实验40 光栅衍射法测定光波长
衍射光栅测波长实验报告

衍射光栅测波长实验报告一、实验目的1、了解衍射光栅的基本原理和特性。
2、掌握用衍射光栅测量光波波长的方法。
3、学会使用分光计等光学仪器进行测量和读数。
二、实验原理衍射光栅是由大量等宽、等间距的平行狭缝所组成的光学元件。
当一束平行光垂直照射在光栅上时,每条狭缝都将产生衍射现象,由于各狭缝衍射光之间的干涉,在屏幕上会出现明暗相间的条纹,称为光栅衍射条纹。
根据光栅衍射方程:$d\sin\theta = k\lambda$(其中$d$为光栅常数,$\theta$为衍射角,$k$为衍射级数,$\lambda$为入射光波长),如果已知光栅常数$d$和衍射角$\theta$,就可以求出入射光的波长$\lambda$。
三、实验仪器1、分光计分光计是一种用于测量角度的精密光学仪器,主要由望远镜、平行光管、载物台和读数圆盘等部分组成。
2、光栅本实验使用的光栅为每毫米刻有 600 条刻痕的光栅。
3、汞灯作为光源,提供已知波长的光进行测量。
四、实验步骤1、调整分光计(1)调节望远镜聚焦于无穷远,使能看清远处的物体。
(2)调整望远镜光轴与分光计中心轴垂直。
(3)调整平行光管,使其发出平行光,并使其光轴与望远镜光轴重合。
2、放置光栅将光栅放置在载物台上,使光栅平面与平行光管光轴垂直。
3、测量汞灯谱线的衍射角(1)打开汞灯,用望远镜观察衍射条纹。
(2)分别测量汞灯中黄 1(波长 5770nm)、黄 2(波长 5791nm)两条谱线的衍射角。
对于每条谱线,分别测量左右两侧的衍射角$\theta_{左}$和$\theta_{右}$,然后取平均值$\theta =(\theta_{左} +\theta_{右})/2$。
4、计算光栅常数$d$根据光栅方程,对于已知波长的汞灯谱线,已知衍射级数$k$(通常取 1)和测量得到的衍射角$\theta$,可以计算出光栅常数$d$。
5、测量未知波长的光的衍射角用同样的方法测量未知波长光的衍射角,然后根据计算得到的光栅常数$d$和测量的衍射角,计算出未知光的波长。
光栅测波长实验报告

竭诚为您提供优质文档/双击可除光栅测波长实验报告篇一:光栅衍射实验报告4.10光栅的衍射【实验目的】(1)进一步熟悉分光计的调整与使用;(2)学习利用衍射光栅测定光波波长及光栅常数的原理和方法;(3)加深理解光栅衍射公式及其成立条件。
【实验原理】衍射光栅简称光栅,是利用多缝衍射原理使光发生色散的一种光学元件。
它实际上是一组数目极多、平行等距、紧密排列的等宽狭缝,通常分为透射光栅和平面反射光栅。
透射光栅是用金刚石刻刀在平面玻璃上刻许多平行线制成的,被刻划的线是光栅中不透光的间隙。
而平面反射光栅则是在磨光的硬质合金上刻许多平行线。
实验室中通常使用的光栅是由上述原刻光栅复制而成的,一般每毫米约250~600条线。
由于光栅衍射条纹狭窄细锐,分辨本领比棱镜高,所以常用光栅作摄谱仪、单色仪等光学仪器的分光元件,用来测定谱线波长、研究光谱的结构和强度等。
另外,光栅还应用于光学计量、光通信及信息处理。
1.测定光栅常数和光波波长光栅上的刻痕起着不透光的作用,当一束单色光垂直照射在光栅上时,各狭缝的光线因衍射而向各方向传播,经透镜会聚相互产生干涉,并在透镜的焦平面上形成一系列明暗条纹。
如图1所示,设光栅常数d=Ab的光栅g,有一束平行光与光栅的法线成i角的方向,入射到光栅上产生衍射。
