99全国高考理科数学试题
2024年高考数学全国甲卷理科真题试卷附详解
2024年普通高等学校招生全国统一考试全国甲卷理科数学使用范围:陕西、宁夏、青海、内蒙古、四川一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.l.设5z i =+,则()i z z +=()A.10iB.2iC.10D.2-2.集合1,2,3,4,9{}5,A =,{|}B x A =,则()A C A B = ()A.{1,4,9}B.{3,4,9}C.{1,2,3}D.{2,3,5}3.若实数,x y 满足约束条件4330,220,2690.x y x y x y --⎧⎪--⎨⎪+-≤⎩,则5z x y =-的最小值为()A.12B.0C.52-D.72-4.等差数列{}n a 的前n 项和为n S ,若5105,1S S a ==,则1a =()A.2- B.73C.1D.25.已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为21(0,4),(0,4)F F -,点(6,4)-在该双曲线上,则该双曲线的离心率为()A.135B.137C.2D.36.设函数22sin ()1x e xf x x+=+则曲线()y f x =在点(0,1)处的切线与两坐标轴所围成的三角形的面积为()A.16B.13C.12D.237.函数2(sin )x x y x e e x -=-+-在区间 2.8,[]2.8-的图像大致为()A. B.C. D.8.已知cos cos sin ααα=-则πtan 4α⎛⎫+= ⎪⎝⎭()A.1+B.1-C.32D.19.设向量(1,),(,2)a x x b x =+=,则()A.3x =-是a b ⊥的必要条件B.3x =-是//a b 的必要条件C.0x =是a b ⊥的充分条件D.1x =-+是//a b 的充分条件10.设,αβ为两个平面,,m n 为两条直线,且.m αβ= 下述四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则n α⊥或n β⊥③若//n α且//n β,则//m n④若n 与,αβ所成的角相等,则m n ⊥.其中所有真命题的编号是()A.①③B.②④C.①②③D.①③④11.记ABC ∆的内角,,A B C 的对边分别为,,,a b c 已知2960,4B b ac ︒==,则sin sin A C +=()A.32B. C.72D.3212.已知b 是a ,c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为()A.1B.2C.4D.二、填空题:本题共4小题,每小题5分,共20分.13.1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______.14.已知圆台甲、乙的上底面半径均为1r ,下底面半径均为2r ,圆台的母线长分别为21212(),3()r r r r --,则圆台甲与乙的体积之比=V V 甲乙____________.15.已知1a >且8115log log 42a a -=-,则a =_______.16.有6个相同的球,分别标有数字1,2,3,4,5,6,从中无放回地随机取3次,每次取1个球.设m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 之差的绝对值不大于12的概率为_______.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题.考生根据要求作答.(一)必考题:共60分.17.(12分)某工厂进行生产线智能化升级改造.升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下优级品合格品不合格品总计甲车间2624050乙车间70282100总计96522150(1)填写如下列联表优级品非优级品甲车间乙车间能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲、乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p=,设p为升级改造后抽取的n件产品的优级品率.如果p p>+,则认为该工厂产品的优级品率提高了.根据抽取的150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?12.247≈)附:22()()()()()n ad bcKa b c d a c b d-=++++2()P K k≥0.0500.0100.001 k 3.841 6.63510.828记n S 为数列{}n a 的前n 项和,已知434n n S a =+(1)求{}n a 的通项公式;(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和nT 19.(12分)如图,在以,,,,,A B C D E F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//,4,2,EF AD BC AD AD AB BC EF ED =====FB =,M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E --的正弦值.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点3(1,)2M 在C 上,且MF x ⊥轴.(1)求C 的方程.(2)过点(4,0)P 的直线交C 于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.21.(12分)已知函数()(1)ln(1)f x ax x x =-+-(1)若2a =-,求()f x 的极值.(2)当0x 时,()0f x ,求a 的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1.ρρθ=+(1)写出C 的直角坐标方程.(2)设直线,:(x t l t y t a =⎧⎨=+⎩为参数),若C 与l 相交于,A B 两点,且||2AB =,求a 的值.23.[选修4—5:不等式选讲](10分)已知实数,a b 满足 3.a b + (1)证明:2222a b a b+>+(2)证明:2222 6.a b b a -+-∣∣∣∣2024年全国甲卷理科数学参考答案一、选择题.l.A【解析】因为5z i =+,所以()(55)10i z z i i i i +=-++=,故选A.2.D【解析】因为1,2,3,4,9{}5,A =,{|}{1,4,9,16,25,81}B x A ==所以{}()2,3,5A C A B = ,故选D.3.D【解析】实数,x y 满足43302202690x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩,作出可行域如图由5z x y =-可得1155y x z =-即z 的几何意义为1155y x z =-的截距的15-则该直线截距取最大值时,z 有最小值此时直线1155y x z =-过点A 联立43302690x y x y --=⎧⎨+-=⎩,解得321x y ⎧=⎪⎨⎪=⎩,即3,12A ⎛⎫⎪⎝⎭则min 375122z =-⨯=-.故选D.【解析】因为510S S =,所以788,0S S a ==,又因为51a =,所以公差1817,733d a a d =-=-=,故选B.5.C 【解析】1221||82||||106F F c e a PF PF ====--,故选C.6.A【解析】()()()()()222e 2cos 1e 2sin 21xx x x x xf x x ++-+⋅'=+则()()()()()02e 2cos 010e 2sin 000310f ++-+⨯'==+即该切线方程为13y x -=,即31y x =+令0x =,则1y =,令0y =,则13x =-故该切线与两坐标轴所围成的三角形面积1111236S =⨯⨯-=.故选:A.7.B 【解析】()()()()()22e e sin e e sin x x x x f x x x x x f x ---=-+--=-+-=又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭故可排除D.故选:B.【解析】因为cos cos sin ααα=-所以11tan =-α,3tan 13⇒α=-所以tan 1tan 11tan 4α+π⎛⎫==α+ ⎪-α⎝⎭故选:B.9.C【解析】对A,当a b ⊥ 时,则0a b ⋅=所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C,当0x =时,()()1,0,0,2a b == ,故0a b ⋅=所以a b ⊥,即充分性成立,故C 正确;对B,当//a b时,则22(1)x x +=,解得1x =±,即必要性不成立,故B 错误;对D,当1x =-+时,不满足22(1)x x +=,所以//a b不成立,即充分性不立,故D 错误.故选:C.10.A对①,当n ⊂α,因为//m n ,m β⊂,则//n β当n β⊂,因为//m n ,m α⊂,则//n α当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确;对②,若m n ⊥,则n 与,αβ不一定垂直,故②错误;对③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β因为s ⊂平面α,m αβ= ,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故④错误;综上只有①③正确故选:A.11.C 【解析】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+-=即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin 2A C +=.故选:C.12.C因为,,a b c 成等差数列,所以2b a c =+,2c b a =-,代入直线方程0ax by c ++=得20ax by b a ++-=,即()()120a x b y -++=,令1020x y -=⎧⎨+=⎩得12x y =⎧⎨=-⎩故直线恒过()1,2-,设()1,2P -,圆化为标准方程得:()22:25C x y ++=设圆心为C ,画出直线与圆的图形,由图可知,当PC AB ⊥时,AB最小1,PC AC r ===,此时24AB AP ====.故选:C 二、填空题.13.【答案】5由题展开式通项公式为101101C 3rr r r T x -+⎛⎫= ⎪⎝⎭,010r ≤≤且r ∈Z设展开式中第1r +项系数最大,则1091101010111101011C C 3311C C 33rrr r r rr r --+---⎧⎛⎫⎛⎫≥⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩294334r r ⎧≥⎪⎪⇒⎨⎪≤⎪⎩,即293344r ≤≤,又r ∈Z ,故8r =所以展开式中系数最大的项是第9项,且该项系数为28101C 53⎛⎫= ⎪⎝⎭.故答案为:5.14.【答案】64【解析】由题可得两个圆台的高分别为)12 h r r ==-甲)12h r r==-乙所以((2121163143S S hV hV hS S h++-===++甲甲甲乙乙乙.故答案为:4.15.【答案】64【解析】由题28211315loglog log4log22aaa a-=-=-,整理得()2225log60log aa--=2log1a⇒=-或2log6a=,又1a>所以622log6log2a==,故6264a==故答案为:64.16.【答案】715【解析】从6个不同的球中不放回地抽取3次,共有36A120=种设前两个球的号码为,a b,第三个球的号码为c,则1322a b c a b+++-≤故2()3c a b-+≤,故32()3c a b-≤-+≤故323a b c a b+-≤≤++若1c=,则5a b+≤,则(),a b为:()()2,3,3,2,故有2种若2c=,则17a b≤+≤,则(),a b为:()()()()()1,3,1,4,1,5,1,6,3,4()()()()()3,1,4,1,5,1,6,1,4,3,故有10种当3c =,则39a b ≤+≤,则(),a b 为()()()()()()()()1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5()()()()()()()()2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4故有16种当4c =,则511a b ≤+≤,同理有16种当5c =,则713a b ≤+≤,同理有10种当6c =,则915a b ≤+≤,同理有2种共m 与n 的差的绝对值不超过12时不同的抽取方法总数为()22101656++=故所求概率为56712015=.故答案为:715三、解答题.(一)必考题:共60分.17.【小问1详解】根据题意可得列联表:优级品非优级品甲车间2624乙车间7030可得()2215026302470754.687550100965416K ⨯-⨯===⨯⨯⨯因为3.841 4.6875 6.635<<所以有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲,乙两车间产品的优级品率存在差异.【小问2详解】由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为960.64150=用频率估计概率可得0.64p =又因为升级改造前该工厂产品的优级品率0.5p =则0.50.50.5 1.650.56812.247p +=+≈+⨯≈可知p p >+所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了.18.【小问1详解】当1n =时,1114434S a a ==+,解得14a =.当2n ≥时,11434n n S a --=+,所以1144433n n n n n S S a a a ---==-即13n n a a -=-而140a =≠,故0n a ≠,故13nn a a -=-∴数列{}n a 是以4为首项,3-为公比的等比数列所以()143n n a -=⋅-.【小问2详解】111(1)4(3)43n n n n b n n ---=-⋅⋅⋅-=⋅所以123n n T b b b b =++++ 0211438312343n n -=⋅+⋅+⋅++⋅ 故1233438312343nn T n =⋅+⋅+⋅++⋅ 所以1212443434343n nn T n --=+⋅+⋅++⋅-⋅ ()1313444313n nn --=+⋅-⋅-()14233143n nn -=+⋅⋅--⋅(24)32n n =-⋅-(21)31n n T n ∴=-⋅+.(2)设1(1)n n n b na -=-,求数列{}n b 的前n 项和nT 19.【答案】(1)证明见详解(2)13【小问1详解】因为//,2,4,BC AD EF AD M ==为AD 的中点,所以//,BC MD BC MD =四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDECD ⊂平面CDE ,所以//BM 平面CDE 【小问2详解】如图所示,作BO AD ⊥交AD 于O ,连接OF因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =所以ABM 为等边三角形,O 为AM 中点,所以OB =又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =四边形EFMD 为平行四边形,FM ED AF==所以AFM △为等腰三角形,ABM 与AFM △底边上中点O 重合,OF AM ⊥,3OF ==因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直以OB 方向为x 轴,OD 方向为y 轴,OF 方向为z 轴,建立O xyz -空间直角坐标系()0,0,3F,)()(),0,1,0,0,2,3B M E,()(),BM BF ==()2,3BE = ,设平面BFM 的法向量为()111,,m x y z =平面EMB 的法向量为()222,,n x y z =则00m BM m BF ⎧⋅=⎪⎨⋅=⎪⎩ ,即1111030y z ⎧+=⎪⎨+=⎪⎩,令1x =得113,1y z ==,即)m =则00n BM n BE ⎧⋅=⎪⎨⋅=⎪⎩ ,即22222303230x y x y z ⎧-+=⎪⎨-++=⎪⎩,令23x =,得223,1y z ==-即()3,3,1n =- ,1111cos ,131313m n m n m n ⋅===⋅⋅,则43sin ,13m n =故二面角F BM E --的正弦值为4313.20.【答案】(1)22143x y +=(2)证明见解析【小问1详解】设(),0F c ,由题设有1c =且232b a =,故2132a a -=,故2a =,故3b =故椭圆方程为22143x y +=.【小问2详解】直线AB 的斜率必定存在,设:(4)AB y k x =-,()11,A x y ,()22,B x y由223412(4)x y y k x ⎧+=⎨=-⎩可得()2222343264120k x k x k +-+-=故()()422Δ102443464120k k k =-+->,故1122k -<<又22121222326412,3434k k x x x x k k -+==++而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=- ⎪⎝⎭-,故22223325252Q y y y x x --==--所以()1222112225332525Q y x y y y y y x x ⨯-+-=+=--()()()12224253425k x x k x x -⨯-+-=-()222212122264123225825834342525k k x x x x k k k kx x -⨯-⨯+-++++==--2222212824160243234025k k k k k x --+++==-故1Q y y =,即AQ y ⊥轴.21.【答案】(1)极小值为0,无极大值.(2)12a ≤-【小问1详解】当2a =-时,()(12)ln(1)f x x x x =++-故121()2ln(1)12ln(1)111x f x x x x x +'=++-=+-+++因为12ln(1),11y x y x=+=-++在()1,∞-+上为增函数故()f x '在()1,∞-+上为增函数,而(0)0f '=故当10x -<<时,()0f x '<,当0x >时,()0f x '>故()f x 在0x =处取极小值且极小值为()00f =,无极大值.【小问2详解】()()()()11ln 11ln 1,011a x axf x a x a x x x x +-=-+'+-=-+->++设()()()1ln 1,01a xs x a x x x+=-+->+则()()()()()()222111211111a a x a a ax a s x x x x x ++++-++=-=-=-+++'+当12a ≤-时,()0s x '>,故()s x 在()0,∞+上为增函数故()()00s x s >=,即()0f x '>所以()f x 在[)0,∞+上为增函数,故()()00f x f ≥=.当102a -<<时,当210a x a+<<-时,()0s x '<故()s x 在210,a a +⎛⎫- ⎪⎝⎭上为减函数,故在210,a a +⎛⎫- ⎪⎝⎭上()()0s x s <即在210,a a +⎛⎫- ⎪⎝⎭上()0f x '<即()f x 为减函数故在210,a a +⎛⎫- ⎪⎝⎭上()()00f x f <=,不合题意,舍.当0a ≥,此时()0s x '<在()0,∞+上恒成立同理可得在()0,∞+上()()00f x f <=恒成立,不合题意,舍综上,12a ≤-.(二)选考题.22.【答案】(1)221y x =+(2)34a =【小问1详解】由cos 1ρρθ=+,将xρρθ⎧⎪=⎨=⎪⎩cos 1ρρθ=+1x =+,两边平方后可得曲线的直角坐标方程为221y x =+.【小问2详解】对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+.法1:直线l 的斜率为1,故倾斜角为π4故直线的参数方程可设为222x s y a s ⎧=⎪⎪⎨⎪=+⎪⎩,s ∈R .将其代入221y x =+中得()221)210s a s a +-+-=设,A B 两点对应的参数分别为12,s s ,则)()212121,21s s a s s a +=--=-且()()22Δ818116160a a a =---=->,故<1a12AB s s ∴=-=2==,解得34a =.法2:联立221y x ay x =+⎧⎨=+⎩,得22(22)10x a x a +-+-=()22Δ(22)41880a a a =---=-+>,解得1a <设()()1122,,,A x y B x y ,2121222,1x x a x x a ∴+=-=-则AB ==2=解得34a =23.【小问1详解】因为()()2222222022a b a ab b a b b a -+=--++=≥当a b =时等号成立,则22222()a b a b +≥+因为3a b +≥,所以22222()a b a b a b+≥+>+【小问2详解】222222222222()a b b a a b b a a b a b -+-≥-+-=+-+22222()()()()(1)326a b a b a b a b a b a b =+-+≥+-+=++-≥⨯=。
