九年级数学上册二次函数讲义
(完整word版)九年级数学上册二次函数讲义
初三数学二次函数讲义一、二次函数概念:21•二次函数的概念:一般地,形如y ax bx c (a, b , c是常数,a 0 )的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数 a 0,而b, c可以为零•二次函数的定义域是全体实数.2. 二次函数y ax2 bx c的结构特征:⑴ 等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a ,b ,c是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式21. 二次函数基本形式:y ax的性质:a的绝对值越大,抛物线的开口越小。
22. y ax c的性质:上加下减。
23. y a x h的性质:左加右减。
4. y a x h k 的性质:a 的符号开口方向 顶点坐标 对称轴 性质a 0向上h , kX=hx h 时,y 随x 的增大而增大;x h 时,y 随 x 的增大而减小;x h 时,y 有最小值k .a 0向下 h , k X=hx h 时,y 随x 的增大而减小;x h 时,y 随 x 的增大而增大;x h 时,y 有最大值k .三、二次函数图象的平移1.平移步骤:2方法一:⑴ 将抛物线解析式转化成顶点式 y a x h k ,确定其顶点坐标 h , k ;⑵保持抛物线y ax 2的形状不变,将其顶点平移到h ,k 处,具体平移方法如下:2.平移规律 在原有函数的基础上 ’h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”方法二:2 2⑴y ax bx c 沿y 轴平移:向上(下)平移 m 个单位,y ax bx c 变成2 2y ax bx c m (或 y ax bx cm ) ⑵y ax 2 bx c 沿轴平移:向左(右)平移 m 个单位,y ax 2 bx c 变成y a(x m)2 b(x m) c (或 y a(x m)2 b(x m) c )四、二次函数y a x h? k 与y ax 2 bx c 的比较ax 2 bx c 是两种不同的表达形式,后者通过配方可以得到前y=ax 2y=a(x h)2向右(h>0)【或左(h<0)】 平移|k|个单位*y=a (x h)2+k从解析式上看, 向上(k>0) 【或下(k<0)】平移|k|个单位 向上(k>0)【或下(k<0)】平移|k|个单位向右(h>0)【或左(*0)】平移|k|个单位向右(h>0)【或左(h<0)】 平移|k|个单位向上(k>0)【或向下24ac b24a,其中hb 4ac b2£五、二次函数y ax 2 bx c 图象的画法五点绘图法:利用配方法将二次函数y ax 2bx c 化为顶点式y a (x h )2k ,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴 的交点0, c 、以及0, c 关于对称轴对称的点 2h ,c 、与x 轴的交点x i, 0, X 2, 0 (若与x 轴 没有交点,则取两组关于对称轴对称的点)画草图时应抓住以下几点:开口方向,对称轴,顶点,与 x 轴的交点,与y 轴的交点.六、二次函数y ax 2bx c 的性质x 的增大而增大;当 x —时,y 随x 的增大而减小;当x2a七、二次函数解析式的表示方法1.一般式: 2y ax bx c ( a , b , c 为常数, a 0 ); 2.顶点式: y a(x h)2 k ( a , h , k 为常数, a 0); 3.两根式: y a(x xj(x X 2) (a 0, X i , X 2 是抛物线与x 轴两交点的横坐标) 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只 有抛物线与x轴有交点,即b 2 4ac 0时,抛物线的解析式才可以用交点式表示•二次函数解析式 的这三种形式可以互化•八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数y ax bx c 中,a 作为二次项系数,显然 a 0 • ⑴ 当a 0时,抛物线开口向上, a 的值越大,开口越小,反之 a 的值越小,开口越大; ⑵ 当a 0时,抛物线开口向下,a 的值越小,开口越小,反之 a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向, a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.⑴在a0的前提下, 当—0 y 轴左1•当a 0时,抛物线开口向上,对称轴为xw ,顶点坐标为b4ac b 2 2a ,4a当x —时,y 随x 的增大而减小;当x2a2值 4ac b .4a—时,y 随x 的增大而增大;当x —时,y 有最小 2a 2a2•当a 0时,抛物线开口向下,对称轴为x—,顶点坐标为2ab 4ac b 22a 4a当x —时,y 随2ay 有最大值24ac b 4a2当b 0时,—0 ,2a即抛物线的对称轴就是y轴;总之,只要a, b , c 都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法•用待定系数法求二次函数的解析式必须根 据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:已知抛物线上三点的坐标,一般选用一般式;已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式; 已知抛物线上纵坐标相同的两点,常选用顶点式2y a x h k 关于y 轴对称后,得到的解析式是当b0时, b20 ,即抛物线对称轴在 y 轴的右侧.⑵在a0的前提下,结论刚好与上述相反,即当b0时, b 2a, 即抛物线的对称轴在y 轴右侧;当b0时, b 2a, 即抛物线的对称轴就是 y 轴; 当b0时,b 20,即抛物线对称轴在y 轴的左侧.ab 的符号的判定:对称轴b 决定了抛物线对称轴的位置. K——在y 轴左边则ab 0,2a在y 轴的右侧则ab 0,概括的说就是“左同右异” 总结: 3.常数项c⑴当c ⑵当c ⑶当c 总结起来,抛物线与 抛物线与 抛物线与 y 轴的交点在x 轴上方,即抛物线与 y 轴的交点为坐标原点,即抛物线与 y 轴的交点在x 轴下方,即抛物线与 0时, 0时,0时, c 决定了抛物线与 y 轴交点的位置.y 轴交点的纵坐标为正; y轴交点的纵坐标为0 ; y 轴交点的纵坐标为负.1. 2. 3. 4.九、 二次函数图象的对称1. 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 关于x 轴对称2y ax bx 2axbx 2. y a x h 关于y 轴对称y ax 2 bx c 关于y 轴对称后,得到的解析式是 ax 2bx c ;总结起来,在a 确定的前提下,2h k 关于原点对称后,得到的解析式是 第4页共3.关于原点对称 y ax 2bx c 关于原点对称后,得到的解析式是 ax 2bx2y ax 2 bx c 关于顶点对称后,得到的解析式是y ax 2 bx c —;2a2 2y a x h k 关于顶点对称后,得到的解析式是 y a x h k .5. 关于点m, n 对称2y a x h k 关于点 m, n 对称后,得到的解析式是 y根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此 a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原 抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向, 然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1.二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程ax 2 bx c 0是二次函数y ax 2 bx c 当函数值y 0时的特殊情况.图象与x 轴的交点个数:①当 b 2 4ac 0时,图象与x 轴交于两点, 0 , B x ?, 0 (论x ?),其中的人,x 是一元二次② 当 0时,图象与x 轴只有一个交点; ③ 当0时,图象与x 轴没有交点.1'当a 0时,图象落在x 轴的上方,无论x 为任何实数,都有 y 0 ; 2'当a 0时,图象落在x 轴的下方,无论x 为任何实数,都有 y 0 .22. 抛物线y ax bx c 的图象与y 轴一定相交,交点坐标为 (0 , c );3.二次函数常用解题方法总结:⑴ 求二次函数的图象与 x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数y ax 2 bx c 中a , b , c 的符号,或由二次函数中 a , b , c 的符号a x h 2m 2n k方程ax 2bx c 0 a 0的两根•这两点间的距离2判断图象的位置,要数形结合; ⑷ 二次函数的图象关于对称轴对称,可利用这一性质, 求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标 ⑸ 与二次函数有关的还有二次三项式,二次三项式ax 2 bx c (a 0)本身就是所含字母 x 的二次函数;下面以a 0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:0抛物线与X轴有两个交点二次三项式的值可正、可零、可负一兀二次方程有两个不相等实根0抛物线与X轴只有一个交点二次三项式的值为非负一兀二次方程有两个相等的实数根0抛物线与X轴无交占八、、二次三项式的值恒为正一兀二次方程无实数根•二次函数图像参考:卜一、函数的应用刹车距离二次函数应用何时获得最大利润最大面积是多少y=2x2二次函数考查重点与常见题型1.考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数 y (m 2)x 2 m 2m 2的图像经过原点,则m 的值是反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查 试题类型为选择题,如:3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选 拔性的综合题,如:5已知一条抛物线经过(0,3) , (4,6)两点,对称轴为x,求这条抛物线的解析式。
人教版九年级上册数学《二次函数与一元二次方程》二次函数课件教学说课
二次函数 y = x2-4x+3 的值为0,求自变量x的值.