从b点作bc垂直于入射光cA,再作bD垂直于衍射光AD,AD与光栅法线所成的夹角为?。
如果在这方向上由于光振动的加强而在F处产生了一个明条纹,其光程差cA+AD必等于波长的整数倍,即:d?sin??sini??m?(1)在光栅法线两侧时,(1)式括号内取负号。
如果入射光垂直入射到光栅上,即i=0,则(1)式变成:图1光栅的衍射式中,?为入射光的波长。
当入射光和衍射光都在光栅法线同侧时,(1)式括号内取正号,dsin?m?m?(2)这里,m=0,±1,±2,±3,…,m为衍射级次,?m第m级谱线的衍射角。
图2衍射光谱的偏向角示意图图3光栅衍射光谱2.用最小偏向角法测定光波波长如图2所示,波长为?的光束入射在光栅g上,入射角为i,若与入射线同在光栅法线n一侧的m级衍射光的衍射角为沪,则由式(1)可知d?sin??sini??m?(3)若以△表示入射光与第m级衍射光的夹角,称为偏向角,i(4)显然,△随入射角i而变,不难证明??i时△为一极小值,记作?,称为最小偏向角。
光栅衍射实验—光波波长的测量

光栅衍射实验—光波波长的测量光栅衍射实验是一种利用光栅条纹进行衍射的实验方法,通过测量衍射条纹的位置及其对比度等参数,可以求出光波的波长,并且还可以用来研究光栅的特性。
一、实验原理1.光栅的概念光栅是一种特殊的光学元件,它是由若干个平行排列的细缝或反射率不同的条纹组成的,当光线垂直入射到光栅上时,经过衍射后,会形成一系列等间距、亮暗交替的光条纹。
这些光条纹的位置和强度是与光波的波长和光栅的特性相关的。
2.光栅衍射的原理当一束平行光垂直入射到光栅上时,在光栅的每个细缝处都会产生不同程度的衍射,形成多个次级光源,这些次级光源再次经过衍射后形成的干涉条纹就是我们所要研究的光谱。
在光栅衍射中,由于光栅条纹之间的间隔很小,因此形成的光谱具有非常高的分辨率。
3.衍射条纹的位置根据衍射理论,在一般情况下,衍射条纹的位置由以下公式给出:d*sinθ = mλ其中,d是光栅的格距,θ是衍射角度,m是整数,表示衍射的级次,λ是光波的波长。
4.扩展光源的作用为了使衍射条纹更加明显、清晰,实验中一般采用扩展光源的方法,不仅可以提高对比度,减小空间干涉等因素对结果的影响,还可以使得整个光栅区域都能够有光照射,避免产生阴影和动态散斑等现象。
二、实验步骤1.实验器材:光栅、氢灯、狭缝、屏幕等。
2.调整光源:将氢灯放置在与狭缝相距15~20cm的位置,用狭缝筛选出单色光源。
3.调整光路:将单色光经过准直透镜后垂直入射到光栅上,同时加入扩展光源,使得整个光栅区域都得到光照射。
4.观察条纹:将屏幕置于衍射的适当位置,观察衍射条纹,测量其位置及对比度等参数,调整前面的步骤,使得衍射条纹达到最佳状态。
5.绘制波长和强度图:用测得的衍射条纹位置和对比度计算光波的波长,组织数据,绘制波长和强度图。
三、实验注意事项1.实验过程中要注意安全,避免光源伤害眼睛。
2.光栅表面要保持干净,防止灰尘和污垢的影响。
3.光路的调整要耐心,确保光线的准确垂直入射到光栅上。
衍射光栅测波长实验报告

衍射光栅测波长实验报告实验目的,通过衍射光栅实验测量氢氦氖激光的波长,掌握衍射光栅的原理和使用方法。
实验仪器,氢氦氖激光、衍射光栅、光电倍增管、微计算机、示波器等。
实验原理,衍射光栅是利用光的衍射现象进行波长测量的仪器。
当入射光波照射到光栅上时,会发生衍射现象,形成一系列明暗条纹。
通过测量这些条纹的位置和间距,可以计算出入射光波的波长。
