【解析】试题解析:设BP=x,CQ=y,则AP2=42+x2,PQ2=(6-x)2+y2,AQ2=(4-y)2+62;∵△APQ为直角三角形,∴AP2+PQ2=AQ2,即42+x2+(6-x)2+y2=(4-y)2+62,化简得:y=−14x2+32x整理得:y=−14(x−3)2+94根据函数关系式可看出D中的函数图象与之对应.故选D.【点睛】本题考查的是动点变化时,两线段对应的变化关系,重点是找出等量关系,即直角三角形中的勾股定理.10.下列各曲线中,表示y是x的函数的是()A.B.C.D.【答案】B【解析】【分析】根据函数的意义即可求出答案.【详解】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以B 正确.故选:B.【点睛】此题考查函数图象的概念.解题关键在于要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.11.如图,点P是▱ABCD边上的一动点,E是AD的中点,点P沿E→D→C→B的路径移动,设P点经过的路径长为x,△BAP的面积是y,则下列能大致反映y与x的函数关系的图象是()A. B.C.D.【答案】D【解析】【分析】根据题意分类讨论,随着点P位置的变化,△BAP的面积的变化趋势.【详解】通过已知条件可知,当点P与点E重合时,△BAP的面积大于0;当点P在AD边上运动时,△BAP的底边AB不变,则其面积是x的一次函数,面积随x增大而增大;当P在DC 边上运动时,由同底等高的三角形面积不变,△BAP面积保持不变;当点P带CB边上运动时,△BAP的底边AB不变,则其面积是x的一次函数,面积随x增大而减小;故选D.【点睛】本题以动点问题为背景,考查了分类讨论的数学思想以及函数图象的变化规律.12.如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图2中的1l,2l分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系.以下结论正确的是( )A .甲的速度为20km/hB .甲和乙同时出发C .甲出发1.4h 时与乙相遇D .乙出发3.5h 时到达A 地【答案】C【解析】【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h 时到达A 地.【详解】解:A .甲的速度为:60÷2=30,故A 错误;B .根据图象即可得出甲比乙早出发0.5小时,故B 错误;C .设1l 对应的函数解析式为111y k x b =+,所以:1116020b k b =⎧⎨+=⎩, 解得113060k b =-⎧⎨=⎩ 即1l 对应的函数解析式为13060y x =-+;设2l 对应的函数解析式为222y k x b =+,所以:22220.503.560k b k b +=⎧⎨+=⎩, 解得 222010k b =⎧⎨=-⎩ 即2l 对应的函数解析式为22010y x =-,所以:30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意; D .根据图形即可得出乙出发3h 时到达A 地,故D 错误.故选:C .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.13.甲、乙两同学骑自行车从A 地沿同一条路到B 地,已知乙比甲先出发,他们离出发地的距离S (km )和骑行时间t (h )之间的函数关系如图所示,给出下列说法:①他们都骑行了20km ;②乙在途中停留了0.5h ;③甲、乙两人同时到达目的地;④相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有( )A .1个B .2个C .3个D .4个【答案】B【解析】 试题分析:根据图象上特殊点的坐标和实际意义即可作出判断.由图可获取的信息是:他们都骑行了20km ;乙在途中停留了0.5h ;相遇后,甲的速度>乙的速度,所以甲比乙早0.5小时到达目的地,所以(1)(2)正确.故选B .考点:本题考查的是学生从图象中读取信息的数形结合能力点评:同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.14.甲乙两同学同时从400m 环形跑道上的同一点出发,同向而行,甲的速度为6/m s ,乙的速度为4/m s ,设经过xs 后,跑道上两人的距离(较短部分)为ym ,则y 与x 0300x ≤≤之间的关系可用图像表示为( )A .B .C .D .【答案】C【解析】【分析】根据同向而行,二人的速度差为642/m s -=,二人间的最长距离为200,最短距离为0,从而可以解答本题.【详解】二人速度差为642/m s -=,100秒时,二人相距2×100=200米,200秒时,二人相距2×200=400米,较短部分的长度为0,300秒时,二人相距2×300=600米,即甲超过乙600-400=200米.∴()201004002(100200)2400(200300)x xy x xx x⎧≤≤⎪=-<≤⎨⎪-<≤⎩,函数图象均为线段,只有C选项符合题意.故选:C.【点睛】本题考查了利用函数的图象解决实际问题以及动点问题的函数图象,正确理解函数图象表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.15.“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横t表示离家的时间,下面与上述诗意大致相吻合的图象是()A .B .C .D .【答案】B【解析】【分析】首先正确理解小诗的含义,然后再根据时间与离家的距离关系找出函数图象.【详解】解:同辞家门赴车站,父亲和孩子的函数图象在一开始的时候应该一样,别时叮咛语千万,时间在加长,路程不变,学子满载信心去,学子离家越来越远,老父怀抱希望还,父亲回家离家越来越近,故选:B.【点睛】此题主要考查了函数图象,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.16.下列图象中不是表示函数图象的是()A.B.C.D.【答案】C【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【详解】解:A选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A是函数;B选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故B是函数;C选项:不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故C不是函数;D选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D是函数,故选:C.【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.17.如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,y关于x的函数图象如图2,则△EFG的最小面积为()A 3B3C.2 D3【答案】A 【解析】【分析】本题根据图2判断△EFG 的面积y 最小时和最大时分别对应的x 值,从而确定AB ,EG 的长度,求出等边三角形EFG 的最小面积.【详解】由图2可知,x =2时△EFG 的面积y 最大,此时E 与B 重合,所以AB =2,∴等边三角形ABC∴等边三角形ABC由图2可知,x =1时△EFG 的面积y 最小,此时AE =AG =CG =CF =BG =BE ,显然△EGF 是等边三角形且边长为1,所以△EGF 的面积为4, 故选A .【点睛】本题是运动型综合题,考查了动点问题的函数图象等边三角形等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.18.已知:[]x 表示不超过x 的最大整数.例:[]3.93=,[]1.82-=-.记1()44k k f k +⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦(k 是正整数).例:3133144()f ⎡⎤⎡⎤+=-=⎢⎥⎢⎥⎣⎦⎣⎦.则下列结论正确的个数是( )(1)()10f =;(2)()()4f k f k +=;(3)()()1f k f k +≥;(4)()0f k =或1.A .1个B .2个C .3个D .4个 【答案】C【解析】【分析】根据题中所给的定义,依次作出判断即可.【详解】 解:111(1)00044f +⎡⎤⎡⎤=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,正确; 41411(4)11()444444k k k k k k f k f k +++++⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=-=+-+=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,正确; 当k=3时,414(31)11044f +⎡⎤⎡⎤+=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,而(3)1f =,错误; 当k=3+4n (n 为自然数)时,f (k )=1,当k 为其它的正整数时,f (k )=0,正确; 正确的有3个,故选:C .【点睛】本题考查新定义下的实数运算,函数值.能理解题中新的定义,并根据题中的定义进行计算是解决此题的关键.19.如图1,点F 从菱形ABCD 的项点A 出发,沿A -D -B 以1cm/s 的速度匀速运动到点B .图2是点F 运动时,△FBC 的面积y (m 2)随时间x (s)变化的关系图象,则a 的值为( )A .5B .2C .52D .5【答案】C【解析】【分析】 过点D 作DE BC ⊥于点E 由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .求出DE=2,再由图像得5BD =BE=1,再在DEC Rt △根据勾股定理构造方程,即可求解.【详解】解:过点D 作DE BC ⊥于点E由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .AD BC a ∴== ∴12DE AD a =g 2DE ∴=由图像得,当点F 从D 到B 时,用5s5BD ∴=Rt DBE V 中,2222(5)21BE BD DE --=∵四边形ABCD 是菱形,1EC a ∴=-,DC a =DEC Rt △中,2222(1)a a =+- 解得52a =故选:C .【点睛】本题综合考查了菱形性质和一次函数图象性质,要注意函数图象变化与动点位置之间的关系,解答此题关键根据图像关键点确定菱形的相关数据.20.小明从家骑车上学,先匀速上坡到达A 地后再匀速下坡到达学校,所用的时间与路程如图所示,如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是( )A .9分钟B .12分钟C .8分钟D .10分钟【答案】B【解析】【分析】 先根据图形,得到上坡、下坡的时间和距离,然后分别求出上、下坡的速度,最后计算返回家的时间【详解】根据图形得,从家到学校:上坡距离为1km ,用时5min ,下坡距离为2km ,用时为4min 故上坡速度115V =(km/min),下坡速度22142V ==(km/min) 从学校返回家的过程中,原来的上下坡刚好颠倒过来,即上坡2km ,下坡1km 故上坡时间12t 15==10(min),下坡时间21t 12==2(min) ∴总用时为:10+2=12(min)故选:B【点睛】本题考查从函数图象获取信息,解题关键是将函数图像中的数据与生活实际一一对应。