探究新知
二次函数与一元二次方程的关系(1)
已知二次函数中因变量的值,
求自变量的值
解一元二次方程
探究新知
素养考点 二次函数与一元二次方程的关系
例 已知二次函数 y=2x2-3x-4的函数值为1,求自变
量x的值,可以看作解一元二次方程 2x2-3x-4=1 .
球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有
关系h=20t-5t2.考虑以下问题:
(3)球的飞行高度能否达到20.5m?为什么?
解:(1)解方程20.5=20t-5t2。t2-4t+4.1=0。
因为(-4)2-4×4.1<0。所以方程无解。球
的飞行高度达不到20.5m
情境引入
如图所示,以40m/s的速度将小球沿与地面成30°角的方向击出
x>1,y随x的增大而减小,正确;④由函数图象知,
当-1<x<3时,y>0,正确。综上,①②③④正确。
小练习
如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的
图象,则下列结论:①abc>0;②b+2a=0;③抛物线
与x轴的另一个交点为(4,0);④a+c>b;⑤3a+c<0.
其中正确的结论有( B )
个交点为(1,0),则关于x的一元二次方程x2-3x+m=0
的两实数是( B )
A. x1=1,x2=-1
B. x1=1,x2=2
C.x1=1,x2=0
D. x1=1,x2=3
2
解析:二次函数y=x -3x+m的对称轴是x=-
3
初三数学-二次函数讲义-详细
二次函数一、二次函数的解析式1. 二次函数解析式有三种:(1)一般式:y ax bx c a =++≠20()(2)顶点式:()y a x h k =-+2顶点为()h k ,(3)交点式:()()y a x x x x =--12 ()()x x 120,,是图象与x 轴交点坐标。
2.根据不同的条件,运用不同的解析式形式求二次函数的解析式. 二、二次函数与一元二次方程1. 二次函数()20y ax bx c a =++≠与一元二次方程()200ax bx c a ++=≠的关系。
一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况。
2.图像与x 轴的交点个数:①当240b ac ∆=->时,图像与x 轴交于两点()()()1212,0,,0A x B x x x ≠,其中12,x x 是一元二次方程()200ax bx c a ++=≠的两根;②当0∆=时,图像与x 轴只有一个交点; ③当0∆<时,图像与x 轴没有交点。
1’ 当0a >时,图像落在x 轴的上方,无论x 为任何实数,都有0y > 2’ 当0a <时,图像落在x 轴的下方,无论x 为任何实数,都有0y <。
板块一 二次函数解析式 1.(1)把函数23212++=x x y 化成它的顶点式的形式为_______________________; (2)把函数6422++-=x x y 化成它的交点式形式为____________________________; (3)把函数()2324y x =-+化为它的一般式的形式为__________________________; (4)把函数12)1(32--=x y 化成它的交点式为__________________________;(5)把函数的图象向右平移3个单位,再向下平移2个单位,得到的二次函数解析式是 ;(6)把抛物线322-+=x x y 向左平移3个单位,然后向下平移2个单位,则所得的抛物线的解析式为 .2.(1) 抛物线了y=a(x+1)(x-3)(a ≠0)的对称轴是直线 ( )22x y =A .x=1B .x=-1C .x=-3D .x=3(2)二次函数y=(x+1)2+2的最小值是 ( )A .2B .1C .-3D .233.(1)已知一个二次函数过(0 ,0),(-1 ,11),(1, 9)三点,求二次函数的解析式。
九年级数学上册二次函数讲义
初三数学 二次函数讲义一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质: 上加下减。
3. ()2y a x h =-的性质:左加右减。
4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧;当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的在联系:二次函数图像参考:十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少2-32y=-2x 2y=3(x+4)22y=3x 2y=-2(x-3)二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。
人教版九年级上册数学二次函数课件
自主探究
问题: (3)b或c能为0吗?
当b≠0时,是一次函数, 当b=0时, 是常数函数关于x的函数 y m 1 xm2m
是二次函数,求m的值.
分析:若 y m 1 xm2m 是二次函数,须满
足的条件是 m2 m 2, m 1 0.
自主探究
1.问题探究 (1)正方体的六个面是全等的正方形,如果 正方体的棱长为x,表面积为y,那么y与x的关 系可以怎样表示?
y 6x2
(2) n边形的对角线条数d与边数n之间有怎
样的关系?
d 1 n2 3 n
2
2
自主探究
(3)某工厂一种产品现在的年产量是20件, 计划今后两年增加产量,如果每年都比上一 年的产量增加x倍,那么两年后这种产品的产 量y将随计划所定的x的值而定,y与x之间的关 系应怎样表示?
第二十二章 二次函数 22.1 二次函数的图象和性质
22.1.1 二次函数
情境引入
欣赏下面两幅图片:
姚明一次精彩的投球
情境引入
广场前喷水池喷出的水珠
情境引入
篮球和水珠在空中走过一条曲线, 在曲线的各个位置上,篮球(水珠)的 竖直高度h与它距离投出位置(喷头)的 水平距离x之间有什么关系?上面问题中 变量之间的关系可以用二次函数来表示.
y 20x2 40x 20.
自主探究
2.视察思考
请视察下面三个式子,它们的变量对应规律可
用怎样的函数表示?这些函数有什么共同特点?请
你结合学习一次函数概念的经验,给它下个定义.