1999年全国统一高考数学试卷(理科)及其参考考答案
1999年全国统一高考数学试卷(理科)及其参考考答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
第I 卷1至2页。
第II 卷3至8。
共150分。
考试时间120分钟。
第I 卷(选择题 共60分)注意事项:l .答第I 卷前,考生务必将自己的姓名、准考证号、考试科目、试卷类型(A 或B )用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后。
再选涂其它答案,不能答在试题卷上。
3.考试结束。
监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式[]1sin cos sin()sin()2αβαβαβ=++- []1cos sin sin()sin()2αβαβαβ=+--[]1cos cos cos()cos()2αβαβαβ=++-正棱台、圆台的侧面积公式:1()2S c c l ='+台侧 其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长.球的体积公式:343V r π=球,其中R 表示球的半径.台体的体积公式:h S S S S V )31'++=‘台体(,其中'S ,S 分别表示上下底面积,h表示高。
一、选择题:本大题共14小题;第1—10题每小题4分,第11—14题每小题5分,共60分在每小题给出的四个选顶中,只有一顶是符合题目要求的。
(1)如图,I 是全集,M 、P 、S 、是I 的3个子集,由阴影部分所表示的集合是 ( )(A ))(N M ⋂S ⋂ (B )S P M ⋃⋂)((C )S P M ⋂⋂)( (D )S P M ⋃⋂)((2)已知映射f:A 中中的元素都是集合其中,集合A B A B },,3,2,1,1,2,3{,---=→ 元素在映射f 下的象,且对任意的a ∈A 中则集合中和它对应的元素是在B {a},B ,元 素的个数是 ( )(A )4 (B )5 (C )6 (D )7(3)若函数y=f(x)的反函数是y=g(x),f(a)=b,ab 等于则)(,0b g ≠ ( ) (A )a(B )1a -(C )b (D )1b -(4)函数f(x)=Msin(在区间)0)(>+ωϕωx [a,b]上是增函数,且f(a)=-M,f(b)=M,则函数g(x)=Mcos(上在],[)b a x φω+ ( )(A)是增函数 (B )是减函数 (C )可以取得最大值M (D )可以取得最小值-M (5)若f(x)sinx 是周期为π的奇函数,则f(x)可以是(A )sinx (B)cosx (C)sin2x (D)cos2x (6)在极坐标系中,曲线关于)3sin(4πθρ-= ( )(A)直线3πθ=对称(B )直线πθ65=轴对称 (C )点(2,)3π中心对称 (D )极点中心对称(7)若干毫升水倒入底面半径为2cm 的圆柱形器皿中,量得水面的高度为6cm ,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是 ( )(A)cm 36 (B )cm 6 (C )2(D )3(8)2312420443322104)(),)32(a a a a a x a x a x a x a a x +-++++++=+则(若 的值为 ( )(A)1 (B)-1 (C)0 (D)2(9)直线为得的劣弧所对的圆心角截圆4032322=+=-+y x y x ( )(A )6π (B)4π (C)3π (D)2π(10) 如图,在多面体ABCDEF中 , 已知面ABCD是边长为3的正方形EF∥ABEF=EF ,23与面AC的距离为2,则该多面体的体积 ( ) (A )29 (B)5 (C)6 (D)215(11)若sin (αααctg tg >>∈<<-απαπ则),22( )(A))4,2(ππ--(B) )0,4(π- (C) )4,0(π (D) )2,4(ππ (12)如果圆台的上底面半径为5,下底面半径为R ,中截面把圆台分为上、下两个圆台,它们的侧面积的比为1∶2,那么R =( )(A )10 (B )15 (C )20 (D )25(13)已知丙点M (1,),45,4()45--N 、给出下列曲线方程:4x+2y-1=0 ②322=+y x ③1222=+y x ④1222=-y x 在曲线上存在点P 满足MP P N =的所有曲线方程是 (A )①③ (B )②④ (C )①②③ (D )②③④(14)某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘。
2023年全国统一高考数学试卷(理科)(甲卷)(解析版)
2023年全国统一高考数学试卷(理科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设集合A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},U为整数集,则∁U(A⋃B)=( )A.{x|x=3k,k∈Z}B.{x|x=3k﹣1,k∈Z}C.{x|x=3k﹣2,k∈Z}D.∅【答案】A【解答】解:∵A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},∴A∪B={x|x=3k+1或x=3k+2,k∈Z},又U为整数集,∴∁U(A⋃B)={x|x=3k,k∈Z}.故选:A.2.(5分)若复数(a+i)(1﹣ai)=2,a∈R,则a=( )A.﹣1B.0C.1D.2【答案】C【解答】解:因为复数(a+i)(1﹣ai)=2,所以2a+(1﹣a2)i=2,即,解得a=1.故选:C.3.(5分)执行下面的程序框图,输出的B=( )A.21B.34C.55D.89【答案】B【解答】解:根据程序框图列表如下:A13821B251334n1234故输出的B=34.故选:B.4.(5分)向量||=||=1,||=,且+=,则cos〈﹣,﹣〉=( )【答案】D【解答】解:因为向量||=||=1,||=,且+=,所以﹣=+,即2=1+1+2×1×1×cos<,>,解得cos<,>=0,所以⊥,又﹣=2+,﹣=+2,所以(﹣)•(﹣)=(2+)•(+2)=2+2+5•=2+2+0=4,|﹣|=|﹣|===,所以cos〈﹣,﹣〉===.故选:D.5.(5分)已知正项等比数列{a n}中,a1=1,S n为{a n}前n项和,S5=5S3﹣4,则S4=( )A.7B.9C.15D.30【答案】C【解答】解:等比数列{a n}中,设公比为q,a1=1,S n为{a n}前n项和,S5=5S3﹣4,显然q≠1,(如果q=1,可得5=15﹣4矛盾),可得=5•﹣4,解得q2=4,即q=2,S4===15.故选:C.6.(5分)有50人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为( )A.0.8B.0.4C.0.2D.0.1【答案】A【解答】解:根据题意,在报名足球或乒乓球俱乐部的70人中,设某人报足球俱乐部为事件A,报乒乓球俱乐部为事件B,则P(A)==,由于有50人报名足球俱乐部,60人报名乒乓球俱乐部,则同时报名两个俱乐部的由50+60﹣70=40人,则P(AB)==,则P(B|A)===0.8.故选:A.7.(5分)“sin2α+sin2β=1”是“sinα+cosβ=0”的( )A.充分条件但不是必要条件B.必要条件但不是充分条件C.充要条件D.既不是充分条件也不是必要条件【答案】B【解答】解:sin2α+sin2β=1,可知sinα=±cosβ,可得sinα±cosβ=0,所以“sin2α+sin2β=1”是“sinα+cosβ=0”的必要不充分条件,故选:B.8.(5分)已知双曲线的离心率为,其中一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,则|AB|=( )A.B.C.D.【答案】D【解答】解:双曲线C:﹣=1(a>0,b>0)的离心率为,可得c=a,所以b=2a,所以双曲线的渐近线方程为:y=±2x,一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,圆的圆心(2,3),半径为1,圆的圆心到直线y=2x的距离为:=,所以|AB|=2=.故选:D.9.(5分)有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则两天中恰有1人连续参加两天服务的选择种数为( )A.120B.60C.40D.30【答案】B【解答】解:先从5人中选1人连续两天参加服务,共有=5种选法,然后从剩下4人中选1人参加星期六服务,剩下3人中选取1人参加星期日服务,共有=12种选法,根据分步乘法计数原理可得共有5×12=60种选法.故选:B.10.(5分)已知f(x)为函数向左平移个单位所得函数,则y=f(x)与的交点个数为( )A.1B.2C.3D.4【答案】C【解答】解:把函数向左平移个单位可得函数f(x)=cos(2x+)=﹣sin2x的图象,而直线=(x﹣1)经过点(1,0),且斜率为,且直线还经过点(,)、(﹣,﹣),0<<1,﹣1<﹣<0,如图,故y=f(x)与的交点个数为3.故选:C.11.(5分)在四棱锥P﹣ABCD中,底面ABCD为正方形,AB=4,PC=PD=3,∠PCA=45°,则△PBC的面积为( )A.B.C.D.【答案】C【解答】解:解法一:∵四棱锥P﹣ABCD中,底面ABCD为正方形,又PC=PD=3,∠PCA=45°,∴根据对称性易知∠PDB=∠PCA=45°,又底面正方形ABCD得边长为4,∴BD=,∴在△PBD中,根据余弦定理可得:=,又BC=4,PC=3,∴在△PBC中,由余弦定理可得:cos∠PCB==,∴sin∠PCB=,∴△PBC的面积为==.解法二:如图,设P在底面的射影为H,连接HC,设∠PCH=θ,∠ACH=α,且α∈(0,),则∠HCD=45°﹣α,或∠HCD=45°+α,易知cos∠PCD=,又∠PCA=45°,则根据最小角定理(三余弦定理)可得:,∴或,∴或,∴或,∴tanα=或tanα=,又α∈(0,),∴tanα=,∴cosα=,sinα=,∴,∴cosθ=,再根据最小角定理可得:cos∠PCB=cosθcos(45°+α)==,∴sin∠PCB=,又BC=4,PC=3,∴△PBC的面积为==.故选:C.12.(5分)已知椭圆=1,F1,F2为两个焦点,O为原点,P为椭圆上一点,cos∠F1PF2=,则|PO|=( )A.B.C.D.【答案】B【解答】解:椭圆,F1,F2为两个焦点,c=,O为原点,P为椭圆上一点,,设|PF1|=m,|PF2|=n,不妨m>n,可得m+n=6,4c2=m2+n2﹣2mn cos∠F1PF2,即12=m2+n2﹣mn,可得mn=,m2+n2=21,=(),可得|PO|2==(m2+n2+2mn cos∠F1PF2)=(m2+n2+mn)=(21+)=.可得|PO|=.故选:B.二、填空题:本题共4小题,每小题5分,共20分。
高考全国卷数学理科试题及答案详解
2021年普通高等学校招生全国统一考试数学(全国新课标卷II)第一卷一、选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的. 1.(2021课标全国Ⅱ,理1)集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},那么M ∩N =( ).A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}2.(2021课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,那么z =( ).A .-1+iB .-1-IC .1+iD .1-i3.(2021课标全国Ⅱ,理3)等比数列{a n }的前n 项与为S n .S 3=a 2+10a 1,a 5=9,那么a 1=( ).A .13B .13-C .19D .19-4.(2021课标全国Ⅱ,理4)m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l α,l β,那么( ).A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.(2021课标全国Ⅱ,理5)(1+ax )(1+x )5的展开式中x 2的系数为5,那么a =( ).A .-4B .-3C .-2D .-16.(2021课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N =10,那么输出的S =( ).A .1111+2310+++B .1111+2!3!10!+++C .1111+2311+++ D .1111+2!3!11!+++7.(2021课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,那么得到的正视图可以为( ).8.(2021课标全国Ⅱ,理8)设a =log 36,b =log 510,c =log 714,那么( ).A .c >b >aB .b >c >aC .a >c >bD .a >b >c 9.(2021课标全国Ⅱ,理9)a >0,x ,y 满足约束条件1,3,3.x x y y a x ≥⎧⎪+≤⎨⎪≥(-)⎩假设z =2x+y 的最小值为1,那么a =( ).A .14B .12 C .1 D .210.(2021课标全国Ⅱ,理10)函数f (x )=x 3+ax 2+bx +c ,以下结论中错误的选项是( ).A .∃x0∈R ,f(x0)=0B .函数y =f(x)的图像是中心对称图形C .假设x0是f(x)的极小值点,那么f(x)在区间(-∞,x0)单调递减D .假设x0是f(x)的极值点,那么f′(x0)=011.(2021课标全国Ⅱ,理11)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,假设以MF 为直径的圆过点(0,2),那么C 的方程为( ).A .y2=4x 或y2=8xB .y2=2x 或y2=8xC .y2=4x 或y2=16xD .y2=2x 或y2=16x12.(2021课标全国Ⅱ,理12)点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两局部,那么b 的取值范围是( ).A .(0,1) B.112⎛⎫ ⎪ ⎪⎝⎭ C.113⎛⎤- ⎥ ⎝⎦ D .11,32⎡⎫⎪⎢⎣⎭ 第二卷本卷包括必考题与选考题两局部,第13题~第21题为必考题,每个试题考生都必须做答。
1990年全国高考理科数学试题
一九九0年全国高考数学试题理科试题一.选择题:本题共15个小题;每小题3分,共45分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
把所选项前的字母填在题后的圆括号内。
(1)方程412x3log =的解是 (A )91x =(B )33x = (C )3x = (D )9x =(2)把复数1+i 对应的向量按顺时针方向旋转32π,所得到的向量对应的复数是 (A )i 231231+-+- (B )i 231231--++- (C )i 231231-++- (D )i 231231--+- (3)如果轴截面为正方形的圆柱的侧面积是S ,那么圆柱的体积等于 (A )S 2S (B )πS 2S (C )S 4S(D )πS 4S (4)方程x sin x 2sin =在区间)2,0(π内的解的个数 (A )1 (B )2 (C )3 (D )4(5)已知右图是函 数 )2|)(|x sin(2y π<ϕϕ+ω=图像,那么(A )6,1110π=ϕ=ω (B )6,1110π-=ϕ=ω(C )6,2π=ϕ=ω (D )6,2π-=ϕ=ω(6)函数ctgx|ctgx ||tgx |tgx x cos |x cos ||x sin |x sin y +++=的值域是(A ){-2,4} (B){-2,0,4} (C){-2,0,2,4} (D){-4,-2,0,4}(7)如果直线y=ax+2与直线y=3x-b 关于y=x 对称,那么 (A )6b ,31a == (B ) 6b ,31a -== (C )2b ,3a -== (D ) 6b ,3a ==Y(8)极坐标方程52sin42=θρ表示的曲线是 (A )圆 (B )椭圆 (C )双曲线的一支 (D )抛物线(9)设全集}R y ,x |)y ,x {(I ∈=,集合}12x 3y |)y ,x {(M =--=, }1x y |)y ,x {(N +≠=那么M N 等于(A )φ (B ){(2,3)} (C )(2,3) (D ){(x,y)|y=x+1} (10)如果实数x,y 满足等式(x-2)2+y 2=3,那么xy的最大值是 (A)21(B)33 (C) 23 (D)3(11)如图,正三棱锥S-ABC 的侧棱与底面边长相等,如果E 、F 分别为SC 、AB 的中点,那么异面直线EF 与SA 所成角等于(A)900 (B)600 (C)450 (D)300(12)已知h >0,设命题甲为:两个实数a,b 满足|a-b|<2h ;命题乙为: 两个实数a,b 满足 |a-1|<h 且|b-1|<h.那么 (A )甲是乙的充分条件,但不是乙的必要条件 (B )甲是乙的必要条件,但不是乙的充分条件 (C )甲是乙的充要条件(D )甲不是乙的充分条件,也不是乙的必要条件(13)A ,B ,C ,D ,E 五人并排站成一排,如果B 必须站在A 的右边(A ,B 可以不相邻),那么不同的排法共有(A )24种 (B )60种 (C )90种 (D )120种(14)以一个正方体的顶点为顶点的四面体共有 (A )70个 (B )64个 (C )58个 (D )52个(15)设函数arctgx y =的图像沿x 轴正方向平移2个单位所得到图象为C 。
