七年级数学解一元一次方程练习题及答案
人教版七年级数学上册第3章 一元一次方程练习题(含答案)
人教版七年级上册第三章一元一次方程练习题一、选择题1.已知下列方程:①x+1=3x ;②5x=8;③x3=4x+1;④4x2+2x−3=0;⑤x=1;⑥3x+y=6.其中一元一次方程的个数有()A. 2个B. 3个C. 4个D. 6个2.在下列等式的变形中,正确的是()A. 若3x=a,则x=a3B. 若ax=b,则x=baC. 若ac=bc,则a=bD. 若a=b,则a−c=c−b3.在下列各式中,是方程的是()A. 2x+3y=2B. 2a+3C. 2x>5D. π−1=2.144.下列方程中,移项正确的是()A. 12−x=−5,移项,得12−5=xB. −7x+3=−13x−2,移项,得13x−7x=−3−2C. 4x+3=2x+5,移项,得4x−2x=5+3D. −5x−7=2x−11,移项,得11−7=2x−5x5.解方程3x+7=32−2x正确的时()A. x=25B. x=5C. x=39D. x=3956.代数式2x−1与4−3x的值互为相反数,则x等于()A. −3B. 3C. −1D. 17.关于x的方程3x+2m=−1与方程x+2=2x+1的解相同,则m的值为().A. 2B. −2C. 1D. −18. 若3x+12的值比2x−23的值小1,则x 的值为( )A. 135B. −135C. 513D. −5139. 若3a +1的值与3(a +1)的值互为相反数,则a 的值为( )A. −23B. −13C. 23D. 13 10. 某书上有一道解方程的题:1+▫x 3+1=x ,▫处在印刷时被油墨盖住了,查后面的答案知这个方程的解是x =−2,那么▫处的数字是( )A. 7B. 5C. 2D. −2 11. 解方程x+14=x −5x−112时,去分母正确的是( )A. 3(x +1)=x −(5x −1)B. 3(x +1)=12x −5x −1C. 3(x +1)=12x −(5x −1)D. 3x +1=12x −5x +1 12. 把方程x −x−52=x−16去分母,正确的是( )A. x −3(x −5)=x −1B. 6x −3(x −5)=x −1C. x −x −5=x −1D. 6x −(x −5)=x −113. 甲、乙两地相距270千米,从甲地开出一辆快车,速度为120千米/时,从乙地开出一辆慢车,速度为75千米/时,如果两车相向而行,慢车先开出1小时后,快车开出,那么再经过多长时间两车相遇?若设再经过x 小时两车相遇,则根据题意列方程为( )A. 75×1+(120−75)x =270B. 75×1+(120+75)x =270C. 120(x −1)+75x =270D. 120×1+(120+75)x =27014. 一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,则这个商店这次( ) A. 不赔不赚 B. 赚了8元 C. 赔了8元 D. 赔了10元15. 某足球比赛计分规则:胜一场得3分,平一场得1分,负一场得0分.某足球队经过26轮激战,以42分获比赛第五名,其中负6场,那么胜场数为( )A. 9B. 10C. 11D. 12二、填空题16.写出一个一元一次方程使它同时满足下列两个条件: ①未知数的系数是2; ②方程的解为2.则这个方程为.17.如果x+17=y+6,那么x+11=y+_____,根据是___________________.18.当x的值为________时,代数式2x+3与(x−7)的差等于5.19.当x=_________ 时,代数式x−x−25的值等于−2.20.小明和他父亲的年龄之和为54,又知父亲年龄是小明年龄的3倍少2岁,则他父亲的年龄为____岁.三、解答题21.甲、乙、丙三位爱心人士向贫困山区的希望小学捐赠图书,已知甲、乙、丙三位爱心人士捐赠图书的册数之比是5:8:9,如果他们共捐了748册图书,那么甲、乙、丙三位爱心人士各捐了多少册图书?22.知关于x的方程2(x−1)=3m−1与3x+2=−2(m+1)的解互为相反数,求m的值.23.解下列方程:(1)2x+13−5x−16=1;(2)x−x−12=2−x+25.24.某商场销售的一款空调每台的标价是3270元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价;(2)若在这次促销活动中,商场销售了这款空调100台,则盈利多少元?25.如图,数轴上A,B两点所表示的数分别为−5,10,O为原点,点C为数轴上一动点且表示的数为x.点P以每秒2个单位长度的速度,点Q以每秒3个单位长度的速度,分别自A,B两点同时出发,相向而行,在数轴上运动.设运动时间为t秒.(1)若点P,Q在点C处相遇,求点C所表示的数x;(2)若OP=OQ,求t的值;(3)当PQ=5时,求t的值;(4)若同时一只宠物鼠以每秒4个单位长度的速度从点B出发,与点P相向而行,宠物鼠遇到点P后立即返回,又遇到点Q后立即返回,又遇到点P后立即返回⋯⋯直到点P,Q相遇为止.求宠物鼠在整个过程中所经过的路程.答案和解析1.【答案】B【解析】【分析】本题主要考查的是一元一次方程的概念的有关知识,直接利用一元一次方程的概念进行求解即可.【解答】不是一元一次方程;解:①x+1=3x②5x=8是一元一次方程;=4x+1是一元一次方程;③x3④4x2+2x−3=0不是一元一次方程;⑤x=1是一元一次方程;⑥3x+y=6不是一元一次方程.故选B.2.【答案】A【解析】【分析】此题主要考查了等式的性质,关键是注意等式两边同时除以同一个数时,必须说明除以一个不为零的数.根据等式的性质:等式两边乘同一个数或除以一个不为零的数,结果仍得等式,进行分析即可.【解答】解:A.若3x=a,则x=a,本选项正确;3B.若ax=b,则x=b,没说明a≠0,本选项错误;aC.若ac=bc,若c=0,则a=b不一定成立,本选项错误;D.若a=b,则a−c=c−b不一定成立,本选项错误;故选A.3.【答案】A【解析】【分析】此题主要考查方程的概念,根据含有未知数的等式就是方程求解【解答】解:A.2x+3y=2是方程,故A选项正确;B.2a+3不是等式,故B选项错误;C.2x>5不是等式,故C选项错误;D.π−1=2.14,不含未知数,故D选项错误.故选A.4.【答案】B【解析】【分析】本题考查了解一元一次方程,注意移项要变号.根据移项要变号对各选项分析判断即可得解.【解答】解:A、12−x=−5,移项,得12+5=x,故本选项错误;B、−7x+3=−13x−2,移项,得13x−7x=−3−2,故本选项正确;C、4x+3=2x+5,移项,得4x−2x=5−3,故本选项错误;D、−5x−7=2x−11,移项,得11−7=2x+5x,故本选项错误.故选B.5.【答案】B【解析】【分析】本题考查的是解一元一次方程有关知识,首先对该方程移项,合并同类项,系数化为1可得.【解答】解:移项可得:3x+2x=32−7,合并同类项:5x=25,系数化为1可得:x=5.故选B.6.【答案】B【解析】【分析】本题主要考查的是相反数,一元一次方程的解法的有关知识,根据相反数的定义列出方程求解即可.【解答】解:∵代数式2x−1与4−3x的值互为相反数,∴2x−1+4−3x=0,合并同类项得−x+3=0,解得x =3.故选B .7.【答案】B【解析】【分析】本题主要考查的是同解方程,一元一次方程的解法的有关知识.先求出方程x +2=2x +1的解,然后将x 的值代入3x +2m =−1进行求解即可.【解答】解: x +2=2x +1,∴x −2x =1−2,∴−x =−1,解得:x =1,∵两个方程的解相同,∴把x =1代入3x +2m =−1得3+2m =−1,解得:m =−2.故选B .8.【答案】B【解析】【试题解析】【分析】本题考查了解一元一次方程方程,其步骤为:去分母,去括号,移项合并同类项,将未知数系数化为1,求出解. 根据3x+12的值比2x−23的值小1列出方程,求出方程的解即可得到x 的值.【解答】解:由题,3x+12=2x−23−1,去分母得:3(3x +1)=2(2x −2)−6,去括号得,9x +3=4x −4−6,移项、合并得:5x =−13,系数化为1得:x =−135.故选B .9.【答案】A【解析】【分析】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.利用相反数的性质列出方程,求出方程的解即可得到a的值.【解析】解:根据题意得:3a+1+3(a+1)=0,去括号得:3a+1+3a+3=0,移项合并得:6a=−4,,解得:a=−23故选A.10.【答案】B【解析】【分析】利用方程的解的定义,求方程中另一个字母的解,此题主要考查解方程,已知方程的解x=−2,把x=−2代入未知方程,就可以求出被油墨盖住的地方了.【解答】+1=x解:把x=−2代入1+□x3+1=−2,得:1−2□3解这个方程得:□=5.故选B.11.【答案】C【解析】解:方程两边都乘以12,去分母得,3(x+1)=12x−(5x−1).故选:C.根据解一元一次方程的方法,方程两边都乘以分母的最小公倍数12即可.本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.12.【答案】B【解析】【分析】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.根据等式的基本性质,把方程的左右两边同时乘6,去掉分母即可.【解答】解:去分母得,6x−3(x−5)=x−1,故选B.13.【答案】B【解析】【分析】本题考查了由实际问题抽象出一元一次方程的知识,解题的关键是了解相遇问题中的等量关系,难度不大.根据两车相遇共行驶270千米列出方程即可.【解答】解:设再经过x小时两车相遇,则根据题意列方程为75×1+(120+75)x=270,故选:B.14.【答案】C【解析】【分析】本题考查了一元一次方程的应用,需注意利润率是相对于进价说的,进价+利润=售价.已知售价,需算出这两件衣服的进价,让总售价减去总进价就算出了总的盈亏.【解答】解:设盈利25%的那件衣服的进价是x元,根据进价与得润的和等于售价列得方程:x+0.25x=60,解得:x=48,类似地,设另一件亏损衣服的进价为y元,,列方程y−25%y=60,解得:y=80.那么这两件衣服的进价是x+y=128元,而两件衣服的售价为120元.∴120−128=−8元,所以,该家商店赔了8元.故选:C.15.【答案】C【解析】【分析】本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答.要求胜场数,就要先设出未知数,然后根据题中的等量关系列方程求解.此题等量关系:胜场所得分数+平场所得分数=总分.【解答】解:设胜场数为x场,则平场数为(26−6−x)场,依题意得:3x+(26−6−x)=42解得:x=11,那么胜场数为11场.故选C.16.【答案】2x−4=0(答案不唯一)【解析】【分析】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.注意方程的解是指能使方程成立的未知数的值.