(1) y 6 x2 ;
(2)d
1 2
n2
3 2
n;
具有
人教版九年级上册数学 讲义 二次函数的图像与性质
C. D.
【例2】已知二次函数y=ax2+bx+1的大致图象如图所示,则函数y=ax+b的图
象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
【例3】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b<0;③a-b+c<0;④a+c>0,其中正确结论的个数为().
3、抛物线 ( )的顶点坐标公式:( , );对称轴是直线: ;当 时,函数有最值: 。
4、二次函数图像的平移:只要抛物线解析式中的a相同,它们之间可以相互平移得到,平移规律:左加右减,上加下减。
二、典型例题:
考点一:二次函数的定义
【例1】下列函数中,关于 的二次函数是( )。
A、 B、 C、 D、
A.y1<y2<y3B.y2<y1<y3
C.y3<y1<y2D.y1<y3<y2
【例2】已知二次函数 ,若自变量 分别取 , , ,且 ,则对应的函数值 的大小关系正确的是()
A. B. C. D.
三、强化训练:
【夯实基ห้องสมุดไป่ตู้】
1、二次函数 的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是()
【例2】已知函数 ( 为常数)。
(1) 为何值时,这个函数为二次函数?
(2) 为何值时,这个函数为一次函数?
考点二:二次函数的顶点、对称轴、最值
【例1】写出下列抛物线的对称轴方程、顶点坐标及最大或最小值;
(1) (2) (3)
考点三:抛物线的平移(上加下减,左加右减)
【例1】把抛物线 向左平移2个单位,再向下平移2个单位,则所得的抛物线的表达式是;
A、4个B、3个C、2个D、1个
考点五:直线与抛物线的位置关系
二次函数课件
函数,叫做二次函数.x是自变量,a,b,c分别是函数表达式的
二次项系数,一次项系数和常数项.
2.二次函数的一般情势:y=ax2+bx+c.
3.注意:二次函数自变量的取值范围是: 一般情况是全体实数,实际问题要符合实际意义.
典例精讲
二次函数的概念
知识点一
【例1-1】下列函数中,哪些是二次函数?若是,分别指出二次
∴y=[6+2(x-1)][95-5(x-1)],
即y=-10x2+180x+400(其中x是正整数,且1≤x≤10);
(2)由题意可得:-10x2+180x+400=1120,
解 得:
x1=6,x2=12(舍去).
所以,该产品的质量档次为第6档.
当堂训练
建立二次函数的模型
Hale Waihona Puke 知识点二在如图所示的一张长、宽分别为50cm 和30cm的矩形铁皮的四个
求出y关于x的函数关系式;
(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.
典例精讲
建立二次函数的模型
知识点二
解:(1)∵第一档次的产品一天能生产95件,每件利润6元,每提高一个档
次,每件利润加2元,但一天产量减少5件,
∴第x档次,提高了(x-1)档,利润增加了2(x-1)元.
人教版九年级(上)数学教学课件
第22章 二次函数
22.1 二次函数的图象和性质
22.1.1 二次函数
情境导入 探究新知 知识归纳 典例精讲 当堂训练
知识要点
01 二次函数的概念
精讲精练
02 建立二次函数的模型
知识归纳
二次函数的概念
数学人教版九年级上册22.1.1《二次函数》课件.1.1《二次函数》课件
2.函数 y=(m-n)x2+ mx+n 是二次函数的条件是( A . m,n是常数,且m≠0 B . m,n是常数,且n≠0
C. m,n是常数,且m≠n
D . m,n为任何实数
)
y 2 x
3.下列函数是二次函数的是 ( C
A.y=2x+1
C.y=3x2+1
B.
1 1 D. y 2 x
随堂练习
即
y 20 x2 40 x 20③
观察
函数①②③有什么共同点?
y=6x2① 12 1 m n n ② 2 2 y 20 x2 40 x 20③
y是x的函数吗?y是x的一次函数?反比例函数?
在上面的问题中,函数都是用自变量的 二次式表示的
定义:一般地,形如y=ax² +bx+c(a,b,c
2m+n=2
① ∵ ②∵
2m+n=1
③∵
2m+n=2
2m+nБайду номын сангаас2
④ ∵
2m+n=0 m-n=2
m-n=1
∴
m-n=2
∴
m-n=2
m=4/3
m-n=0 m=2/3
⑤∵
m=1 n=0
m=1
n=-1
∴
∴
∴
m=2/3 n=-4/3
n=-2/3
n=2/3
小结
现在我们学习过的函数有: 一次函数y=ax+b (a ≠0),其中包括正比例函数 y=kx(k≠0),
6.一个圆柱的高等于底面半径,写出它 的表面积 s 与半径 r 之间的关系式. S=4πr2 7. n支球队参加比赛,每两队之间进行 一场比赛,写出比赛的场次数 m与球队 数 n 之间的关系式. 1 2 1 1 m nn 1 即 m n n 2 2 2
九年级二次函数讲义
二次函数一.知识梳理1、定义:只含有一个未知数,且未知数最高次数为2的方程叫做一元二次方。
一元二次方程的标准式:ax2+bx+c=0 (a≠0)其中: ax2叫做二次项, bx叫做一次项, c叫做常数项a是二次项系数,b是一次项系数2、一元二次方程根的判别式(二次项系数不为0):“△”读作德尔塔,在一元二次方程ax2+bx+c=0 (a≠0)中△=b2-4ac△=b2-4ac>0 <====> 方程有两个不相等的实数根,即:x1,x2△=b2-4ac=0 <====> 方程有两个相等的实数根,即:x1=x2△=b2-4ac<0 <====> 方程没有实数根。
注:“<====>” 是双向推导,也就是说上面的规律反过来也成立,如:告诉我们方程没有实数根,我们便可以得出△<03、一元二次方程根与系数的关系(二次项系数不为0;△≥0),韦达定理。
ax2+bx+c=0 (a≠0)中,设两根为x1,x2,那么有:因为:ax2+bx+c=0 (a≠0)化二次项系数为1可得,所以:韦达定理也描述为:两根之和等于一次项系数的相反数,两根之积等于常数项。
注意:(1)在一元二次方程应用题中,如果解出来得到的是两个根,那么我们要根据实际情况判断是否应舍去一个跟。
5、一元二次方程的求根公式:注:任何一元二次方程都能用求根公式来求根,虽然使用起来较为复杂,但非常有效。