2023年全国统一高考数学试卷(理科)(乙卷)(解析版)
2023年全国统一高考数学试卷(理科)(乙卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=,则=( )A.1﹣2i B.1+2i C.2﹣i D.2+i【答案】B【解答】解:∵i2=﹣1,i5=i,∴z===1﹣2i,∴=1+2i.故选:B.2.(5分)设集合U=R,集合M={x|x<1},N={x|﹣1<x<2},则{x|x≥2}=( )A.∁U(M∪N)B.N∪∁U M C.∁U(M∩N)D.M∪∁U N【答案】A【解答】解:由题意:M∪N={x|x<2},又U=R,∴∁U(M∪N)={x|x≥2}.故选:A.3.(5分)如图,网格纸上绘制的是一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A.24B.26C.28D.30【答案】D【解答】解:根据几何体的三视图转换为直观图为:该几何体是由两个直四棱柱组成的几何体.如图所示:故该几何体的表面积为:4+6+5+5+2+2+2+4=30.故选:D.4.(5分)已知f(x)=是偶函数,则a=( )A.﹣2B.﹣1C.1D.2【答案】D【解答】解:∵f(x)=的定义域为{x|x≠0},又f(x)为偶函数,∴f(﹣x)=f(x),∴,∴,∴ax﹣x=x,∴a=2.故选:D.5.(5分)设O为平面坐标系的坐标原点,在区域{(x,y)|1≤x2+y2≤4}内随机取一点,记该点为A,则直线OA的倾斜角不大于的概率为( )A.B.C.D.【答案】C【解答】解:如图,PQ为第一象限与第三象限的角平分线,根据题意可得构成A的区域为圆环,而直线OA的倾斜角不大于的点A构成的区域为图中阴影部分,∴所求概率为=.故选:C.6.(5分)已知函数f(x)=sin(ωx+φ)在区间(,)单调递增,直线x=和x=为函数y=f(x)的图像的两条对称轴,则f(﹣)=( )A.﹣B.﹣C.D.【答案】D【解答】解:根据题意可知=,∴T=π,取ω>0,∴ω==2,又根据“五点法“可得,k∈Z,∴φ=,k∈Z,∴f(x)=sin(2x)=sin(2x﹣),∴f(﹣)=sin(﹣)=sin(﹣)=sin=.故选:D.7.(5分)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( )A.30种B.60种C.120种D.240种【答案】C【解答】解:根据题意可得满足题意的选法种数为:=120.故选:C.8.(5分)已知圆锥PO的底面半径为,O为底面圆心,PA,PB为圆锥的母线,∠AOB =120°,若△PAB的面积等于,则该圆锥的体积为( )A.πB.πC.3πD.3π【答案】B【解答】解:根据题意,设该圆锥的高为h,即PO=h,取AB的中点E,连接PE、OE,由于圆锥PO的底面半径为,即OA=OB=,而∠AOB=120°,故AB===3,同时OE=OA×sin30°=,△PAB中,PA=PB,E为AB的中点,则有PE⊥AB,又由△PAB的面积等于,即PE•AB=,变形可得PE=,而PE=,则有h2+=,解可得h=,故该圆锥的体积V=π×()2h=π.故选:B.9.(5分)已知△ABC为等腰直角三角形,AB为斜边,△ABD为等边三角形,若二面角C﹣AB﹣D为150°,则直线CD与平面ABC所成角的正切值为( )A.B.C.D.【答案】C【解答】解:如图,取AB的中点E,连接CE,DE,则根据题意易得AB⊥CE,AB⊥DE,∴二面角C﹣AB﹣D的平面角为∠CED=150°,∵AB⊥CE,AB⊥DE,且CE∩DE=E,∴AB⊥平面CED,又AB⊂平面ABC,∴平面CED⊥平面ABC,∴CD在平面ABC内的射影为CE,∴直线CD与平面ABC所成角为∠DCE,过D作DH垂直CE所在直线,垂足点为H,设等腰直角三角形ABC的斜边长为2,则可易得CE=1,DE=,又∠DEH=30°,∴DH=,EH=,∴CH=1+=,∴tan∠DCE===.故选:C.10.(5分)已知等差数列{a n}的公差为,集合S={cos a n|n∈N*},若S={a,b},则ab=( )A.﹣1B.﹣C.0D.【答案】B【解答】解:设等差数列{a n}的首项为a1,又公差为,∴,∴,其周期为=3,又根据题意可知S集合中仅有两个元素,∴可利用对称性,对a n取特值,如a1=0,,,•,或,,a3=π,•,代入集合S中计算易得:ab=.故选:B.11.(5分)设A,B为双曲线x2﹣=1上两点,下列四个点中,可为线段AB中点的是( )A.(1,1)B.(﹣1,2)C.(1,3)D.(﹣1,﹣4)【答案】D【解答】解:设A(x1,y1),B(x2,y2),AB中点为(x0,y0),,①﹣②得k AB==9×=9×,即﹣3<9×<3⇒,即或,故A、B、C错误,D正确.故选:D.12.(5分)已知⊙O的半径为1,直线PA与⊙O相切于点A,直线PB与⊙O交于B,C两点,D为BC的中点,若|PO|=,则•的最大值为( )A.B.C.1+D.2+【答案】A【解答】解:如图,设∠OPC=α,则,根据题意可得:∠APO=45°,∴==cos2α﹣sinαcosα==,又,∴当,α=,cos()=1时,取得最大值.故选:A.二、填空题:本题共4小题,每小题5分,共20分。
1999全国数学理工试题
1999年普通高等学校招生全国统一考试数学(理工农医类)共150分。
考试时间120分钟。
第I卷(选择题共60分)一、选择题:本大题共14小题;第1-10题每小题4分,第11-14题每小题5分,共60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 如图,I是全集,M、P、S是I的3个子集则阴影部分所表示的集合是()A . (MGP)G SB . (MGP)U SC. (MAP) n?i S D . (MAP ) U ?I S2. 已知映射f: A-B,其中,集合A={-3,-2,-1,1,2,3,4},集合B中的元素都是A中元素在映射f下的象,且对任意的a€ A,在B中和它对应的元素是|a|,贝煉合B中元素的个数是()A . 4B . 5 C. 6 D . 73. 若函数y=f(x)的反函数是y=g(x), f(a)=b, ab旳,则g(b)等于( )A . aB . a-1C . bD . b-14. 函数f(x)=Msin@x+妨@>0)在区间[a,b]上是增函数,且f(a)=-M , f(b)=M ,则函数g(x)=M cos@x+(D 在[a,b]上( )A .是增函数B.是减函数C .可以取得最大值M D.可以取得最小值-M5. 若f(x)sinx是周期为n的奇函数,贝U f(x)可以是()A . sinxB . cosxC . sin2xD . cos2x6 .在极坐标系中,曲线p=4si n(®§)关于()A.直线蔦轴对称B-直线唱轴对称C .点(2, §)中心对称D .极点中心对称7. 若干毫升水倒入底面半径为2cm的圆柱形器皿中,量得水面的高度为6cm,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是()A . 6^3 cmB . 6cmC . 2%18cmD . 3^12 cm8. 若(2x+ 3 )4=a o+a1x+a2x2+a3x3+a4x4,则(a o+a2+a4)2-(a1+a3)2的值为()A . 1B . -1C . 0D . 29. 直线' 3x y 2-..3 0截圆x2+y2=4得的劣弧所对的圆心角为()A .-B .-C .—D .—643210 .如图,在多面体ABCDEF中,已知面ABCD是边长3为3的正方形,EF// AB,EF= 3,EF与面AC的2距离为2,则该多面体的体积为()C . 611.若 sin o>ta n a >coto(-<(<—),贝 U a€ ()5 5 13. 已知两点M(1, —), N(-4, --),给出下列曲线方程:442 2①4x+2y-1 = 0 ②x 2+y 2=3 ③ y 2 1 ④y 2 1在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( )A .①③B .②④C .①②③D .②③④14. 某电脑用户计划使用不超过 500元的资金购买单价分别为60元、70元的单片软件 和盒装磁盘,根据需要,软件至少买 3片,磁盘至少买2盒,则不同的选购方式共 有() A . 5种 B . 6种 C . 7种 D . 8种第II 卷(非选择题共90分)二 .填空题:本大题共4小题;每小题4分,共16分,把答案填在题中横线上。
2021年全国统一高考数学试卷(理科)(甲卷)(学生版+解析版)
2021年全国统一高考数学试卷(理科)(甲卷)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设集合M ={x |0<x <4},N ={x |13≤x ≤5},则M ∩N =( )A .{x |0<x ≤13}B .{x |13≤x <4}C .{x |4≤x <5}D .{x |0<x ≤5}2.(5分)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是( ) A .该地农户家庭年收入低于4.5万元的农户比率估计为6% B .该地农户家庭年收入不低于10.5万元的农户比率估计为10% C .估计该地农户家庭年收入的平均值不超过6.5万元D .估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间 3.(5分)已知(1﹣i )2z =3+2i ,则z =( ) A .﹣1−32iB .﹣1+32iC .−32+iD .−32−i4.(5分)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录法的数据V 满足L =5+lgV .已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为( )(√1010≈1.259) A .1.5B .1.2C .0.8D .0.65.(5分)已知F 1,F 2是双曲线C 的两个焦点,P 为C 上一点,且∠F 1PF 2=60°,|PF 1|=3|PF 2|,则C 的离心率为( )A .√72B .√132C .√7D .√136.(5分)在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A ﹣EFG 后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是( )A .B .C .D .7.(5分)等比数列{a n }的公比为q ,前n 项和为S n .设甲:q >0,乙:{S n }是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件8.(5分)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影A ',B ',C '满足∠A 'C 'B '=45°,∠A 'B 'C '=60°.由C 点测得B 点的仰角为15°,BB '与CC '的差为100;由B 点测得A 点的仰角为45°,则A ,C 两点到水平面A 'B 'C '的高度差AA '﹣CC '约为( )(√3≈1.732)A .346B .373C .446D .4739.(5分)若α∈(0,π2),tan2α=cosα2−sinα,则tan α=( )A .√1515B .√55C .√53D .√15310.(5分)将4个1和2个0随机排成一行,则2个0不相邻的概率为( ) A .13B .25C .23D .4511.(5分)已知A ,B ,C 是半径为1的球O 的球面上的三个点,且AC ⊥BC ,AC =BC =1,则三棱锥O ﹣ABC 的体积为( ) A .√212B .√312C .√24D .√3412.(5分)设函数f (x )的定义域为R ,f (x +1)为奇函数,f (x +2)为偶函数,当x ∈[1,2]时,f (x )=ax 2+b .若f (0)+f (3)=6,则f (92)=( )A .−94B .−32C .74D .52二、填空题:本题共4小题,每小题5分,共20分。
2020年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)
2020年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)若z=1+i,则|z2﹣2z|=()A.0B.1C.D.22.(5分)设集合A={x|x2﹣4≤0},B={x|2x+a≤0},且A∩B={x|﹣2≤x≤1},则a=()A.﹣4B.﹣2C.2D.43.(5分)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.B.C.D.4.(5分)已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2B.3C.6D.95.(5分)某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A.y=a+bx B.y=a+bx2C.y=a+be x D.y=a+blnx 6.(5分)函数f(x)=x4﹣2x3的图象在点(1,f(1))处的切线方程为()A.y=﹣2x﹣1B.y=﹣2x+1C.y=2x﹣3D.y=2x+17.(5分)设函数f(x)=cos(ωx+)在[﹣π,π]的图象大致如图,则f(x)的最小正周期为()A.B.C.D.8.(5分)(x+)(x+y)5的展开式中x3y3的系数为()A.5B.10C.15D.209.(5分)已知α∈(0,π),且3cos2α﹣8cosα=5,则sinα=()A.B.C.D.10.(5分)已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π11.(5分)已知⊙M:x2+y2﹣2x﹣2y﹣2=0,直线l:2x+y+2=0,P为l上的动点.过点P 作⊙M的切线P A,PB,切点为A,B,当|PM|•|AB|最小时,直线AB的方程为()A.2x﹣y﹣1=0B.2x+y﹣1=0C.2x﹣y+1=0D.2x+y+1=0 12.(5分)若2a+log2a=4b+2log4b,则()A.a>2b B.a<2b C.a>b2D.a<b2二、填空题:本题共4小题,每小题5分,共20分。
1999年北京高考理科数学真题及答案
1999年北京高考理科数学真题及答案第I 卷(选择题 共60分)注意事项:l .答第I 卷前,考生务必将自己的姓名、准考证号、考试科目、试卷类型(A 或B )用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后。
再选涂其它答案,不能答在试题卷上。
3.考试结束。
监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式[]1sin cos sin()sin()2αβαβαβ=++- []1cos sin sin()sin()2αβαβαβ=+-- []1cos cos cos()cos()2αβαβαβ=++-正棱台、圆台的侧面积公式:1()2S c c l ='+台侧 其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长. 球的体积公式:343V r π=球,其中R 表示球的半径.台体的体积公式:h S S S S V )31'++=‘台体(,其中'S ,S 分别表示上下底面积,h表示高。
一、选择题:本大题共14小题;第1—10题每小题4分,第11—14题每小题5分,共60分在每小题给出的四个选顶中,只有一顶是符合题目要求的。
(1)如图,I 是全集,M 、P 、S 、是I 的3个子集,由阴影部分所表示的集合是 ( ) (A ))(N M ⋂S ⋂(B )S P M ⋃⋂)((C )S P M ⋂⋂)( (D )S P M ⋃⋂)((2)已知映射f:A 中中的元素都是集合其中,集合A B A B },,3,2,1,1,2,3{,---=→元素在映射f 下的象,且对任意的a ∈A 中则集合中和它对应的元素是在B {a},B ,元 素的个数是 ( )(A )4 (B )5 (C )6 (D )7(3)若函数y=f(x)的反函数是y=g(x),f(a)=b,ab 等于则)(,0b g ≠ ( ) (A )a(B )1a -(C )b(D )1b -(4)函数f(x)=Msin(在区间)0)(>+ωϕωx [a,b]上是增函数,且f(a)=-M,f(b)=M,则函数g(x)=Mcos(上在],[)b a x φω+ ( )(A)是增函数 (B )是减函数 (C )可以取得最大值M (D )可以取得最小值-M (5)若f(x)sinx 是周期为π的奇函数,则f(x)可以是(A )sinx (B)cosx (C)sin2x (D)cos2x (6)在极坐标系中,曲线关于)3sin(4πθρ-= ( )(A)直线3πθ=对称(B )直线πθ65=轴对称 (C )点(2,)3π中心对称 (D )极点中心对称 (7)若干毫升水倒入底面半径为2cm 的圆柱形器皿中,量得水面的高度为6cm ,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是 ( )(A)cm 36 (B )cm 6 (C )2(D )3(8)2312420443322104)(),)32(a a a a a x a x a x a x a a x +-++++++=+则(若 的值为 ( )(A)1 (B)-1 (C)0 (D)2(9)直线为得的劣弧所对的圆心角截圆4032322=+=-+y x y x ( ) (A )6π (B)4π (C)3π (D)2π(10) 如图,在多面体ABCDEF中 , 已知面ABCD是边长为3的正方形EF∥ABEF=EF ,23与面AC的距离为2,则该多面体的体积 ( )(A )29 (B)5 (C)6 (D)215 (11)若sin (αααctg tg >>∈<<-απαπ则),22( )(A))4,2(ππ--(B) )0,4(π- (C) )4,0(π (D) )2,4(ππ (12)如果圆台的上底面半径为5,下底面半径为R ,中截面把圆台分为上、下两个圆台,它们的侧面积的比为1∶2,那么R =( )(A )10 (B )15 (C )20 (D )25(13)已知丙点M (1,),45,4()45--N 、给出下列曲线方程:4x+2y-1=0 ②322=+y x ③1222=+y x ④1222=-y x 在曲线上存在点P 满足MP P N =的所有曲线方程是 (A )①③ (B )②④ (C )①②③ (D )②③④(14)某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘。
1999年高考北京卷数学(理科)
1999年普通高等学校招生全国统一考试数学数学(理工农医类)本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