根据一元一次方程的定义,只要含有一个未知数(元),并且未知数的指数是1(次),且系数是2,还要满足方程的解是3,这样的方程即可,答案不唯一,只要符合以上条件即可.【解答】解:答案不唯一,如2x−4=0等17.【答案】0,等式的基本性质一【解析】【分析】本题主要考查了等式的性质,熟练掌握等式的性质是解题的关键,根据等式的基本性质一解答即可.【解答】解:x+17=y+6,两边同时减去6可得x+17−6=y+6−6,即x+11=y+0,故答案为0,等式的基本性质一.18.【答案】−5【解析】【分析】本题考查一元一次方程的解法,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.根据代数式2x+3与x−7的差等于5,即可列方程2x+3−(x−7)=5,解方程即可求解.【解答】解:根据题意得,2x+3−(x−7)=52x+3−x+7=5x=−5,故答案为−5.19.【答案】−3【解析】【分析】本题考查了解一元一次方程的解法,解题时牢记解方程的步骤是关键.先列出等式,再根据解一元一次方程的步骤:去分母、去括号、移项、合并同类项、系数化为1解题即可.【解答】=−2.解:x−x−25去分母得:5x−x+2=−10,移项、合并同类项得:4x=−12,系数化为1得:x=−3.故答案为−3.20.【答案】14【解析】【分析】本题考查了由实际问题抽象出一元一次方程.等量关系为:小明现在的年龄+父亲现在的年龄=54,把相关数值代入即可求解.【解答】解:设小明的年龄的为x岁,则父亲的年龄为(3x−2)岁,根据题意得:x+(3x−2)=54解得x=14.故答案为14.21.【答案】解:设甲捐书5x册,则乙捐书8x册,丙捐书为9x册,∵他们共捐了748册,∴5x+8x+9x=748解得x=34,∴甲捐书5x=170册,乙捐书8x=272册,丙捐书为9x=306册.答:甲捐了170册图书,乙捐了272册图书,丙捐了306册图书.【解析】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.设甲捐书5x册,则乙捐书8x册,丙捐书为9x册,根据他们共捐了748册,即可求出这三位同学各捐书多少册.22.【答案】解:解方程2(x−1)=3m−1得:x=3m+12;解方程3x+2=−2(m+1)得:x=−2m−43;因为两个方程的解互为相反数,所以3m+12+−2m−43=0,解得m=1.【解析】本题主要考查的是相反数,一元一次方程的解,一元一次方程的解法的有关知识.分别求出两个方程的解,然后根据相反数的定义得到关于m的方程求解即可.23.【答案】(1)2x+13−5x−16=1解:去分母(方程两边乘6),得2(2x+1)−(5x−1)=6.去括号,得4x+2−5x+1=6.移项,得4x−5x=6−2−1.合并同类项,得−x=3.系数化为1,得x=−3.(2)x−x−12=2−x+25解:去分母(方程两边乘10),得10x−5(x−1)=20−2(x+2).去括号,得10x−5x+5=20−2x−4.移项,得10x−5x+2x=20−4−5.合并同类项,得7x=11.系数化为1,得x=117.【解析】本题考查的是一元一次方程的解法。
人教版七年级数学上册《一元一次方程》练习题-带答案
人教版七年级数学上册《一元一次方程》练习题-带答案学校:___________班级:___________姓名:___________考号:___________1.已知数轴上的点 A ,B 对应的数分别是 x ,y ,且 ()21002000x y ++-=∣∣,点 P 为数轴上从原点出发的一个动点,速度为 30 单位长度/秒.(1)求点A ,B 两点在数轴上对应的数,及A ,B 之间的距离. (2)若点A 向右运动,速度为 10 单位长度/秒,点B 向左运动,速度为 20 单位长度/秒,点A ,B 和 P 三点同时开始运动,点 P 先向右运动,遇到点 B 后立即掉后向左运动,遇到点A 再立即掉头向右运动,如此往返,当 A ,B 两点相距 30 个单位长度时,点 P 立即停止运动,求此时点P 移动的路程为多少个单位长度?(3)若点 A ,B ,P 三个点都向右运动,点 A ,B 的速度分别为 10 单位长度/秒,20 单位长度/秒,点 M ,N 分别是AP ,OB 的中点,设运动的时间为 t (0t 10<<),在运动过程中①OA PB MN - 的值不变;② OA PBMN+ 的值不变,可以证明,只有一个结论是正确的,请你找出正确的结论并求值.2.已知数轴上的点 A ,B 对应的数分别是 x ,y ,且 ()21002000x y ++-=,点 P 为数轴上从原点出发的一个动点,速度为 30 单位长度/秒.(1)求点A ,B 两点在数轴上对应的数,及 A ,B 之间的距离.(2)若点 A 向右运动,速度为 10 单位长度/秒,点 B 向左运动,速度为 20 单位长度/秒,点 A ,B 和 P 三点同时开始运动,点 P 先向右运动,遇到点 B 后立即掉后向左运动,遇到点 A 再立即掉头向右运动,如此往返,当 A ,B 两点相距 30 个单位长度时,点 P 立即停止运动,求此时点 P 移动的路程为多少个单位长度?(3)若点 A ,B ,P 三个点都向右运动,点 A ,B 的速度分别为 10 单位长度/秒,20 单位/秒,点 M ,N 分别是AP ,OB 的中点,设运动的时间为 ()010t t <<,请证明在运动过程中OA PB MN + 的值不变,并求出OA PBMN+值. 3.在数轴上,点A B 、分别表示数a b 、,且6100a b ++-=,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右运动,点M 始终为线段AP 的中点,设点P 运动的时间为x 秒.则:()1在点P 运动过程中,用含x 的式子表示点P 在数轴上所表示的数.()2当2PB AM =时,点P 在数轴上对应的数是什么?()3设点N 始终为线段BP 的中点,某同学发现,当点P 运动到点B 右侧时,线段MN 长度始终不变.请你判断该同学的说法是否正确,并加以证明.4.我们可以将任意三位数表示为abc =(其中a 、b 、c 分别表示百位上的数字,十位上的数字和个位上的数字,且0a ≠).显然,10010abc a b c =++;我们把形如xyz 和zyx 的两个三位数称为一对“姊妹数”(其中x 、y 、z 是三个连续的自然数)如:123和321是一对姊妹数,678和876是一对“姊妹数”.(1)写出任意三对“姊妹数”,并判断2331是否是一对“姊妹数”的和; (2)如果用x 表示百位数字,求证:任意一对“姊妹数”的和能被37整除. 5.已知关于x 的方程2233x x +=+的两个解是1223,3x x ==; 又已知关于x 的方程2244x x +=+的两个解是1224,4x x ==; 又已知关于x 的方程2255x x +=+的两个解是1225,5x x ==;⋯小王认真分析和研究上述方程的特征,提出了如下的猜想. 关于x 的方程22x c x c +=+的两个解是122,x c x c==;并且小王在老师的帮助下完成了严谨的证明(证明过程略).小王非常高兴,他向同学提出如下的问题. (1)关于x 的方程221111x x+=+的两个解是1x = 和2x = ;(2)已知关于x 的方程2212111x x +=+-,则x 的两个解是多少? 6.如果一个多位自然数的任意两个相邻数位上,左边数位上的数总比右边数位上数大1,那么我们把这样的自然数叫做“妙数”.例如:321,6543,98,…都是“妙数”. (1)若某个“妙数”恰好等于其个位数的153倍,则这个“妙数”为 .(2)证明:任意一个四位“妙数”减去任意一个两位“妙数”之差再加上1得到的结果一定能被11整除.(3)在某个三位“妙数”的左侧放置一个一位自然数m 作为千位上的数字,从而得到一新的四位自然数A ,且m 大于自然数A 百位上的数字,否存在一个一位自然数n ,使得自然数(9A+n )各数位上的数字全都相同?若存在请求出m 和n 的值;若不存在,请说明理由. 7.如图,已知数轴上点A 表示的数为a ,B 表示的数为b ,满足16120a b -++=.动点P 从点A 出发以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t 秒.(1)写出数轴上点A 表示的数是 ,点B 表示的数是 ;(2)若点P 从A 点出发向左运动,点Q 为AP 的中点,在点P 到达点B 之前,求证BA BPBQ+为定值;(3)现有动点M ,若点M 从点B 以每秒5个单位长度的速度沿数轴向右运动,同时点P 出发,当点P 到达原点O 后M 立即以每秒2个单位长度的速度沿数轴向左运动,求:当3OP OM =时,则P 点运动时间t 的值为 .8.【阅读理解】点A 、B 在数轴上对应的数分别是a ,b ,且()2280a b ++-=.A 、B 两点的中点表示的数为2a b+;当b a >时,A 、B 两点间的距离为AB b a =-. (1)求AB 的长.(2)点C 在数轴上对应的数为x ,且x 是方程282x x +=-的解,在数轴上是否存在点P ,使图1 图2(1)a可以用含e的代数式表示为____________;(2)若42++=时,求出图2中c所表示的日期;a e i(3)在这个月的日历中,求证:e f h i+++的值能被4整除.参考答案:1.【答案】(1)点A,B 两点在数轴上对应的数分别为-100,200,A,B 之间的距离为300(2)点 P 移动的路程为270或330个单位长度 (3)②正确2OA PBMN+= 2.【答案】(1)解:()21002000x y ++-=1000x ∴+= 2000y -=解得100x =- 200y =即点A ,B 两点在数轴上对应的数分别为-100,200,A ,B 之间的距离为300; (2)解: 设点P 运动时间为x 秒时,A ,B 两点相距30个单位长度. 由题意得102030030x x +=- 102030030x x +=+ 解得:9x =,或11x = 则此时点P 移动的路程为309270⨯=,或 3011330⨯=即P 走的路程为 270 或 330;(3)解:运动t 秒后A ,P ,B 三点所表示的数为10010t -+ 30t 20020t +010t <<20010PB t ∴=- 10010OA t =- 301001020100PA t t t =+-=+ 20020OB t =+M ,N 分别是AP ,OB 的中点∴N 表示的数为10010t +,M 表示的数为2050t -15010MN t ∴=-30020OA PB t +=- 2OA PBMN+∴=. 3.【答案】(1)62x -+;(2)P 点在数轴上表示的数为2;(3)正确,MN 的长度不变,为定值84.