一、求二次函数的三种形式:1. 一般式:y=ax 2+bx+c ,(已知三个点)顶点坐标(-2b a,244ac b a -)2.顶点式:y=a (x -h )2+k ,(已知顶点坐标对称轴)顶点坐标(h ,k )3.交点式:y=a(x- x 1)(x- x 2),(有交点的情况)与x 轴的两个交点坐标x 1,x 2对称轴为221x x h +=二、a b c 作用分析│a │的大小决定了开口的宽窄,│a │越大,开口越小,│a │越小,开口越大,a ,b 的符号共同决定了对称轴的位置,当b=0时,对称轴x=0,即对称轴为y 轴,当a ,b同号时,对称轴x=-2b <0,即对称轴在y 轴左侧,当a ,b•异号时,对称轴x=-2ba>0,即对称轴在y 轴右侧,c•的符号决定了抛物线与y 轴交点的位置,c=0c<0时,与y•轴交于负半轴,以上a ,b ,c 的符号与图像的位置是共同作用的,也可以互相推出.二.专题精练专题一:二次函数与一元二次方程的关系本专题主要涉及根据二次函数的图象求一元二次方程的近似根,由图象判断一元二次方程根的情况,由一元二次方程根的情况判断抛物线与x 轴的交点个数等,题型主要填空题、选择题和解答题.考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况. 例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )A.6 6.17x << B.6.17 6.18x << C.6.18 6.19x <<D.6.19 6.20x <<抛物线 顶点坐标 对称轴 位置 开口方向 增减性 最值y=ax2+bx+c(a>0)y=ax 2+bx+c(a<0)由a,b 和c 的符号确定由a,b 和c 的符号确定 a>0,开口向上a<0,开口向下在对称轴的左侧,y 随着x 的增大而减小. .在对称轴的左侧,y 随着x 的增大而增大. 在.⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22abx 2-=直线abx 2-=直线考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.考点3.抛物线的交点个数与一元二次方程的根的情况当二次函数y=ax 2+bx+c 的图象与x 轴有两个交点时,则一元二次方程ax 2+bx+c=0有两个不相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴有一个交点时,则一元二次方程ax 2+bx+c=0有两个相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴没有交点时,则一元二次方程ax 2+bx+c=0没有实数根.反之亦然.例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( )专项练习31.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k 的取值范围是________.2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .3.已知函数2y ax bx c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根. (2)写出不等式20ax bx c ++>的解集.图2图1(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.专题二、探究几何图形中的二次函数关系【例11】在梯形ABCD 中,AD BC ∥,6AB DC AD ===,60ABC ∠=o,点E F,分别在线段AD DC ,上(点E 与点A D ,不重合),且120BEF ∠=o,设AE x =,DF y =.(1)求y 与x 的函数表达式;(2)当x 为何值时,y 有最大值,最大值是多少课堂检测1、二次函数342++=x x y 的图像可以由二次函数2x y =的图像平移而得到,下列平移正确的是( )A .先向左平移2个单位,再向上平移1个单位B .先向左平移2个单位,再向下平移1个单位;C .先向右平移2个单位,再向上平移1个单位D .先向右平移2个单位,再向下平移1个单位2、在平面直角坐标系中,如果抛物线y =2x 2不动,而把x 轴、y 轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是( ) A .y =2(x -2)2+ 2 B .y =2(x + 2)2-2 C .y =2(x -2)2-2D .y =2(x + 2)2+ 2A ED FCBO xy1-1A 3、二次函数21(4)52y x =-+的开口方向、对称轴、顶点坐标分别是( ) A .向上、直线x=4、(4,5) B .向上、直线x=-4、(-4,5) C .向上、直线x=4、(4,-5) D .向下、直线x=-4、(-4,5) 4、二次函数c bx ax y ++=2的图象如图所示,则下列关系式不正确的是( )A 、a <0B 、abc >0C 、c b a ++>0D 、ac b 42->05、函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是 ( )6、二次函数2(0)y ax bx c a =++≠的图象如图4所示, 则下列说法不正确的是( ) A .240b ac -> B .0a >C .0c >D .02ba-<7、如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出四个结论:①b 2>4ac ;②2a +b =0;③a -b +c =0;④5a <b .其中正确结论是( ). A .②④ B .①④ C .②③ D .①③8、已知关于x 的函数同时满足下列三个条件:①函数的图象不经过第二象限;②当2<x 时,对应的函数值0<y ;③当2<x 时,函数值y 随x 的增大而增大.你认为符合要求的函数的解析式可以是: (写出一个即可).9、如右图,抛物线n x x y ++-=52经过点)0,1(A ,与y 轴交于点B. (1)求抛物线的解析式;(2)P 是y 轴正半轴上一点,且△PAB 是等腰三角形,试求点P 的坐标...《专题五。
人教版九年级数学上册二次函数课件(共15张)
1、y =6x2
2、
3、y=20x2+40x+20 上述问题中的函数解析式具有
哪些共同的特征?
化简后具有y=ax²+bx+c 的情势.
(a,b,c是常数, a≠0 )
二次函数概念
我们把形如y=ax²+bx+c
(其中a,b,C是常数,a≠0)的函 数叫做二次函数
称:a为二次项系数, b为一次项系数, c为常数项.
(1)写出y关于x的 函数关系式. (2)当x=3时,矩形 的面积为多少?
x
2、已知二次函数 y=x²+px+q,当x=1时,函数 值为4,当x=2时,函数值 为 -5, 求这个二次函数 的解析式.
课堂小结
a≠0
y=ax²+bx+c
二次项 系数
一次项 系数
常数项
每个队要与其他 (n-1) 个球队各比赛一场,甲
队对乙队的比赛与乙队对甲队的比赛是同一场比赛,
所以比赛的场次数
.即
.
上式表示比赛的场次数m与球队数n的关系,对于 n的每一个值,m都有一个对应值,即m是n的函数.
问题2 某种产品现在的年产量是20 t,计划今后 两年增加产量,如果每年都比上一年的产量增加 x倍,那么两年后这种产品的产量 y 将随计划所 定的x的值而确定,y与x之间的关系应怎样表示?
这种产品的原产量是20 t,一年后的产量是 20(1+x)t,
再经过一年后的产量是 20(1+x)(1+x) t,即两年 后的产量 y=20(1+x)2 , 即 y=20x2+40x+20 .
上式表示两年后的产量y与计划增产的倍数x之间 的关系,对于x的每一个值,y都有一个对应值,即y 是x的函数.