初中数学易忘及补充知识点

初中数学易忘及补充知识点

初中数学易忘及补充知识点初中数学中易忘的知识点主要集中在以下几个方面:代数与方程、几何、数据与概率等。

下面是一些易忘的数学知识点及其补充内容。

一、代数与方程1.多项式的运算规则:在进行多项式的加减乘除运算时,容易混淆运算次序或者忘记降幂排列、消去同类项等要求。

2.一元一次方程与二元一次方程:容易混淆二者的解法和应用场景。

一元一次方程只有一个未知数,而二元一次方程有两个未知数。

3.分式与倍式关系:有些学生容易忘记分式和倍数之间的转化关系,例如:1/2=2/4=3/6=...。

4.平方根与立方根的计算:容易忘记如何计算平方根和立方根,以及如何进行开方运算。

5.公式的使用:很多公式需要记忆和灵活运用,例如:勾股定理、正弦定理、余弦定理等。

二、几何1.平行线与垂直线的特性:容易忘记平行线与垂直线的定义和性质,以及如何通过一些特殊线段或角的关系来判断线段和角是否平行或垂直。

2.几何图形的性质:容易忘记各种几何图形的定义和性质,例如:等边三角形、等腰三角形、平行四边形等。

3.压缩比与相似比例:容易忘记两个相似图形之间的边长比例和面积比例的关系,以及如何利用压缩比来计算缩小或放大后的面积。

4.直线与曲线的关系:容易忘记如何通过已知的直线或曲线来构造平行线、垂直线、切线等。

5.空间几何的投影与展开:容易忘记进行空间几何的投影与展开时,如何正确地标记和计算。

三、数据与概率1.统计图表的解读:容易忘记如何正确解读和分析各类统计图表,例如:条形图、折线图、饼图等。

2.概率的计算:容易忘记如何计算简单事件和复合事件的概率,以及如何用排列组合来求解概率问题。

3.随机事件的基本概念:容易忘记随机事件的基本概念,例如:必然事件、不可能事件、互斥事件、相互独立事件等。

4.排列组合与数列:容易忘记排列组合的计算方法和应用场景,以及等差数列和等比数列的计算公式和性质。

以上只是初中数学中一些易忘及补充的知识点,为了巩固这些知识,并避免遗忘,在学习数学的过程中,可以采取以下措施:1.增加练习:通过不断的练习,巩固数学的基本知识和运算技巧,同时也能够加深对易忘知识点的理解和记忆。

7年级数学易错题

7年级数学易错题

7年级数学易错题一、有理数运算类。

1. 计算:(-2)^3 - (-3)^2 ÷ (-1)^2023。

- 解析:- 先计算乘方运算。

(-2)^3=-8,(-3)^2 = 9,(-1)^2023=-1。

- 然后进行除法运算,9÷(-1)= - 9。

- 最后进行减法运算,-8-(-9)=-8 + 9 = 1。

2. 计算:(1)/(2)-<=ft(1)/(3)right+<=ft(-(1)/(4))。

- 解析:- 先计算绝对值,<=ft(1)/(3)right=(1)/(3)。

- 然后进行通分计算,(1)/(2)-(1)/(3)-(1)/(4)=(6 - 4 - 3)/(12)=-(1)/(12)。

二、整式加减类。

3. 化简:3a + 2b - 5a - b。

- 解析:- 合并同类项,将含有相同字母的项合并。

- 对于a的项,3a-5a=-2a;对于b的项,2b - b = b。

- 所以化简结果为-2a + b。

4. 先化简,再求值:(2x^2 - 3xy + 4y^2)-3(x^2 - xy+(5)/(3)y^2),其中x = - 2,y = 1。

- 解析:- 先去括号,2x^2-3xy + 4y^2-3x^2 + 3xy-5y^2。

- 再合并同类项,(2x^2-3x^2)+(-3xy + 3xy)+(4y^2 - 5y^2)=-x^2 - y^2。

- 当x = - 2,y = 1时,代入得-(-2)^2-1^2=-4 - 1=-5。

三、一元一次方程类。

5. 解方程:3x+5 = 2x - 1。

- 解析:- 移项,将含有x的项移到等号一边,常数项移到等号另一边。

- 得到3x - 2x=-1 - 5。

- 合并同类项得x=-6。

6. 解方程:(x + 1)/(2)-(2x - 1)/(3)=1。

- 解析:- 先去分母,方程两边同时乘以6,得到3(x + 1)-2(2x - 1)=6。

初中数学知识归纳最易出错的61个知识点总结

初中数学知识归纳最易出错的61个知识点总结

初中数学知识归纳:最易出错的61个知识点总结一、数与式易错点1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。