【答案】解:(1)根据题意得:234与432,345与543,567与765均是一对姊妹数; 设这对“姊妹数”的一个三位数的十位数为b ,则个位数为(b -1),百位数为(b +1),其中位“妙数”,再将四位“妙数”减去任意一个两位“妙数”之差再加上1的结果除以11判断结果是否为整数即可;(3)设三位“妙数”的个位为z ,可知A=1000m+111z+210,继而可得9A+n=9000m+999z+1890+n=1000(9m+z+1)+800+90+n ﹣z ,由﹣8≤n﹣z≤9、1000(9m+z+1)≤1000(9×9+9+1)=91000知其百位数一定是8,且该数为5位数,若存在则该数为88888,从而得出1000(91)88000{9088m z n z ++=+-=,即9m+z=87、n ﹣z=﹣2,由m >z+2知z <m ﹣2,而z=87﹣9m <m ﹣2,解之可得m >8.9,即可得m 值,进一步即可得答案. 7.【答案】(1)解:∵16120a b -++= ∴160-=a 120b += ∴16a = 12b =-∴点A 表示的数是16,点B 表示的数是12-. 故答案为:16;-12.(2)证明:∵点A 表示的数是16,点B 表示的数是12- ∴161228AB () 12OB = 16OA =∵动点P 从点A 出发以每秒4个单位长度的速度沿数轴向左匀速运动,运动时间为t 秒 ∴4AP t = 284BP AB AP t =-=- ∵点Q 为AP 的中点 ∴114222AQ AP t t ==⨯= ∴282BQ AB AQ t =-=-在点P 到达点B 之前,即0<t <7时282845642282282BA BP t tBQ t t++--===-- ∴BA BPBQ+为定值. (3)∵点M 从点B 以每秒5个单位长度的速度沿数轴向右运动,同时点P 出发,运动时间为()1643125t t解得:2011t=当点M在原点O的右侧,点512OM t=-16OP=()1643512t t解得:5219t=当点P到达原点O时,运动时间为这时点M在原点O的右侧,22)3(82t 解得:2125t=1212 45t t+=+=②当点M在原点∴228OM t =- 24OP t = ∵3OP OM = ∴22)43(28t t解得:212t =∴1241216t t t =+=+= (秒)综上所述,当3OP OM =时,则P 点运动时间t 的值为2011秒或5219秒或325秒或16秒.故答案为:2011秒或5219秒或325秒或16秒.8.【答案】(1)解:22(8)0a b ++-=∴2,8a b =-= ∴10AB =(2)解:282x x +=-∴10x =-∴点C 表示的数为10-设点P 对应的数为y ,由题可知,点P 不可能位于点A 的左侧,所以 ①当点P 在点B 右侧∴(8)[(2)](10)y y y -+--=-- ∴16y =②当点P 在A B 、之间 ∴(8)[(2)](10)y y y -+--=-- ∴0y =综上所述,点P 对应的数为16或0(3)证明:设运动时间为t ,则点E 对应的数是t ,点M 对应的数是28t -- 点N 对应的数是85t +P 是ME 的中点又Q)解:2,=-a c=+6,e c ia42c++=614)解:1,=+f e+=++i e ee+能被4整除4(4)∴e f i+++能被410.【答案】(1)证明:设则其“添彩数”与“减压数”分别为:第 11 页 共 11 页 =110a+11b=11(10a+b )∴对任意一个两位正整数M ,其“添彩数”与“减压数”之和能被11整除.(2)设N 的十位数字为x ,个位数字为y则其“添彩数”与“减压数”分别为:100x+10y+6;10x+y-6∴100()18106106x y f N x y +++-=≤∵10x+y -6>0∴整理得40457x y +≥∵x 为1-9的整数,y 为0-9的整数∴x 值只能为1,此时,解得174y ≥,则y 的可能值为5,6,7,8,9, 则N 的可能值为15,16,17,18,19∵()f N 为整数∴只有N=17时,176(117)161=f =为整数 ∴N 的值为17.。
七上解一元一次方程100道练习题(有答案)
七上解一元一次方程100道练习题(有答案)1.将2x + 1 = 7改为正确的格式:2x = 6,x = 3.这个方程的解为x = 3.2.将5x - 2 = 8改为正确的格式:5x = 10,x = 2.这个方程的解为x = 2.3.将3x + 3 = 2x + 7改为正确的格式:x =4.这个方程的解为x = 4.4.将x + 5 = 3x - 7改为正确的格式:2x = 12,x = 6.这个方程的解为x = 6.5.将11x - 2 = 14x - 9改为正确的格式:3x = 7,x = 7/3.这个方程的解为x = 7/3.6.将x - 9 = 4x + 27改为正确的格式:-3x = -36,x = 12.这个方程的解为x = 12.7.删除这个段落,因为没有提供足够的信息来解决问题。
8.将x = 3/2(x + 16)改为正确的格式:x = 24/(4 - 3),x = 24.这个方程的解为x = 24.9.将2x + 6 = 1改为正确的格式:2x = -5,x = -5/2.这个方程的解为x = -5/2.10.将10x - 3 = 9改为正确的格式:10x = 12,x = 6/5.这个方程的解为x = 6/5.11.将5x - 2 = 7x + 8改为正确的格式:-2x = 10,x = -5.这个方程的解为x = -5.12.将1/3x - 3 = 3x + 5/22改为正确的格式:11/66x = 31/66,x = 31/11.这个方程的解为x = 31/11.13.将4x - 2 = 3 - x改为正确的格式:5x = 5,x = 1.这个方程的解为x = 1.14.将-7x + 2 = 2x - 4改为正确的格式:-9x = -6,x = 2/3.这个方程的解为x = 2/3.15.将-x = -2/5(x + 1)改为正确的格式:-3x = -2,x = 2/3.这个方程的解为x = 2/3.16.将2x - (1/3)x = -1/3 + 2改为正确的格式:5/3x = 5/3,x = 1.这个方程的解为x = 1.17.将4(x + 0.5) + x = 7改为正确的格式:5x = 4.这个方程没有解,因为左边的表达式是一个正数,而右边是一个正数。
华东师大版数学七年级下册 解一元一次方程(定义及去括号类)同步练习(Word版含答案)
6.2.2.1解一元一次方程(定义及去括号类)★只含有未知数(元),并且含有未知数的式子都是式,未知数的次数都是,这样的方程叫做一元一次方程★解含括号的一元一次方程(1)当方程中含有带括号的式子时,需把括号去掉,方法与有理数运算中的去括号类似;(2)去括号的依据是去括号法则(3)一般步骤:去括号、合并同类项、移项、系数化为1。
一.选择题(共5小题)1.下列方程:①2x2﹣x=6;②y=x﹣7;③;④;⑤;⑥x=3,其中是一元一次方程的有()A.2个B.3个C.4个D.以上答案都不对2.方程3(x+1)=x+1的解是()A.x=﹣1B.x=0C.x=1D.x=23.下列方程的解是x=2的方程是()A.3x+6=0B.C.D.1﹣2x=54.如果方程﹣4x=﹣2与关于x的方程6x﹣2m=9的解互为相反数,则m的值是()A.﹣6B.6C.D.5.已知(a﹣3)x|a﹣2|﹣5=8是关于x的一元一次方程,则a=()A.3或1B.1C.3D.0二.填空题(共5小题)6.若4x2k+3=9是一元一次方程,则k=.7.若x=﹣1是关于x的方程2x﹣m=6的解,则m的值是.8.若方程(k﹣2)x|k|﹣1+7=0是关于x的一元一次方程,则k的值等于.9.方程(2a﹣1)x2+3x+1=4是一元一次方程,则a=.10.若关于x的方程(3a+2)x2+4x b﹣2﹣5=0是一元一次方程,则关于x的方程ax+b=0的解是.三.解答题(共30小题)11.解方程:2x﹣9=5x+3.12.解方程:(1)8﹣x=3x+2;(2).13.解方程:(1)2x+3=11﹣6x;(2)(3x﹣6)=x﹣3.14.解方程:8x=﹣2(x+4).15.解方程:3x﹣2(x+3)=6﹣2x.16.解方程:3(2x﹣1)=4x+3.17.2(x﹣3)=5﹣3(x+1).18.解方程:7x+2(3x﹣3)=20.19.解方程:6(x+)+2=29﹣3(x﹣1)20.解方程:3x﹣7(x﹣1)=3﹣2(x+3).21.解方程:4x﹣6=2(3x﹣1)22.(3x﹣6)=x﹣3.23.解方程:5x﹣2(3﹣2x)=﹣3.24.解方程:4x﹣3=2(x﹣1)25.2(x+8)=3(x﹣1)26.(x+1)﹣2(x﹣1)=1﹣3x.27.解方程:2(x﹣2)﹣3(4x﹣1)=9(1﹣x)28.解方程:7+2x=12﹣2x.29.解方程:(x﹣1)=2﹣(x+2).30.解方程:x﹣1=2(x+1)31.解方程:2﹣2(x﹣1)=3x+4.32.解方程:5x+2=3(x+2)33.34.35.解下列方程:(1)2{3[4(5x﹣1)﹣8]﹣20}﹣7=1;(2)=1;(3)x﹣2[x﹣3(x+4)﹣5]=3{2x﹣[x﹣8(x﹣4)]}﹣2;36.有一位同学在解方程3(x+5)+5[(x+5)﹣1]=7(x+5)﹣1,首先去括号,得3x+15+5x+25﹣5=7x+35﹣1,然后移项,合并同类项,最后求解,你有没有比他更简单的解法?试求解.37.已知y=1是方程2﹣(m﹣y)=2y的解,求关于x的方程m(x﹣3)﹣2=m(2x+5)的解.38.若方程3(2x﹣1)=2﹣3x的解与关于x的方程6﹣2k=2(x+3)的解相同,求k的值.39.已知方程(1﹣m2)x2﹣(m+1)x+8=0是关于x的一元一次方程.(1)求m的值及方程的解.(2)求代数式5x2﹣2(xm+2x2)﹣3(xm+2)的值.40.已知(m﹣3)x|m|﹣2+6=0是关于x的一元一次方程.(1)求m的值;(2)若|y﹣m|=3,求y的值.6.2.2.1解一元一次方程(定义及去括号类)参考答案与试题解析★只含有一个未知数(元),并且含有未知数的式子都是整式,未知数的次数都是1,这样的方程叫做一元一次方程★解含括号的一元一次方程(4)当方程中含有带括号的式子时,需把括号去掉,方法与有理数运算中的去括号类似;(5)去括号的依据是去括号法则(6)一般步骤:去括号、合并同类项、移项、系数化为1。
一元一次方程练习题及答案
一元一次方程练习题及答案一元一次方程练习题及答案一元一次方程是人教版七年级上册第三章的内容,它是初中数学的重要内容之一,一元一次方程练习题有哪些呢?下面是的一元一次方程练习题资料,欢迎阅读。
篇1:一元一次方程练习题一、选择题(每小题3分,共30分)1.下列方程中,属于一元一次方程的是()A. B. C D.2.已知ax=ay,下列等式中成立的是()A.x=yB.ax+1=ay-1C.ax=-ayD.3-ax=3-ay3.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价()A.40%B.20%C25%D.15%4.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名用1分钟从队尾走到队头,这位同学走的路程是()A.a米B.(a+60)米C.60a米D.(60+2a)米5.解方程时,把分母化为整数,得()。