二次函数初三ppt课件ppt课件ppt课件
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高
九年级上册二次函数专题讲义
九年级上册二次函数专题讲义一、二次函数概念二次函数是指形如y=ax²+bx+c(a,b,c是常数,且a≠0)的函数。
需要注意的是,和一元二次方程类似,二次项系数a≠0,而b,c可以为零。
例如,下列函数中哪些是二次函数:①y=3x²;②y=x²-x(1+x);③y=x²(x²+x)-4;④y=1+x;⑤2xy=x(1-x)。
其中,例1需要判断每个函数的a,b,c值,而例2则是给定函数,需要判断m取何值时,该函数是关于x 的二次函数。
练1和练2则是练判断给定函数是否是关于x的二次函数,需要注意二次项系数a是否为零。
练3是已知点A在函数y=x-1的图像上,需要求出点A的坐标。
二、二次函数的基本形式二次函数的基本形式是y=ax²,它的图象是一条抛物线,有一条对称轴,对称轴和图象有一点交点,这个点叫做抛物线的顶点。
画出函数y=x的图象的步骤如下:首先列出函数对应值表,然后在直角坐标系中描点,最后用光滑的曲线连接各点得到函数的图象。
需要注意的是,抛物线与它的对称轴的交点就是抛物线的顶点。
通过观察比较函数y=x和y=-x的图象,可以得出它们关于y轴对称的结论;通过观察比较函数y=2x和y=-2x的图象,可以得出它们关于x轴对称的结论。
同时,可以发现这四个函数的图象都是抛物线,都有一条对称轴和一个顶点。
因此,结论是函数y=ax²的图象是一条抛物线,它关于y轴对称,它的顶点坐标是(0,0)。
当$a>0$时,抛物线$y=ax^2$开口向上,对称轴左侧,$y$随$x$的增大而增大;对称轴右侧,$y$随$x$的增大而减小;顶点是抛物线上位置最低的点。
当$x=-\frac{b}{2a}$时,函数值$y=ax^2$取得最小值,最小值是$-\frac{b^2}{4a}$。
当$a<0$时,抛物线$y=ax^2$开口向下,对称轴左侧,$y$随$x$的增大而减小;对称轴右侧,$y$随$x$的增大而增大;顶点是抛物线上位置最高的点。
九年级数学上册教学课件《二次函数的图象和性质(第2课时)》
________________
.
解:∵抛物线y=3(x+ 2 )2的对称轴为x=- 2,a=3>0,开口向上,
∴当x<- 2时,即在对称轴的左侧,y随x的增大而减小;当x>- 2时,
即在对称轴的右侧,y随x的增大而增大.
∵点A的坐标为(-3 2,y1),
∴点A在抛物线上关于x=- 2的对称点A′的坐标为( 2,y1).
y随x的增大而增大.
当x>h时,y随x的增大
而减小;x<h时,y随x
的增大而增大.
探究新知
22.1 二次函数的图像和性质
素养考点 二次函数y = a(x-h)2 的图象和性质
例 若抛物线y=3(x+ 2 )2的图象上的三个点,A(-3 2 ,y1),
B(-1,y2),C(0,y3),则y1,y2,y3的大小关系为
22.1 二次函数的图像和性质
能力提升题
在同一坐标系中,画出函数y=2x2 与y=2(x-2)2 的图
象,分别指出两个图象之间的相互关系.
y
解:图象如右图.
y = 2x2
函数y=2(x-2)2的图象由函数y=2x2的
图象向右平移2个单位得到.
x
O
2
课堂检测
22.1 二次函数的图像和性质
拓广探索题
y 1 x2
式可表示为y=a(x-3)2,
把x=-1,y=4代入,得4=a(-1-3)2,a =
因此平移后二次函数关系式为y=
1
(x-3)2.
4
1
,
4
方法总结:根据抛物线左右平移的规律,向右平移3个单位后,a不变,
括号内应“减去3”;若向左平移3个单位,括号二次函数的图像和性质
《二次函数》PPT优秀课件
链接中考
1.下列函数解析式中,一定为二次函数的是( C )
A.y=3x-1 C.s=2t2-2t+1
B.y=ax2+bx+c
D.y=x2+
1
2
x
链接中考
2.已知函数 y=(m²﹣m)x²+(m﹣1)x+m+1. (1)若这个函数是一次函数,求m的值; (2)若这个函数是二次函数,则m的值应怎样? 解:(1)根据一次函数的定义,得m2﹣m=0,
探究新知
素养考点 1 二次函数的识别
例1 下列函数中是二次函数的有 ①⑤⑥ .
①√ y= 2x2 2
×③y x2(1 x2 ) 1
最高次数是4
⑤√ y=x( x 1)
×②y 2x2 x(1 2x) a=0
×④y
1 x2
x2
√⑥y
x4 x2 x2 1
=x2
二次函数:y=ax²+bx+c(a,b,c为常数,a≠0)
素养目标
2. 能根据实际问题中的数量关系列出二次函数 解析式,并能指出二次函数的项及各项系数.
1.掌握二次函数的定义,并能判断所给函数 是否是二次函数.
探究新知
知识点 1 二次函数的概念
问题1 正方体的六个面是全等的正方形(如下图),设正方
形的棱长为x,表面积为y,显然对于x的每一个值, y都 有一个对应值,即y是x的函数,它们的具体关系可以表 示为 y=6x2①.
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的 步骤: (1)将函数解析式右边整理为含自变量的代 数式,左边是函数(因变量)的形式; (2)判断右边含自变量的代数式是否是整式; (3)判断自变量的最高次数是否是2; (4)判断二次项系数是否不等于0.
九年级数学上册《二次函数》优秀课件
描点法画二次函数 y = ax2 的图象.
数与形相互联系.
实际问题
要用总长为20m的铁栏杆,一面靠墙,围成一个矩形的花 圃,怎样的围法才能使围成的花圃的面积最大?
1.设矩形花圃的周长不变,垂直于墙的一边AB的长为x m, 先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的 面积 y m2.试将计算结果填写在下表的空格中:
AB的长x(m) 1 2 3 4 5 6 7 8 9
BC的长(m)
12
面23积..x我y的(们值发m是现2否),可当以AB任的意长取(?有x)限确定定4范8后围,吗矩?形的面积(y)
也随之确定,即y是x的函数,试写出这个函数的关系式.
探究
观察函数关系式
y 100x2 100,x 200
(1)函数关系式的自变量有几个?
二次函数
学习目标
【知识与能力】
理解二次函数的意义. 会用描点法画出二次函数 y = ax2 的图象. 知道抛物线的有关概念.
【过程与方法】
通过二次函数的教学进一步体会研究函数的一般方 法.
加深对数形结合思想的认识.
【情感态度与价值观】
通过变式教学,培养学生思维的敏捷性、广阔性、深刻性.
学习重、难点
观察姚明的投篮……
再看一下林书豪的投篮. 二次函数的图象是不是跟图中他们的投篮路线很像?
知识要点
抛物线:
像这样的曲线通常叫做抛物线.
二次函数的图象都是抛物线.
一般地,二次函数
y ax2 b的x图象c叫做抛
物线 y ax2 bx c.