第I卷1至2页。
第II卷3至8。
共150分。
考试时间120分钟。
第I卷(选择题共60分)注意事项:l.答第I卷前,考生务必将自己的姓名、准考证号、考试科目、试卷类型(A或B)用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后。
再选涂其它答案,不能答在试题卷上。
3. 考试结束。
监考人将本试卷和答题卡一并收回。
参考公式:正棱台、圆台的侧面积公式三角函数的积化和差公式sinα=cosβ[sin(α+β)+sin(α-β)]cosα=sinβ[sin(α+β)-sin(α-β)]cosα=cosβ[cos(α+β)+cos(α-β)]sinα=sinβ[cos(α+β)-cos(α-β)]一.选择题:本大题共14小题;第(1)—(10)题每小题4分,第(11)—(14)题每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)如图,I是全集,M、P、S是I的3个子集,则阴影部分所表示的集合是(A)(M∩P〕∩S(B)(M∩P)∪S(C〕(M∩P)∩(D〕(M∩P)∪(2)已知映射f:AB,其中,集合A={-3,-2,-1,l,2,3,4,},集合B中的元素都是A中元素在映射f下的象,且对任意的a∈A,在B中和它对应的元素是{a},则集合B中元素的个数是(A)4 (B)5 (C〕6 (D〕7(3)若函数y=f(x)的反函数是y=g(x),f(a)=b,ab0,则g(b)等于(A) a (B)a-1(C)b (D)b-1(4)函数f(x)=Msin(ωx+ρ)(ω>0)在区间[a,b]上是增函数,且f(a)=-M,f(b)=M,则函数g(x)=Mcos(ωx+ρ)在[a,b]上(A)是增函数(B)是减函数(C)可以取得最大值M (D)可以取得最小值-M(5)若f(x)sinx是周期为∏的奇函数,则f(x)可以是(A)sin x (B)cos x (C)sin 2x (D)cos 2x(6)在极坐标系中,曲线ρ=4sin(θ-π/3)关于(A)直线θ=π/3轴对称(B)直线θ=6/5π轴对称(C)点(2,π/3)中心对称(D)极点中心对称(7)若于毫升水倒人底面半径为2cm的圆杜形器皿中,量得水面的高度为6cm,若将这些水倒人轴截面是正三角形的倒圆锥形器皿中,则水面的高度是(8)若(2x+)4=a0+a1x+a2x2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值为(A)l (B)-1 (C)0 (D)2(9)直线x+y2=0截圆x2+y2=4得的劣弧所对的圆心角为(A)π/6 (B)π/4 (C)π/3 (D)π/2(10)如图,在多面体ABCDEF中,已知面ABCD是边长为3的正方形,EF//AB,EF=3/2,EF与面AC的距离为2,则该多面体的体积为(A)9/2 (B)5 (C)6 (D)15/2(11)若sina>tga>ctga(-π/2<a<π/2),则a∈(A) (-π/2,-π/4) (B)(-π/4,0)(C)(0,π/4)(D)(π/4,π/2)(12)如果圆台的上底面半径为5.下底面半径为R ,中截面把圆台分为上、下两个圆台,它们的侧面积的比为1:2,那么R=(A)10 (B)15 (C)20 (D)25(13)已知两点M(1,5/4)、N(-4,-5/4),给出下列曲线方程:①4x + 2y-1=0②x2+y2=3 ③x2/2+y2=1 ④x2/2-y2=1在曲线上存在点P满足|MP|=|NP|的所有曲线方程是(A)①③ (B)②④ (C)①②③ (D)②③④(14)某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有(A)5种(B)6种(C)7种(D)8种第II卷(非选择题共90分)注意事项:1.第II卷共6页。
1990年全国高考数学(理科)试题
1990年普通高等学校招生全国统一考试理科数学一、选择题:本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.把所选项前的字母填在题后括号内.1.方程3log 124x =的解是 A.19x =B.3x =C.x =9x = 2. 把复数1i +对应的向量按顺时针方向旋转23π,所得到的向量对应的复数是A.1122i -++B.1122i --+C.1122i -+D.1122i -+ 3.如果轴截面为正方形的圆柱的侧面积是S,那么圆柱的体积等于4.方程sin 2sin x x =在区间(0,2)π内的解的个数是5.已知如图是函数2sin() ()2y x πωϕϕ=+<的图象,A.10116πωϕ==, B.10116πωϕ==-, C.26πωϕ==, D.26πωϕ==-, 6.函数cos cot sin tan sin cos tan cot x x x x y x x x x=+++的值域是 A.{}2,4- B.{}2,0,4- C.{}2,0,24-, D.{}4,2,0,4--7.如果直线2y ax =+与直线3y x b =+关于直线y x =对称,那么A.1,63a b ==B.1,63a b ==- C.3,2a b ==- D.3,6a b == 8.极坐标方程24sin 52θρ=表示对曲线是1 11A.圆B.椭圆C.双曲线的一支D.抛物线9.设全集{}(,),I x y x y R =∈,集合3(,)12y M x y x ⎧-⎫==⎨⎬-⎩⎭,{}(,)1N x y y x =≠+,那么M N =A.∅B.{}(2,3)C.(2,3)D.{}(,)1x y y x =+10.如果实数,x y 满足等式22(2)3x y -+=,那么y x的最大值是 . A.1211.如图,正三棱锥S ABC -的侧棱与底面边长相等, 如果,E F 分别为SC 、AB 的中点,那么异面直线EF 与 SA 所成的角等于A.090B.060C.045 D.030 12.已知0h >,设命题甲为:两个实数,a b 满足2a b h -<;命题乙为:两个实数,a b 满足1a h -<且1b h -<.那么A.甲是乙的充分条件,但不是乙的必要条件.B.甲是乙的必要条件,但不是乙的充分条件.C.甲是乙的充要条件.D.甲不是乙的充分条件,也不是乙的必要条件.13.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻) 那么不同的排法共有A.24种B.60种C.90种D.120种14.以一个正方体的顶点为顶点的四面体共有A.70个B.64个C.58个D.52个15.将函数y arctgx =的图像沿x 轴正方向平移2个单位所得到的图像位C ,又设图像与C '与C 关于原点对称,那么C '所对的函数是A.(2)y arctg x =--B.(2)y arctg x =-C.(2)y arctg x =-+D.(2)y arctg x =+二、填空题: 本大题共5小题,每小题3分,共15分,把答案填在题中横线上.16.双曲线221169y x -=的准线方程是 . 17.2345(1)(1)(1)(1)(1)x x x x x ---+---+-的展开式中,2x 的系数等于 .18.已知{}n a 是公差不为零的等差数列,如果n S 是数列{}n a 的前项的和,那么lim n n n na S →∞= . 19.函数sin cos sin cos y x x x x =++的最大值为.20.如图,三棱柱111ABC A B C -中,若,E F 分别为,AB AC的中点,平面11EB C F 将三棱柱分成体积为1V 、2V 的两部分,那么1V :2V = .三、解答题. 本大题共6小题,共60分.解答应写出文字说明,证明过程或演算步骤.21.有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数.22.已知1sin sin 4αβ+=,1cos cos 3αβ+=,求tan()αβ+的值. 23.如图,在三棱锥S ABC -中, SA ⊥底面ABC , AB BC ⊥.DE 垂直平分SC ,且分别交AC 、SC于,D E .又SA AB =,SB BC =.求以BD 为棱,以 BDE 与BDC 为面的二面角的度数. 24.设0a ≥,在复数集C 中解方程22z z a +=.25.设椭圆的中心是坐标原点,长轴在x 轴上,离心率2e =,已知点3(0,)2P .求这个椭圆的方程.并求椭圆上到点P 的点的坐标.26.设函数12(1)()lg x x x n n a f x n+++-+=.其中a 是实数,n 为任意给定的自然A A B D C ES数,且2n ≥.(1)如果()f x 当(],1x ∈-∞时有意义,求a 的取值范围;(2)如果(]0,1a ∈,证明:2()(2)f x f x <, 0x ≠时成立.。
(详细解析)1998年全国高考理科数学试题及其解析(可打印修改)
1998年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试120分钟.第Ⅰ卷(选择题共65分)一.选择题:本大题共15小题;第1—10题每小题4分,第11— 15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的1.的值是sin 600︒A .B .C .D .2112-23【答案】D【解析】sin 600sin(720120)sin(120)sin120sin(18060)︒=︒-︒=-︒=-︒=-︒-︒sin 60=-︒=2.函数的图像是(1)xy a a =>【答案】B【解析】函数为偶函数,当时,为增函数,且过点,B 正确.0x ≥xy a =(0,1)3.曲线的极坐标方程化成直角坐标方程为4sin ρθ=A . B .22(2)4x y ++=22(2)4x y +-=C .D .22(2)4x y -+=22(2)4x y ++=【答案】B【解析】由已知得,即,化为标准方程为.4yρρ=⨯224x y y +=22(2)4x y +-=4.两条直线垂直的充要条件是1112220,0A x B y C A x B y C ++=++=A .B .C .D .12120A A B B +=12120A A B B -=12121-=B B A A 12121=A A B B 【答案】A【解析】①若一条直线的斜率不存在,则另一条直线一定与轴垂直,满足x ;12120A A B B +=②若两条直线斜率均存在,则,有,即,121212,A A k k B B =-=-121k k =-1212(1A AB B --=-所以.12120A A B B +=5.函数的反函数1()(0)f x x x=≠1()f x -=A . B . C .D .(0)x x ≠1(0)x x≠(0)x x -≠1(0)x x-≠【答案】B 【解析】为反比例函数,所以反函数.1()f x x =11()(0)f x x x-=≠6.已知点在第一象限,则在内的取值是(sin cos ,tan )P ααα-)20[π,αA .B .35()()244ππππU ,,5()()424ππππU ,,C .D .353(,)()2442ππππU ,3((,)424ππππU ,【答案】B【解析】点在第一象限,则,即,P sin cos 0,tan 0ααα->>sin cos ,tan 0ααα>>为第一象限或第三象限的角,若为第一象限的角,则由得,ααsin cos αα>tan 1α>所以;若为第三象限的角,则,结合正切函数图象可得(42ππα∈,α0tan 1α<<.5()4παπ∈,7.已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为A .120ºB .150ºC .180ºD .240º【答案】C【解析】由题设得,得,扇形的圆心角为.22S rl S rππ==侧底2l r =22rr ππ=8.复数的一个立方根是,它的另外两个立方根是i -iA B . C . D .12i ±12i 12i +12i -【答案】D【解析】设,则,解方程得33x i i =-=3322()()0x i x i x xi i -=-++=220x xi i ++=.12x i =9.如果棱台的两底面积分别是,中截面的面积是,那么,S S '0SA .B .C .D .=+0S =02S S S '=+SS S '=220【答案】A【解析】设两底和中截面的半径分别为和,则,所以,r r '0r 22200,,S r S r S r πππ''===,则0r r r '===02r r r '=+=+=10.向高为的水瓶中注水,注满为止,如果注水量与水深的函数关系的图像如下图H V h 所示,那么水瓶的形状是【答案】B【解析】在函数图象中,取水深时,注水量,即水深至一半时,实际2Hh =02V V V '=>注水量大于水瓶总水量的一半,只有B 正确.【难度】较难.11.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有A .90种 B .180种 C .270种 D .540种【答案】D【解析】先分配医生有种分法;再分配护士有种分法,不同的分配方336A =22264290C C C =法有540种.12.椭圆的焦点为和,点在椭圆上.如果线段的中点在轴上,221123x y +=1F 2F P 1PF y 那么是的1PF 2PF A .7倍 B .5倍 C . 4倍 D .3倍【答案】A【解析】线段的中点在轴上,则轴,有,,1PF y 2PF x ⊥221123By c +=2y PF P ==所以,是的7倍.122PF a PF =-=1PF 2PF 13.球面上有3个点,其中任意两点的球面距离都等于大圆周长的,经过这3个点的小61圆的周长为,那么这个球的半径为4πA .B .C .2D .3【答案】B【解析】设球的半径为,球面上3个点为,则为等边三角形,小圆的半R ,,A B C ABC ∆径为,所以2r=AB =R ==14.一个直角三角形三内角的正弦值成等比数列,其最小内角为A .B .C .D .arcsin arcsin【解析】不妨设,则,且,所以A B C <<2C π=sin sin sin 1A B C <<=,2sin sin A B =,化简得,解得(负值舍去),2sin sin ()2A A π=-2sin sin 10A A +-=sin A =则.A =15.在等比数列中,,且前项和满足,那么的取值范围是{}n a 11a >n n S 11lim n x S a →∞=1a A . B . C .D .(1,)+∞(1,4)(1,2)【答案】D【解析】显然公比,由题设得,可知,而01q <<111lim 11n x a S q a →∞==<-10q -<<,所以.211(1,2)a q =-∈1a ∈第Ⅱ卷(非选择题共85分)二、填空题:本大题共4小题;每小题4分,共16分.把答案填在题中横线上.16.设圆过双曲线的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双116922=-y x 曲线中心的距离是 .【答案】316【解析】根据题设,顶点、焦点和圆心在此双曲线的同一支上,设,则00(,)P x y ,故.200531674,29x y +⨯===163OP ==17.的展开式中的系数为(用数字作答).102(2)(1)x x +-10x【解析】的通项公式为,故的系数10(2)x +101102r rr r T C x -+=⋅⋅10x 为.2210102179C C ⋅-=18.如图,在直四棱柱中,当底面四边形满足条件 时,1111A B C D ABCD -ABCD有.(注:填上你认为正确的一种条件即可,不必111A C B D ⊥考虑所有可能的情形.)【答案】,或任何能推导出这个条件的其他条件.例如AC BD ⊥是正方形,菱形等ABCD 【解析】连接,则,由于,所以要,AC BD 11//BD B D 1AA BD ⊥使,只需,只需平面,也即111A C B D ⊥1A C BD ⊥BD ⊥1A AC .BD AC ⊥19.关于函数,有下列命题:()4sin(2)()3f x x x R π=+∈①由可得必是的整数倍;12()()0f x f x ==12x x -π②的表达式可改写为;()y f x =()4cos(26f x x π=-③的图像关于点对称;()y f x =(,0)6π-④的图像关于直线对称.()y f x =6x π=-其中正确的命题的序号是 .(注:把你认为正确的命题的序号都填上.)【答案】②③【解析】必是的整数倍,①错误;12x x -2π()4sin(24cos[(2323f x x x πππ=+=-+;的图像的对称点的横坐标满足,即4cos(26x π=-()y f x =2()3x k k Z ππ+=∈,当时,对称点为,③正确,④不正确.26x k ππ=⋅-0k =(,0)6π-三、解答题:本大题共6小题;共69分.解答应写出文字说明,证明过程或演算步骤.20.(本小题满分10分)在中,分别是角的对边,设.求的ABC ∆,,a b c ,,A B C 2,3a cb A C π+=-=sin B 值.以下公式供解题时参考:,sin sin 2sincos,sin sin 2cossin2222θϕθϕθϕθϕθϕθϕ+-+-+=-=cos cos 2cos cos ,cos cos 2sin sin2222θϕθϕθϕθϕθϕθϕ+-+-+=-=-.【解】本小题考查正弦定理,同角三角函数基本公式,诱导公式等基础知识,考查利用三角公式进行恒等变形的技能及运算能力.由正弦定理和已知条件得.2a c b +=sin sin 2sin A C B +=由和差化积公式得.2sin cos sin 22A C A CB +-=由得,A BC π++=sin cos 22A C B+=又.3A C π-=sin 2B B =2sin cos 222B B B =因为,所以,从而0,cos 0222B B πθ<<≠sin 2B =cos 2B ==所以.sin B ==21.(本小题满分11分)如图,直线和相交于点,,点.以为端点的曲线段上的任1l 2l M 12l l ⊥1N l ∈,A B C一点到的距离与到点的距离相等.若为锐角三角形,2l N AMN ∆,且.建立适当的坐标系,求曲线段3AM =6BN =的方程.C 【解】本小题主要考查根据所给条件选择适当的坐标系,求曲线方程的解析几何的基本思想.考查抛物线的概念和性质,曲线与方程的关系以及综合运用知识的能力.解法一:如图建立坐标系,以为轴,的垂直平分线为轴,点为坐标原点.1l x MN y O依题意知:曲线段是以点为焦点,以为准线的抛C N 2l 物线的一段,其中分别为的端点.,A B C 设曲线段的方程为C ,22(0),(,0)A B y px p x x x y =>≤≤>其中分别为的横坐标,.所以.,A B x x ,A B p MN =(,0),(,0)22p pM N -由得, ①3AM =2(2172A A p x px ++=.②2(292A A px px -+=由①,②两式联立解得,再将其代入①式并由解得4A x p =0p >⎩⎨⎧==⎩⎨⎧==.2,2;1,4A A x p x p 或因为是锐角三角形,所以,故舍去AMN ∆2A px >2,2.A p x =⎧⎨=⎩所以.4,1A p x ==由点在曲线段上,得.B C 42B px BN =-=综上得曲线段的方程为.C 28(14,0)y x x y =≤≤>解法二:如图建立坐标系,分别以为轴,为坐标原点.12,l l ,x y M 作,垂足分别为.122,,AE l AD l BF l ⊥⊥⊥,,E D F 设.(,),(,),(,0)A A B B N A x y B x y N x 依题意有,3A x ME DA AN ====A y DM ==由于为锐角三角形,故有AMN∆4N x .6B x BF BN ===设点是曲线段上任一点,则由题意知属于集合(,)P x y C P .