实验步骤:1. 将氢氦氖激光照射到衍射光栅上,调整光栅和光电倍增管的位置,使得衍射条纹清晰可见。
2. 使用微计算机记录衍射条纹的位置和间距,同时将数据传输到示波器上进行实时显示。
3. 根据衍射条纹的位置和间距,利用衍射光栅的公式计算出氢氦氖激光的波长。
实验结果,经过多次实验和数据处理,我们得到了氢氦氖激光的波长为632.8纳米,误差在0.1%以内。
实验结论,通过衍射光栅测波长实验,我们成功测量了氢氦氖激光的波长,并掌握了衍射光栅的使用方法。
实验结果与理论值相符,验证了衍射光栅测波长的可靠性和准确性。
实验思考,在实验过程中,我们发现调整光栅和光电倍增管的位置对实验结果影响很大,需要仔细调节。
同时,光栅的质量和刻线精细度也会影响实验结果的准确性,需要选择合适的光栅进行实验。
总结,衍射光栅测波长实验是一项重要的光学实验,通过实验我们不仅掌握了衍射光栅的原理和使用方法,还验证了实验结果的准确性。
这对于我们进一步深入理解光学原理和应用具有重要意义。
通过本次实验,我们加深了对衍射光栅的理解,提高了实验操作的技能,并且对光学实验的意义有了更深刻的认识。
希望在今后的学习和实验中能够继续努力,不断提高实验技能,更好地应用光学原理解决实际问题。
用衍射光栅测定光波波长ppt课件

3Leabharlann 光栅光谱仪简介利用光栅干涉原理可制成光栅光谱仪,用 于各种物质的光谱分析,通过物质特征光 谱的识别,研究被分析样品中特定物质的 含量。例如:
1.太阳表面物质的构成 2.炼钢时杂质的含量 3.DNA的测定
4
三.仪器的调节
用衍射光栅测定光波波长
1
一.目的
1.了解分光计的构造、原理及其调节方法 2.学会用光栅测量光波波长的方法 3.观察光栅衍射现象
2
二.原理
当波长为λ的平行光垂 直光栅面入射透明与 不透明相间的周期性 结构(光栅)时,由 于透过的光衍射与相 干叠加的结果,在满 足
(a b) sin K,
K 0,1,2,
蓝
d sin蓝 K
?,
E ? 蓝 0蓝
0蓝
0蓝
求出黄1光波长(0黄=576.96nm)
/ ?, E ? d sin黄1
黄1
K
0黄1
黄1 0黄1 0 黄1
14
实验示范录像
15
2.偏心差很小,因此,左右游标读数差,应在 180°上下,最多差几分。
3.读数:先读游标“0”点所对的主盘读数,再 加上刻度对齐主盘刻度处的游标盘的读数。
9
分光计测量读数
用准线叉丝对准某条谱线即 可通过分光计两边的游标, 读出该谱线的偏转角度。图 为读汞灯绿光时的情况。 读数: 游标0刻线对准的主尺读加 游标刻线与主尺刻线对齐的 游标刻线的读数,既 读数= A+B=
2.再利用公式
2 1 2 '1' 4
求出该光谱的偏转角。 12
数据记录和处理
【实用】光栅衍射和光波波长的测定PPT资料

4、锁住狭缝锁紧螺丝。
图1
图2
图3
6.测钠黄光的平均波长
Ø调节步骤:
c
平行光管
ab
望远镜
光栅放置要求:入射光垂直照射光栅;光栅刻痕与分光计主轴平 行。
1. 调节光栅平面平行于分光计主轴并垂直于平行光管。
望远镜已调好,千万不要再动;
只调节螺丝a或b,使光栅反回的亮十字与分划板上方十字线 及中央明条纹重合,这时锁紧游标盘止动螺丝和望远镜与刻 度盘联动螺丝(老左新右) 。
2.再利用公式
2 1 2 '1' 4
求出该光谱的偏转角。
实验仪器
用到的实验仪器有:钠光灯、分光计、平面镜及衍射光栅。
望远镜光轴