抛物线
抛物线
抛物线
对称轴、顶点、最低点、最高点
y=ax2 (a>0) (0,0)
九年级数学上册第二十二章二次函数知识点总结归纳(带答案)
九年级数学上册第二十二章二次函数知识点总结归纳单选题1、定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC 中,点A (0,2),点C (2,0),则互异二次函数y =(x −m )2−m 与正方形OABC 有交点时m 的最大值和最小值分别是( )A .4,-1B .5−√172,-1C .4,0D .5+√172,-1 答案:D分析:分别讨论当对称轴位于y 轴左侧、位于y 轴与正方形对称轴x =1之间、位于直线x =1和x =2之间、位于直线x =2右侧共四种情况,列出它们有交点时满足的条件,得到关于m 的不等式组,求解即可. 解:由正方形的性质可知:B (2,2);若二次函数y =(x −m )2−m 与正方形OABC 有交点,则共有以下四种情况:当m ≤0时,则当A 点在抛物线上或上方时,它们有交点,此时有{m ≤0m 2−m ≤2, 解得:−1≤m <0;当0<m ≤1时,则当C 点在抛物线上或下方时,它们有交点,此时有{0<m ≤1(2−m )2−m ≥0, 解得:0<m ≤1;当1<m ≤2时,则当O 点位于抛物线上或下方时,它们有交点,此时有{1<m ≤2m 2−m >0, 解得:1<m ≤2;当m >2时,则当O 点在抛物线上或下方且B 点在抛物线上或上方时,它们才有交点,此时有{m >2m 2−m ≥0(2−m )2−m ≤2 ,解得:2<m≤5+√17;2,−1.综上可得:m的最大值和最小值分别是5+√172故选:D.小提示:本题考查了抛物线与正方形的交点问题,涉及到列一元一次不等式组等内容,解决本题的关键是能根据图像分析交点情况,并进行分类讨论,本题综合性较强,需要一定的分析能力与图形感知力,因此对学生的思维要求较高,本题蕴含了分类讨论和数形结合的思想方法等.2、如图,二次函数y=ax2+bx+c的图象关于直线x=1对称,与x轴交于A(x1,0),B(x2,0)两点,若−2< x1<−1,则下列四个结论:①3<x2<4,②3a+2b>0,③b2>a+c+4ac,④a>c>b.正确结论的个数为()A.1个B.2个C.3个D.4个答案:B分析:根据二次函数的对称性,即可判断①;由开口方向和对称轴即可判断②;根据抛物线与x轴的交点已经x=-1时的函数的取值,即可判断③;根据抛物线的开口方向、对称轴,与y轴的交点以及a-b+c<0,即可判断④.∵对称轴为直线x=1,-2<x1<-1,∴3<x2<4,①正确,∵−b= 1,2a∴b=- 2а,∴3a+2b= 3a-4a= -a,∵a>0,∴3a+2b<0,②错误;∵抛物线与x轴有两个交点,∴b2 - 4ac > 0,根据题意可知x=-1时,y<0,∴a-b+c<0,∴a+c<b,∵a>0,∴b=-2a<0,∴a+c<0,∴b2 -4ac > a+ c,∴b2>a+c+4ac,③正确;∵抛物线开口向上,与y轴的交点在x轴下方,∴a>0,c<0,∴a>c,∵a-b+c<0,b=-2a,∴3a+c<0,∴c<-3a,∴b=–2a,∴b>c,以④错误;故选B小提示:本题主要考查图象与二次函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系,掌握二次函数的对称性.3、抛物线y=x2+3上有两点A(x1,y1),B(x2,y2),若y1<y2,则下列结论正确的是( )A.0≤x1<x2B.x2<x1≤0C.x2<x1≤0或0≤x1<x2D.以上都不对答案:D分析:根据二次函数图象及性质,即可判定.∵抛物线y=x2+3开口向上,在其图象上有两点A(x1,y1),B(x2,y2),且y1<y2,∴|x1|<|x2|,∴0≤x1<x2,或x2<x1≤0,或x2>0,x1≤0且x2+x1>0,或x2<0,x1>0且x2+x1<0,故选:D.小提示:本题考查了二次函数的图象及性质,熟练掌握和运用二次函数的图象及性质是解决本题的关键.4、如图,某公司准备在一个等腰直角三角形ABC的绿地上建造一个矩形的休闲书吧PMBN,其中点P在AC上,点NM分别在BC,AB上,记PM=x,PN=y,图中阴影部分的面积为S,若NP在一定范围内变化,则y与x,S与x满足的函数关系分别是()A.反比例函数关系,一次函数关系B.二次函数关系,一次函数关系C.一次函数关系,反比例函数关系D.一次函数关系,二次函数关系答案:D分析:先求出AM=PM,利用矩形的性质得出y=﹣x+m,最后利用S=S△ABC-S矩形PMBN得出结论.设AB=m(m为常数).在△AMP中,∠A=45°,AM⊥PM,∴△AMP为等腰直角三角形,∴AM=PM,又∵在矩形PMBN中,PN=BM,∴x+y=PM+PN=AM+BM=AB=m,即y=﹣x+m,∴y与x成一次函数关系,∴S =S △ABC -S 矩形PMBN =12m 2-xy =12m 2-x (﹣x +m )=x 2-mx +12m 2, ∴S 与x 成二次函数关系.故选D .小提示:本题考查了一次函数的实际应用及二次函数的实际应用,解题的关键是掌握根据题意求出y 与x 之间的函数关系式.5、二次函数y =x 的图象经过的象限是( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限答案:A分析:由抛物线解析式可得抛物线开口方向及顶点坐标,进而求解.∵y =x 2, ∴抛物线开口向上,顶点坐标为(0,0),∴抛物线经过第一,二象限.故选:A .小提示:本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系.6、关于x 的方程ax 2+bx +c =0有两个不相等的实根x 1、x 2,若x 2=2x 1,则4b −9ac 的最大值是( )A .1B .√2C .√3D .2答案:D分析:根据一元二次方程根与系数的关系,求得两根之和和两根之积,再根据两根关系,求得系数的关系,代入代数式,配方法化简求值即可.解:由方程ax 2+bx +c =0有两个不相等的实根x 1、x 2可得,a ≠0,x 1+x 2=−b a ,x 1x 2=c a ∵x 2=2x 1,可得3x 1=−b a ,2x 12=c a ,即2(−b 3a )2=c a 化简得9ac =2b 2 则4b −9ac =−2b 2+4b =−2(b 2−2b)=−2(b −1)2+2故4b −9ac 最大值为2故选D小提示:此题考查了一元二次方程根与系数的关系,涉及了配方法求解代数式的最大值,根据一元二次方程根与系数的关系得到系数的关系是解题的关键.7、已知抛物线y=x2+kx−k2的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k的值是()A.−5或2B.−5C.2D.−2答案:B分析:根据二次函数图象左加右减,上加下减的平移规律进行解答即可.解:函数y=x2+kx−k2向右平移3个单位,得:y=(x−3)2+k(x−3)−k2;再向上平移1个单位,得:y=(x−3)2+k(x−3)−k2+1,∵得到的抛物线正好经过坐标原点∴0=(0−3)2+k(0−3)−k2+1即k2+3k−10=0解得:k=−5或k=2∵抛物线y=x2+kx−k2的对称轴在y轴右侧∴x=−k>02∴k<0∴k=−5故选:B.