A、 B、 C、 D、6.把一捆书分给一个课外小组的每位同学,如果每人5本,那么剩4本书,如果每人6本,那么刚好最后一人无书可领,这捆书的本数是()A.10B.52C.54D.567.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x千米/分钟,则所列方程为()A.x-1=5(1.5x)B.3x+1=50(1.5x)C.3x-1=(1.5x)D.180x+1=150(1.5x)8.某商品的进货价为每件x元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折让利40元销售,仍可获利10%,则x为()A.约700元B.约773元C.约736元D.约865元9.下午2点x分,钟面上的时针与分针成110度的角,则有()A. B. C. D.10.某商场经销一种商品由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,则经销这种商品原来的利润率为()A.15%B.17%C.22%D.80%二、填空题(每小题3分,共计30分)11.若x=-9是方程的解,则m=。
数学人教版2024版七年级初一上册 5.2 解一元一次方程 课时练01测试卷含答案
第五章 一元一次方程5.2 解一元一次方程一、单选题1.在解方程123123x x -+-=时,去分母正确的是( )A .()()312231x x --+=B .()()312231x x -++=C .()()312236x x -++=D .()()312236x x --+=2.解方程21101136x x ++-=时,去分母正确的是( )A .21(101)1x x +-+=B .411016x x +-+=C .421016x x +--=D .2(21)(101)1x x +-+=3.已知关于x 的一元一次方程4231x m x +=+ 和3261x m x +=+的解相同,则m 的值为( )A .12B .1C .12-D .1-4.下列各题正确的是 ( )A .由743x x =-移项得743x x -=B .由213132x x --=+去分母得()()221133x x -=+-C .由()()221331x x ---=去括号得42391x x ---=D .由()217x x +=+去括号、移项、合并同类项得5x =5.方程43x x -=的解是( )A .34B .43C .1D .1-6.将 ()()()312351x x x ---=- 去括号得( )A .31235x x x ---=-B .31235x x x --+=-C .332655x x x ---=-D .332655x x x--+=-7.将方程 1321323x x x ++-=-去分母, 得( )A .()()213322x x x +-+=-B .()()12133263x x x+-+=-C .()()2133226x x x+-+=-D .以上都不对8.下列各方程,变形不正确的是( )A .34152x x -+-=去分母化为2(3)5(4)10x x --+=B .2(3)5(4)10x x --+=去括号为:2352010x x --+=C .2352010x x --+=移项得:2510203x x -=-+D .2510203x x -=-+合并同类项得:37x -=-二、填空题9.若式子 3x 与210x -互为相反数,则 x = .10.已知3x =是方程211x m +=的解,则m = .11.已知关于x 的方程213x -=与3102a x --=有相同的解,则a = .12.已知5x =-是方程432x x a +=+解,则a = .13.已知方程17ax -=与方程2610x +=的解相同,则a 的值为 .14.如果关于 x 的方程 ()12m x += 无解,那么 m 的取值范围是 .15.若代数式1m -值与22m -互为相反数,则m 的值是 .16.若关于x 的方程()22312x x -=-和()821k x -=+的解相同,则k 的值为 .三、解答题17.解方程:(1)2(1)25(2)x x -=-+;(2)5172124x x ++-=.18.解方程(1)37322x x+=-(2)()()320.526x x ---=-19.解方程:(1)()()2831x x +=-;(2)152124x x ---=.20.解方程:(1)377245x x -+-=-(2)12310.32x x --=-参考答案1.D2.C3.A4.D5.C6.D7.C8.B9.210.411.4312.7-13.414.1m =-15.116.113/23317.(1)解: 2(1)25(2)x x -=-+,∴222510x x -=--,∴252102x x +=-+,∴76x =-,∴67x =-;(2)解:5172124x x ++-=,∴2(51)(72)4x x +-+=,∴102724x x +--=,∴107422x x -=-+,∴34x =,∴43x =.18.(1)解:37322x x +=-移项得:32327x x +=-,合并同类项得:525x =,系数化为1得:5x =;(2)解:()()320.526x x ---=-,整理得:()()320.526x x -+-=-,∴()3.526x -=-,∴1227x -=-,解得:27x =19.(1)解:()()2831x x +=-,21633x x +=-,19x -=-,解得,19x =;(2)解:152124x x ---=,()21452x x --=-,22452x x --=-,34x -=,解得,43x =-.20.(1)解:377245x x -+-=-去分母,()()4053747x x --=-+去括号,401535428x x -+=--移项,154284035x x -+=---合并同类项,11103x -=-化系数为1,10311x =;(2)解:12310.32x x--=-去分母,()()2016323x x -=--去括号,2020669x x -=-+移项,2062069x x +=++合并同类项,2635x =化系数为1,3526x =.。
解一元一次方程专项训练(40道)(解析版)—2024-2025学年七年级数学上学期(人教版)
解一元一次方程专项训练(40道)目录【专项训练一、移项与合并同类项】 (1)【专项训练二、去括号】 (8)【专项训练三、去分母】 (11)【专项训练三、拓展】 (19)【专项训练一、移项与合并同类项】1.解方程.(1)124 2.4x-=(2)45258 x:=:2(3)()42:15x-=【答案】4x =-【分析】本题主要考查了解一元一次方程,按照移项,合并同类项,系数化为1的步骤解方程即可.【详解】解;3256x x -=+移项得:3562x x -=+,合并同类项得:28x -=,系数化为1得:4x =-.3.解方程:15%9%7%0.31x x -=+.【答案】5x =【分析】本题主要考查了解一元一次方程,根据解一元一次方程的步骤求解即可.【详解】解:15%9%7%0.31x x -=+,0.150.090.070.31x x -=+,移项得:0.150.070.310.09x x -=+,合并同类项得:0.080.4x =,系数化为1得:5x =.4.解下列方程:(1)6259x x -=-+;(2)0.4 2.8 3.6 1.6 1.7y y y+-=-(1)5278x x -=+;(2)1752x x -=+;(3)2.49.8 1.49x x -=-;(4)5671238x x x x -++=+-+.【答案】(1)5x =-(2)24x =-(3)0.8x =(4)1x =【分析】此题考查解一元一次方程,掌握解一元一次方程的步骤是解题的关键.(1)先移项、合并同类项,再将系数化为1即可得到方程的解;(2)先移项、合并同类项,再将系数化为1即可得到方程的解;(3)先移项、合并同类项,即可得到方程的解;(4)先移项、合并同类项,再将系数化为1即可得到方程的解【详解】(1)(1)36 57x+=;(2)61173x¸=;(3)218 1525x=;(4)319 112020x-=.(1)1154 x x-=(2)3136 712x¸=(3)83283 54x-´=(1)133 428x-=;(2)2.4 4.516 2.6x x+=-.(1)132354x x x -+=-+;(2)42147x x x -+-=-.(1)2.49.8 1.49y y -=-(2)3312x x -=+.【专项训练二、去括号】11.解方程:2(5)333(51)x x -=-+.【答案】=1x -【分析】此题考查了解一元一次方程,掌握去括号、移项、合并同类项、系数化为1解一元一次方程是解题的关键,根据去括号、移项、合并同类项、系数化为1求解即可;【详解】解:2(1)15(2)x x -=-+,221510x x -=--,251102x x +=-+,77x =-,=1x -.13.解方程:()()23531214x x x x -+-=.【答案】2x =-【分析】本题考查了一元一次方程的解法,解决本题的关键是先根据单项式乘以多项式去括号.先根据单项式乘以多项式去括号,再解一元一次方程,即可解答.【详解】解:2(35)3(12)14x x x x -+-=,去括号得:226103614x x x x -+-=,移项合并同类项得:714x -=,系数化为1得:2x =-.14.解方程:()()250%1831x x +=--【答案】4x =【分析】此题考查了解一元一次方程,掌握去括号、移项、合并同类项、系数化为1解一元一次方程是解题的关键.【详解】解:()()250%1831x x +=--去括号得211833x x +=-+移项得231813x x +=-+合并得520x =系数化为1得4x =.15.解方程:94(2)2(31)x x x -+=+.16.解方程:.解方程:.【答案】5x =-【分析】本题主要考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的基本步骤,先去括号,然后移项合并同类项,最后未知数系数化为1即可.根据解一元一次方程的步骤进行求解即可.【详解】解:()()7211335x x -=+-去括号得:71411915x x -=+-,移项,合并同类项:210x -=,系数化为1得:5x =-.18.解下列方程(1)()3124x =-+(2)()12113x x x+--=-(1)()46252x x -=-;(2)()214x x -+=-;【答案】(1)2x =;(2)2x =.【分析】(1)本题考查解一元一次方程,掌握解一元一次方程步骤“去括号,移项,合并同类项,系数化为1”即可解题;(2)本题考查解一元一次方程,掌握解一元一次方程步骤“去括号,移项,合并同类项,系数化为1”即可解题;【详解】(1)解:()46252x x -=-,46104x x -=-,44106x x +=+,816x =,2x =;(2)解:()214x x -+=-,224x x --=-,242x x -=-+,2x -=-,2x =.20.解方程:()()4253521x x -+=--.