分光计主轴
注意事项
• 不能用手触摸各光学元件!光栅是精密光学元件, 严禁用手触摸光栅平面,以免损坏。用完后请立即 上交。
• 光学仪器的调节动作要轻,锁紧螺钉也是指锁住即 可,不要用力过大,以免损坏器件。
• 转动载物台,都是指游标盘带动载物台一起转动。 • 如需转动望远镜要拿住望远镜支架转动。切忌握住
用透射光工作的透射光栅和用反射光工作的反射 调节光栅平面平行于分光计主轴并垂直于平行光管。
2、松开狭缝套筒锁紧螺丝,调节套筒前后位置,使望远镜视场中能看到清晰的狭缝像(黄色),调节狭缝宽度,使缝宽约为1mm,如
光栅。本实验使用的是透射光栅。 图1。
衍射光栅一般可以分为两类:用透射光工作的透射光栅和用反射光工作的反射光栅。 用到的实验仪器有:钠光灯、分光计、平面镜及衍射光栅。
Ø调节步骤:
轴
1、取走反射镜,将已调节好的望远镜正对着平行光管,打开钠光灯, 照亮狭缝。
2、松开狭缝套筒锁紧螺丝,调节套筒前后位置,使望远镜视场中能看 到清晰的狭缝像(黄色),调节狭缝宽度,使缝宽约为1mm,如图1。
光栅测定光波波长实验报告

光栅测定光波波长实验报告一、实验目的本实验旨在通过光栅测定光波波长的实验,掌握光栅的原理、构造和使用方法,了解光波的本质和特性,研究不同波长的光在光栅上的衍射现象及其规律,并通过实验数据计算出不同波长的光波的波长值。
二、实验原理1. 光栅原理光栅是一种具有许多平行等间距凹槽或凸棱形成的平面透镜。
当平行入射线照射到光栅上时,会发生衍射现象。
由于各个凹槽或凸棱之间距离相等,因此每个凹槽或凸棱都可以看作是一组相干点源,它们发出的衍射光相互干涉后形成了一系列明暗条纹。
这些条纹被称为衍射谱。
2. 衍射规律当入射光线垂直于光栅表面时,衍射谱中心处为零级亮条纹(主极大),两侧依次为一级暗条纹(第一个副极小)、一级亮条纹(第一个副极大)、二级暗条纹(第二个副极小)、二级亮条纹(第二个副极大)……以此类推。
衍射角度θ与波长λ和光栅常数d之间的关系为:sinθ=nλ/d,其中n为整数,称为衍射级数。
三、实验步骤1. 测量光栅常数d将白光透过准直器使其成为平行光线,调整准直器和透镜位置,使平行光线垂直于光栅表面,并转动准直器和透镜使得白色衍射谱出现在远处的屏幕上。
测量出零级亮条纹的位置,并记录下屏幕距离光栅的距离L1。
移动屏幕至一级亮条纹位置,测量出一级亮条纹到零级亮条纹的距离L2。
计算出光栅常数d=L2/n,其中n为总共出现了多少个一级亮条纹。
2. 测定氢气放电管谱线波长将氢气放电管放在准直器前方,调节准直器和透镜位置,使得氢气放电管发出的光线垂直于光栅表面,并转动准直器和透镜使得谱线出现在远处的屏幕上。
测量出零级亮条纹的位置,并记录下屏幕距离光栅的距离L1。
移动屏幕至一级亮条纹位置,测量出一级亮条纹到零级亮条纹的距离L2。
计算出氢气放电管谱线波长λ=sinθd/n,其中n为总共出现了多少个一级亮条纹。
3. 测定汞灯谱线波长同样将汞灯放在准直器前方,调节准直器和透镜位置,使得汞灯发出的光线垂直于光栅表面,并转动准直器和透镜使得谱线出现在远处的屏幕上。
用衍射光栅测量光波波长实验报告

用衍射光栅测量光波波长实验报告下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!实验报告:用衍射光栅测量光波波长1. 引言光波波长的测量在光学实验中具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理实验教案实验名称:光栅衍射法测定光波长 1 实验目的1)熟练分光计的调节。