{}222(,)(),,0NA B x y x xy xx x x y -+=≤≤>|故曲线段的方程为.C 28(2)(36,0)y x x y =-≤≤>22.(本小题满分12分)如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱.污水从孔流入,经沉淀后从孔流出.设箱体的长度为米,高度为米.已知流出的水中A B a b 该杂质的质量分数与的乘积成反比.现有制箱材料60平方米.问当各为多少,a b ab ,a b 米时,经沉淀后流出的水中该杂质的质量分数最小(孔的面,A B 积忽略不计).【解】本小题主要考查综合应用所学数学知识、思想和方法解决实际问题的能力,考查建立函数关系、不等式性质、最大值、最小值等基础知识.解法一:设为流出的水中杂质的质量分数,则,其中为比例系数.依题意,y ky ab=0k >即所求的值使值最小.,a b y 根据题设,有,42260(0,0)b ab a a b ++=>>得. ①30(030)2ab a a-=<<+于是26464303234(2)222k k k k y a a ab a a a a a====--+--+++++,18k ≥=当时取等号,达到最小值.这时,(舍去).6422a a +=+y 6a =10a =-将代入①式得.6a =3b =故当为6米,为3米时,经沉淀后流出的水中该杂质的质量分数最小.a b 解法二:依题意,即所求的的值使最大.,a b ab 由题设知,即.42260(0,0)b ab a a b ++=>>230(0,0)a b ab a b ++=>>因为2,当且仅当时,上式取等2a b +≥30ab +≤2a b =号.由,解得.0,0a b >>018ab <≤即当时,取得最大值,其最大值为18.2a b =ab 所以.解得.2218b =3,6b a ==故当为6米,为3米时,经沉淀后流出的水中该杂质的质量分数最小.a b 23.(本小题满分12分)已知斜三棱柱的侧面与底面垂直,111ABC A B C -11A ACC ABC 90,ABC BC ∠=︒=,且.2,AC =1111,AA A C AA A C ⊥=(Ⅰ)求侧棱与底面所成角的大小;1A A ABC(Ⅱ)求侧面与底面所成二面角的大小;11A ABB ABC (Ⅲ)求顶点到侧面的距离.C 11A ABB 【解】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,棱柱的性质,空间的角和距离的概念,逻辑思维能力、空间想象能力及运算能力.(Ⅰ)作,垂足为,由面面,得面,1A D AC ⊥D 11A ACC ⊥ABC 1A D ⊥ABC 所以为与面所成的角.1A AD ∠1A A ABC 因为,1111,AA A C AA A C ⊥=所以为所求.145A AD ∠=︒(Ⅱ)作,垂足为,连,则由面,得.DE AB ⊥E 1A E 1A D ⊥ABC 1A E AB ⊥所以是面与面所成二面角的平面角.1A ED ∠11A ABB ABC 由已知,,得.AB BC ⊥//ED BC又是的中点,D AC 2,BC AC ==所以.11,DE AD A D ===11tan A DA ED DE∠==故为所求.160A ED ∠=︒(Ⅲ)解法一:由点作平面的垂线,垂足为,则的长是到平面C 11A ABB H CH C 的距离.11A ABB连结,由于,得.HB AB BC ⊥AB HB ⊥又,知,且,1A E AB ⊥1//HB A E //BC ED 所以.160HBC A ED ∠=∠=︒所以sin 60CH BC =︒=解法二:连结.1A B 根据定义,点到面的距离,即为三棱锥的高.C 11A ABB 1C A AB -h 由得,即.ABC A AB A C V V --=11锥锥D A S h S ABC B AA 131311∆∆=322312231⨯⨯=⨯h 所以为所求.3=h 24.(本小题满分12分)设曲线的方程是,将沿轴、轴正向分别平行移动单位长度后C 3y x x =-C x y ,t s 得曲线.1C (Ⅰ)写出曲线的方程;1C (Ⅱ)证明曲线与关于点对称;C 1C (,)22t sA (Ⅲ)如果曲线与有且仅有一个公共点,证明且.C 1C 34t s t =-0t ≠【解】本小题主要考查函数图像、方程与曲线,曲线的平移、对称和相交等基础知识,考查运动、变换等数学思想方法以及综合运用数学知识解决问题的能力.(Ⅰ)曲线的方程为.1C 3()()y x t x t s =---+(Ⅱ)证明:在曲线上任取一点.设是关于点的对称点,则C 111(,)B x y 222(,)B x y 1B A 有,.2221t x x =+2221sy y =+所以.1212,x t x y s y =-=-代入曲线的方程,得和满足方程:,C 2x 2y 3222()()s y t x t x -=---即,可知点在曲线上.3222()()y x t x t s =---+222(,)B x y 1C 反过来,同样可以证明,在曲线上的点关于点A 的对称点在曲线上.1C C 因此,曲线与关于点A 对称.C 1C (Ⅲ)证明:因为曲线与有且仅有一个公共点,所以,方程组C 1C 33,()().y x x y x t x t s ⎧=-⎪⎨=---+⎪⎩有且仅有一组解.消去,整理得,y 22333()0tx t x t t s -+--=这个关于的一元二次方程有且仅有一个根.x 所以并且其根的判别式.即0t ≠43912()0t t t t s ∆=---=⎩⎨⎧=--≠.0)44(,03s t t t t 所以且.t t s -=430t ≠25.(本小题满分12分)已知数列是等差数列,.{}n b 112101,145b b b b =++⋅⋅⋅+=(Ⅰ)求数列的通项;{}n b n b (Ⅱ)设数列的通项(其中,且),记是数列{}n a 1log (1)n a na b =+0a >1a ≠n S 的前项和.试比较与的大小,并证明你的结论.{}n a n nS 11log 3a nb +【解】本小题主要考查等差数列基本概念及其通项求法,考查对数函数性质,考查归纳、推理能力以及用数学归纳法进行论证的能力.(Ⅰ)设数列的公差为,由题意得解得{}n b d ⎪⎩⎪⎨⎧=-+=.1452)110(1010,111d b b ⎩⎨⎧==.3,11d b 所以.32n b n =-(Ⅱ)由,知32n b n =-11log (11)log (1log (1432n a a a S n =++++⋅⋅⋅++- ,11log [(11)(1)(1432a n =++⋅⋅⋅+-.11log log 3a n ab +=因此要比较与的大小,n S 11log 3a n b +可先比较与的大小.11(11)(1(1)432n ++⋅⋅⋅+-313+n 取有1n =11+>取有2n =1(11)(1)4++>……由此推测 ①11(11)(1(1)432n ++⋅⋅⋅+>-若①式成立,则由对数函数性质可断定:当时,.1a >11log 3n a n S b +>当时,.01a <<11log 3n a n S b +<下面用数学归纳法证明①式.(ⅰ)当时已验证①式成立.1n =(ⅱ)假设当时,①式成立,即.(1)nk k =≥11(11)(1(1)432k ++⋅⋅⋅+>-那么,当时,1n k=+1111(11)(1)(1)(1)4323(1)231k k k ++⋅⋅⋅++>+-+-+.2)k=+因为)()()()()332323234313231k k k k k ⎤+-+++-=⎥+⎦,()013492>++=k k.2)k +>=因而111(11)(1)(1)43231k k ++⋅⋅⋅++>-+这就是说①式当时也成立.1n k =+由(ⅰ),(ⅱ)知①式对任何正整数都成立.n 由此证得:当时,.1a >11log 3n a n S b +>当时,.01a <<11log 3n a n S b +<。
1990年全国统一高考数学试卷(理科)
1990年全国统一高考数学试卷(理科)一、选择题(共15小题,每小题4分,满分60分)1.(4分)方程=的解是()A.x=B.x=C.x =D.x=92.(4分)把复数1+i 对应的向量按顺时针方向旋转所得到的向量对应的复数是()A.B.iC.D.3.(4分)(2009•烟台二模)如果底面直径和高相等的圆柱的侧面积是S,那么圆柱的体积等于()A.B.C.D.4.(4分)方程sin2x=sinx在区间(0,2π)内的解的个数是()A.1B.2C.3D.45.(4分)已知如图是函数y=2sin(ωx+φ)(|φ|<)的图象,那么()A.ϖ=,φ=B.ϖ=,φ=﹣C.ϖ=2,φ=D.ϖ=2,φ=﹣6.(4分)函数的值域是()A.{﹣2,4} B.{﹣2,0,4} C.{﹣2,0,2,4} D.{﹣4,﹣2,0,4}7.(4分)如果直线y=ax+2与直线y=3x﹣b关于直线y=x对称,那么()A.a=,b=6 B.a=,b=﹣6 C.a=3,b=﹣2 D.a=3,b=68.(4分)极坐标方程4sinθ=5ρ表示的曲线是()A.圆B.椭圆C.双曲线的一支D.抛物线9.(4分)设全集I={(x,y)|x,y∈R},集合M={(x,y)|=1},N=(x,y)|y≠x+1.那么等于()A.B.{(2,3)} C.(2,3)D.{(x,y)|y=x+1}10.(4分)(2010•建德市模拟)若实数x、y满足(x+2)2+y2=3,则的最大值为()A.B.C.D.11.(4分)如图,正三棱锥SABC的侧棱与底面边长相等,如果E、F分别为SC、AB的中点,那么异面直线EF与SA所成的角等于()A.90°B.60°C.45°D.30°12.(4分)已知h>0.设命题甲为:两个实数a,b满足|a﹣b|<2h;命题乙为:两个实数a,b满足|a﹣1|<h且|b﹣1|<h.那么()A.甲是乙的充分条件,但不是乙的必要条件B.甲是乙的必要条件,但不是乙的充分条件C.甲是乙的充分条件D.甲不是乙的充分条件,也不是乙的必要条件13.(4分)A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(A,B可以不相邻),那么不同的排法共有()A.24种B.60种C.90种D.120种14.(4分)以一个正方体的顶点为顶点的四面体共有()A.70个B.64个C.58个D.52个15.(4分)设函数y=arctgx的图象沿x轴正方向平移2个单位所得到的图象为C.又设图象C'与C 关于原点对称,那么C'所对应的函数是()A.y=﹣arctg(x ﹣2)B.y=arctg(x﹣2)C.y=﹣arctg(x+2)D.y=arctg(x+2)二、填空题(共5小题,每小题5分,满分25分)16.(5分)双曲线的准线方程是_________.17.(5分)(x﹣1)﹣(x﹣1)2+(x﹣1)3﹣(x﹣1)4+(x﹣1)5的展开式中,x2的系数等于_________.18.(5分)(2011•上海模拟)已知{a n}是公差不为零的等差数列,如果s n是{a n}的前n项的和,那么等于_________.19.(5分)函数y=sinxcosx+sinx+cosx的最大值是_________.20.(5分)如图,三棱柱ABC﹣A1B1C1中,若E、F分别为AB、AC的中点,平面EB1C1F将三棱柱分成体积为V1、V2的两部分,那么V1:V2=_________.三、解答题(共6小题,满分65分)21.(10分)有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数.22.(10分)已知sina+sinB=,cosa+cosB=,求tg(a+B)的值.23.(10分)如图,在三棱锥SABC中,SA⊥底面ABC,AB⊥BC.DE垂直平分SC,且分别交AC、SC于D、E.又SA=AB,SB=BC.求以BD为棱,以BDE与BDC为面的二面角的度数.24.(11分)设a为实数,在复数集C中解方程:z2+2|z|=a.25.(12分)设椭圆的中心是坐标原点,长轴在x轴上,离心率e=,已知点P(0)到这个椭圆上的点最远距离是.求这个椭圆的方程,并求椭圆上到点P的距离等于的点的坐标.26.(12分)f(x)=lg,其中a是实数,n是任意自然数且n≥2.(Ⅰ)如果f(x)当x∈(﹣∞,1]时有意义,求a的取值范围;(Ⅱ)如果a∈(0,1],证明2f(x)<f(2x)当x≠0时成立.1990年全国统一高考数学试卷(理科)参考答案与试题解析一、选择题(共15小题,每小题4分,满分60分)1.(4分)方程=的解是()A.x=B.x=C.x=D.x=9考点:对数的运算性质;指数式与对数式的互化.分析:根据指数式与对数式的互化可知,⇔,进而得到答案.解答:解:∵∴∴故选A.点评:本题主要考查指数式与对数式的相互转化.2.(4分)把复数1+i 对应的向量按顺时针方向旋转所得到的向量对应的复数是()C.D.A.B .i考点:复数代数形式的混合运算.分析:把复数1+i乘以cos (﹣)+isin(﹣),化简为代数形式即可.解答:解:复数1+i对应的向量按顺时针方向旋转所得到的向量:(1+i)[cos (﹣)+isin(﹣)]=(1+i)=,故选D.点评:复数旋转,实际上复数乘以一个模为1的辅角为﹣复数三角形式,注意旋转方向,本题是基础题.3.(4分)(2009•烟台二模)如果底面直径和高相等的圆柱的侧面积是S,那么圆柱的体积等于()A.B.C.D.考点:旋转体(圆柱、圆锥、圆台).专题:计算题.分析:设圆柱高为h,推出底面半径,求出圆柱的侧面积,然后求出圆柱的体积即可得到选项.解答:解:设圆柱高为h,则底面半径为.由题意知,S=πh2,∴h=,∴V=π()2•h=.故选D.点评:本题是基础题,考查圆柱的侧面积、体积的计算及其关系,考查计算能力,常考题型.4.(4分)方程sin2x=sinx在区间(0,2π)内的解的个数是()A.1B.2C.3D.4考点:正弦函数的图象;函数y=Asin(ωx+φ)的图象变换.专题:计算题.分析:通过二倍角公式化简的2sinxcosx=sinx,进而推断sinx=0或cosx=,进而求出x的值.解答:解:sin2x=2sinxcosx=sinx∴sinx=0或cosx=∵x∈(0,2π)∴x=π或或故选C点评:本题主要考查了三角函数的二倍角公式.属基础题.5.(4分)已知如图是函数y=2sin(ωx+φ)(|φ|<)的图象,那么()A.ϖ=,φ=B.ϖ=,φ=﹣C.ϖ=2,φ=D.ϖ=2,φ=﹣考点:由y=Asin (ωx+φ)的部分图象确定其解析式.专题:计算题;数形结合法.分析:由图象过(0,1)及|φ|<,求出ψ的值,函数图象过点(,0),据五点法作图的过程知ω•+=2π,求出ω.解答:解:因为函数图象过(0,1),所以,1=2sinφ,∴sinφ=,∵|φ|<,∴φ=,故函数y=2sin (ωx+),又∵函数图象过点(,0),∴0=2sin(ω•+),由五点法作图的过程知,ω•+=2π,∴ω=2,综上,φ=,ω=2,故选C.点评:本题考查五点法作图的方法,在本题图中的一个完整的标准周期内,图象上的五个关键点的横坐标分别为:0,,π,,2π.6.(4分)函数的值域是()A.{﹣2,4} B.{﹣2,0,4} C.{﹣2,0,2,4} D.{﹣4,﹣2,0,4}考点:函数的值域;三角函数的化简求值.专题:计算题;分类讨论.分析:根据正切和余切的定义求出函数的定义域,分四种情况由三角函数值的符号,去掉绝对值求解.解答:解:由题意知,函数的定义域是{x|x≠,k∈Z},下由各个象限中三角函数值的符号来确定在各个象限中函数的值当x是第一象限角时,因所有三角函数值大于零,故y=4;当x是第二象限角时,因为只有正弦值大于零,故y=1﹣1﹣1﹣1=﹣2;当x是第三象限角时,因为正切值和余切值大于零,故y=﹣1﹣1+1+1=0;当x是第四象限角时,因为只有余弦值大于零,故y=﹣2;所以函数的值域是{﹣2,0,4}.故选B.点评:本题主要考查了三角函数的定义以及符号,根据定义求出函数的定义域,由三角函数值的符号进行化简求值.7.(4分)如果直线y=ax+2与直线y=3x﹣b关于直线y=x对称,那么()A.a=,b=6 B.a=,b=﹣6 C.a=3,b=﹣2 D.a=3,b=6考点:反函数.分析:本题考查对互为反函数的两个函数图象之间的关系、反函数的求法等相关知识;本题可有两种方法,其一,求出y=ax+2的反函数令其与y=3x﹣b的对应系数相等获得,其二由互为反函数图象上的点之间的对称关系,通过在图象上取特殊点求解.解答:解:法一:由题意,函数y=3x﹣b的反函数为y=,与y=ax+2对照可得a=,b=6;法二:在y=ax+2上取点(0,2),则点(2,0)在y=3x﹣b上,故得b=6;又y=3x﹣6上有点(0,﹣6),则点(﹣6,0)在y=ax+2上,代入得a=,由此可得a=,b=6答案:a=,b=6点评:本题解题思路清晰,方向明确,运算量也小,属于容易题目.这里提供了两种方法,比较可见各有特点,直接求反函数过程简捷,较为简单,特值代入,小巧易行,过程稍繁.8.(4分)极坐标方程4sinθ=5ρ表示的曲线是()A.圆B.椭圆C.双曲线的一支D.抛物线考点:简单曲线的极坐标方程.分析:先在极坐标方程4sinθ=5ρ的两边同乘以ρ,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得直角坐标系,再利用直角坐标方程即可进行判断.解答:解:将方程4sinθ=5ρ两边都乘以p得:4ρsinθ=5ρ2,化成直角坐标方程为5x2+5y2﹣4y=0.它表示一个圆.故选A.点评:本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.9.(4分)设全集I={(x,y)|x,y∈R},集合M={(x,y)|=1},N=(x,y)|y≠x+1.那么等于()A.B.{(2,3)} C.(2,3)D.{(x,y)|y=x+1}考点:交、并、补集的混合运算.分析:先化简集合M,再计算.解答:解:∵M={(x,y)|y=x+1或(x,y)≠(2,3)},∴,又∵.∴.故答案选B.点评:本题主要考查了集合间的交,并,补混合运算,注意弄清各集合中的元素.10.(4分)(2010•建德市模拟)若实数x、y满足(x+2)2+y2=3,则的最大值为()A.B.C.D.考点:简单线性规划.专题:计算题.分析:先判断出方程表示的图形,再给赋与几何意义,作出图象,结合图判断出当直线与圆相切时斜率最大求出最大值.解答:解:(x+2)2+y2=3,表示以(﹣2,0)为圆心,以为半径的圆表示圆上的点与(0,0)连线的斜率,设为k则y=kx由图知,当过原点的直线与圆相切时斜率最大故有解得或由图知,故选A点评:本题考查圆的标准方程、两点连线斜率公式的形式、数形结合求最值.11.(4分)如图,正三棱锥SABC的侧棱与底面边长相等,如果E、F分别为SC、AB的中点,那么异面直线EF与SA所成的角等于()A.90°B.60°C.45°D.30°考点:异面直线及其所成的角.专题:计算题;压轴题.分析:先通过平移将两条异面直线平移到同一个起点AC的中点D,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可.解答:解:如图,取AC的中点D,连接DE、DF,∠DEF为异面直线EF与SA所成的角设棱长为2,则DE=1,DF=1,根据SA⊥BC,则ED⊥DF∴∠DEF=45°,故选C.点评:本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.12.(4分)已知h>0.设命题甲为:两个实数a,b满足|a﹣b|<2h;命题乙为:两个实数a,b满足|a﹣1|<h且|b﹣1|<h.那么()A.甲是乙的充分条件,但不是乙的必要条件B.甲是乙的必要条件,但不是乙的充分条件C.甲是乙的充分条件D.