【专项训练三、去分母】21.解下列方程:(1)221146x x ---=;(2)155x x +-=.【答案】(1)16x =-22.解方程:213 5102x x x-+--=.23.解方程:5121163x x--=-.【答案】1x=24.解方程:5121123x x +-=-;(1)223312x x x +-=--.(2)10.10.220.30.05x x x ++-=.26.解方程:2131 52x x+--=.27.解方程:323 0.20.5-+-=x x.28.解方程:341123+--=x x 29.解方程:0.12230.30.6x x x -+-=30.解方程:3532142y y y ---=-.31.解方程:2121163x x+--=.(1)141 23x x+=+;(2)4352 27x x-+=-.33.解方程:(1)222123x x --+=;(2)253432x x +--=;(1)()()()2234191y y y +--=-;(2)322132x x x +--=-.(3)()3151x x +=-;(4)2121136x x -+=-.(1)()()1123222x x -=--(2)3157146x x ---=【专项训练三、拓展】36.解关于x 的方程()()222a x x +=-37.解关于x 的方程:55ax a x +=+.【答案】当1a ¹时,5x =-;当1a =时,x 一切实数.【分析】本题考查了解一元一次方程,将原方程化为()()151a x a -=-,分两种情况:当1a ¹时;当1a =时,分别求解即可得出答案.【详解】解:55ax a x +=+Q ,()()151a x a \-=-当1a ¹时,5x =-,当1a =时,x 一切实数.38.已知关于x 的一元一次方程320222022x x n +=+的解为2022x =,求关于y 的一元一次方程()5232022522022y y n --=--的解.39.已知关于x 的方程有无数多个解,求常数a 、b 的值.40.当整数k为何值时,方程9314-=+有正整数解?并求出正整数解.x kx。
初一的数学方程带答案
初一的数学方程带答案【篇一:初一数学上册《解一元一次方程》课时练习题(含答案)】第一课时移项与合并一、选择题1.解方程6x+1=-4,移项正确的是()a. 6x=4-1b. -6x=-4-1c.6x=1+4d.6x=-4-12. 解方程-3x+5=2x-1, 移项正确的是()a.3x-2x=-1+5b.-3x-2x=5-1c.3x-2x=-1-5d.-3x-2x=-1-53.下列方程变形正确的是()a.由-2x=6, 得x=3b.由-3=x+2, 得x=-3-2c.由-7x+3=x-3, 得(-7+1)x=-3-3d.由5x=2x+3, 得x=-14.已知当x=2,y=1时,代数式kx-y的值是3,那么k的值是()a.2 b.-2 c.1 d.-1二、填空题5. 方程6. 3xn+212 x+3=5. -6=0是关于x的一元一次方程,则7. 关于x的方程5ax-10=0的解是1,则.三、解答题8.解下列方程.(1)6x=3x-7 (2)5=7+2x(3)y-1212=y-2 (4)7y+6=4y-39.一批学生乘汽车去观看“2008北京奥运会”如果每辆汽车乘48人,那么还多4人;如果每辆汽车乘50人,那么还有6个空位,求汽车和学生各有多少?第二课时去括号一、选择题1.在下列各方程中,解最小的方程是( )a.-x+5=2xb.5(x-8)-8=7(2x-3)c.2x-1=5x-7d.4(x+4)=122.方程4(2-x)- 4x=64的解是()a. 7b. 67 c.- 67 d.-73.某同学买了1元邮票和2元邮票共12枚,花了20元钱,求该同学买的1元邮票和 2元邮票各多少枚?在解决这个问题时,若设该同学买1元邮票x枚,求出下列方程,? 其中错误的是().a.x+2(12-x)=20 b.2(12-x)-20=xc.2(12-x)=20-x d.x=20-2(12-x)二、填空题4.由2(x+1)=4变形为x+1=25.已知当x=2时,代数式(3-a)x+a的值是10,当x=-2时这个代数式的值是 .6. 一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为 .三、解答题7.解下列方程:(1)3-2(x-5)=x+1; (2) 5(x-2)=4-(2-x)8. 一个两位数,十位上的数字与个位上的数字和为11,如果把十位上的数字与个位上的数字对调,则所得新数比原数大63,求原两位数.9.有a、b两种原料,其中a种原料每千克50元,b种原料每千克40元,据最新消息,这两种原料过几天要调价,a种原料上涨10%,b种原料下降15%,这两种原料共重11000千克,经核算,调价削后两种原料的销售总收入不变,问a、b两种原料各需多少?第三课时去分母一、选择题1. 将方程x2-x?24x?12=1去分母,得() a.2x-(x-2)=4 b.2x-x-2=4c.2x-x+2=1 d.2x-(x-2)=1. 2.方程2x?13?=1去分母正确的是( )a.2(2x+1)-3(x-1)=1b.6(2x+1)-6(x-1)=1c.2x+1-(x-1)=6d.2(2x+1)-3(x-1)=63.当3x-2与a. 1313互为倒数时,x的值为( ) 535bc.3 d. 3 2.d 3.b二、填空题4.下面的方程变形中:①2x+6=-3变形为2x=-3+6 x-5223x?33?x?12=1变形为2x+6-3x+3=6; x=13变形为6x-10x=5x=2(x-1)+1变形为3x=10(x-1)+1. 53正确的是_________(只填代号).5.已知2是关于x的方程32x-2a=0的一个解,则2a-1的值是 .6.一队学生从学校出发去部队军训,以每小时5千米的速度行进4.5千米时,一名通讯员以每小时14千米的速度从学校出发追赶队伍,他在离部队6千米处追上了队伍,设学校到部队的距离是x千米,则可列方程求x.三、解答题7.解方程:(1)3(m+3)=22.5m8.解方程:9.小明沿公路前进,对面来了一辆汽车,他问司机:“后面有一辆自行车吗?”司机回答说:“10分钟前我超过一辆自行车”小明又问:“你的车速是多少?”司机回答:“75千米/小时”小明又继续走了20分钟就遇到了这辆自行车,小民估计自己步行的速度是3千米/小时,这样小明就算出了这辆自行车的速度.自行车的速度是多少?191715x?23{〔(+4)+6〕+8}=1.9.解:设a种原料有x千克,则需b种原料(11000-x)千克,由题意,得 50x+40(11000-x)=50x(1+10%)+40(11000-x)(1-15%)解得 x=600011000-x=11000-6000=5000答:a、b两种原料分别需6000千克,5000千克.第三课时1. a2.d3.b4.③ 5.2 6.x?6?4.55?x?6147.(1)(1)去分母,得6(m+3)=22.5m-10(m-7),去括号,得6m+18=22.5m-10m+70,移项,得6m-22.5m+10m=70-18,合并同类项,得-6.5m=52,系数化1,得m=-8.去括号,得2x+9000-3x=7200.移项,得2x-3x=7200-9000.合并同类项,得-x=-1800.化系数为1,得x=1800.8.解:方程两边同乘以9,得移项合并,得171715x?23〔(+4)+6〕+8=9,〔15(x?23+4)+6〕=1,1方程两边同乘以7,得移项合并,得15(5x?23(x?23+4)+6=7 +4)=1,+4=5,方程两边同乘以5,得移项合并,得x?23x?23=1,去分母,得x+2=3,即x=1.9..解:设自行车的速度是x千米/小时,由题意得解之得x=23..答:自行车的速度是23千米/小时.1216(3-x)=(3+75),【篇二:七年级数学解一元一次方程练习题及答案】ass=txt>(1)(2)(3)(4)(5)(6)(7)(8).(9)5x+2=7x-8;(10);(11)(13);(15)(17)(19)(20).(12)(14)(16)(18)(21)(23)(24)(25)(27)2(0.3x-4)-5(0.2x+3)=9(22)2(2x-1)-4(4x-1)-5(2x+1)-19=0 (26)2{3[4(5x-1)-8]-20}-7=1 (28)2[(x+3)-2(x+1)]-5=0(29)3x-(30)(31)(32)3x=2x+5(33)2y+3=y-1 (34)7y=4-3y=(36) 10x+7=12x-5 - 3x(35)-(37)8x―4+2x= 4x―3 (38).2(3x+4)=6-5(x-7)(39).(40)(41)(42)(43)(44). x- = -1(45).-=【篇三:初一数学上学期一元一次方程测试题及答案】卷一、填空题1、若2a与1?a互为相反数,则a等于2、y?1是方程2?3?m?y??2y的解,则m?3、方程2?4、如果3x2x?4,则x? 3?4?0是关于x的一元一次方程,那么a? (a?b)h中,已知s?800, a=30, h?20,则b?22a?25、在等式s?6、甲、乙两人在相距10千米的a、b两地相向而行,甲每小时走x 千米,乙每小时走2x千米,两人同时出发1.5小时后相遇,列方程可得7、将1000元人民币存入银行2年,年利息为5﹪,到期后,扣除20﹪的利息税,可得取回本息和为9、某品牌的电视机降价10﹪后每台售价为2430元,则这种彩电的原价为每台元。
人教版七年级数学《一元一次方程》计算题专项练习(含答案)