2)理解光栅衍射现象;3)学习用光栅衍射法测定光的波长。
2 实验器材分光计、平面透射光栅、汞灯、平面反射镜3 实验原理3.1 实验原理光栅和棱镜一样,是重要的分光光学元件,已广泛应用在光栅光谱仪、光栅单色仪等。
光栅是一组数目极多的等宽、等距和平行排列的狭缝。
它分为透射光栅和反射光栅两种。
应用透射光工作的称为透射光栅,应用反射光工作的称为反射光栅。
现代制造光栅主要有刻划光栅、复制光栅和全息光栅等形式。
本实验用的是平面透射光栅。
描述光栅特征的物理量是光栅常数d ,其大小等于狭缝宽度a 与狭缝间不透光部分的宽度b 之和,即b a d +=,习惯上用单位毫米里的狭缝数目N 来描述光栅特性。
光栅常数d 与N 的关系为N d 1=(1)根据夫琅禾费衍射理论,波长为λ的平行光束垂直入射到光栅平面上时,透射光将形成衍射现象,即在一些方向上由于光的相互加强后光强度特别大,而其他的方向上由于光的相消后光强度很弱就几乎看不到光。
图40-1给出了形成光栅衍射的光路图。
如果入射光源为线光源,经过光栅后衍射图样为一些相距较大的锐利的色彩斑斓的明亮条纹组成。
而这些亮条纹1、光源2、狭缝3、凸透镜4、平面透射光栅5、光栅衍射光谱图40—1 实验原理示意图图40—2 汞灯的部分光栅衍射光谱示意图所在的方位由光栅方程所确定,方程为λφk d =sin ( 2,1,0±±=k ) (2)其中,d 为光栅常数,k 为衍射级别,λ为光波长,φ为衍射角它是光栅法线与衍射方位角之间的夹角。
由(2)式可见,同一级的衍射条纹,如果波长不同其衍射角不同,所以光栅具有分光功能。
图40-2为汞灯的部分光栅衍射光谱示意图。
光栅衍射现象是很容易观察到的,如果手头有一块光栅,可直接透过光栅观察某一光源就可看到衍射现象。
实验室中经常在分光计上利用光栅衍射现象来进行光波长或光栅常数的测量。
实验上,只要选择光栅常数已知的光栅,可见用待测光照射,使其产生衍射现象,同时用分光计测出各级衍射亮条纹所对应的衍射角k φ,那么由光栅方程(3)可以确定光波长,即:kd kφλsin =(3)3.2 实验方法如果有一台调节好的分光计,便可用来观察光栅衍射现象以及进行相关物理量的测定。
如果光栅常数是已知的,那么把光栅置于分光计的载物台上,并确定光栅的刻线与平行光管的狭缝平行并使光栅平面与平行光管垂直。
观察时,先把望远镜调节到对准平行光管,然后分别向左边和右边漫漫转动望远镜,便可观察到各个级别的衍射条纹,包括条纹的分布情况、各级条纹的亮度等等。
对于第k 级衍射角的测量,可以把望远镜转动到对准第k 级衍射条纹,测量其方向,读数为(k θ,k θ')。
再把望远镜转动到对准第k -级衍射条纹并测量其方向,读数为(k -θ,k -'θ)。
根据条纹的对称性质,那么第k 级衍射条纹的衍射角用(4)式)()(41k k k k k θθθθφ'-'+-=-- (4)得以计算。
4教学内容1)分光计调节。
2)利用透射光栅测定汞灯中各个谱线的光波长。
5 实验教学组织及教学要求1)检查设计方案并提出问题。
2)介绍光栅。
3)介绍测量内容及测量要求。
6 实验教学的重点及难点 1)重点:1.分光计的调节(望远镜调焦、望远镜光轴调节、平行光管调节。
) 2. 光栅放置的要求。
3.衍射角测量方法。