小提示:此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.8、在同一平面直角坐标系中,函数y=ax2+bx与y=ax+b的图象不可能是( )A.B.C.D.答案:D分析:根据二次函数与一次函数的图象与性质进行判断即可.解:当a>0,b>0时,y=ax2+bx的开口上,与x轴的一个交点在x轴的负半轴,y=ax+b经过第一、二、三象限,且两函数图象交于x的负半轴,无选项符合;当a>0,b<0时,y=ax2+bx的开口向上,与x轴的一个交点在x轴的正半轴,y=ax+b经过第一、三、四象限,且两函数图象交于x的正半轴,故选项A正确,不符合题意题意;当a<0,b>0时,y=ax2+bx的开口向下,与x轴的一个交点在x轴的正半轴,y=ax+b经过第一、二、四象限,且两函数图象交于x的正半轴,C选项正确,不符合题意;当a<0,b<0时,y=ax2+bx的开口向下,与x轴的一个交点在x轴的负半轴,y=ax+b经过第二、三、四象限,B选项正确,不符合题意;只有选项D的两图象的交点不经过x轴,故选D.小提示:本题考查二次函数与一次函数图象的性质,解题的关键是根据a、b与0的大小关系进行分类讨论.9、已知二次函数y=mx2−4m2x−3(m为常数,m≠0),点P(x p,y p)是该函数图象上一点,当0≤x p≤4时,y p≤−3,则m的取值范围是()A.m≥1或m<0B.m≥1C.m≤−1或m>0D.m≤−1答案:A分析:先求出抛物线的对称轴及抛物线与y轴的交点坐标,再分两种情况:m>0或m<0,根据二次函数的性质求得m的不同取值范围便可.解:∵二次函数y=mx2−4m2x−3,∴对称轴为x=2m,抛物线与y轴的交点为(0,−3),∵点P(x p,y p)是该函数图象上一点,当0≤x p≤4时,y p≤−3,∴①当m>0时,对称轴x=2m>0,此时,当x=4时,y≤−3,即m⋅42−4m2⋅4−3≤−3,解得m≥1;②当m<0时,对称轴x=2m<0,当0≤x≤4时,y随x增大而减小,则当0≤x p≤4时,y p≤−3恒成立;综上,m的取值范围是:m≥1或m<0.故选:A.小提示:本题考查了二次函数的性质,关键是分情况讨论.10、如图,某涵洞的截面是抛物线形,现测得水面宽AB=1.6m,涵洞顶点O与水面的距离CO是2m,则当水位上升1.5m时,水面的宽度为()A.0.4mB.0.6mC.0.8mD.1m答案:C分析:根据题意可建立平面直角坐标系,然后设函数关系式为y=ax2,由题意可知A(−0.8,−2),代入求解函数解析式,进而问题可求解.解:建立如图所示的坐标系:设函数关系式为y=ax2,由题意得:A(−0.8,−2),∴−2=0.8×0.8×a,,解得:a=−258∴y=−25x2,8x2,当y=-0.5时,则有−0.5=−258解得:x=±0.4,∴水面的宽度为0.8m;故选C.小提示:本题主要考查二次函数的应用,熟练掌握二次函数的应用是解题的关键.填空题11、已知抛物线y=x2−x−1与x轴的一个交点为(m,0),则代数式−3m2+3m+2022的值为______.答案:2019分析:先将点(m,0)代入函数解析式,然后求代数式的值即可得出结果.解:将(m,0)代入函数解析式得,m2-m-1=0,∴m2-m=1,∴-3m2+3m+2022=-3(m2-m)+2022=-3+2022=2019.所以答案是:2019.小提示:本题考查了二次函数图象上点的坐标特征及求代数式的值,解题的关键是将点(m,0)代入函数解析式得到有关m的代数式的值.12、如图,在平面直角坐标系中,抛物线y=−x2+2mx+m−2(m为常数,且m>0)与直线y=2交于A、B两点.若AB=2,则m的值为______.答案:√21−12分析:设A(x1,2),B(x2,2),抛物线y=−x2+2mx+m−2中,令y=2,得x2−2mx−m+4=0,利用根与系数关系求得AB,可建立关于m的方程并解出即可.解:设A(x1,2),B(x2,2),抛物线y=−x2+2mx+m−2中,令y=2,得:−x2+2mx+m−2=2,即:x2−2mx−m+4=0∴x1+x2=2m,x1x2=−m+4,∴AB=|x2−x1|=√(x2+x1)2−4x1x2=√(2m)2−4(−m+4)=2,∴m2+m−5=0,解得:m1=√21−12,m2=−√21−12(舍去),所以答案是:√21−12.小提示:本题考查了抛物线与x轴的交点、二次函数与一元二次方程的关系、二次函数图象上点的坐标特征,熟练掌握这三个知识点的综合应用是解题关键.13、平移二次函数的图象,如果有一个点既在平移前的函数图象上,又在平移后的函数图象上,我们把这个点叫做“关联点”.现将二次函数y=x2+2x+c(c为常数)的图象向右平移得到新的抛物线,若“关联点”为(1,2),则新抛物线的函数表达式为_______.答案:y=(x−3)2−2分析:将(1,2)代入y=x2+2x+c,解得c=-1,设将抛物线y=x2+2x-1=(x+1)2-2,向右平移m个单位,则平移后的抛物线解析式是y=(x+1-m)2-2,然后将(1,2)代入得到关于m的方程,通过解方程求得m的值即可.解:将(1,2)代入y=x2+2x+c,得12+2×1+c=2,解得c=-1.设将抛物线y=x2+2x-1=(x+1)2-2,向右平移m个单位,则平移后的抛物线解析式是y=(x+1-m)2-2,将(1,2)代入,得(1+1-m)2-2=2.整理,得2-m=±2.解得m1=0(舍去),m2=4.故新抛物线的表达式为y=(x-3)2-2.故答案是:y=(x−3)2−2.小提示:本题主要考查了二次函数图象与几何变换,二次函数图象上点的坐标特征以及待定系数法确定函数关系式,解题的关键是理解“关联点”的含义.14、如图是一个横断面为抛物线形状的拱桥,当水面在正常水位的情况下,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.则当水位下降m=________时,水面宽为5m?答案:1.125分析:以抛物线的顶点为原点建立坐标系,则可以设函数的解析式是y=ax2,然后求得水面与抛物线的交点坐标,利用待定系数法求解抛物线的解析式,再利用点的坐标特点即可求解.解:如图,建立如下的坐标系:水面与抛物线的交点坐标是(-2,-2),(2,−2),设函数的解析式是y=ax2,则4a=-2,解得a=−12,则函数的解析式是y=−12x2.当水面宽为5米时,把x=52代入抛物线的解析式可得:y=12×(52)2=258=3.125,∴3.125−2=1.125(米),所以答案是:1.125.小提示:本题考查了待定系数法求二次函数的解析式,二次函数的性质,建立合适的平面直角坐标系,求得水面与抛物线的交点是解题的关键.15、根据物理学规律,如果不考虑空气阻力,以40m/s的速度将小球沿与地面成30°角的方向击出,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间的函数关系是ℎ=−5t2+20t,当飞行时间t为___________s时,小球达到最高点.答案:2分析:将函数关系式转化为顶点式即可求解.根据题意,有ℎ=−5t2+20t=−5(t−2)2+20,当t=2时,ℎ有最大值.所以答案是:2.小提示:本题考查二次函数解析式的相互转化及应用,解决本题的关键是熟练二次函数解析式的特点及应用.