以及绝对值与数的分类。

每年选择必考。

易错点2:实数的运算要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。

易错点3:平方根、算术平方根、立方根的区别。

填空题必考。

易错点4:求分式值为零时学生易忽略分母不能为零。

易错点5:分式运算时要注意运算法则和符号的变化。

当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。

填空题必考。

易错点6:非负数的性质:几个非负数的和为0,每个式子都为0;整体代入法;完全平方式。

易错点7:计算第一题必考。

五个基本数的计算:0 指数,三角函数,绝对值,负指数,二次根式的化简。

易错点8:科学记数法。

精确度,有效数字。

这个上海还没有考过,知道就好!易错点9:代入求值要使式子有意义。

各种数式的计算方法要掌握,一定要注意计算顺序。

二、方程(组)与不等式(组)易错点1:各种方程(组)的解法要熟练掌握,方程(组)无解的意义是找不到等式成立的条件。

易错点2:运用等式性质时,两边同除以一个数必须要注意不能为0 的情况,还要关注解方程与方程组的基本思想。

(消元降次)主要陷阱是消除了一个带X 公因式要回头检验!易错点3:运用不等式的性质3时,容易忘记改不改变符号的方向而导致结果出错。

易错点4:关于一元二次方程的取值范围的题目易忽视二次项系数不为0导致出错。

易错点5:关于一元一次不等式组有解无解的条件易忽视相等的情况。

易错点6:解分式方程时首要步骤去分母,分数相相当于括号,易忘记根检验,导致运算结果出错。

易错点7:不等式(组)的解得问题要先确定解集,确定解集的方法运用数轴。

易错点8:利用函数图象求不等式的解集和方程的解。

初中数学最容易错的21个知识归纳总结

初中数学最容易错的21个知识归纳总结

初中数学最容易错的21个知识归纳总结一、数轴1.数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。

2.数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数。

(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数。

)3.用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

二、相反数1.相反数的概念:只有符号不同的两个数叫做互为相反数。

2.相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

3.多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

4.规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

三、绝对值1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。

①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数;③有理数的绝对值都是非负数。

2.如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.即|a|={a(a>0)0(a=0)﹣a(a<0)。

四、有理数大小比较1.有理数的大小比较比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小。

2.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小。

规律方法:有理数大小比较的三种方法:①法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小;②数轴比较:在数轴上右边的点表示的数大于左边的点表示的数;③作差比较:若a﹣b>0,则a>b;若a﹣b<0,则a<b;若a﹣b=0,则a=b。

初中数学易错易忘易混的知识点和题

初中数学易错易忘易混的知识点和题

初中数学易错易忘易混的知识点和题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初中数学易错易忘易混的知识点和题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初中数学易错易忘易混的知识点和题的全部内容。

初中数学易错、易忘、易混的知识点一、数与式1、随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0。

000 000 7 (平方毫米),这个数用科学记数法表示为( ). A .7×10-6B .0。

7×10-6C .7×10-7D .70×10-82、我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人。

将665 575 306用科学记数法表示(保留三个有效数字)约为( )A 。

B. C 。

D 。

易错:科学记数法和有效数字概念.3= 。

的平方根是 。

易错:平方根、算术平方根的概念.4、下列实数中,无理数是( )A 。

B 。

C.易错:无理数的概念;、的辨别.5、计算:(1)易错:负指数和三角函数值(2);;;; 易错:错用运算法则或是运算顺序不清.(3); 易混:完全平方公式和平方差公式混淆。

(4) 易错:去括号法则不清导致错误.(5)易混:分式运算中的通分与分式方程计算中的去分母混淆。

766.610⨯8.66610⨯86.6610⨯76.6610⨯0.2020-2π7222π72203045sin 4)21()13(8--+---)37(21+÷22512+a a ab 1⨯÷2)23(+()()()2444--+-x x x )2(3)35(b a b a ---y x yx y x -+-336、化简:.易错:忽视隐含条件,本题隐含着,所以a <0这个条件.7、若x ,y 是实数,且,求的值。

初中数学易错题集

初中数学易错题集

初中数学易错题集1. 分母为0的数学计算错误- 示例题目:计算 3 ÷ 0 的值。

解析:分母为0的情况下,计算是没有意义的,因为任何数除以0都没有定义。

因此,这道题是没有解的,答案是无解。

2. 乘除法运算次序错误- 示例题目:计算 2 + 3 × 4 的值。

解析:根据数学运算法则,乘法和除法的优先级高于加法和减法。

所以,首先计算3 × 4,得到12,再加上2,最后的答案是14。

3. 幂运算有括号错误- 示例题目:计算 2^3 × 4 的值。

解析:幂运算的优先级高于乘法和除法,但低于括号。

根据数学运算法则,先计算幂运算,再进行乘法运算。

所以,首先计算2的3次方,得到8,再乘以4,最后的答案是32。

4. 直角三角形定理应用错误- 示例题目:已知直角三角形的一条直角边长为3cm,斜边长为5cm,求另一条直角边的长度。

解析:根据直角三角形的定理(勾股定理),直角边的平方加上直角边的平方等于斜边的平方。

所以,设另一条直角边的长度为x,则有x^2 + 3^2 = 5^2。

解这个方程可以得到 x = 4。

5. 百分数转换错误- 示例题目:将0.6转化为百分数。

解析:百分数是以百分号(%)表示的,表示数值的百分之几。

将小数转化为百分数时,将小数乘以100,并在后面加上百分号。

所以,0.6转化为百分数是60%。

6. 未转化单位导致计算错误- 示例题目:汽车以60千米/小时的速度行驶了2小时,求汽车行驶的总距离。

解析:速度乘以时间等于距离。

但是在计算之前,要将速度和时间转化为相同的单位。

由于速度单位是千米/小时,时间单位是小时,所以无需转化单位,直接乘起来就可以,答案为 60 × 2 = 120 千米。

7. 数字精度错误- 示例题目:计算 0.2 × 0.3 的值。

解析:在计算浮点数(小数)时,由于计算机的二进制表示有限,不是所有的小数都能精确表示。

所以,计算结果可能有一定的误差。

《圆的方程》易错易混题

《圆的方程》易错易混题
(2)本题也容易把求点的轨迹理解为只求点的轨迹方程,要知道,求
一动点的轨迹除了要求出轨迹方程,还要说明方程对应什么曲线.
行四边形,求点的轨迹.
解析
( + ) + ( − ) = ,由ቐ=Fra bibliotek− ,



=− ,
=− ,


解得൞
或൞


=
= ,


所以应除去这两点.
故点的轨迹是以(−, )为圆心,2为半径的圆(除去 −

,



和 − ,
两点).
易错分析 (1)本题易忘记四边形为平行四边形,导致不能除去两个特殊点.
解析 设点的坐标是(, ),点的坐标是 , ,则线段的中点坐标为 , ,线段
的中点坐标为
− +
,


.

因为平行四边形的对角线互相平分,所以

=

,

=
+
,

= + ,
所以ቊ
又因为点( + , − )在圆 + =4上,
高中数学
GAOZHONGSHUXUE
苏教版同步教材名师课件
圆的方程
---易错易混题
易错易混题
高中数学
GAOZHONGSHUXUE
易错点 轨迹问题易忘记特殊点的检验而致误
典例1、设定点(−, ),动点在圆 + = 上运动,以, 为邻边作平
行四边形,求点的轨迹.