甲不是乙的充分条件,也不是乙的必要条件考点:必要条件、充分条件与充要条件的判断.分析:巧妙运用绝对值不等式|a|+|b|≥|a+b|及必要、充分条件,可以解答本题.解答:解:由|a﹣1|<h且|b﹣1|<h 得|a﹣b|=|a﹣1+1﹣b|≤|a﹣1|+|1﹣b|<2h,所以甲是乙的必要条件;不妨令h=1,a=0.5,b=﹣0.3,|a﹣1|=0.5<1,而|b﹣1|=1.3>1,因而甲不是乙的充分条件.故选B点评:|a|+|b|≥|a+b|的合理运用,以及巧妙运用|a﹣1|+|1﹣b|的使用,是解答甲是乙的必要条件的一个关键;充分条件的推导用的是特殊值否定法.13.(4分)A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(A,B可以不相邻),那么不同的排法共有()A.24种B.60种C.90种D.120种考点:排列、组合的实际应用.专题:转化思想.分析:根据题意,首先计算五人并排站成一排的情况数目,进而分析可得,B站在A的左边与B站在A的右边是等可能的,使用倍分法,计算可得答案.解答:解:根据题意,使用倍分法,五人并排站成一排,有A55种情况,而其中B站在A的左边与B站在A的右边是等可能的,则其情况数目是相等的,则B站在A的右边的情况数目为×A55=60,故选B.点评:本题考查排列、组合的应用,注意使用倍分法时,注意必须保证其各种情况是等可能的.14.(4分)以一个正方体的顶点为顶点的四面体共有()A.70个B.64个C.58个D.52个考点:棱锥的结构特征.专题:压轴题;分类讨论.分析:以一个正方体的顶点为顶点中任意选4个除去在同一个平面上的点,可得四面体的个数.解答:解:正方体的8个顶点中任取4个共有C84=70个不能组成四面体的4个顶点有,已有的6个面,对角面有6个所以以一个正方体的顶点为顶点的四面体共有:70﹣12=58个故选C.点评:本题考查棱锥的结构特征,考查逻辑思维能力,是中档题.15.(4分)设函数y=arctgx的图象沿x轴正方向平移2个单位所得到的图象为C.又设图象C'与C关于原点对称,那么C'所对应的函数是()A.y=﹣arctg(x ﹣2)B.y=arctg(x﹣2)C.y=﹣arctg(x+2)D.y=arctg(x+2)考点:函数的图象与图象变化.专题:压轴题.分析:根据平移变换和对称变换引起的解析式变化规律依次求出C、C'对应的解析式即可.解答:解:将函数y=arctgx的图象沿x轴正方向平移2个单位所得到的图象为C 则C对应的解析式为y=arctg(x﹣2)又∵图象C'与C关于原点对称则C'对应的解析式为y=﹣arctg(﹣x﹣2)=arctg(x+2)故选D点评:平移变换的口决是“左加右减,上加下减”对称变换的口决是“关于Y轴负里面,关于X轴负外面,关于原点,既负里面,又负外面”二、填空题(共5小题,每小题5分,满分25分)16.(5分)双曲线的准线方程是y=±.考点:双曲线的简单性质.专题:计算题.分析:由焦点在y轴的双曲线的准线方程公式进行求解.解答:解:∵a=4,b=3,则c=5,双曲线的准线方程是,故答案是.点评:本题比较简单,解题时要注意双曲线的焦点在y轴上.17.(5分)(x﹣1)﹣(x﹣1)2+(x﹣1)3﹣(x﹣1)4+(x﹣1)5的展开式中,x2的系数等于﹣20.考点:二项式定理的应用.专题:计算题.分析:多项式展开式的含x2项的系数等于各个二项式展开式的系数和,利用二项展开式的通项公式求出各个系数.解答:解:展开式中含x2项的系数为﹣1﹣C32﹣C42﹣C52=﹣1﹣3﹣6﹣10=﹣20故答案为﹣20点评:本题考查等价转化能力及二项展开式的通项公式的应用.18.(5分)(2011•上海模拟)已知{a n}是公差不为零的等差数列,如果s n是{a n}的前n项的和,那么等于2.考点:等差数列的性质;极限及其运算;等差数列的前n项和.分析:设a n=a1+(n﹣1)d,s n=na1+d,代入求出极限即可.解答:解:设a n=a1+(n﹣1)d,s n=na1+d,代入得===2故答案为2点评:考查学生运用等差数列性质的能力,运用等差数列求和公式的能力,会求极限及运算极限的能力.19.(5分)函数y=sinxcosx+sinx+cosx的最大值是.考点:三角函数的最值.专题:计算题;压轴题.分析:利用sinx与cosx的平方关系,令sinx+cosx=t,通过换元,将三角函数转化为二次函数,求出对称轴,利用二次函数的单调性求出最值.解答:解:令t=sinx+cosx=则∴sinxcosx=∴y==()对称轴t=﹣1∴当t=时,y有最大值故答案为点评:本题考查三角函数中利用平方关系sinx+cosx与2sinxcosx两者是可以相互转化的、二次函数的最值的求法.20.(5分)如图,三棱柱ABC﹣A1B1C1中,若E、F分别为AB、AC的中点,平面EB1C1F将三棱柱分成体积为V1、V2的两部分,那么V1:V2=.考点:棱柱、棱锥、棱台的体积.专题:计算题;压轴题.分析:设AEF面积为s1,ABC和A1B1C1的面积为s,三棱柱高位h;V AEF﹣A1B1C1=V1;V BCFE﹣B1C1=V2;总体积为:V,根据棱台体积公式求V1;V2=V﹣V1以及面积关系,求出体积之比.解答:解:由题:设AEF面积为s1,ABC和A1B1C1的面积为s,三棱柱高位h;V AEF﹣A1B1C1=V1;V BCFE﹣B1C1=V2;总体积为:V计算体积:V1=h(s1+s+)①V=sh ②V2=V﹣V1③由题意可知,s1=④根据①②③④解方程可得:V1=sh,V2=sh;则故答案为:点评:本题考查棱柱、棱锥、棱台的体积,考查计算能力,转化思想,考查空间想象能力,是基础题.三、解答题(共6小题,满分65分)21.(10分)有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数.考点:数列的应用.专题:计算题.分析:设四个数依次为x,y,12﹣y,16﹣x.根据等差数列和等比数列的性质知,由此能求出这四个数.解答:解:设四个数依次为x,y,12﹣y,16﹣x.依题意,有由①式得x=3y﹣12.③将③式代入②式得y(16﹣3y+12)=(12﹣y)2,整理得y2﹣13y+36=0.解得y1=4,y2=9.代入③式得x1=0,x2=15.从而得所求四个数为0,4,8,16或15,9,3,1.点评:本题考查数列的性质和应用,解题时要注意公式的合理运用.22.(10分)已知sina+sinB=,cosa+cosB=,求tg(a+B)的值.考点:两角和与差的正弦函数;同角三角函数基本关系的运用.分析:和差化积,两已知等式出现相同的因式,两式相除,约分得角的正切,用二倍角公式代入即求的结果,注意二倍角公式的符号.解答:解法一:由已知得sinα+sinβ=2sin cos=,cos,两式相除得tan=,tan(α+β)==点评:数学课本中常见的三角函数恒等式的变换,既是重点,又是难点.其主要难于三角公式多,难记忆,角度变化、函数名称变化,运算符号复杂、难掌握,解题时抓住题目本质,熟记公式,才不会出错.23.(10分)如图,在三棱锥SABC中,SA⊥底面ABC,AB⊥BC.DE垂直平分SC,且分别交AC、SC于D、E.又SA=AB,SB=BC.求以BD为棱,以BDE与BDC为面的二面角的度数.考点:平面与平面之间的位置关系.专题:计算题.分析:欲证BD⊥DE,BD⊥DC,先证BD⊥面SAC,从而得到∠EDC是所求的二面角的平面角,利用Rt△SAC与Rt△EDC相似求出∠EDC即可.解答:解:由于SB=BC,且E是SC的中点,因此BE是等腰三角形SBC的底边SC的中线,所以SC⊥BE.又已知SC⊥DE,BE∩DE=E,∴SC⊥面BDE,∴SC⊥BD.又∵SA⊥底面ABC,BD在底面ABC上,∴SA⊥BD.而SC∩SA=S,∴BD⊥面SAC.∵DE=面SAC∩面BDE,DC=面SAC∩面BDC,∴BD⊥DE,BD⊥DC.∴∠EDC是所求的二面角的平面角.∵SA⊥底面ABC,∴SA⊥AB,SA⊥AC.设SA=a,则AB=a,BC=SB= a∵AB⊥BC,∴AC=,在Rt△SAC中tan∠ACS=∴∠ACS=30°.又已知DE⊥SC,所以∠EDC=60°,即所求的二面角等于60°.点评:本题主要考查了平面与平面之间的位置关系,考查空间想象能力、运算能力和推理论证能力,属于基础题.24.(11分)设a为实数,在复数集C中解方程:z2+2|z|=a.考点:复数的基本概念;复数相等的充要条件.专题:压轴题;分类讨论.分析:由于z2=a﹣2|z|为实数,故z为纯虚数或实数,因而需分情况进行讨论.当z是实数时,本题是一个关于z的一元二次方程组,解方程组即可;当z是一个纯虚数时,按照实数方程求解得到z的虚部,写出纯虚数即可.解答:解:设|z|=r.若a<0,则z2=a﹣2|z|<0,于是z为纯虚数,从而r2=2r﹣a.由于z2=a﹣2|z|为实数,故z为纯虚数或实数,因而需分情况进行讨论.解得r=(r=<0,不合,舍去).故z=±()i.若a≥0,对r作如下讨论:(1)若r≤a,则z2=a﹣2|z|≥0,于是z为实数.解方程r2=a﹣2r,得r=(r=<0,不合,舍去).故z=±().(2)若r>a,则z2=a﹣2|z|<0,于是z为纯虚数.解方程r2=2r﹣a,得r=或r=(a≤1).故z=±()i(a≤1).综上所述,原方程的解的情况如下:当a<0时,解为:z=±()i;当0≤a≤1时,解为:z=±(),z=±()i;当a>1时,解为:z=±().点评:本题还可以令z=x+yi(x、y∈R)代入原方程后,由复数相等的条件将复数方程化归为关于x,y的实系数的二元方程组来求解.25.(12分)设椭圆的中心是坐标原点,长轴在x轴上,离心率e=,已知点P(0)到这个椭圆上的点最远距离是.求这个椭圆的方程,并求椭圆上到点P的距离等于的点的坐标.考点:椭圆的应用.分析:由题设条件取椭圆的参数方程,其中0≤θ<2π,根据已知条件和椭圆的性质能够推出b=1,a=2.从而求出这个椭圆的方程和椭圆上到点P的距离等于的点的坐标.解答:解:根据题设条件,可取椭圆的参数方程是,其中0≤θ<2π,由可得,即a=2b.设椭圆上的点(x,y)到点P的距离为d,则====.如果,即,则当sinθ=﹣1时,d2有最大值,由题设得,由此得,与矛盾.因此必有成立,于是当时,d2有最大值,由题设得,由此可得b=1,a=2.∴椭圆的方程是,所求椭圆的参数方程是,由可得,椭圆上的点和到点P的距离都是.点评:本题考查椭圆的性质及其应用,解题时要注意参数方程的合理运用.26.(12分)f(x)=lg,其中a是实数,n是任意自然数且n≥2.(Ⅰ)如果f(x)当x∈(﹣∞,1]时有意义,求a的取值范围;(Ⅱ)如果a∈(0,1],证明2f(x)<f(2x)当x≠0时成立.考点:对数函数图象与性质的综合应用.分析:(Ⅰ)、f(x)当x∈(﹣∞,1]时有意义的条件是1+2x+…+(n﹣1)x+n x a>0,x∈(﹣∞,1],n≥2,即,然后由函数的单调性求实数a的取值范围.(Ⅱ)、欲证如果a∈(0,1],证明2f(x)<f(2x)当x≠0时成立,只需证明n≥2时,[1+2x+…+(n﹣1)x+n x a]2<n[1+22x+…+(n﹣1)2x+n2x a],a∈(0,1],x≠0即可得证.解答:解:(Ⅰ)f(x)当x∈(﹣∞,1]时有意义的条件是1+2x+…+(n﹣1)x+n x a>0,x∈(﹣∞,1],n≥2,即,∵上都是增函数,∴在(﹣∞,1]上也是增函数,从而它在x=1时取得最大值.所以,∵等价于,故a的取值范围是{a|a>﹣}.(Ⅱ)证明:只需证明n≥2时,[1+2x+…+(n﹣1)x+n x a]2<n[1+22x+…+(n﹣1)2x+n2x a],a∈(0,1],x≠0.∵(a1+a2+…+a n2)2=(a12+a22+…a n2)+2(a1a2+a2a3+…+a n﹣1a n)≤(a12+a22+…a n2)+[(a12+a22)+…+(a12+a n2)]+[(a22+a32)+…+(a22+a n2)]+…+[(a n﹣22+a n﹣12)+(a n﹣22+a n2)]+(a n﹣12+a n2)=n(a12+a22+…+a n2).于是(a1+a2+…+a n)2≤n(a12+a22+…+a n2)当a1=a2=…=a n时成立.利用上面结果知,当a=1,x≠0时,因1≠2x,所以有[1+2x+…+(n﹣1)x+n x a]2<n[1+22x+…+(n﹣1)2x+n2x a],a∈(0,1],当0<a<1,x≠0时,因a2<a,所以有[1+2x+…+(n﹣1)x+n x a]2<n[1+22x+…+(n﹣1)2x+n2x a],即有2f(x)<f(2x)a∈(0,1],x≠0.点评:本题是比较难的对数函数的综合题,在解题过程中要注意等价转化思想的灵活运用,并且细心运算,避免不必要的错误.。
(详细解析)1999年普通高等学校招生全国统一考试数学试题及答案(理)
1999年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.满分150分.考试时间120分钟.第I 卷(选择题共60分)一、选择题:本大题共14小题;第1~10题每小题4分,第11~14题每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.如图,I 是全集,,,M P S 是I 的3个子集,则阴影部分所表示的集合是A .()M P SB .()M P SC .()M P SD .()M P S【答案】C【解析】由图知阴影部分表示M P 与S 的交集.2.已知映射:f A B →,其中,集合{}3,2,1,1,2,3,4A =---,集合B 中的元素都是A 中元素在映射f 下的象,且对任意的a A ∈,在B 中和它对应的元素是a ,则集合B 中元素的个数是A .4B .5C . 6D .7 【答案】A【解析】{}1,2,3,4B =.3.若函数()y f x =的反函数是(),(),0y g x f a b ab ==≠,则()g b 等于 A .a B .1-a C .b D .1-b 【答案】A【解析】根据互为反函数的关系知()f a b =,则()g b a =.4.函数()sin()(0)f x M x ωϕω=+>在区间[]b a ,上是增函数,且(),()f a M f b M =-=, 则函数()cos()g x M x ωϕ=+在[]b a ,上 A .是增函数 B .是减函数C .可以取得最大值MD .可以取得最小值M - 【答案】C【解析】由题设0M >,2222k x k πππωϕπ-+≤+≤+,故函数()cos()g x M x ωϕ=+在[]b a ,上不单调,切当2x k ωϕπ+=时取得最大值M .5.若()sin f x x 是周期为π的奇函数,则()f x 可以是A .x sinB .x cosC .x 2sinD .x 2cos 【答案】B【解析】取()sin f x x =,2sin x 是偶函数;取()cos f x x =,1sin cos sin 22x x x =是奇函数且期为π.6.在极坐标系中,曲线4sin()3πρθ=-关于A .直线3πθ=轴对称 B .直线πθ65=轴对称 C .点(2,)3π中心对称 D .极点中心对称【答案】B【解析】54sin()4cos[()]4cos()3236πππρθθθπ=-=--=-表示一个过极点的半径为2,圆心过点5(2,)6π的圆,故关于直线πθ65=轴对称.7.若干毫升水倒入底面半径为cm 2的圆柱形器皿中,量得水面的高度为cm 6,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是 A .cm 36 B .cm 6 C .cm 3182 D .cm 3123 【答案】B【解析】设水面的半径为r ,由题设条件得221263r ππ⋅⋅=,所以3r =r =6=.8.若423401234(2x a a x a x a x a x =++++,则2202413()()a a a a a ++-+的值为 A .1 B .1- C . 0 D .2 【答案】A【解析】令1x =得401234(2a a a a a ++++=;令1x =-得401(2a a -=-234a a a +-+,∴2202413012340123()()()(a a a a a a a a a a a a a a ++-+=++++-+-442244)(2(2[(2)]1a +=-=-+=.9.直线0323=-+y x 截圆422=+y x 得到的劣弧所对的圆心角为 A .6π B .4π C .3π D .2π 【答案】C=2,弦与两半径构成等边三角形,故所求圆心角为3π.10.如图,在多面体ABCDEF 中,已知面ABCD 是边长为3的正方形,3//,2EF AB EF =,EF 与面AC 的距离为2,则该多面体的体积为A .29 B .5 C .6 D .215 【答案】D【解析】考点:棱柱、棱锥、棱台的体积. 分析:由已知中多面体ABCDEF 中,已知面ABCD 是边长为3的正方形,EF 与面AC 的距离为2,我们易求出四棱锥E ABCD -的体积,然后根据整个几何体大于部分几何体的体积,分析已知中的四个答案,利用排除法,得到答案.法一:如下图所示,连接,EB EC .则四棱锥E ABCD -的体积133263E ABCD V -=⨯⨯⨯=,又∵整个几何体大于四棱锥E ABCD -的体积,∴所求几何体的体积E ABCD V V ->.法二:连接,EB EC ,依题意,四棱锥E ABCD -的体积为6,又由于//,EF AB AB =2EF ,所以EAB ∆的面积是BEF ∆面积的2倍,从而四面体F EBC -的体积即为四面体C EFB -的体积,等于四面体E ABC -的一半,即四棱锥E ABCD -体积的四分之一,故所求多面体的体积为1156642+⨯=. 方法三:分别取,AB CD 的中点,G H 连,,EG GH EH ,把该多面体分割成一个四棱锥与一个三棱柱,可求得四棱锥的体积为3,三棱柱的体积29,整个多面体的体积为215.故选D . 【点评】本题考查的知识点是棱柱、棱锥、棱台的体积,其中根据根据整个几何体大于部分几何体的体积,求出四棱锥E ABCD -的体积,并与已知中的四个答案进行比较,利用排除法是解答此类问题的捷径.11.若sin tan cot ()22ππαααα>>-<<,则∈αA .(,)24ππ-- B .(,0)4π- C .(0,)4π D .(,)42ππ【答案】B 【解析】若(,0)2πα∈-,则1sin tan ,tan tan αααα>>,即211,tan 1cos αα<<, 11cos α<显然成立,由2tan 1α<可得1tan 0α-<<,所以(,0)4πα∈-;同样,若∈α (,)42ππ时,无解,所以B 正确.12.如果圆台的上底面半径为5,下底面半径为R ,中截面把圆台分为上、下两个圆台,它们的侧面积的比为1:2,那么R =A .10B .15C .20D .25 【答案】D【解析】中截面的半径为52R +,设圆台的母线为l ,由题设得5(5)122(5)3R lS S R l ππ+⋅+⋅==⋅+⋅上总,解得25R =.13.已知两点55(1,),(4,)44M N --,给出下列曲线方程:①0124=-+y x ②322=+y x ③1222=+y x ④1222=-y x 在曲线上存在点P 满足MP NP =的所有曲线方程是A .①③B .②④C .①②③D .②③④ 【答案】D【解析】点P 在直线230x y ++=的垂直平分线上,该直线与曲线②③④都有交点,选D .14.某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有 A .5种 B .6种 C .7种 D .8种 【答案】C【解析】设购买单片软件和盒装磁盘数量分别为,x y ,由题设可得3,2,6070500x y x y ≥⎧⎪≥⎨⎪+≤⎩易知当3x =时,2,3,4y =;当4x =时,2,3y =;当5x =时,2y =;当6x =时,2y =,故共有7种不同的选购方式.