人教版七年级数学《一元一次方程》计算题专项练习学校:班级:姓名:得分:1.解方程:x﹣4=2x+3﹣x.2.解方程:2(x﹣1)﹣3(x+2)=12.3.解方程:=1﹣.4.解方程:.5.解方程:.7.解方程:2(x+8)=3(x﹣1)8.解方程:3(2x+3)=11x﹣6.9.解方程:8y﹣3(3y+2)=6.10.解方程:3﹣(5﹣2x)=x+2.11.解方程:=.12.解方程:+1=x﹣.13.解方程:3﹣(5﹣2x)=x+2.14. 解方程:.15.解方程:.16.解方程:﹣=1.17.解方程:=﹣1 18.解方程:4﹣3(2﹣x)=5x;19. 解方程:﹣2=x﹣.20.解方程:3(x+4)=5﹣2(x﹣1)21. 解方程:=1﹣.22.解方程:=﹣1.23.解方程:.24.解方程:=.25.解方程:.26.解方程:.人教版七年级数学《一元一次方程》计算题专项练习参考答案1.x﹣4=2x+3﹣x.【解答】解:去分母得,x﹣8=4x+6﹣5x,移项得,x﹣4x+5x=6+8,合并同类项得,2x=14,系数化为1得,x=7.2.解下列方程:2(x﹣1)﹣3(x+2)=12.【解答】解:去括号得,2x﹣2﹣3x﹣6=12,移项得,2x﹣3x=12+2+6,合并同类项得,﹣x=20,系数化为1得,x=﹣20.3.=1﹣.【解答】解:去分母得,2(x+3)=12﹣3(3﹣2x),去括号得,2x+6=12﹣9+6x,移项得,2x﹣6x=12﹣9﹣6,合并同类项得,﹣4x=﹣3,系数化为1得,x=.4..【解答】解:去分母得,6x﹣2(2x﹣1)=6+3(x﹣3),去括号得,6x﹣4x+2=6+3x﹣9,移项得,6x﹣4x﹣3x=6﹣9﹣2,合并同类项得,﹣x=﹣5,系数化为1得,x=5.5.解方程:.【解答】解:去分母得,(2x﹣5)﹣3(3x+1)=6,去括号得,2x﹣5﹣9x﹣3=6,移项得,2x﹣9x=6+5+3,合并同类项得,﹣7x=14,系数化为1得,x=﹣2.6.解方程:4x﹣3=2(x﹣1)【解答】解:4x﹣3=2(x﹣1)4x﹣3=2x﹣24x﹣2x=﹣2+32x=1x=7.2(x+8)=3(x﹣1)【解答】解:去括号,得2x+16=3x﹣3,移项、合并同类项,得﹣x=﹣19,化未知数的系数为1,得x=19.8.解方程:3(2x+3)=11x﹣6.【解答】解:3(2x+3)=11x﹣6,6x+9=11x﹣6,9+6=11x﹣6x,15=5x,x=3.9.解方程8y﹣3(3y+2)=6.【解答】解:8y﹣9y﹣6=6﹣y=12y=﹣1210.3﹣(5﹣2x)=x+2.【解答】解:3﹣(5﹣2x)=x+2,去括号得:3﹣5+2x=x+2,移项得:2x﹣x=2﹣3+5,解得:x=4.11.解方程:=.【解答】解:去分母,得4(x﹣2)=3(3﹣2x),去括号,得4x﹣8=9﹣6x,移项,得4x+6x=9+8,合并同类项,得10x=17,系数化为1,得x=.12.解方程:+1=x﹣.【解答】解:去分母得:2(x+1)+6=6x﹣3(x﹣1),去括号得:2x+2+6=6x﹣3x+3,移项合并得:﹣x=﹣5,解得:x=5.13.解方程:3﹣(5﹣2x)=x+2.【解答】解:去括号,得:3﹣5+2x=x+2,移项,得:2x﹣x=2﹣3+5,合并同类项得:x=4;14.解方程:.【解答】解:去分母,得:3(4﹣x)﹣2(2x+1)=6,去括号,得:12﹣3x﹣4x﹣2=6,移项,得:﹣3x﹣4x=6﹣12+2合并同类项得:﹣7x=﹣4,系数化成1得:x=.15..【解答】解:等式的两边同时乘以12,得4(x+1)=12﹣3(2x+1)…(2分)去括号、移项,得4x+6x=12﹣4﹣3…(4分)合并同类项,得10x=5…(5分)化未知数的系数为1,得…(6分)16.解方程:﹣=1.【解答】解:3(x﹣1)﹣4(x+2)=123x﹣3﹣4 x﹣8=123x﹣4 x=12+3+8x=﹣2317.解方程=﹣1【解答】解:去分母得:5(3x﹣1)=2(4x+2)﹣10移项得:15x﹣8x=4﹣10+5合并同类项得:7x=﹣1系数化为得:x=﹣.18.解方程:4﹣3(2﹣x)=5x;【解答】解:去括号得:4﹣6+3x=5x,移项、合并同类项得:﹣2x=2,系数化为1得:x=﹣1.19.解方程:﹣2=x﹣.【解答】解:去分母、去括号得:2x+2﹣12=6x﹣3x+3,移项、合并同类项得:﹣x=13,系数化为1得:x=﹣13.20.解方程:3(x+4)=5﹣2(x﹣1)【解答】解:去括号,得:3x+12=5﹣2x+2,移项,得:3x+2x=5+2﹣12,合并同类项,得:5x=﹣5,系数化为1,得:x=﹣1;21.解方程:=1﹣.【解答】解:去分母,得:3(x+2)=6﹣2(x﹣5),去括号,得:3x+6=6﹣2x+10,移项及合并,得:5x=10,系数化为1,得:x=2.22.解方程:=﹣1.【解答】解:去分母得:4(2x﹣1)=3(x+2)﹣12移项得:8x﹣3x=6﹣12+4合并得:5x=﹣2系数化为1得:x=﹣.23.解方程:.【解答】解:去分母,得4(2x﹣1)=3(3x﹣5)+24,去括号,得8x﹣4=9x﹣15+24,移项、合并同类项,得﹣x=13,系数化为1,得x=﹣13.24.解方程:=.【解答】解:=方程两边同时乘以6,得3(x+1)=2(2﹣x)﹣63x+3=4﹣2x﹣65x=﹣5x=﹣1、25.解方程:.【解答】解:去分母得,5(3x+1)﹣20=3x﹣2,去括号得,15x+5﹣20=3x﹣2,移项合并得,12x=13,系数化为1得,x=.26.解方程:.【解答】解:去分母得,2(x+1)﹣4=8+2﹣x,去括号得,2x+2﹣4=8+2﹣x,移项得,2x+x=8+2﹣2+4,合并同类项得,3x=12,系数化为1得,x=4.。
专题 解一元一方程计算题(50题)(解析版)-七年级数学上册
七年级上册数学《第三章一元一次方程》专题训练解一元一次方程计算题(50题)步骤依据具体做法注意事项等式的性质2方程两边同时乘各分母的最小公倍数.(1)不要漏乘不含分母的项.(2)当分子是多项式时,去分母后应将分子作为一个整体加上括号.乘法分配律、去括号法则先去小括号,再去中括号,最后去大括号(也可以先去大括号,再去中括号,最后去小括号).(1)不要漏乘括号里的任何一项.(2)不要弄错符号.等式的性质1把含未知数的项移到方程的一边,常数项移到方程的另一边.(1)移项一定要变号.(2)不移的项不要变号.合并同类项法则系数相加,字母及字母的指数不变,把方程化成ax =b (a ≠0)的形式.未知数的系数不要弄错.等式的性质2在方程ax =b (a ≠0)的两边同除以a (或乘),得到方程的解为x=.不要将分子、分母的位置颠倒.1.(2022秋•宁津县校级期中)解下列方程:(1)﹣3x+3=1﹣x﹣4x;(2)﹣4x+6=5x﹣3;【分析】(1)根据解一元一次方程——移项合并同类项进行计算即可;(2)根据解一元一次方程——移项合并同类项进行计算即可.【解答】解:(1)移项得﹣3x+x+4x=1﹣3,合并得2x=﹣2,系数化为1得x=﹣1;(2)移项得﹣4x﹣5x=﹣3﹣6,合并得﹣9x=﹣9,系数化为1得x=1.【点评】本题考查解一元一次方程——移项合并同类项,掌握一元一次方程的解法是解决此题的关键.2.(2023秋•洛阳期中)解下列方程:(1)−3=12+1;(2)9+3x=4x+3.【分析】(1)先去分母,然后移项,合并同类项即可;(2)通过移项,合并同类项,系数化为1解方程即可.【解答】解:(1)原方程去分母得:2x﹣6=x+2,移项得:2x﹣x=2+6,合并同类项得:x=8;(2)原方程移项得:3x﹣4x=3﹣9,合并同类项得:﹣x=﹣6,系数化为1得:x=6.【点评】本题考查解一元一次方程,熟练掌握解方程的方法是解题的关键.3.(2023秋•西丰县期中)解方程:(1)3x﹣2=4+2x;(2)6x﹣7=9x+8.【分析】(1)根据等式的性质,移项、合并同类项即可;(2)根据等式的性质,移项、合并同类项系数化为1即可.【解答】解:(1)移项,得3x﹣2x=4+2,合并同类项,得x=6.(2)移项,得6x﹣9x=7+8,合并同类项,得﹣3x=15,系数化1,得x=﹣5.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的基本步骤是解题的关键.4.(2023秋•郧阳区期中)解方程:(1)2x﹣x+3=1.5﹣2x;(2)7x+2=5x+8.【分析】利用解一元一次方程的步骤:移项,合并同类项,系数化为1解各方程即可.【解答】解:(1)原方程移项得:2x﹣x+2x=1.5﹣3,合并同类项得:3x=﹣1.5,系数化为1得:x=﹣0.5;(2)原方程移项得:7x﹣5x=8﹣2,合并同类项得:2x=6,系数化为1得:x=3.【点评】本题考查解一元一次方程,熟练掌握解方程的方法是解题的关键.5.(2022秋•莲湖区校级月考)解方程:(1)3x﹣2=5x﹣4;(2)2x+3(x﹣1)=2(x+3).【分析】(1)根据解一元一次方程的步骤,移项,合并同类项,最后将x的系数化为1即可求解.(2)根据解一元一次方程的步骤,先去括号,然后移项,合并同类项,最后将x的系数化为1即可求解.【解答】解:(1)3x﹣2=5x﹣4移项得,3x﹣5x=2﹣4,合并同类项得,﹣2x=﹣2,将x的系数化为1得,x=1.(2)2x+3(x﹣1)=2(x+3)去括号得,2x+3x﹣3=2x+6,移项得,2x+3x﹣2x=6+3,合并同类项得,3x=9,将x的系数化为1得,x=3.【点评】本题主要考查一元一次方程的解法,掌握解方程的基本步骤是解题的关键.6.(2023秋•青秀区校级期中)解下列方程:(1)3x+6=31﹣2x;(2)1−8(14+0.5p=3(1−2p.【分析】根据一元一次方程的解法,经历去括号、移项、合并同类项以及系数化为1进行计算即可.【解答】解:(1)移项得,3x+2x=31﹣6,合并同类项得,5x=25,两边都除以5得,x=5;(2)去括号得,1﹣2﹣4x=3﹣6x,移项得,﹣4x+6x=3+2﹣1,合并同类项得,2x=4,两边都除以2得,x=2.【点评】本题考查解一元一次方程,掌握一元一次方程的解法,理解去括号、移项、合并同类项以及系数化为1的依据是正确解答的前提.7.(2023秋•西城区校级期中)解下列方程:(1)3x﹣4=2x+8;(2)5﹣2x=3(x﹣2).【分析】(1)移项,合并同类项即可;(2)去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)3x﹣4=2x+8,移项,得3x﹣2x=8+4,合并同类项,得x=12;(2)5﹣2x=3(x﹣2),去括号,得5﹣2x=3x﹣6,移项,得﹣2x﹣3x=﹣6﹣5,合并同类项,得﹣5x=﹣11,系数化成1,得x=115.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.8.(2023秋•海珠区校级期中)解方程:(1)x+5=8;(2)3x+4=5﹣2x;(3)8(2x﹣1)﹣(x﹣1)=﹣2(2x﹣1).【分析】根据一元一次方程的解法,经历去括号、移项、合并同类项以及系数化为1等过程,进而求出未知数x的值即可.【解答】解:(1)移项得,x=8﹣5,合并同类项得,x=3;(2)移项得,3x+2x=5﹣4,合并同类项得,5x=1,两边都除以5得,x=15;(3)去括号得,16x﹣8﹣x+1=﹣4x+2,移项得,16x﹣x+4x=2﹣1+8,合并同类项得,19x=9,两边都除以19得,x=919.【点评】本题考查解一元一次方程,掌握一元一次方程的解法和步骤是正确解答的前提,理解去括号、移项、合并同类项以及系数化为1的做法的依据是正确解答的关键.9.(2023秋•重庆期中)解方程:(1)2x﹣6=﹣3x+9;(2)−32−1=−+1.【分析】根据一元一次方程的解法,依次进行移项、合并同类项以及系数化为1进行计算即可.【解答】解:(1)移项得,2x+3x=9+6,合并同类项得,5x=15,两边都除以5得,x=3;(2)移项得,32x﹣x=﹣1﹣1,合并同类项得,12x=﹣2,两边都乘以2得,x=﹣4.【点评】本题考查解一元一次方程,掌握一元一次方程的解法步骤是正确解答的前提.10.(2023秋•新吴区校级期中)解下列方程:(1)3(2x﹣1)=5﹣2(x+2);(2)2(x﹣2)﹣3(4x﹣1)=5(1﹣x).【分析】根据解一元一次方程的步骤解答即可.【解答】解:(1)6x﹣3=5﹣2x﹣4,6x+2x=5﹣4+3,8x=4,x=12;(2)2x﹣4﹣12x+3=5﹣5x,2x﹣12x+5x=5+4﹣3,﹣5x=6,x=−65.【点评】本题考查解一元一次方程,理解并熟练掌握解一元一次方程的步骤是解题的关键.11.(2022秋•陵城区期末)解方程(1)18(x﹣1)﹣2x=﹣2(2x﹣1);(2)3K110−1=5K74.