= − .
所以( + ) + ( − ) = .

初中数学易错知识点最全

初中数学易错知识点最全

初中数学易错知识点最全1.乘法口诀表:不熟悉乘法口诀表会导致计算乘法时出错。

2.分数与整数之间的转换:不熟悉分数与整数之间的转换,如将分数化简为最简形式,或将整数转化为分数。

3.有理数的加减乘除:不熟悉有理数的加减乘除法则,容易出错。

4.特殊数的性质:不熟悉素数、合数、质数等特殊数的性质及判断方法,容易出错。

5.基本图形的性质:不了解基本图形的性质,如正方形、矩形、圆等,容易出错。

6.平面几何的证明:不熟悉平面几何的基本定理和证明方法,容易出错。

7.基本图形的面积和周长计算:不熟悉基本图形的面积和周长计算公式,容易出错。

8.百分数的应用:不熟悉百分数的应用,如百分比的计算、增减百分比的应用等,容易出错。

9.比例与比例的应用:不了解比例的概念、比例的性质以及比例的应用,容易出错。

10.方程与不等式的解法:不熟悉方程和不等式的解法,容易得出错误的解。

11.几何体的表面积和体积计算:不熟悉几何体的表面积和体积的计算公式,容易出错。

12.统计学的概念与应用:不熟悉统计学的基本概念和应用,容易误解数据、分析数据。

13.概率与概率的计算:不了解概率的概念和计算方法,容易出错。

14.数据分析和图表的解读:不熟悉数据分析和图表的解读方法,容易得出错误的结论。

15.数列与函数的性质和应用:不熟悉数列和函数的性质和应用,容易出错。

16.坐标系与平面直角坐标系中点的概念和应用:不熟悉坐标系和平面直角坐标系中点的概念和应用,容易出错。

17.立体几何的投影和旋转:不熟悉立体几何的投影和旋转的方法,容易出错。

18.函数的图像与性质:不熟悉函数的图像和性质,容易得出错误的结论。

19.带有根式的计算:不熟悉带有根式的计算方法,容易出错。

20.运算顺序的理解与应用:不了解运算顺序的规则和应用,容易得出错误的答案。

以上是初中数学中一些容易出错的知识点,掌握这些知识点将有助于提高数学学习的能力。

但要记住,数学是通过不断练习和理解来提高的,所以需要多做题多练习,才能真正掌握这些知识点。

九年级数学易错题及解析(类型归纳)

九年级数学易错题及解析(类型归纳)

九年级数学易错题及解析(类型归纳)
平行线的性质和判定。

错误原因:学生在运用平行线的判定和性质时,容易出现混淆和错误。

解析:
学生需要熟练掌握平行线的判定和性质,并能够正确运用到题目中。

同时,需要注意平行线的判定和性质的不同之处,不要混淆使用。

三角形的内角和定理。

错误原因:学生在运用三角形的内角和定理时,容易出现计算错误或定理运用不当等问题。

解析:
学生需要熟练掌握三角形的内角和定理,并能够正确运用到题目中。

同时,需要注意定理的适用范围和特殊情况的处理方式。

一元二次方程的解法。

错误原因:学生在解一元二次方程时,容易出现计算错误或忽略判别式的限制条件等问题。

解析:
学生需要熟练掌握一元二次方程的解法,并能够正确运用到题目中。

同时,需要注意判别式的限制条件和特殊情况的处理方式。

圆的相关知识。

错误原因:学生在学习圆的相关知识时,容易出现概念不清、定理理解不准确等问题。

解析:
学生需要熟练掌握圆的相关知识,并能够正确运用到题目中。

同时,需要注意圆的相关定理和性质的适用范围和特殊情况的处理方式。

初一数学易错题汇总(有理数、整式、因式分解、一元一次方程)

初一数学易错题汇总(有理数、整式、因式分解、一元一次方程)

精心整理初一数学易错题汇总第一章 有理数易错题练习一.判断⑴ a 与-a 必有一个是负数 .⑵在数轴上,与原点0相距5个单位长度的点所表示的数是5.⑶在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是4.⑷在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是-6. ⑿一个数的倒数的绝对值等于这个数的相反数,这个数是 .三.解答题⑴已知a 、b 互为倒数,- c 与2d 互为相反数,且│x │=4,求2ab -2c +d +3x 的值. ⑵数a 、b 在数轴上的对应点如图,化简:│a -b │+│b -a │+│b │-│a -│a ││.⑶已知│a +5│=1,│b -2│=3,求a -b 的值. ⑷若|a |=4,|b |=2,且|a +b |=a +b ,求a - b 的值.⑸把下列各式先改写成省略括号的和的形式,再求出各式的值.①(-7)- (-4)- (+9)+(+2)- (-5); ②(-5) - (+7)- (-6)+4.⑹改错(用红笔,只改动横线上的部分):⑺比较4a和-4a的大小①已知5.0362=25.36,那么50.362=253.6,0.050362=0.02536;②已知7.4273=409.7,那么74.273=4097,0.074273=0.04097;③已知3.412=11.63,那么(34.1)2=116300;④近似数2.40×104精确到百分位,它的有效数字是2,4;⑤已知5.4953=165.9,x3=0.0001659,则x=0.5495.⑻在交换季节之际,商家将两种商品同时售出,甲商品售价1500元,盈利25%,乙商品售价1500元,但亏损25%,问:商家是盈利还是亏本?盈利,盈了多少?亏本,亏了多少元?⑼若x、y是有理数,且|x|-x=0,|y|+y=0,|y|>|x|,化简|x|-|y|-|x+y|.(3)绝对值小于4.5而大于3的整数是________.(4)在数轴上,与原点相距5个单位长度的点所表示的数是________;(5)在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是________;(6) 平方得412的数是____;此题用符号表示:已知,4122=x 则x=_______; (7)若|a|=|b|,则a,b 的关系是________;A .a + b <0B .a + b >0;C .a -b = 0D .a -b >0 (4)如果a 、b 互为倒数,c 、d 互为相反数,且,3=m ,则代数式2ab-(c+d )+m 2=_______。