2)难点:1.分光计调节。
7 实验中容易出现的问题1.光栅放置时没有使光栅平面与入射光方向垂直。
2.光射刻线没有与望远镜扫过的平面垂直导致正负级别的衍射条纹不等高。
8 实验参考数据1)提供的光栅其光栅常数分别有N = 100.0、300.0、600.0/mm。
2)分光计的仪器误差为:2'。
3)汞灯三条较强谱线的波长公认值为:436nm(紫色)、546nm(绿色)、577nm(黄色)。
4)几种不同光栅常数对应的衍射角测量参考数据N = 100.0/mm,紫光:237/5/0320321'='='=ϕϕϕ。
绿光:729/716/830321'='='=ϕϕϕ黄光:959/936/0230321'='='=ϕϕϕN = 300.0/mm,紫光:0115/037021'='=ϕϕ。
绿光:0119/629021'='=ϕϕ黄光:5120/859021'='=ϕϕN = 600.0/mm,紫光:011501'=ϕ。
绿光:91901'=ϕ黄光:712001'=ϕ9 实验结果检查方法1)检查分光计调节是否符合要求。
2)检查重复测量的数据重复性。
3)检查测量结果与公认值之间的偏差是否符合要求。
10 课堂实验预习检查题目1.分光计调节有哪些要求?2.如何判断入射光方向与光栅平面垂直?11讨论题1.试分析如果入射光方向与光栅平面有点不垂直的话,将给波长测量带来多大的系统误差?2.实验中对于波长测量不确定度的评价并未考虑到光栅常数的影响,如果把光栅常数的影响一起考虑进来的话,那么波长的不确定度计算公式是什么?实验内容与步骤:1.分光计的调整:调整分光计就是要达到望远镜聚焦于无穷远处;望远镜和平行光管的中心光轴一定要与分光计的中心轴相互垂直,平行光管射出的光是平行光。
(1)调望远镜聚焦于无穷远处目测粗调:由于望远镜的视场角较小,开始一般看不到反射象。
因此,先用目视法进行粗调,使望远镜光轴、平台大致垂直于分光计的转轴。
然后打开小灯的电源,放上双面镜(为了调节方便,应将双面镜放置在平台上任意两个调节螺丝的中垂线上,且镜面与平台面基本垂直),转动平台,使从双面镜正、反两面的反射象都能在望远镜中看到。
若十字象偏上或偏下,适当调节望远镜的倾斜度和平台的底部螺丝,使两次反射象都能进入望远镜中。
用自准直法调节望远镜:经目测粗调,可以在望远镜中找到反射的十字象。
然后通过调节望远镜的物镜和分划板间的距离,使十字象清晰,并且没有视差(当左右移动眼睛时,十字象与分划板上的叉丝无相对移动),说明望远镜已经聚焦到无穷远处,既平行光聚焦于分划板的平面上。
(2)调望远镜光轴垂直于仪器转轴利用自准法可以分别观察到两个亮十字的反射象。
如果望远镜光轴与分光计的中心轴相垂直,而平面镜反射面又与中心轴平行,则转动载物平台时,从望远镜中可以两次观察到由平面镜前后两个面反射回来的亮十字象与分划板准线上部十字线完全重和。
如果不重合,而是一个偏低,一个偏高,可以通过半调整法来解决,即先调节望远镜的高低,使亮十字象与分划板准线上部十字线的距离为原来的一半,再调节载物平台下的水平调节螺丝,消除另一半距离,使亮十字象与分划板准线上部十字线完全重和。
将载物平台旋转180度,使望远镜对着平面镜的另一面,采用同样的方法调节,如此反复调整,直至从平面镜两表面反射回来的亮十字象与分划板准线上部十字线完全重和为止。
(3)调节平行光管产生平行光用已调好的望远镜作为基准,正对平行光管观察,并调节平行光管狭缝与透镜的距离,使望远镜中能看到清晰的狭缝象,且象与叉丝无视差。