【分析】(1)先去括号,再移项、合并同类项、系数化为1即可;(2)先去分母,再去括号、移项、合并同类项、系数化为1即可.【解答】解:(1)去括号得,18x﹣18﹣2x=﹣4x+2,移项得,18x﹣2x+4x=2+18,合并同类项得,20x=20,x的系数化为1得,x=1;(2)去分母得,2(3y﹣1)﹣20=5(5y﹣7)去括号得,6y﹣2﹣20=25y﹣35,移项得,6y﹣25y=﹣35+20+2,合并同类项得,﹣19y=﹣13,x的系数化为1得,y=1319.【点评】本题考查的是解一元一次方程,熟知去分母、去括号、移项、合并同类项、系数化为1是解一元一次方程的一般步骤是解题的关键.12.(2023秋•九龙坡区校级期中)解下列一元一次方程:(1)3x+4=2﹣x;(2)1−r12=1−25.【分析】根据一元一次方程的解法,经过去分母、去括号、移项、合并同类项以及系数化为1进行解答即可.【解答】解:(1)移项得,3x+x=2﹣4,合并同类项得,4x=﹣2,两边都除以4得,x=−12;(2)两边都乘以10得,10﹣5(x+1)=2(1﹣2x),去括号得,10﹣5x﹣5=2﹣4x,移项得,5x﹣4x=10﹣5﹣2,合并同类项得,x=3.【点评】本题考查解一元一次方程,掌握一元一次方程的解法是正确解答的前提.13.(2022秋•青川县期末)解下列方程:(1)2x﹣(x+10)=3x+2(x+1);(2)K12−2K13=+1.【分析】(1)根据去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程;(2)根据去分母、去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程.【解答】解:(1)2x﹣(x+10)=3x+2(x+1),去括号,得2x﹣x﹣10=3x+2x+2,移项,得2x﹣x﹣3x﹣2x=2+10,合并同类项,得﹣4x=12,系数化为1,得x=﹣3;(2)K12−2K13=+1,去分母,得3(x﹣1)﹣2(2x﹣1)=6x+6,去括号,得3x﹣3﹣4x+2=6x+6,移项,得3x﹣4x﹣6x=6+3﹣2,合并同类项,得﹣7x=7,系数化为1,得x=﹣1.【点评】本题考查解一元一次方程的解法,掌握解一元一次方程的步骤,使方程逐渐向x=a形式转化是解题关键.14.(2022秋•安次区校级月考)解方程:(1)3x﹣4(x+1)=6﹣2(2x﹣5);(2)0.3K0.10.2−2r93=−8.【分析】(1)按照去括号,移项,合并同类项,系数化为1的步骤解方程即可;(2)按照去分母,去括号,移项,合并同类项,系数化为1的步骤解方程即可.【解答】解:(1)3x﹣4(x+1)=6﹣2(2x﹣5)去括号得:3x﹣4x﹣4=6﹣4x+10,移项得:3x﹣4x+4x=6+10+4,合并同类项得:3x=20,系数化为1得;=203;(2)0.3K0.10.2−2r93=−8整理得:3K12−2r93=−8,去分母得:3(3x﹣1)﹣2(2x+9)=﹣48,去括号得:9x﹣3﹣4x﹣18=﹣48,移项得:9x﹣4x=﹣48+18+3,合并同类项得:5x=﹣27,系数化为1得;=−275.【点评】本题主要考查了解一元一次方程,熟知解一元一次方程的步骤是解题的关键.15.(2022秋•工业园区校级月考)解方程:(1)5(x﹣1)=8x﹣2(x+1);(2)3K14−1=5K76.【分析】(1)方程去括号,移项,合并同类项,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:(1)5(x﹣1)=8x﹣2(x+1)去括号得:5x﹣5=8x﹣2x﹣2,移项得:5x﹣8x+2x=﹣2+5,合并得:﹣x=3,解得:x=﹣3;(2)3K14−1=5K76去分母得:3(3x﹣1)﹣12=2(5x﹣7),去括号得:9x﹣3﹣12=10x﹣14,移项得:9x﹣10x=3+12﹣14,合并得:﹣x=1,解得:x=﹣1【点评】此题考查了解一元一次方程,熟练掌握一元一次方程的解法是解本题的关键.16.(2022秋•青川县期末)解下列方程:(1)2x﹣(x+10)=3x+2(x+1);(2)K12−2K13=+1.【分析】(1)根据去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程;(2)根据去分母、去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程.【解答】解:(1)2x﹣(x+10)=3x+2(x+1),去括号,得2x﹣x﹣10=3x+2x+2,移项,得2x﹣x﹣3x﹣2x=2+10,合并同类项,得﹣4x=12,系数化为1,得x=﹣3;(2)K12−2K13=+1,去分母,得3(x﹣1)﹣2(2x﹣1)=6x+6,去括号,得3x﹣3﹣4x+2=6x+6,移项,得3x﹣4x﹣6x=6+3﹣2,合并同类项,得﹣7x=7,系数化为1,得x=﹣1.【点评】本题考查解一元一次方程的解法,掌握解一元一次方程的步骤,使方程逐渐向x=a形式转化是解题关键.17.(2022秋•平桥区校级月考)解方程:(1)8y﹣3(3y+2)=6;(2)r12−1=2+2−4.【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:8y﹣9y﹣6=6,移项得:8y﹣9y=6+6,合并同类项得:﹣y=12,系数化为1得:y=﹣12;(2)方程两边同时乘4得:2(x+1)﹣4=8+(2﹣x),去括号得:2x+2﹣4=8+2﹣x,移项得:2x+x=8+2﹣2+4,合并同类项得:3x=12,系数化为1得:x=4.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法和步骤是解题的关键.18.(2022秋•汉阳区期末)解方程:(1)4x+3(2x﹣3)=12﹣(x+4);(2)3r22−1=2K14−2r15.【分析】(1)去括号、移项、合并同类项、系数化为1,依此即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.【解答】解:(1)4x+3(2x﹣3)=12﹣(x+4),去括号得:4x+6x﹣9=12﹣x﹣4,10x﹣9=8﹣x,移项得:10x+x=9+8,合并同类项得:11x=17,系数化1得:x=1711;(2))3r22−1=2K14−2r15,去分母得:10(3x+2)﹣20=5(2x﹣1)﹣4(2x+1),去括号得:30x+20﹣20=10x﹣5﹣8x﹣4,移项得:30x﹣10x+8x=﹣5﹣4﹣20+20,合并得:28x=﹣9,化系数为1得:x=−928.【点评】本题考查一元一次方程的解法,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.19.(2023秋•蜀山区校级期中)解方程.(1)3(x﹣7)+5(x﹣4)=15;(2)5r16=9r18−1−3.【分析】(1)根据去括号、移项、合并同类项、系数化1计算即可.(2)根据去分母、去括号、移项、合并同类项、系数化1计算即可.【解答】解:(1)去括号得:3x﹣21+5x﹣20=15,移项、合并同类项得:8x=56,系数化1得:x=7.(2)去分母得:4(5y+1)=3(9y+1)﹣8(1﹣y),去括号得:20y+4=27y+3﹣8+8y,移项、合并同类项得:﹣15y=﹣9,系数化1得:=35.【点评】本题考查解一元一次方程,熟练掌握一元一次方程的解法是解答本题的关键.20.(2023秋•裕安区校级期中)解方程:(1)2(x﹣1)=2﹣5(x+2);(2)5r12−6r24=1.【分析】(1)方程去括号,移项,合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x﹣2=2﹣5x﹣10,移项得:2x+5x=2﹣10+2,合并得:7x=﹣6,解得:x=−67;(2)去分母得:2(5x+1)﹣(6x+2)=4,去括号得:10x+2﹣6x﹣2=4,移项得:10x﹣6x=4﹣2+2,合并得:4x=4,解得:x=1.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并,把未知数系数化为1,求出解.20.(2023秋•越秀区校级期中)解方程:(1)3x+20=4x﹣25;(2)2K13=1−2K16.【分析】根据解一元一次方程的步骤,依次经过去分母,去括号、移项、合并同类项、系数化为1求出未知数x的值即可.【解答】解:(1)移项得,4x﹣3x=20+25,合并同类项得,x=45;(2)两边都乘以6得,2(2x﹣1)=6﹣(2x﹣1),去括号得,4x﹣2=6﹣2x+1,移项得,4x+2x=6+1+2,合并同类项得,6x=9,两边都除以6得,x=32.【点评】本题考查解一元一次方程,掌握一元一次方程的解法是正确解答的关键.21.(2023秋•工业园区校级期中)解方程:(1)3=1+2(4﹣x);(2)1−K56=r12.【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可;(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.【解答】解:(1)去括号,可得:3=1+8﹣2x,移项,可得:2x=1+8﹣3,合并同类项,可得:2x=6,系数化为1,可得:x=3.(2)去分母,可得:6﹣(x﹣5)=3(x+1),去括号,可得:6﹣x+5=3x+3,移项,可得:﹣x﹣3x=3﹣6﹣5,合并同类项,可得:﹣4x=﹣8,系数化为1,可得:x=2.【点评】此题主要考查了解一元一次方程的方法,解答此题的关键是要明确解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.22.(2023秋•富川县期中)解方程:(1)3(x﹣1)﹣4=2(1﹣3x);(2)K74−5r82=1.【分析】(1)先去括号,再移项,合并同类项,把x的系数化为1即可;(2)先去分母,再去括号,移项、合并同类项,把x的系数化为1即可.【解答】解:(1)3(x﹣1)﹣4=2(1﹣3x),3x﹣3﹣4=2﹣6x,3x+6x=2+3+4,9x=9,x=1;(2)K74−5r82=1,x﹣7﹣2(5x+8)=4,x﹣7﹣10x﹣16=4,x﹣10x=4+16+7,﹣9x=27,x=﹣3.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解题的关键.23.(2022秋•丰都县期末)解下列方程:(1)2(x+3)=3(x﹣3);(2)K40.2−2.5=K30.05.【分析】(1)按解一元一次方程的步骤求解即可;(2)利用分数的基本性质先去分母,再按解一元一次方程的步骤求解即可.【解答】解:(1)去括号,得2x+6=3x﹣9,移项,得2x﹣3x=﹣6﹣9,合并同类项,得﹣x=﹣15,系数化为1,得x=15.(2)K40.2−2.5=K30.05,5(K4)5×0.2−2.5=20(K3)0.05×20,5(x﹣4)﹣2.5=20x﹣60,5x﹣20﹣2.5=20x﹣60,﹣15x=﹣37.5,x=2.5.