中考数学最易出错61个知识点

中考数学最易出错61个知识点

中考数学最易出错61个知识点中考数学是中学学生所要参加的一项重要考试,其中涉及的知识点众多,且易出错。

在这里,我将为你详细介绍中考数学中最常见的61个易出错知识点。

1.四则运算:在进行加减乘除的运算时,容易出错的地方主要有横式运算错误、进位或借位错误、计算优先级错误等。

2.小数和分数:容易忽略小数点位置,小数转化成百分数或分数时易出错。

3.百分数:容易忘记将百分数转换成小数或分数,计算百分数的加减乘除时易出错。

4.平方和立方:容易将平方和立方的运算法则记错,例如平方数的开平方计算等。

5.代数式的计算:在多项式的加减乘除时容易忽略项,忘记合并同类项等。

6.等式和方程:在等式的加减乘除时易出错,方程的解错等。

7.几何图形的计算:容易计算图形的周长、面积和体积时忽略单位,记错公式等。

8.几何相似:容易混淆正相似和全等,计算相似比时出错。

9.圆与圆相关的知识点:包括弦长、弧长、扇形面积等计算容易出错。

10.直角三角形:容易记错勾股定理和三角函数的计算。

11.等腰三角形和等边三角形:容易忘记等腰三角形的性质和计算等边三角形的周长和面积。

12.梯形和平行四边形:容易计算梯形和平行四边形的面积时忽略高,记错公式。

13.计算用纸:容易使用错单位,计算时纸上的步骤和结果容易出错。

14.逻辑推理和证明:在逻辑推理和证明问题时容易漏项,记错条件或结论。

15.统计与概率:在统计数据的收集和处理时易出错,概率计算容易忽略条件。

以上是中考数学中最常见的61个易出错知识点的简要介绍。

为了避免这些易出错的情况,建议同学们在备考过程中多做相关的练习题,掌握基本技巧和方法,加强解题能力。

此外,同学们还可以多与同学、老师交流,共同探讨和解决问题,提升自己的数学水平。

7年级数学易错题整理及解析

7年级数学易错题整理及解析

7年级数学易错题整理及解析一、有理数运算部分1. 计算:公式解析:首先计算指数运算,根据运算法则,先算乘方。

对于公式,这里要注意指数运算优先级高于负号,所以公式。

对于公式,公式。

然后进行除法运算:公式。

最后进行减法运算:公式。

2. 计算:公式解析:先计算括号内的式子:公式。

再计算除法:公式。

接着计算乘方:公式。

然后计算乘法:公式。

最后计算加法:公式。

二、整式加减部分1. 化简:公式解析:合并同类项,对于公式的同类项公式和公式,公式。

对于公式的同类项公式和公式,公式。

所以化简结果为公式。

2. 先化简,再求值:公式,其中公式解析:先去括号:公式。

然后合并同类项:公式。

当公式时,代入式子得:公式。

三、一元一次方程部分1. 解方程:公式解析:首先去分母,方程两边同时乘以公式(公式和公式的最小公倍数),得到:公式。

然后去括号:公式。

接着移项:公式。

合并同类项:公式。

最后系数化为公式:公式。

2. 某班有学生公式人,会下象棋的人数是会下围棋人数的公式倍,两种棋都会及两种棋都不会的人数都是公式人,求只会下围棋的人数。

解析:设会下围棋的有公式人,则会下象棋的有公式人。

根据全班人数可列方程:公式。

这里公式是会下棋的人数(其中两种棋都会的人算了两次,所以要减去一次),再加上两种棋都不会的人数就是全班人数。

合并同类项得公式,解得公式。

只会下围棋的人数为会下围棋的人数减去两种棋都会下的人数,即公式人。

九年级数学易错题

九年级数学易错题

九年级数学易错题一、一元二次方程部分1. 若关于公式的一元二次方程公式的常数项为公式,求公式的值。

解析:对于一元二次方程公式,在方程公式中,常数项公式。

因为常数项为公式,所以公式。

对公式进行因式分解得公式。

解得公式或公式。

又因为方程是一元二次方程,二次项系数公式,即公式。

所以公式。

2. 解方程公式。

解析:对于一元二次方程公式(这里公式,公式,公式),我们可以使用求根公式公式。

首先计算判别式公式。

然后将公式,公式,公式代入求根公式得:公式。

二、二次函数部分1. 已知二次函数公式的图象经过公式、公式,公式三点,求这个二次函数的表达式。

解析:因为二次函数公式的图象经过公式、公式,公式三点。

把公式代入公式得公式。

把公式代入公式得公式。

把公式代入公式得公式。

将公式代入公式和公式,得到方程组公式。

由公式可得公式。

将公式代入公式得:公式,公式,公式,解得公式。

把公式代入公式得公式。

所以二次函数的表达式为公式。

2. 二次函数公式的图象向左平移公式个单位,再向上平移公式个单位,得到二次函数公式的图象,求公式、公式的值。

解析:先将公式进行逆变换。

把公式向下平移公式个单位得到公式。

再将公式向右平移公式个单位,根据“左加右减”原则,得到公式。

展开公式。

所以公式,公式。

三、旋转部分1. 在平面直角坐标系中,将点公式绕原点公式逆时针旋转公式后得到点公式,求公式的坐标。

解析:设公式绕原点公式逆时针旋转公式后的点公式。

根据旋转的性质,旋转前后的点到原点的距离不变,且旋转公式后坐标的变换规律为公式变为公式。