这时平行光管发出的光既为平行光,然后调节平行光管的斜度螺丝,使狭缝居中,上下对称,即平行光管光轴与望远镜光轴重合,都垂直于仪器转轴。
2.调节光栅方位及测量:(1)分光计调节好后可将光栅按双面镜的位置放好,适当调节使从光栅面反射回来的亮十字像与分划板准线上部十字线完全重合。
(2)从中央条纹(即零级谱线)左侧起沿一个方向向左移动望远镜,使望远镜中的叉丝依次与第一级衍射光谱中的绿线相重合,记下对应位置的读数,再移动望远镜,越过中央条纹,依次记录右侧第一级衍射光谱中的绿线位置对应的读数。
为了减少误差,再从右侧开始,重测一次。
【数据记录与处理】表1 测量光栅常数绿光波长: =546.1nm绿光波长λ=0.546.1微米1.707微米0.038微米1.707±0.038微米T(0.95)=1.6453.80'18º41'=思考题:1.怎样调整分光计?调整时应注意的事项?答:⑴先目测粗调,使望远镜和平行光管大致垂直与中心轴;另外再调载物台使之大致呈水平状态。
(2)点亮照明小灯,调节并看清准线和带有绿色小十字窗口。
(3)调节并使载物台上的准直镜正反两面都进入望远镜,并且成清晰的像。
(4)采取逐步逼近各半调节法使从准直镜上发射所成的十字叉丝像与准直线重合。
(5)目测使平行光管光轴与望远镜光轴重合,打开狭缝并在望远镜中成清晰的大约1mm宽的狭缝像。
(6)使狭缝像分别水平或垂直并调节使狭缝像中心与十字叉丝中点想重合。
调节过程中要注意已经调节好的要固定好,以免带入新的误差,另外注意逐步逼近各半调节法的使用。
2.光栅方程和色散率的表达式中各量的物理意义及适用条件?答:(1)在光栅方程中λ为实验中所测光的波长,如本实验中绿光的波长。
K为衍射光谱级数φ为衍射角,d为光栅常数即光栅相临两刻蚊间长度。
实用条件取决与级数的选取应与实验相一致。
(2)色散率的表达式中相应量与光栅方程中具有相同含义。
3.当平行光管的狭缝很宽时,对测量有什么影响?答:造成测量误差偏大,降低实验准确度。
不过,可采取分别测狭缝两边后求两者平均以降低误差。
4.若在望远镜中观察到的谱线是倾斜的,则应如何调整?答:证明狭缝没有调与准线重合有一定的倾斜,拿开光栅调节狭缝与准线重合。
5.为何作自准调节时,要以视场中的上十字叉丝为准,而调节平行光管时,却要以中间的大十字叉丝为准?答:因为在自准调节时照明小灯在大十字叉丝下面,另外要保证准直镜与望远镜垂直,就必须保证其在大十字叉丝上面,并且距离为灯与大十字叉丝相同的地方,即以视场中的上十字叉丝为准。
现在,很容易就知道为什么在调节平行光管时,却要以中间的大十字叉丝为准了。
6.光栅光谱与棱镜光谱相比有什么特点?答:棱镜光谱为连续的七色光谱,并且光谱经过棱镜衍射后在两边仅仅分别出现一处;光栅光谱则不同,它为不连续的并且多处在平行光管轴两边出现,另外还可以条件狭缝的宽度以保证实验的精确度。
1实验目的2实验原理2.1光栅衍射介绍垂直入射时的光栅方程式以及波长计算公式。
2.2光栅衍射现象的观察以及衍射角的测量方法介绍用什么仪器来观察衍射现象以及如何测量衍射光方向,并给出计算衍射角的计算公式。
2.3分光计调节步骤2.4衍射角测量步骤3实验数据与处理3.1 实验数据用规范的表格列出实验数据并进行数据检验结果说明。
3.2 数据处理给出各个直接测量物理量的平均值、标准偏差以及仪器极限误差等数据。
进行各个直接测量物理量的测量不确定度计算。