第II 卷(非选择题共90分)二.填空题:本大题共4小题;每小题4分,共16分,把答案填在题中横线上.15.设椭圆()222210x y a b a b+=>>的右焦点为1F ,右准线为1l ,若过1F 且垂直于x 轴的弦长等于点1F 到1l 的距离,则椭圆的率心率是 . 【答案】21 【解析】依题意得222a b c c a-=,又222c a b =-,解得2a c =,从而12c e a ==.16.在一块并排10垄的田地中,选择2垄分别种植,A B 两种作物,每种作物种植一垄,为有利于作物生长,要求,A B 两种作物的间隔不小于6垄,则不同的选垄方法共有 种(用数字作答).【答案】12【解析】先考虑A 种植在左边的情形,有3类:A 种在最左边1垄,B 有(8,9,10垄)3种种植方法;A 种在左边第2垄,B 有(9,10垄)2种种植方法;A 种在左边第3垄,B 有(10垄)1种种植方法,所以不同的选垄方法共有2(321)12++=种.17.若正数,a b 满足3ab a b =++,则ab 的取值范围是 . 【答案】[9,)+∞【解析】33ab a b =++≥,即30ab -≥3≥,即9ab ≥.18.,αβ是两个不同的平面,,m n 是平面α及β之外的两条不同直线,给出四个论断: ①m ⊥n ②α⊥β ③n ⊥β ④m ⊥α以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个..命题: .【答案】n m n m ⊥⇒⊥⊥⊥βαβα,,或βαβα⊥⇒⊥⊥⊥n m n m ,, 【解析】略.三、解答题:本大题共6小题;共74分,解答应写出文字说明、证明过程或演算步骤.19.(本小题满分10分)2log 1(0,1)a x a a <->≠.【解】本小题主要考查对数函数的性质、对数不等式、无理不等式解法等基础知识,考查分类讨论的思想.原不等式等价于()23log 20,3log 22log 1,2log 10.a a a a x x x x -≥⎧⎪-<-⎨⎪->⎩.............4分由①得2log 3a x ≥, 由②得3log 4a x <,或log 1a x >,由③得1log 2a x >.由此得23log 34a x ≤<,或log 1a x >. .............8分当1a >时得所求的解是{}2334||x a x a x x a ⎧⎫≤<>⎨⎬⎩⎭;当01a <<时得所求的解是{}2334||0x a x a x x a ⎧⎫<≤<<⎨⎬⎩⎭..............12分20.(本小题满分12分)设复数3cos 2sin z i θθ=+⋅.求函数arg (0)2y z πθθ=-<<的最大值以及对应的θ值.【解】本小题主要考查复数的基本概念、三角公式和不等式等基础知识,考查综合运用所学数学知识解决问题的能力.由20πθ<<得tan 0θ>.由θθsin 2cos 3i z +=得2arg 0π<<z 及()2sin 2tan arg tan 3cos 3z θθθ==.故()22tan tan 13tan tan arg 231tan 2tan 3tan y z θθθθθθ-=-==++,因为32tan tan θθ+≥132tan tan θθ≤+ 当且仅当32tan (0)tan 2πθθθ=<<时,即tan 2θ=时,上式取等号.所以当arctan2θ=时,函数tan y 取得最大值12由z y arg -=θ得(,)22y ππ∈-.由于在(,)22ππ-内正切函数是递增函数,函数y 也取最大值arctan 12.21.(本小题满分12分)如图,已知正四棱柱1111D C B A ABCD -,点E 在棱D D 1上,截面1//EAC D B ,且面EAC 与底面ABCD 所成的角为45,AB a =.(Ⅰ)求截面EAC 的面积;(Ⅱ)求异面直线11B A 与AC 之间的距离; (Ⅲ)求三棱锥EAC B -1的体积.【解】本小题主要考查空间线面关系、二面角和距离的概念,逻辑思维能力、空间想象能力及运算能力.(Ⅰ)如图,连结BD 交AC 于O ,连结EO .因为底面ABCD 是正方形,所以DO AC ⊥.又因为ED ⊥底面AC ,因为EO AC ⊥.所以EOD ∠是面EAC 与底面AC 所成二面角的平面角. 所以45EOD ∠=.,,sec45DO AC EO a ===⋅=.故22EAC S a ∆=. (Ⅱ)由题设1111D C B A ABCD -是正四棱柱,得A A 1⊥底面AC ,1A A AC ⊥,又111A A A B ⊥ ,所以A A 1是异面直线11B A 与AC 间的公垂线. 因为11//D B 面EAC ,且面BD D 1与面EAC 交线为EO .所以11//D B EO .又O 是DB 的中点,所以E 是D D 1的中点,1122D B EO a ==.所以D D 1==.异面直线11B A 与AC . (Ⅲ)解法一:如图,连结11B D .因为1D D DB =.所以11B BDD 是正方形, 连结D B 1交B D 1于P ,交EO 于Q .因为11B D D B ⊥,1//EO D B ,所以1B D EO ⊥. 又,AC EO AC ED ⊥⊥,所以AC ⊥面11B BDD , 所以1B D AC ⊥,所以D B 1⊥面EAC . 所以Q B 1是三棱锥1B EAC -的高.由DQ PQ =,得113342B Q B D a ==.所以123133224B EAC V a a -=⋅⋅=.所以三棱锥EAC B -1的体积是34a .解法二:连结O B 1,则112EO B A EAC B V V --=.因为AO ⊥面11B BDD ,所以AO 是三棱锥1EOB A -的高,2AO a =. 在正方形11B BDD 中,,E O 分别是1,D D DB 的中点(如右图),则1234EOB S a ∆=.∴1231323424B EAC V a a -=⋅⋅⋅=.所以三棱锥EAC B -1的体积是34a .22.(本小题满分12分)右图为一台冷轧机的示意图.冷轧机由若干对轧辊组成,带钢从一端输入,经过各对轧辊逐步减薄后输出.(Ⅰ)输入带钢的厚度为α,输出带钢的厚度为β,若每对轧辊的减薄率不超过0r .问冷轧机至少需要安装多少对轧辊?(一对轧辊减薄率输入该对的带钢厚度从该对输出的带钢厚度输入该对的带钢厚度-=)(Ⅱ)已知一台冷轧机共有4对减薄率为20%的轧辊,所有轧辊周长均为1600mm .若第k 对轧辊有缺陷,每滚动一周在带钢上压出一个疵点,在冷轧机输出的带钢上,疵点的间距为k L .为了便于检修,请计算123,,L L L 并填入下表(轧钢过程中,带钢宽度不变,且不考虑损耗).【解】本小题主要考查等比数列、对数计算等基本知识,考查综合运用数学知识和方法解决实际问题的能力.(Ⅰ)厚度为α的带钢经过减薄率均为0r 的n 对轧辊后厚度为()01nr α-.为使输出带钢的厚度不超过β,冷轧机的轧辊数(以对为单位)应满足()01n r αβ-≤,即()01nr βα-≤. 由于()010,0nr βα->>,对比上式两端取对数,得()0lg 1lg n r βα-≤. 由于()0lg 10r -<,所以()0lg lg lg 1n r βα-≥-.因此,至少需要安装不小于()0lg lg lg 1r βα--的整数对轧辊.(Ⅱ)解法一:第k 对轧辊出口处疵点间距离为轧辊周长,在此处出口的两疵点间带钢体积为()16001kr α⋅-⋅宽度(其中20%r =),而在冷轧机出口处两疵点间带钢的体积为()41k L r α⋅-⋅宽度. 因宽度相等,且无损耗,由体积相等得()()()416001120%kk r L r r αα⋅-=⋅-=,即416000.8k k L -=⋅.由此得()32000L mm =,()22500L mm =,()mm L 31251=. 填表如下:解法二:第3对轧辊出口处疵点间距为轧辊周长,在此处出口的两疵点间带钢体积与冷轧机出口处两疵点间带钢体积相等,因宽度不变,有()3160010.2L =⋅-,所以()3160020000.8L mm ==. 同理()3225000.8LL mm ==,()2131250.8LL mm ==.填表如下:【本题难度】难,一种看不懂的难.23.(本小题满分14分)已知函数()y f x =的图像是自原点出发的一条折线,当1(0,1,2,)n y n n ≤≤+=时,该图像是斜率为n b 的线段(其中正常数1≠b ),设数列{}n x 由()()1,2,n f x n n ==定义.(Ⅰ)求12,x x 和n x 的表达式;(Ⅱ)求()f x 的表达式,并写出其定义域;(Ⅲ)证明:()y f x =的图像与x y =的图像没有横坐标大于1的交点.【解】本小题主要考查函数的基本概念、等比数列、数列极限的基础知识,考查归纳、推理和综合的能力.(Ⅰ)依题意(0)0f =,又由()11=x f ,当10≤≤y 时,函数()y f x =的图像是斜率为10=b 的线段,故由()()10011=--x f x f ,得11x =. 又由()22=x f ,当21≤≤y 时,函数()y f x =的图像是斜率为b 的线段, 故由()()b x x x f x f =--1212,即b x x 112=-得211x b =+.记00x =.由函数()y f x =图像中第n 段线段的斜率为1-n b,故得()()111n n n n n f x f x b x x ----=-.又()()1,1-==-n x f n x f n n ,所以111(),1,2,n n n x x n b---==.由此知数列{}1--n n x x 为等比数列,其首项为1,公比为1b. 因1b ≠,得11111()11()11n nn k k k n b b x x x b b b --=--=-=+++=-∑,即11()1n n b b x b --=-. (Ⅱ)当10≤≤y ,从(Ⅰ)可知y x =,即当10≤≤x 时,()f x x =.当1+≤≤n y n 时,即当1+≤≤n n x x x 时,由(Ⅰ)可知1()()(,1,2,3,)n n n n f x n b x x x x x n +=+-≤≤=.为求函数()f x 的定义域,须对11()(1,2,3,)1n n b b x n b --==-进行讨论. 当1b >时,11()lim lim 11n n n n b b b x b b -→∞→∞-==--; 当01b <<时,n x n ,∞→也趋向于无穷大. 综上,当1b >时,()y f x =的定义域为[0,)1bb -; 当01b <<时,()y f x =的定义域为[)+∞,0. (Ⅲ)证法一:首先证明当1b >,11-<<b bx 时,恒有()f x x >成立. 用数学归纳法证明:(ⅰ)由(Ⅱ)知当1=n 时,在(]2,1x 上,()()11y f x b x ==+-, 所以()()()110f x x x b -=-->成立.(ⅱ)假设k n =时在(]1,+k k x x 上恒有()f x x >成立. 可得 ()111k k f x k x ++=+>,在(]21,++k k x x 上,()()111k k f x k b x x ++=++-. 所以 ()()x x x b k x x f k k --++=-++111()()()111110k k k b x x k x +++=--++->也成立.由(ⅰ)与(ⅱ)知,对所有自然数n 在(]1,+n n x x 上都有()f x x >成立. 即11-<<b bx 时,恒有()f x x >. 其次,当1b <,仿上述证明,可知当1>x 时,恒有()f x x <成立. 故函数()y f x =的图像与x y =的图像没有横坐标大于1的交点. 证法二:首先证明当1b >,11bx b <<-时,恒有()f x x >成立. 对任意的1,1b x b ⎛⎫∈ ⎪-⎝⎭,存在n x ,使1n n x x x +<≤,此时有 ()()()()01n n n f x f x b x x x x n -=->-≥.所以()()n n f x x f x x ->-. 又()1111n n n f x n x bb -=>+++=,所以()0>-n n x x f , 所以()()0n n f x x f x x ->->,即有()f x x >成立.其次,当1b <,仿上述证明,可知当1>x 时,恒有()f x x <成立. 故函数()x f 的图像与x y =的图像没有横坐标大于1的交点. 【本题难度】难,一种想不明写不清的难.24.(本小题满分14分)如图,给出定点(,0)(0)A a a >和直线:1l x =-.B 是直线l 上的动点,BOA ∠的角平分线交AB 于点C .求点C 的轨迹方程,并讨论方程表示的曲线类型与a 值的关系.【解】本小题主要考查曲线与方程,直线和圆锥曲线等基础知识,以及求动点轨迹的基本技能和综合运用数学知识解决问题的能力.解法一:依题意,记()()1,B b b R -∈,则直线OA 和OB 的方程分别为0=y 和y bx =-.设点()y x C ,,则有0x a ≤<,由OC 平分AOB ∠,知点C 到,OA OB 距离相等.根据点到直线的距离公式得y =①依题设,点C 在直线AB 上,故有()1by x a a=--+. 由0≠-a x ,得()1a y b x a+=--. ②将②式代入①式得()()()22222111a y a xy y y x a x a ⎡⎤++⎡⎤+=-⎢⎥⎢⎥--⎢⎥⎣⎦⎣⎦, 整理得()()2221210y a x ax a y ⎡⎤--++=⎣⎦.若0≠y ,则()()()2212100a x ax a y x a --++=<<;若0=y ,则π=∠=AOB b ,0,点C 的坐标为(0,0),满足上式. 综上得点C 的轨迹方程为()()()2212100a x ax a y x a --++=≤<.(ⅰ)当1=a 时,轨迹方程化为()201y x x =≤<. ③此时,方程③表示抛物线弧段;(ⅱ)当1≠a 时,轨迹方程化为()a x a a y a a a a x <≤=-+⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛--0111122222. ④ 所以,当10<<a 时,方程④表示椭圆弧段;当1>a 时,方程④表示双曲线一支的弧段.解法二:如图,设D 是l 与x 轴的交点,过点C 作CE x ⊥轴,E 是垂足.(ⅰ)当0BD ≠时,设点(,)C x y ,则0,0x a y <<≠. 由//CE BD 得()1CE DA y BD a EAa x⋅==+-.因为COA COB COD BOD ∠=∠=∠-∠COA BOD π=-∠-∠,所以2COA BOD π∠=-∠. 所以22tan tan(2)1tan COACOA COA∠∠=-∠,tan()tan BOD BOD π-∠=-∠.因为()tan ,tan 1y BD y COA BOD a xODa x∠=∠==+-,所以222(1)1y y x a y a x x⋅=-+--, 整理得22(1)2(1)0(0)a x ax a y x a --++=<<.(ⅱ)当0BD =时,BOA π∠=,则点C 的坐标为(0,0),满足上式. 综合(ⅰ),(ⅱ),得点C 的轨迹方程为22(1)2(1)0(0)a x ax a y x a --++=≤< 以下同解法一.【本题难度】难,一种冷漠的难.。
2022年全国统一高考数学试卷(理科)(乙卷)【含解析】
2022年全国统一高考数学试卷(理科)(乙卷)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集}2,,{153,4,U =,集合M 满足{1U M =ð,3},则()A .2M ∈B .3M ∈C .4M∉D .5M∉2.已知12z i =-,且0z az b ++=,其中a ,b 为实数,则()A .1a =,2b =-B .1a =-,2b =C .1a =,2b =D .1a =-,2b =-3.已知向量a ,b 满足||1a =,||3b =,|2|3a b -=,则(a b ⋅=)A .2-B .1-C .1D .24.嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星.为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列111{}:1n b b α=+,212111b αα=++,31231111b ααα=+++,⋯,依此类推,其中*(1k N k α∈=,2,)⋯.则()A .15b b <B .38b b <C .62b b <D .47b b <5.设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若||||AF BF =,则||(AB =)A .2B .22C .3D .326.执行如图的程序框图,输出的(n =)A .3B .4C .5D .67.在正方体1111ABCD A B C D -中,E ,F 分别为AB ,BC 的中点,则()A .平面1B EF ⊥平面1BDD B .平面1B EF ⊥平面1A BDC .平面1//B EF 平面1A ACD .平面1//B EF 平面11A C D8.已知等比数列{}n a 的前3项和为168,2542a a -=,则6(a =)A .14B .12C .6D .39.已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A .13B .12C D 10.某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为1p ,2p ,3p ,且3210p p p >>>.记该棋手连胜两盘的概率为p ,则()A .p 与该棋手和甲、乙、丙的比赛次序无关B .该棋手在第二盘与甲比赛,p 最大C .该棋手在第二盘与乙比赛,p 最大D .该棋手在第二盘与丙比赛,p 最大11.双曲线C 的两个焦点为1F ,2F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为()A .2B .32C .2D .212.已知函数()f x ,()g x 的定义域均为R ,且()(2)5f x g x +-=,()(4)7g x f x --=.若()y g x =的图像关于直线2x =对称,4(2)g =,则221()(k f k ==∑)A .21-B .22-C .23-D .24-二、填空题:本题共4小题,每小题5分,共20分。
2021年全国统一高考数学试卷(理科)(甲卷)