所以公式。

2. 如图,在公式中,公式,公式,公式,将公式绕点公式逆时针旋转公式得到公式,求公式的长。

解析:因为公式,公式,公式,根据勾股定理可得公式。

由于公式绕点公式逆时针旋转公式得到公式,则公式,公式,公式。

过公式作公式交公式延长线于公式。

因为公式,公式,所以公式。

在公式和公式中,公式,公式,公式,所以公式。

则公式,公式。

公式。

七年级易错数学知识点总结

七年级易错数学知识点总结

七年级易错数学知识点总结在学习数学的过程中,总会遇到一些易错点,这些点特别容易让学生犯错,让同学们感到十分头疼。

本文将详细总结七年级中的易错数学知识点,希望能帮助同学们更好地掌握这些知识点。

一、数字类知识点1.负数的乘法:负数相乘,积为正数。

两个负数相乘积为正数。

2.有理数比较:同号相比,绝对值大的数大。

3.小数与分数的大小比较:将小数化成分数,比较大小。

4.零的概念:零是整数,也是分数。

5.科学计数法:将一个数表示成a×10ⁿ 的形式。

二、代数类知识点1.代数式化简:合并同类项、移项、分配律、去括号。

2.二元一次方程:将未知数系数前的常数移到等式右边,使得等式右边只有数字。

3.利用二元一次方程解决实际问题:设未知数、列方程、解方程。

三、几何类知识点1.平面图形:正方形、长方形、菱形、矩形、平行四边形、梯形、三角形、圆、扇形、圆心角、弧、弦、切线、切点。

2.三角形的面积:三角形的面积等于底边长度乘以高,但是要除以二。

3.相似三角形:对应角相等,对应边成比例。

4.三角形的全等条件:SSS,SAS,ASA,RHS。

5.勾股定理:c²=a²+b²(直角三角形中,若一直角边长度为a,另一直角边长度为b,斜边长度为c)。

四、数据统计类知识点1.简单统计:平均数=总和÷数量。

2.频数和频率:频数是指某一数值在数据中出现的次数;频率是指某一数值在数据中出现的概率。

3.最大值和最小值:统计数据的最大值和最小值是数据中出现最多和最少的数。

4.百分数:一百分之一为1%,100%为一整体。

以上就是七年级中的易错数学知识点总结,希望同学们能够熟练掌握这些知识点,少犯错题,取得更好的成绩。

初中数学最易出错的61个知识点

初中数学最易出错的61个知识点

初中数学最易出错的61个知识点在初中数学学习中,有一些知识点容易使学生犯错。

以下是初中数学最易出错的61个知识点:1.小数的运算规则2.含有绝对值的运算3.含有根式的运算4.有理数的比较5.正负数的四则运算6.解一元一次方程7.解一元一次不等式8.平方根的性质和计算9.立方根的性质和计算10.分数的加减乘除运算11.分数的比较大小12.分数的化简和约分13.相似三角形的性质14.平行四边形的性质15.三角形内角和的性质16.直角三角形的性质17.平行线的性质和判定18.垂直线的性质和判定19.点、线、面的位置关系20.函数图象的性质和绘制21.图形的放大和缩小22.图形的旋转和平移23.图形的对称性24.等腰三角形的性质和判定25.等边三角形的性质和判定26.二次函数的图象和性质27.一元二次方程的解法和判别式28.计算二次根式29.二次根式的化简30.集合的运算和表示31.方程与函数的关系32.因式分解与配方法33.判断一个数的因数34.等式的性质和运算35.余弦定理和正弦定理的应用36.二次根式的大小比较37.二次函数的最值问题38.分数方程的解法39.方程组的解法40.数列的通项公式41.等差数列的性质42.等比数列的性质43.最大公约数和最小公倍数44.矩形的性质和计算45.面积的计算和性质46.体积的计算和性质47.三角函数的计算和性质48.三角函数的图象和性质49.圆的性质和计算50.圆的面积和周长51.球的性质和计算52.梯形和菱形的性质和计算53.错题总结与错误分析54.去掉画蛇添足的步骤55.计算步骤的合理性和正确性56.数学语言的理解和运用57.分解和组合的运算技巧58.图形的结构和形状分析59.策略的选择和运用60.推理和证明的思路和方法61.解决实际问题的数学思维和能力这些知识点需要学生特别注意,并反复进行练习和巩固。

通过不断的练习和理解,学生可以避免在这些知识点上犯错误,并提高数学学习的效果。

初中数学易错点避免运算中的常见错误

初中数学易错点避免运算中的常见错误

初中数学易错点避免运算中的常见错误初中数学易错点:避免运算中的常见错误在初中数学的学习中,运算占据着重要的地位。

然而,同学们在运算过程中常常会出现各种各样的错误,这些错误不仅会影响解题的正确性,还可能打击学习数学的信心。

下面,我们就来详细探讨一下初中数学运算中的常见易错点以及如何避免这些错误。

一、有理数运算1、符号问题有理数的加、减、乘、除运算中,符号的处理是一个易错点。

例如,在计算“-5 +3”时,容易错误地得出结果为 8,而忽略了负号,正确结果应该是-2。

再比如,在计算“-2 ×3”时,应该得到-6,而不是6。

避免这类错误的关键是要牢记有理数运算的符号规则:同号两数相加取相同的符号,异号两数相加取绝对值较大的符号并用较大的绝对值减去较小的绝对值;两数相乘(除),同号得正,异号得负。

