2006年江西省高考试题(数学理)含祥解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2006年普通高等学校招生全国统一考试(江西卷)
理科数学
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页。第Ⅱ卷3至4页。全卷满分150分,考试时间120分钟。
考生注意事项:
1.答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致。
2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答第Ⅱ卷时,必须用0.5毫米墨水签字笔在答题卡上书写。在试题卷上作答无效。 4.考试结束,监考人员将试题卷和答题卡一并收回。 参考公式:
如果时间A 、B 互斥,那么()()()P A B P A P B +=+ 如果时间A 、B 相互独立,那么()()()P A B P A P B =
如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率
()()
1n k
k k n n P k C P P -=-
球的表面积公式2
4S R π=,其中R 表示球的半径 球的体积公式34
3
V R π=,其中R 表示球的半径
第Ⅰ卷(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。 1、已知集合M ={x|
3
x
0x 1≥(-)
},N ={y|y =3x 2+1,x ∈R },则M ⋂N =( ) A .∅ B. {x|x ≥1} C.{x|x >1} D. {x| x ≥1或x <0}
2、已知复数z 3i )z =3i ,则z =( )
A .32 B. 34 C. 32 D.34 3、若a >0,b >0,则不等式-b <
1
x
4、设O 为坐标原点,F 为抛物线y 2
=4x 的焦点,A 是抛物线上一点,若OA F A ∙ =-4
则点A 的坐标是( )
A .(2,±
B. (1,±2)
C.(1,2)
D.(2,
5、对于R 上可导的任意函数f (x ),若满足(x -1)f x '()≥0,则必有( ) A . f (0)+f (2)<2f (1) B. f (0)+f (2)≤2f (1) B . f (0)+f (2)≥2f (1) C. f (0)+f (2)>2f (1)
6、若不等式x 2
+ax +1≥0对于一切x ∈(0,1
2
〕成立,则a 的取值范围是( ) A .0 B. –2 C.-5
2
D.-3 7、已知等差数列{a n }的前n 项和为S n ,若1O a B =200OA a OC
+,且A 、B 、C 三点共线(该
直线不过原点O ),则S 200=( ) A .100 B. 101 C.200 D.201
8、在(x
2006
的二项展开式中,含x 的奇次幂的项之和为S ,当x
S 等于( )
A.2
3008
B.-2
3008
C.2
3009
D.-2
3009
9、P 是双曲线22
x y 1916
-=
的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN|的最大值为( ) A. 6 B.7 C.8 D.9
10、将7个人(含甲、乙)分成三个组,一组3人,另两组2 人,不同的分组数为a ,甲、乙分到同一组的概率为p ,则a 、p 的值分别为( ) A . a=105 p=
521 B.a=105 p=421 C.a=210 p=521 D.a=210 p=421
11、如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,
且与BC ,DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的表面积分别是S 1,S 2,则必有( )
A. S 1
B. S 1>S 2
C. S 1=S 2
D. S 1,S 2的大小关系不能确定 12、某地一年的气温Q (t )(单位:ºc )与时
间t (月份)之间的关系如图(1)所示,已知该年的平均气温为10ºc ,令G (t )表示时间段〔0,t 〕的平均气温,G (t )与t 之间的函数关系用下列图象表示,则正确的应该是( )
C
理科数学
第Ⅱ卷(非选择题 共90分)
注意事项:
请用0.5毫米黑色墨水签字笔在答题卡上书写作答,在试题卷上书写作答无效。
二、填空题:本大题共4小题,每小题4分,共16分,把答案填写在答题卡的相应位置。 13、数列{
21
4n 1
-}的前n 项和为S
n ,则n lim →∞S n =______________
14、设f (x )=log 3(x +6)的反函数为f -
1(x ),若〔f -
1(m )+6〕〔f -
1(n )+6〕=27
则f (m +n )=___________________
15、如图,在直三棱柱ABC -A 1B 1C 1中,底面为直角三角形,∠ACB =90︒,AC =6,BC =CC 1P 是BC 1上一动点,则CP +PA 1的最小值是___________
16、已知圆M :(x +cos θ)2+(y -sin θ)2=1, 直线l :y =kx ,下面四个命题: (A ) 对任意实数k 与θ,直线l 和圆M 相切;
(B ) 对任意实数k 与θ,直线l 和圆M 有公共点;
(C ) 对任意实数θ,必存在实数k ,使得直线l 与
和圆M 相切 (D )对任意实数k ,必存在实数θ,使得直线l 与 和圆M 相切
其中真命题的代号是______________(写出所有真命题的代号)
三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤 17、(本小题满分12分)
C
C 1
B 1
A