2021年全国统一高考数学试卷(理科)(甲卷)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设集合M={x|0<x<4},N={x|≤x≤5},则M∩N=()A.{x|0<x≤}B.{x|≤x<4}C.{x|4≤x<5}D.{x|0<x≤5} 2.(5分)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间3.(5分)已知(1﹣i)2z=3+2i,则z=()A.﹣1﹣i B.﹣1+i C.﹣+i D.﹣﹣i4.(5分)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录法的数据V满足L=5+lgV.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为()(≈1.259)A.1.5B.1.2C.0.8D.0.65.(5分)已知F1,F2是双曲线C的两个焦点,P为C上一点,且∠F1PF2=60°,|PF1|=3|PF2|,则C的离心率为()A.B.C.D.6.(5分)在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥A﹣EFG后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()A.B.C.D.7.(5分)等比数列{a n}的公比为q,前n项和为S n.设甲:q>0,乙:{S n}是递增数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件8.(5分)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A,B,C三点,且A,B,C在同一水平面上的投影A',B',C'满足∠A'C'B'=45°,∠A'B'C'=60°.由C点测得B点的仰角为15°,BB'与CC'的差为100;由B点测得A 点的仰角为45°,则A,C两点到水平面A'B'C'的高度差AA'﹣CC'约为()(≈1.732)A.346B.373C.446D.4739.(5分)若α∈(0,),tan2α=,则tanα=()A.B.C.D.10.(5分)将4个1和2个0随机排成一行,则2个0不相邻的概率为()A.B.C.D.11.(5分)已知A,B,C是半径为1的球O的球面上的三个点,且AC⊥BC,AC=BC=1,则三棱锥O﹣ABC的体积为()A.B.C.D.12.(5分)设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,当x∈[1,2]时,f(x)=ax2+b.若f(0)+f(3)=6,则f()=()A.﹣B.﹣C.D.二、填空题:本题共4小题,每小题5分,共20分。
1999年普通高等学校招生考试(全国卷)理科数学
1999年普通高等学校招生考试(全国卷)理科数学1.如图, I是全集,M,P,S是I的3个子集, 则阴影部分所表示的集合是(A)(M∩P)∩S(B)(M∩P)∪S(C)(M∩P)∩S(D)(M∩P)∪S2.已知映射f:A→B,其中集合A={−3,−2,−1,1,2,3,4}, 集合B中的元素都是A中元素在映射f下的象且对任意的a∈A,在B中和它对应的元素是|a|, 则集合B中元素的个数是(A) 4(B) 5(C) 6(D) 73.若函数y=f(x)的反函数是y=g(x),f(a)=b,ab≠0,则g(b)等于(A)a(B)a−1(C)b(D)b−14.函数f(x)=M sin(ωx+φ)(ω>0)在区间[a,b]上是增函数, 且f(a)=−M,f(b)=M, 则函数g(x)=M cos(ωx+φ)在[a,b]上(A) 是增函数(B) 是减函数(C) 可以取得最大值M(D) 可以取得最小值−M5.若f(x)sin x是周期为π的奇函数, 则f(x)可以是(A)sin x(B)cos x(C)sin2x(D)cos2x)关于6.在极坐标系中, 曲线ρ=4sin(θ−π3(A) 直线θ=π轴对称3π轴对称(B) 直线θ=56)中心对称(C) 点(2,π3(D) 极点中心对称7.将若干毫升水倒入底面半径为 2 cm 的圆柱形器皿中, 量得水面的高度为 6cm , 若将这些水倒入轴截面是正三角形的倒圆锥形器皿中, 则水面的高度是(A)6√3cm(B) 6cm(C)2√183cm(D)3√123cm8.若(2x +√3)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2−(a 1+a 3)2的值为(A)1(B)−1(C)0(D)29.直线√3x +y −2√3=0截圆x 2+y 2=4得的劣弧所对的圆心角为(A)π6 (B)π4 (C)π3(D)π210.如图, 在多面体ABCDEF 中,已知面ABCD 是边长为3的正方形,EF‖AB,EF =32,EF 与面AC的距离为 2, 则该多面体的体积为(A)92 (B)5(C)6(D)15211.若sin α>tan α>cot α(−π2<α<π2),则αϵ(A)(−π2,−π4)(B)(−π4,0)(C)(0,π4)(D)(π4,π2 )12.如果圆台的上底面半径为5,下底面半径为R, 中截面把圆台分为上下两个圆台,它们的侧面积的比为1:2,那么R=(A) 10(B) 15(C) 20(D) 2513.已知两点M(1,54),N(−4,−54), 给出下列曲线方程:①4x+2y−1=0②x2+y2=3③x 22+y2=1④x 22−y2=1在曲线上存在点P满足|MP|=|NP|的所有曲线方程是(A) ①③(B) ②④(C) ①②③(D) ②③④14.某电脑用户计划使用不超过500 元的资金购买单价分别为60 元、70 元的单片软件和盒装磁盘, 根据需要, 软件至少买3 片, 磁盘至少买2 盒, 则不同的选购方式共有(A) 5 种(B) 6 种(C) 7 种(D) 8 种15.设椭圆x 2a2+y2b2=1(a>b>0)的右焦点为F1, 右准线为l1, 若过F1且垂直于x轴的弦长等于点F1到l1的距离, 则椭圆的率心率是 .16.在一块并排10垄的田地中, 选择2垄分别种植A 、B 两种作物, 每种作物种植一垄, 为有利于作物生长, 要求 A 、B 两种作物的间隔不小于 6 垄, 则不同的选垄方法共有种. (用数字作答)17.若正数a,b满足ab=a+b+3, 则ab的取值范围是 .18.α,β是两个不同的平面,m,n是平面α及β之外的两条不同直线, 给出四个论断: ①m⊥n;②α⊥β; ③n⊥β; ④m⊥α.以其中三个论断作为条件, 余下一个论断作为结论, 写出你认为正确的一个命题:19.解不等式:√3log a x−2<2log a x−1(a>0,a≠1)20.设复数z=3cosθ+i⋅2sinθ, 求函数y=θ−arg z(0<θ<π2)的最大值以及对应的θ值.21.如图, 已知正四棱柱ABCD−A1B1C1D1,点E在棱D1D上,截面EAC‖D1B.且面EAC与底面ABCD所成的角为450,AB=a(1) 求截面EAC的面积;(2) 求异面直线A1B1与AC之间的距离;(3) 求三棱锥B1−EAC的体积.22.如图为一台冷轧机的示意图. 冷轧机由若干对轧辊组成, 带钢从一端输入, 经过各对轧辊逐步减薄后输出.(1) 输入带钢的厚度为α, 输出带钢的厚度为β, 若每对轧辊的减薄率不超过r0.问冷轧机至少需要安装多少对轧辊?(2) 已知一台冷轧机共有4对减薄率为20%的轧辊, 所有轧辊周长均为1600 若第k对轧辊有缺陷, 每滚动一周在带钢上压出一个疵点, 在冷轧机输出的带钢上, 疵点的间距为L k,为了便于检修, 请计算L1,L2,L3并填入下表(轧钢过程中, 带钢宽度不变, 且不考虑损耗).23.已知函数y=f(x≤n+1(n=0,1,2,⋯)时, 该图象是斜率为b n的线段(其中正常数b≠1), 设数列{x n}由f(x n)=n(n=1,2,⋯)定义.(1) 求x1,x2和x n的表达式;(2) 求f(x)的表达式, 并写出其定义域;(3) 证明:y=f(x)的图象与y=x的图象没有横坐标大于1的交点.24.如图, 给出定点A(a,0)(a>0)和直线l:x=−1.B是直线l上的动点,∠BOA的角平分线交AB于点C。
精编版-1999年黑龙江高考理科数学真题及答案
1999年黑龙江高考理科数学真题及答案第I 卷(选择题 共60分)注意事项:l .答第I 卷前,考生务必将自己的姓名、准考证号、考试科目、试卷类型(A 或B )用铅笔涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后。
再选涂其它答案,不能答在试题卷上。
3.考试结束。
监考人将本试卷和答题卡一并收回。
参考公式:三角函数的积化和差公式[]1sin cos sin()sin()2αβαβαβ=++- []1cos sin sin()sin()2αβαβαβ=+-- []1cos cos cos()cos()2αβαβαβ=++-正棱台、圆台的侧面积公式:1()2S c c l ='+台侧 其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长. 球的体积公式:343V r π=球,其中R 表示球的半径.台体的体积公式:h S S S S V )31'++=‘台体(,其中'S ,S 分别表示上下底面积,h表示高。
一、选择题:本大题共14小题;第1—10题每小题4分,第11—14题每小题5分,共60分在每小题给出的四个选顶中,只有一顶是符合题目要求的。
(1)如图,I 是全集,M 、P 、S 、是I 的3个子集,由阴影部分所表示的集合是 ( ) (A ))(N M ⋂S ⋂(B )S P M ⋃⋂)((C )S P M ⋂⋂)( (D )S P M ⋃⋂)((2)已知映射f:A 中中的元素都是集合其中,集合A B A B },,3,2,1,1,2,3{,---=→元素在映射f 下的象,且对任意的a ∈A 中则集合中和它对应的元素是在B {a},B ,元 素的个数是 ( )(A )4 (B )5 (C )6 (D )7(3)若函数y=f(x)的反函数是y=g(x),f(a)=b,ab 等于则)(,0b g ≠ ( ) (A )a(B )1a -(C )b(D )1b -(4)函数f(x)=Msin(在区间)0)(>+ωϕωx [a,b]上是增函数,且f(a)=-M,f(b)=M,则函数g(x)=Mcos(上在],[)b a x φω+ ( )(A)是增函数 (B )是减函数 (C )可以取得最大值M (D )可以取得最小值-M (5)若f(x)sinx 是周期为π的奇函数,则f(x)可以是(A )sinx (B)cosx (C)sin2x (D)cos2x (6)在极坐标系中,曲线关于)3sin(4πθρ-= ( )(A)直线3πθ=对称(B )直线πθ65=轴对称 (C )点(2,)3π中心对称 (D )极点中心对称 (7)若干毫升水倒入底面半径为2cm 的圆柱形器皿中,量得水面的高度为6cm ,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是 ( )(A)cm 36 (B )cm 6 (C )2(D )3(8)2312420443322104)(),)32(a a a a a x a x a x a x a a x +-++++++=+则(若 的值为 ( )(A)1 (B)-1 (C)0 (D)2(9)直线为得的劣弧所对的圆心角截圆4032322=+=-+y x y x ( ) (A )6π (B)4π (C)3π (D)2π(10) 如图,在多面体ABCDEF中 , 已知面ABCD是边长为3的正方形EF∥ABEF=EF ,23与面AC的距离为2,则该多面体的体积 ( )(A )29 (B)5 (C)6 (D)215 (11)若sin (αααctg tg >>∈<<-απαπ则),22( )(A))4,2(ππ--(B) )0,4(π- (C) )4,0(π (D) )2,4(ππ (12)如果圆台的上底面半径为5,下底面半径为R ,中截面把圆台分为上、下两个圆台,它们的侧面积的比为1∶2,那么R =( )(A )10 (B )15 (C )20 (D )25(13)已知丙点M (1,),45,4()45--N 、给出下列曲线方程:4x+2y-1=0 ②322=+y x ③1222=+y x ④1222=-y x 在曲线上存在点P 满足MP P N =的所有曲线方程是 (A )①③ (B )②④ (C )①②③ (D )②③④(14)某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
但0<q<1时, ,不满足条件②,即不存在常数c>0,使结论成立.
综合(i)、(ii),同时满足条件①、②的常数c>0不存在,即不存在常数c>0,使
.
证法二:用反证法,假设存在常数c>0,使
,
则有
由④得
SnSn+2- =c(Sn+Sn+2-2Sn+1).⑤
(A)
(B)
(C)
(D)
8.双曲线3x2-y2=3的渐近线方程是()
(A)y=±3x
(B)y=± x
(C)y=± x
(D)y=± x
9.已知θ是第三象限角,且sin4θ+cos4θ= ,那么sin2θ等于()
(A)
(B)
(C)
(D)
10.已知直线l⊥平面α,直线m 平面β,有下面四个命题:
①α∥β l⊥m②α⊥β l∥m③l∥m α⊥β④l⊥m α∥β
21.(本小题满分7分)
在复平面上,一个正方形的四个顶点按照逆时针方向依次为Z1,Z2,Z3,O(其中O是原点),已知Z2对应复数 .求Z1和Z3对应的复数.
22.(本小题满分10分)求sin220°+cos250°+sin20°cos50°的值.
23.(本小题满分12分)
如图,圆柱的轴截面ABCD是正方形,点E在底面的圆周上,AF⊥DE,F是垂足.
故得EB⊥平面DAE.
∵AF 平面DAE,
∴EB⊥AF.
又AF⊥DE,且EB∩DE=E,
故得AF⊥平面DEB.
∵DB 平面DEB,
∴AF⊥DB.
(2)解:过点E作EH⊥AB,H是垂足,连结DH.根据圆柱性质,平面ABCD⊥平面ABE,AB是交线.且EH 平面ABE,所以EH⊥平面ABCD.
又DH 平面ABCD,所以DH是ED在平面ABCD上的射影,从而∠EDH是DE与平面ABCD所成的角.
=(na1-c)[(n+2)a1-c]-[(n+1)a1-c]2
= <0.
可知,不满足条件①,即不存在常数c>0,使结论成立.
(ii)当q≠1时,若条件①成立,因为
(Sn—c)(Sn+2—c)-(Sn+1—c)2
=
=-a1qn[a1-c(1-q)],
且a1qn≠0,故只能有a1-c(1-q)=0,即
1.已知I为全集,集合M,N I,若M∩N=N,则()
(A)
(B)
(C)
(D)
2.函数y= 的图像是()
3.函数y=4sin(3x+ )+3cos(3x+ )的最小正周期是()
(A)6π
(B)2π
(C)
(D)
4.正方体的全面积是a2,它的顶点都在球面上,这个球的表面积是()
(A)
(B)
(C)2πa2
(2)为使x≤10,应有
8 ≤10
化简得t2+4t-5≥0.
解得t≥1或t≤-5,由t≥0知t≥1.从而政府补贴至少为每千克1元.
25.本小题主要考查等比数列、对数、不等式等基础知识,考查推理能力以及分析问题和解决问题的能力.
(1)证明:设{an}的公比为q,由题设a1>0,q>0.
(i)当q=1时,Sn=na1,从而
设OP与x轴正方向的夹角为α,则有
xp=|OP|cosα,yp=|OP|sinα;
xR=|OR|cosα,yR=|OR|sinα;
x=|OQ|cosα,y=|OQ|sinα;
由上式及题设|OQ|·|OP|=|OR|2,得
由点P在直线l上,点R在椭圆上,得方程组
,⑤
,⑥
将①,②,③,④代入⑤,⑥,整理得点Q的轨迹方程为
Sn·Sn+2-
=na1·(n+2)a1-(n+1)2
=- <0
(ⅱ)当q≠1时, ,从而
Sn·Sn+2-
= .
由(i)和(ii)得Sn·Sn+2- .根据对数函数的单调性,知
lg(Sn·Sn+2)<lg ,
即 .
(2)解:不存在.
证明一:要使
.成立,则有
分两种情况讨论:
(i)当q=1时,
(Sn—c)(Sn+2—c)=(Sn+1—c)2
解:(1)依题设有
1000(x+t-8)=500 ,
化简得5x2+(8t-80)x+(4t2-64t+280)=0.
当判别式△=800-16t2≥0时,
可得x=8- ± .
由△≥0,t≥0,8≤x≤14,得不等式组:
①
②
解不等式组①,得0≤t≤ ,不等式组②无解.故所求的函数关系式为
函数的定义域为[0, ].
(1)求证:AF⊥DB;
(2)如果圆柱与三棱锥D-ABE的体积的比等于3π,求直线DE与平面ABCD所成的角.
24.(本小题满分12分)
某地为促进淡水鱼养殖业的发展,将价格控制在适当范围内,决定对淡水鱼养殖提供政府补贴.设淡水鱼的市场价格为x元/千克,政府补贴为t元/千克.根据市场调查,当8≤x≤14时,淡水鱼的市场日供应量P千克与市场日需求量Q千克近似地满足关系:
19.直线l过抛物线y2=a(x+1)(a>0)的焦点,并且与x轴垂直,若l被抛物线截得的线段长为4,则a=
20.四个不同的小球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法共有
__________种(用数字作答)
三、解答题(本大题共6小题,共65分.解答应写出文字说明、证明过程或推演步骤)
解法一:由题设知点Q不在原点.设P、R、Q的坐标分别为(xP,yP),(xR,yR),(x,y),其中x,y不同时为零.
当点P不在y轴上时,由于点R在椭圆上及点O、Q、R共线,得方程组
解得
由于点P在直线l上及点O、Q、P共线,得方程组
解得
当点P在y轴上时,经验证①-④式也成立.
由题设|OQ|·|OP|=|OR|2,得
其中正确的两个命题是()
(A)①与②
(B)③与④
(C)②与④
(D)①与③
11.已知y=loga(2-ax)在[0,1]上是x的减函数,则a的取值范围是()
(A)(0,1)
(B)(1,2)
(C)(0,2)
(D)
12.等差数列{an},{bn}的前n项和分别为Sn与Tn,若 ,则 等于()
(A)1
(B)
(A)
(B)
(C)
(D)
第Ⅱ卷(非选择填在题中横线上)
16.不等式 的解集是__________
17.已知圆台上、下底面圆周都在球面上,且下底面过球心,母线与底面所成的角为 ,则圆台的体积与球体积之比为_____________
18.函数y=sin(x- )cosx的最小值是____________
将①-④代入上式,化简整理得
因x与xp同号或y与yp同号,以及③、④知2x+3y>0,故点Q的轨迹方程为
(其中x,y不同时为零).
所以点Q的轨迹是以(1,1)为中心,长、短半轴分别为 和 且长轴与x轴平行的椭圆、去掉坐标原点.
解法二:由题设知点Q不在原点.设P,R,Q的坐标分别为(xp,yp),(xR,yR),(x,y),其中x,y不同时为零.
(其中x,y不同时为零).
所以点Q的轨迹是以(1,1)为中心,长、短半轴分别为 和 且长轴与x轴平行的椭圆、去掉坐标原点.
P=1000(x+t-8)(x≥8,t≥0),
Q=500 (8≤x≤14).
当P=Q时市场价格称为市场平衡价格.
(1)将市场平衡价格表示为政府补贴的函数,并求出函数的定义域;
(2)为使市场平衡价格不高于每千克10元,政府补贴至少为每千克多少元?
25.(本小题满分12分)
设{an}是由正数组成的等比数列,Sn是其前n项和.
(C)
(D)
13.用1,2,3,4,5这五个数字,组成没有重复数字的三位数,其中偶数共()
(A)24个
(B)30个
(C)40个
(D)60个
14.在极坐标系中,椭圆的二焦点分别在极点和点(2c,0),离心率为e,则它的极坐标方程是()
(A)
(B)
(C)
(D)
15.如图,A1B1C1-ABC是直三棱柱,∠BCA=90°,点D1,F1分别是A1B1,A1C1的中点,若BC=CA=CC1,则BD1与AF1所成的角的余弦值是()
设圆柱的底面半径为R,则DA=AB=2R,于是
V圆柱=2πR3,
由V圆柱:VD-ABE=3π,得EH=R,可知H是圆柱底面的圆心,
AH=R,
DH=
∴∠EDH=arcctg =arcctg ,
24.本小题主要考查运用所学数学知识和方法解决实际问题的能力,以及函数的概念、方程和不等式的解法等基础知识和方法.
一、选择题(本题考查基本知识和基本运算)
1.C2.B3.C4.B5.D6.D7.B8.C9.A
10.D11.B12.C13.A14.D15.A
二、填空题(本题考查基本知识和基本运算)
16.{x|-2<x<4}17. 18. 19.420.144
三、解答题
21.本小题主要考查复数基本概念和几何意义,以及运算能力.
(D)3πa2
5.若图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则()
(A)k1<k2<k3
(B)k3<k1<k2
(C)k3<k2<k1
(D)k1<k3<k2