2、运算顺序有理数的混合运算中,运算顺序也是容易出错的地方。

比如,计算“12 ÷ 2 × 3”,如果先计算 2 × 3,就会得出错误的结果 2。

正确的运算顺序应该是从左到右依次计算,先算 12 ÷ 2 = 6,再乘以 3 得到 18。

对于有理数的混合运算,要牢记“先乘方,再乘除,最后加减;有括号先算括号内的”这一运算顺序。

二、整式运算1、同类项合并在整式的加减运算中,同类项的合并是一个重点也是易错点。

例如,计算“3x + 2y 5x +4y”,如果不能正确识别同类项,就可能会出现错误。

同类项是指所含字母相同,并且相同字母的指数也相同的项。

在这个式子中,3x 和-5x 是同类项,2y 和 4y 是同类项,合并同类项后得到“-2x +6y”。

要避免同类项合并的错误,需要熟练掌握同类项的定义和合并同类项的法则。

2、乘法公式应用乘法公式(平方差公式和完全平方公式)的应用也是容易出错的地方。

例如,在使用平方差公式“(a + b)(a b) =a² b²”时,容易出现符号错误或者忘记使用公式而直接展开计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学易错、易忘、易混的知识点一、数与式1、随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7 (平方毫米),这个数用科学记数法表示为( ). A .7×10-6B .0.7×10-6C .7×10-7D .70×10-82、我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人. 将665 575 306用科学记数法表示(保留三个有效数字)约为( ) A. 766.610⨯B. 80.66610⨯C. 86.6610⨯D. 76.6610⨯易错:科学记数法和有效数字概念.3、2(4)-= . 81的平方根是 . 易错:平方根、算术平方根的概念.4、下列实数中,无理数是( )A.0.2020-B.2π C.722 D. 4易错:无理数的概念;2π、722的辨别. 5、计算:(1)0345sin 4)21()13(8--+---易错:负指数和三角函数值(2))37(21+÷; 32128+;22512+;149;aa ab 1⨯÷ 易错:错用运算法则或是运算顺序不清.(3)2)23(+;()()()2444--+-x x x易混:完全平方公式和平方差公式混淆. (4))2(3)35(b a b a --- 易错:去括号法则不清导致错误. (5)yx yx y x -+-33 易混:分式运算中的通分与分式方程计算中的去分母混淆.6、化简:1a a-. 易错:忽视隐含条件,本题隐含着10a->,所以a <0这个条件. 7、若x,y 是实数,且2111+-+-<x x y ,求11--y y 的值. 易混:二次根式双非负性:0,0≥≥a a 的准确应用. 8、若x 2+mx +9是完全平方式,则m =_______. 易忘:乘法公式的结构特征导致没有分类.二、方程与不等式9、解方程:x 2-5x=0 (1)1x x x -=-易忘:易丢根10、解方程:0122=+-x x易忘:把121==x x 写成1=x11、用配方法解方程:01322=+-x x 和求1322+-=x x y 的最值.易混:配方法的使用12、解不等式组:48011.32x x x -<⎧⎪+⎨-<⎪⎩,易错:去分母时漏乘;系数化1时,所除系数是负数时,不等号方向不变或结果出错13、关于x 的一元二次方程(a -5)x 2-4x -1=0有两个不相等的实数根,则a 满足( ) A .a ≥1 B .a >1且a ≠5 C .a ≥1且a ≠5 D .a ≠514、已知关于x 的方程(k -2)x 2+2(k -2)x +k +1=0有两个实数根,求正整数k 的值. 易忘:方程的属性由根的个数和交点情况已定,忽略二次项系数≠015、若关于x 的一元二次方程(m-1)x 2+5x+m 2-3m+2=0有一个根为0,则m 的值等于( ) A 、1 B 、2 C 、1或2 D 、0 易忘:二次项系数≠016、已知:关于x 的方程2(23)30+-+-=kx k x k .求证:方程总有实数根. 易忘:方程的属性没确定导致忘记分类17、已知:关于x 的一元二次方程2(32)220mx m x m --+-=.若方程有两个不相等的实数根,求m 的取值范围;易错:解不等式0)22>-m (得错解2>m 18、已知m 、n 是一元二次方程0720112=++x x 的两个根, 求)82012)(62010(22++++n n m m 的值. 19、已知:04622=-+x x ,求代数式)225(4232---÷--x x xx x 的值. 易忘:利用方程根的意义整体代换求解.20、等腰△ABC 中,8BC =,若AB 、AC 的长是关于x 的方程2100x x m -+=的根,则m 的值等于 . 易错:等腰三角形腰底不明确忘记分类讨论.21、服装厂为红五月歌咏比赛加工300套演出服.在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务.求该厂原来每天加工多少套演出服. 易忘:分式方程应用题要双检验.22、商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存........,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.设每件商品降价x 元. 据此规律,请回答:(1)商场日销售量增加_____件,每件商品盈利______元(用含x 的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元? 23、如图, 某小区在宽20m ,长32m 的矩形地面上修筑同样宽的人行道(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m 2,求道路的宽.易忘:审题不清,没有考虑问题的实际意义. 三、函数24、已知关于x 的函数23(2)1m y m x m -=-++是一次函数,则m 的值为_____.25、若函数()221aya x -=-是反比例函数,则a 的值为__________.26、若二次函数2232y mx x m m =-+-的图像过原点,则m =______________. 易忘:忘记考虑函数有意义的条件.203220m32m27、若直线3y x k =-+不经过第三象限,则k 的取值范围是_____. 易错:忽视直线过原点的情况.28、若直线2y kx =+与两坐标轴围成的三角形的面积是6,则k =____.29、函数43y x =-+的图象上存在点P ,点P 到x 轴的距离等于4,求点P 的坐标. 易错:混淆点的坐标和距离之间的关系. 30、若A (a 1,b 1),B (a 2,b 2)是反比例函数xy 2-=图象上的两个点,且a 1<a 2,则b 1与b 2的大小关系是( ).A .b 1<b 2B .b 1 = b 2C .b 1>b 2D .大小不确定易混:混淆正、反比例性质,对于反比例函数,当0k<时,是在每个象限内,y 随x 的增大而增大.31、函数223(22)y x x x =+--≤≤的最小值为_________,最大值为__________. 易混:混淆一次、二次函数性质,直接取端点值.32、如果一次函数y kx b =+的自变量的取值范围是26x -≤≤,相应的函数值的范围是119y -≤≤,求此函数解析式.易错:对应关系不明确没有分类讨论.33、若函数y=(m-4)x ²-2mx-m-6的图像与x 轴只有一个交点,那么m 的取值为______. 易错:函数类型没有确定,忘记分类讨论.34、(2011延庆二模)已知关于x 函数k x x k y +-=2)-2(2,若此函数的图像与坐标轴只有2个交点,求k 的值.易错:函数类型、坐标轴均不定而产生的分类;易漏二次函数交于原点的情况. 35、求过点(1,1)且与抛物线y=x 2只有一个交点的直线解析式. 易错:易漏直线x=1.36、(朝阳)已知抛物线()13)2(2++-+-=m x m x y ,设抛物线与y 轴交于点C ,当抛物线与x 轴有两个交点A 、B (点A 在点B 的左侧)时,如果∠CAB 或∠CBA 这两角中有一个角是钝角,那么m 的取值范围 易忘:题目隐含方程有两不等根,忽略△≠037、(房山)若m 为正整数,且关于x 的一元二次方程2(32)220mx m x m --+-=有两个不相等的整数根,把抛物线y=2(32)22mx m x m --+-向右平移4个单位长度,求平移后的抛物线的解析式. 易错:忘记0≠m ;平移后的对应关系找不对.38、(海淀)设抛物线2(3)4y x m x m =--+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值. 易错:对应关系不明确忘记分类讨论.39、(石景山)抛物线C :122+-=x x y 向下平移()0>n n 个单位后与抛物线1C :c bx ax y ++=2关于y轴对称,且1C 过点()3,n ,求1C 的函数关系式. 易混:点或图象关于x 、y 轴或其他直线对称易混.40、(东城)已知关于x 的方程(m -1)x 2-(2m-1)x +2=0有两个正整数根. (1) 确定整数m 值;(2) 在(1)的条件下,利用图象写出方程(m -1)x 2-(2m -1)x +2+xm=0的实数根的个数.