人教版九年级数学上册 二次函数专题练习(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版九年级数学上册二次函数专题练习(解析版)

一、初三数学二次函数易错题压轴题(难)

1.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,其中A(3,0),B(﹣1,0),与y轴交于点C,抛物线的对称轴交x轴于点D,直线y=kx+b1经过点A,C,连接CD.(1)求抛物线和直线AC的解析式:

(2)若抛物线上存在一点P,使△ACP的面积是△ACD面积的2倍,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使线段AQ绕Q点顺时针旋转90°得到线段QA1,且A1好落在抛物线上?若存在,求出点Q的坐标;若不存在,请说明理由.

【答案】(1)2

y x2x3

=-++;3

y x

=-+;(2)(﹣1,0)或(4,﹣5);(3)存在;(1,2)和(1,﹣3)

【解析】

【分析】

(1)将点A,B坐标代入抛物线解析式中,求出b,c得出抛物线的解析式,进而求出点C 的坐标,再将点A,C坐标代入直线AC的解析式中,即可得出结论;

(2)利用抛物线的对称性得出BD=AD,进而判断出△ABC的面积和△ACP的面积相等,即可得出结论;

(3)分点Q在x轴上方和在x轴下方,构造全等三角形即可得出结论.

【详解】

解:(1)把A(3,0),B(﹣1,0)代入y=﹣x2+bc+c中,得

930

10

b c

b c

-++=

--+=

2

3

b

c

=

=

∴抛物线的解析式为y=﹣x2+2x+3,

当x=0时,y=3,

∴点C的坐标是(0,3),

把A(3,0)和C(0,3)代入y=kx+b1中,得1

1

30

3

k b

b

+=

=

1

1

3

k

b

=-

=

∴直线AC的解析式为y=﹣x+3;

(2)如图,连接BC,

∵点D是抛物线与x轴的交点,

∴AD=BD,

∴S△ABC=2S△ACD,

∵S△ACP=2S△ACD,

∴S△ACP=S△ABC,此时,点P与点B重合,

即:P(﹣1,0),

过B点作PB∥AC交抛物线于点P,则直线BP的解析式为y=﹣x﹣1①,∵抛物线的解析式为y=﹣x2+2x+3②,

联立①②解得,

1

x

y

=-

=

4

5

x

y

=

=-

∴P(4,﹣5),

∴即点P的坐标为(﹣1,0)或(4,﹣5);

(3)如图,

①当点Q在x轴上方时,设AC与对称轴交点为Q',由(1)知,直线AC的解析式为y=﹣x+3,

当x=1时,y=2,

∴Q'坐标为(1,2),

∵Q'D=AD=BD=2,

∴∠Q'AB=∠Q'BA=45°,

∴∠AQ'B=90°,

∴点Q'为所求,

②当点Q在x轴下方时,设点Q(1,m),

过点A1'作A1'E⊥DQ于E,

∴∠A1'EQ=∠QDA=90°,

∴∠DAQ+∠AQD=90°,

由旋转知,AQ=A1'Q,∠AQA1'=90°,

∴∠AQD+∠A1'QE=90°,

∴∠DAQ=∠A1'QE,

∴△ADQ≌△QEA1'(AAS),

∴AD =QE =2,DQ =A 1'E =﹣m , ∴点A 1'的坐标为(﹣m +1,m ﹣2), 代入y =﹣x 2+2x +3中, 解得,m =﹣3或m =2(舍), ∴Q 的坐标为(1,﹣3),

∴点Q 的坐标为(1,2)和(1,﹣3).

【点睛】

本题考查的是二次函数的综合题,涉及解析式的求解,与三角形面积有关的问题,三角形“k ”字型全等,解题的关键是利用数形结合的思想,设点坐标并结合几何图形的性质列式求解.

2.如图,抛物线()2

1y x a x a =-++与x 轴交于,A B 两点(点A 位于点B 的左侧),与y

轴的负半轴交于点C .

()1求点B 的坐标.

()2若ABC 的面积为6.

①求这条抛物线相应的函数解析式.

②在拋物线上是否存在一点,P 使得POB CBO ∠=∠?若存在,请求出点P 的坐标;若不

存在,请说明理由.

【答案】(1)(1,0);(2)①2

23y x x =+-;②存在,点P 的坐标为

⎝⎭或⎝⎭

. 【解析】 【分析】

(1)直接令0y =,即可求出点B 的坐标;

(2)①令x=0,求出点C 坐标为(0,a ),再由△ABC 的面积得到1

2

(1−a)•(−a)=6即可求a 的值,即可得到解析式;

②当点P 在x 轴上方时,直线OP 的函数表达式为y=3x ,则直线与抛物线的交点为P ;当点P 在x 轴下方时,直线OP 的函数表达式为y=-3x ,则直线与抛物线的交点为P ;分别求出点P 的坐标即可. 【详解】

解:()1当0y =时,()2

10,x a x a -++=

解得121,.x x a ==

点A 位于点B 的左侧,与y 轴的负半轴交于点,C

0,a ∴<

∴点B 坐标为()1,0.

()2①由()1可得,点A 的坐标为(),0a ,点C 的坐标为()0,,0,a a <

1,AB a OC a ∴=-=-

ABC 的面积为6,

()()1

16,2a a ∴

--⋅= 123,4a a ∴=-=.

0,a <

3a ∴=-

22 3.y x x =+-

②点B 的坐标为()1,0,点C 的坐标为()0,3-, ∴设直线BC 的解析式为3,y kx =-

则03,k =-

3k ∴=.

,POB CBO ∠=∠

∴当点P 在x 轴上方时,直线//OP 直线,BC

∴直线OP 的函数解析式3,y x =为

相关文档
最新文档