解答题16、某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,下表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据.(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;(3)因疫情期间,该商品进价提高了m(元/件)(m>0),公司为回馈消费者,规定该商品售价x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m的值.答案:(1)y=−3x+300;(2)售价60元时,周销售利润最大为4800元;(3)m=5分析:(1)①依题意设y=kx+b,解方程组即可得到结论;(2)根据题意得W=(−3x+300)(x−a),再由表格数据求出a=20,得到W=(−3x+300)(x−20)=−3(x−60)2+4800,根据二次函数的顶点式,求出最值即可;(3)根据题意得W=−3(x−100)(x−20−m)(x⩽55),由于对称轴是直线x=60+m2>60,根据二次函数的性质即可得到结论.解:(1)设y=kx+b,由题意有{40k+b=180 70k+b=90,解得{k=−3b=300,所以y关于x的函数解析式为y=−3x+300;(2)由(1)W=(−3x+300)(x−a),又由表可得:3600=(−3×40+300)(40−a),∴a=20,∴W=(−3x+300)(x−20)=−3x2+360x−6000=−3(x−60)2+4800.所以售价x=60时,周销售利润W最大,最大利润为4800;(3)由题意W=−3(x−100)(x−20−m)(x⩽55),其对称轴x=60+m2>60,∴0<x⩽55时上述函数单调递增,所以只有x=55时周销售利润最大,∴4050=−3(55−100)(55−20−m).∴m=5.小提示:本题考查了二次函数在实际生活中的应用,重点是掌握求最值的问题.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用二次函数求最值.17、“八婺”菜场指导菜农生产和销售某种蔬菜,提供如下信息:①统计售价与需求量的数据,通过描点(图1),发现该蔬菜需求量y1(吨)关于售价x(元/千克)的函数图象可以看成抛物线,其表达式为y1=ax2+ c,部分对应值如表:221.③1~7月份该蔬菜售价x1(元/千克),成本x2(元/千克)关于月份t的函数表达式分别为x1=12t+2,x2=1 4t2−32t+3,函数图象见图2.请解答下列问题:(1)求a,c的值.(2)根据图2,哪个月出售这种蔬菜每千克获利最大?并说明理由.(3)求该蔬菜供给量与需求量相等时的售价,以及按此价格出售获得的总利润.答案:(1)a=−15,c=9(2)在4月份出售这种蔬菜每千克获利最大,见解析(3)该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元分析:(1)运用待定系数法求解即可;(2)设这种蔬菜每千克获利w元,根据w=x售价−x成本列出函数关系式,由二次函数的性质可得结论;(3)根据题意列出方程,求出x的值,再求出总利润即可.(1)把{x=3,y=7.2,{x=4,y=5.8代入y需求=ax2+c可得{9a+c=7.2,①16a+c=5.8.②②-①,得7a=−1.4,解得a=−15,把a=−15代入①,得c=9,∴a=−15,c=9.(2)设这种蔬菜每千克获利w元,根据题意,有w=x售价−x成本=12t+2−(14t2−32t+3),化简,得w=−14t2+2t−1=−14(t−4)2+3,∵−14<0,t=4在1≤t≤7的范围内,∴当t=4时,w有最大值.答:在4月份出售这种蔬菜每千克获利最大.(3)由y供给=y需求,得x−1=−15x2+9,化简,得x2+5x−50=0,解得x1=5,x2=−10(舍去),∴售价为5元/千克.此时,y供给=y需求=x−1=4(吨)=4000(千克),把x=5代入x售价=12t+2,得t=6,把t=6代入w=−14t2+2t−1,得w=−14×36+2×6−1=2,∴总利润=w⋅y=2×4000=8000(元).答:该蔬菜供给量与需求量相等时的售价为5元/千克,按此价格出售获得的总利润为8000元.小提示:此题主要考查了函数的综合应用,结合函数图象得出各点的坐标,再利用待定系数法求出函数解析式是解题的关键.18、一隧道内设双行公路,隧道的高MN为6米.下图是隧道的截面示意图,并建立如图所示的直角坐标系,它是由一段抛物线和一个矩形CDEF的三条边围成的,矩形的长DE是8米,宽CD是2米.(1)求该抛物线的解析式;(2)为了保证安全,要求行驶的车辆顶部与隧道顶部至少要有0.5米的距离.若行车道总宽度PQ (居中,两边为人行道)为6米,一辆高3.2米的货运卡车(设为长方形)靠近最右边行驶能否安全?请写出判断过程;(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABHG ,使H 、G 两点在抛物线上,A 、B 两点在地面DE 上,设GH 长为n 米,“脚手架”三根木杆AG 、GH 、HB 的长度之和为L ,当n 为何值时L 最大,最大值为多少? 答案:(1)y=-14x 2+4;(2)能安全通过,见解析;(3)n=4时,L 有最大值,最大值为14分析:(1)根据题意和函数图象,可以设出抛物线的解析式,然后根据抛物线过点F 和点M 即可求得该抛物线的解析式;(2)先求出抛物线的解析式,再根据题意判断该隧道能通过的车辆的最高高度,便可判断该车辆能安全通过.(3)射出H 的坐标,用n 表示出L ,利用二次函数的性质求解即可.解:(1)由题意得M (0,4),F (4,0)可设抛物线的解析式为y=ax 2+4,将F (4,0)代入y=ax 2+4中,得a=-14, ∴抛物线的解析式为y=-14x 2+4; (2)当x=3,y=74, 74+2-12=3.25>3.2,∴能安全通过; (3)由GH=n ,可设H (n 2,−n 216+4),∴GH+GA+BH=n+(−n 216+4)×2+2×2=−18n 2+n +12,∴L=−18n 2+n +12,∵a <0,抛物线开口向下,∴当n=-b=4时,L有最大值,最大值为14.2a小提示:本题考查了二次函数的实际应用,解题的关键是要注意自变量的取值范围必须使实际问题有意义.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学 二次函数讲义一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c=+的性质: 上加下减。
()2x h -4. ()2y a x h k =-+的性质:1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下: 2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点;③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;0a >二次函数图像参考:十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y 1 10 x o-1 x 0 x 0 -1 x A B C D考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。