易错:对于(m -1)x 2-(2m -1)x +2+xm=0的解不会刻画正确的函数关系41、如图,一次函数y kx b =+与反比例函数my x=的图象交于A (2,1),B (-1,n )两点.(1)求k 和b 的值;(2)结合图象直接写出不等式0mkx b x +->的解集.易错:结合图像求不等式解集时少解42、在一个可以改变容积的密闭容器内,装有一定质量m 的某种气体,当改变容积v 时,气体的密度ρ也随之改变,ρ与v 在一定范围内满足mvρ=,当7kg m =时,它的函数图象是( ).易错:没有考虑实际问题自变量的取值范围.xn1-2O y1BA y kx b=+m y x=A .O3(m )v3(kg /m )ρ B .O3(m )v3(kg /m )ρ C .O3(m )v3(kg /m )ρ D .O3(m )v3(kg /m )ρ四、直线形43、在平面上任意画四个点,那么这四个点一共可以确定_______条直线. 易忘:几个点共线的特殊情况44、已知线段AB =7cm ,在直线AB 上画线段BC =3cm ,则线段AC =___________.45、三条直线公路相互交叉成一个三角形,现在要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有_______处? 易忘:忽视直线的条件导致漏解.46、如图,在△ABC ,90ACB ∠=︒中,D 是BC 的中点,DE ⊥BC ,CE ∥AD ,若2AC =,4CE =,求四边形ACEB 的周长.易忘:在用勾股定理计算边长时,没有交代Rt △或90°; 没有分清斜边还是直角边.47、如果方程2430x x -+=的两个根分别是Rt △ABC 的两条边,△ABC 最小的角为A ,那么tan A 的值为_________. 易错:直角三角形中直角边和斜边的分类.48、若等腰三角形的周长为18cm ,一边长为4cm ,则腰长为______cm ;若等腰三角形的一个角为40°,则底角为_______________;若等腰三角形的一个外角为70°,则底角为_______________.易错:忽视等腰三角形中腰、低;顶角、底角不明确而导致的分类;没有检验是否满足三角形的三边关系和内角和关系.49、已知等腰ΔABC 腰AB 上的高CD 与另一腰AC 的夹角为30°,则其顶角的度数为( )A 、60° B 、120° C 、60°或150° D 、60°或120°50、在ΔABC 中,∠B =25°,AD 是BC 边上的高,并且AD 2=BD.DC ,则∠BCA 的度数为____________. 易错:无图,没有考虑高在形内或形外,应分三角形为锐角三角形和钝角三角形两种情况进行讨论.EBD CAACBDE51、直角坐标系中,已知(1,1)P ,在坐标轴上找点A ,使AOP △为等腰三角形,这样的点A 共有多少个? 请直接写出坐标.52、在矩形ABCD 中,AB =3cm ,BC =4cm. 设P ,Q 分别为BD ,BC 上的动点,在点P 自点D 沿DB 方向作匀速运动的同时,点Q 自点B 沿BC 方向向点C 作匀速运动,移动速度均为1cm/s,设点P ,Q 移动的时间为t(0<t ≤4).当t 为何值时,ΔPBQ 为等腰三角形?易错:等腰三角形中腰和底不明确分类讨论不全,忽视点存在的条件或运动范围导致漏解.53、如图,已知△ABC 中,AB=AC ,D 、E 分别是AB 、AC 的中点,且CD=BE ,△ADC 与△AEB 全等吗?说说理由.易错:把SSA 作为三角形全等的识别方法.54、如图,已知△ADE 与△ABC 的相似比为1:2,则△ADE 与△ABC 的面积比为( ) A . 1:2 B . 1:4 C . 2:1 D . 4:155、如图,在△ABC 中,D 、E 分别是AC 、AB 边上的点, ∠AED =∠C ,AB =6,AD =4, AC =5, 求AE 的长.易错:相似条件缺公共角相等;找不对对应边的比.56、如图,在△ABC 中,DE ∥AC ,△ADE 的面积与梯形DBCE 的面积相等,BC=42,那么DE 的长度是______________.易混:面积比错认为等于相似比.AD EBCABCDE57、如图,在直角梯形ABCD 中,AB ∥DC ,∠A=90O,AD=5,AB=2,DC=3,P 为AD 上一点,若△PAB 和△PCD 相似,则AP 的长度为多少?易错:两相似三角形对应关系不明确,易漏解.58、在平面直角坐标系中,△ABC 顶点A 的坐标为(2,3),若以原点O 为位似中心,画△ABC 的位似图形△A ′B ′C ′,使△ABC 与△A ′B ′C ′的相似比等于21,则点A'的坐标为_________. 易错:没有考虑位似图形在位似中心的同侧和异侧导致漏解.59、在正方形网格中,ABC △的位置如图所示,则cos B 的值为( )A .12B .22C .32D .33易错:三角函数的定义,错用BC 比AB60、已知菱形的两条对角线的长分别为5和6,则它的面积是________.易忘:菱形面积公式等于对角线乘积的一半. 五、圆61、 如图,CD 是⊙O 的直径,弦AB ⊥CD 于点H ,若∠D =30°,CH =1cm ,则AB = cm .易忘:利用垂径定理求弦长忘记乘262、(海淀) 如图,AB 为⊙O 的直径,AB =4,点C 在⊙O 上, CF ⊥OC ,且CF =BF .证明:BF 是⊙O 的切线.易混:将CF =BF 作为证明切线的一种方法,误认为切线长定理有逆定理.63、如图,等腰△ABC 中,AE 是底边BC 上的高,点O 在AE 上,⊙O 与AB 和BC 分别相切.(1)⊙O 是否为△ABC 的内切圆?请说明理由.(2)若AB=5, BC=4,求⊙O 的半径.易混:切线的证明方法,作垂直证等于半径.ABOCH DAFCOBMADCBP64、一元钱硬币的直径约为24mm,则用它能完全覆盖住的正六边形的边长最大不能超过()A.12 mm B.123mm C.6mm D.63mm易混:内切圆和外接圆、正多边形和圆的相关概念混淆.65、已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于()A.11πB.10π C.9πD.8π易混:圆柱和圆锥的侧面积公式66、在Rt△ABC中,∠C=900,AC=3,BC=4,以C为圆心,r为半径作圆,若圆与线段AB只有一个公共点,则r的取值范围是____________________.易错:忽视条件“线段AB”导致漏解.1OB67、如图,∠ABC=90°,O为射线BC上一点,以点O为圆心,长为半径作⊙O,若射线BA绕点B按顺时针方向旋转至BA',若BA'与⊙O相切,则旋转的角度α(0°<α<180°)等于.易忘:忘记过圆外一点能做圆的两条切斜导致漏解.68、点P到圆上的最大距离为8cm,最小距离为6cm,求⊙O的半径.69、已知⊙O1与⊙O2相切,⊙O1的半径为3 cm,⊙O2的半径为2 cm,则O1O2的长是()A.1 cm B.5 cm C.1 cm或5 cm D.0.5cm或2.5cm70、已知半径为4和22的两圆相交,公共弦长为4,则两圆的圆心距为_________.2、,求∠BAC的度数.71、已知:⊙O的半径OA=1,弦AB、AC的长分别为372、在⊙O中直径为4,弦AB=23,点C是圆上不同于A、B的点,那么∠ACB度数为 .73、⊙O是△ABC的外接圆,OD⊥BC于D,且∠BOD=48°,则∠BAC=_________.74、在半径为5cm的⊙O中,弦AB=6cm,弦CD=8cm,且AB∥CD,求AB与CD之间的距离.易错:68—74均为没有判定因图形位置关系不定导致的分类讨论而漏解.六、统计和概率75、有20名同学参加“英语拼词”比赛,他们的成绩各不相同,按成绩取前10名参加复赛. 若小新知道了自己的成绩,则由其他19名同学的成绩得到的下列统计量中,可判断小新能否进入复赛的是()A.平均数B.极差C.中位数 D.方差易混:统计量意义的认识易混76、对于数据:85,83,85,81,86.下列说法中正确的是( ) A .这组数据的中位数是84 B .这组数据的方差是3.2 C .这组数据的平均数是85D .这组数据的众数是86易忘:方差公式77、若从10~99这连续90个正整数中选出一个数,其中每个数被选出的机会相等,则选出的数其十位数字与个位数字的和为9的概率是( ) A .901 B. 101 C. 91 D. 454易错:列举不全,忽视了9078、已知甲袋中有1个红球、1个白球、乙袋中有2 个红球、1个白球(两种球只是颜色不同).从甲、乙两袋中同时摸出红球的概率是多少? 易错:可能性分析错误79、在一个口袋中有3个完全相同的小球,把它们分别标号为1, 2, 3, 随机地摸出一个小球记下标号后放回, 再随机地摸出一个小球记下标号, 求两次摸出小球的标号之和等于4的概率.80、在不透明的口袋中装有大小、质地完全相同的分别标有数字1,2,3的三个小球,随机摸出一个小球(不放回),将小球上的数字作为一个两位数个位上的数字,然后再摸出一个小球将小球上的数字作为这个两位数十位上的数字(利用表格或树状图解答). (1)能组成哪些两位数?(2)小华同学的学号是12,在一次试验中他摸到自己学号的概率是多少? 易错:没有区分放回或不放回导致可能性分析错误.。

相关文档
最新文档