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤是解决本题的关键.24.(2023秋•天河区校级期中)解方程:(1)4x=3x+7;(2)r12−2K13=1.【分析】(1)方程移项,合并同类项,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:(1)移项得:4x﹣3x=7,合并同类项得:x=7;(2)去分母得:3(x+1)﹣2(2x﹣1)=6,去括号得:3x+3﹣4x+2=6,移项得:3x﹣4x=6﹣3﹣2,合并同类项得:﹣x=1,解得:x=﹣1.【点评】此题考查了解一元一次方程,熟练掌握一元一次方程的解法是解本题的关键.25.(2023秋•南岗区校级期中)解方程:(1)2(x+6)=3(x﹣1);(2)K72−1+3=1.【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可;(2)去分母、去括号、移项、合并同类项,据此求出方程的解即可.【解答】解:(1)去括号,可得:2x+12=3x﹣3,移项,可得:2x﹣3x=﹣3﹣12,合并同类项,可得:﹣x=﹣15,系数化为1,可得:x=15.(2)去分母,可得:3(x﹣7)﹣2(1+x)=6,去括号,可得:3x﹣21﹣2﹣2x=6,移项,可得:3x﹣2x=6+21+2,合并同类项,可得:x=29.【点评】此题主要考查了解一元一次方程的方法,解答此题的关键是要明确解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.26.(2023秋•武昌区期中)解方程:(1)2x+10=2(2x﹣1);(2)K35−r42=−2.【分析】(1)去括号、移项、合并同类项、系数化为1,解出x的值即可;(2)去分母、去括号、移项、合并同类项、系数化为1,解出x的值即可.【解答】解:(1)2x+10=2(2x﹣1),去括号得:2x+10=4x﹣2,移项得:2x﹣4x=﹣2﹣10,合并同类项得:﹣2x=﹣12,系数化为1得:x=6;(2)K35−r42=−2.去括号得:2(x﹣3)﹣5(x+4)=﹣20,去括号得:2x﹣6﹣5x﹣20=﹣20,移项得:2x﹣5x=﹣20+20+6,合并同类项得:﹣3x=6,系数化为1得:x=﹣2.【点评】本题考查了解一元一次方程,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.27.(2023秋•金安区校级期中)解下列方程:(1)3x+5=5x﹣7;(2)3K23=r26−1.【分析】(1)方程移项合并,将x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)移项合并得:2x=12,解得:x=6;(2)去分母得:6x﹣4=x+2﹣6,移项合并得:5x=0,解得:x=0.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.28.(2023秋•西城区校级期中)解方程:(1)3x﹣4=2x+5;(2)K34−2r12=1.【分析】(1)移项,合并同类项即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)3x﹣4=2x+5,移项,得3x﹣2x=5+4,合并同类项,得x=9;(2)K34−2r12=1,去分母,得x﹣3﹣2(2x+1)=4,去括号,得x﹣3﹣4x﹣2=4,移项,得x﹣4x=4+3+2,合并同类项,得﹣3x=9,系数化成1,得x=﹣3.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.29.(2022秋•枣阳市期末)解方程:(1)2K13−10r16=2r14−1;(2)0.7−0.17−0.20.03=2.【分析】(1)按解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,求解即可;(2)先利用分数的基本性质,把分子、分母化为整数,再按解一元一次方程的一般步骤求解即可.【解答】解:去分母,得4(2x﹣1)﹣2(10x+1)=3(2x+1)﹣12,去括号,得8x﹣4﹣20x﹣2=6x+3﹣12,移项,得8x﹣20x﹣6x=3﹣12+4+2,合并,得﹣18x=﹣3,系数化为1,得x=16.(2)原方程可变形为:107−17−203=2,去分母,得30x﹣7(17﹣20x)=42,去括号,得30x﹣119+140x=42,移项,得30x+140x=119+42,合并,得170x=161,系数化为1,得x=161170.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤是解决本题的关键.30.(2022秋•虎丘区校级月考)解方程:(1)2K13=2r16−2;(2)2K50.6−3r10.2=10.【分析】(1)去分母,去括号,移项,合并同类项可得结果;(2)去分母,去括号,移项,合并同类项可得结果.【解答】解:(1)2K13=2r16−2,去分母得,2(2x﹣1)=2x+1﹣2×6,去括号得,4x﹣2=2x+1﹣12,移项得,4x﹣2x=1﹣12+2,合并同类项得,2x=﹣9,系数化为1得,=−92;(2)2K50.6−3r10.2=10,去分母得,2x﹣5﹣3(3x+1)=6,去括号得,2x﹣5﹣9x﹣3=6,移项得,2x﹣9x=6+5+3,合并同类项得,﹣7x=14,系数化为1得,x=﹣2.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1.31.(2023秋•鼓楼区期中)解方程:(1)2x﹣2(3x+1)=6;(2)r12−1=2−33.【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)2x﹣2(3x+1)=6,去括号,得2x﹣6x﹣2=6,移项,得2x﹣6x=6+2,合并同类项,得﹣4x=8,系数化成1,得x=﹣2;(2)r12−1=2−33,去分母,得3(x+1)﹣6=2(2﹣3x),去括号,得3x+3﹣6=4﹣6x,移项,得3x+6x=4﹣3+6,合并同类项,得9x=7,系数化成1,得x=79.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.32.(2022秋•连云港期末)解下列方程:(1)3(x+2)=5x;(2)r12−2=K34.【分析】(1)先去括号移项,然后合并后把x的系数化为1即可;(2)先去分母,再去括号,然后移项、合并后把x的系数化为1即可.【解答】解:(1)3(x+2)=5x,3x+6=5x,3x﹣5x=﹣6,﹣2x=﹣6,x=3;(2)r12−2=K34,2x+2﹣8=x﹣3,2x﹣x=﹣3﹣2+8,x=3.【点评】本题考查了解一元一次方程,掌握解一元一次方程的步骤是关键.33.(2022秋•射阳县校级期末)解方程:(1)2(x﹣2)=3x﹣7;(2)K12−2r36=1.【分析】(1)按照去括号、移项、合并同类项、系数化为1的步骤解一元一次方程;(2)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解一元一次方程即可求解.【解答】解:(1)2(x﹣2)=3x﹣7,去括号,得:2x﹣4=3x﹣7,移项,得:2x﹣3x=﹣7+4,合并同类项,得:﹣x=﹣3,系数化为1:x=3;(2)K12−2r36=1,去分母,得:3(x﹣1)﹣(2x+3)=6,去括号,得:3x﹣3﹣2x﹣3=6,移项,得:3x﹣2x=6+3+3,合并同类项,得:x=12.【点评】本题考查了解一元一次方程,掌握解一元一次方程的步骤是解题的关键.34.(2022秋•硚口区期中)解方程:(1)2﹣3(x+1)=1﹣2(1+0.5x);(2)3+K12=3−2K13.【分析】(1)根据去括号、移项、合并同类项、化系数为1的步骤解一元一次方程即可;(2)根据去分母、去括号、移项、合并同类项、化系数为1的步骤解一元一次方程即可.【解答】解:(1)去括号,得2﹣3x﹣3=1﹣2﹣x,移项、合并同类项,得﹣2x=0,化系数为1,得x=0,∴原方程的解为x=0;(2)去分母,得18x+3(x﹣1)=18﹣2(2x﹣1),去括号,得18x+3x﹣3=18﹣4x+2,移项、合并同类项,得25x=23,化系数为1,得=2325,∴原方程的解为=2325.【点评】本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤并正确求解是解答的关键.35.(2022秋•湖北期末)解方程:(1)2﹣(4﹣x)=6x﹣2(x+1);(2)r32−1=2−5−4.【分析】(1)通过去括号、移项、合并同类项、系数化成1,几个步骤进行解答;(2)通过去分母、去括号、移项、合并同类项、系数化成1,几个步骤进行解答.【解答】(1)解:去括号,得,2﹣4+x=6x﹣2x﹣2,移项,得,x﹣6x+2x=﹣2﹣2+4,合并同类项,得,﹣3x=0,系数化为1,得,x=0;(2)去分母得:2(x+3)﹣4=8x﹣(5﹣x),去括号得:2x+6﹣4=8x﹣5+x,移项得:2x﹣8x﹣x=﹣5﹣6+4,合并得:﹣7x=﹣7,解得:x=1.【点评】本题考查了解一元一次方程,解题关键是熟记解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化成1.36.(2023春•太康县期中)解方程:(1)3x﹣5=2x+3;(2)1−K32=2+3+2.【分析】(1)移项,合并同类项即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)3x﹣5=2x+3,移项得:3x﹣2x=3+5,合并同类项得:x=8;(2)1−K32=2+3+2,去分母得:6﹣3(x﹣3)=2(2+x)+12,去括号得:6﹣3x+9=4+2x+12,移项得:﹣3x﹣2x=4+12﹣6﹣9,合并同类项得:﹣5x=1,系数化成1得:x=−15.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.37.(2022秋•万源市校级期末)解方程(1)4﹣3(2﹣x)=5x(2)K22−1=r13−r86.【分析】(1)方程去括号,移项合并,将x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)方程去括号得:4﹣6+3x=5x,移项合并得:2x=﹣2,解得:x=﹣1;(2)去分母得:3(x﹣2)﹣6=2(x+1)﹣(x+8),去括号得:3x﹣6﹣6=2x+2﹣x﹣8,移项合并得:2x=6,解得:x=3.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.38.(2023秋•五华区校级期中)解方程:(1)7x+2(3x﹣3)=20;(2)2K13=3r52−1.【分析】(1)先去括号,再移项,合并同类项,把x的系数化为1即可;(2)先去分母,再去括号,移项,合并同类项,把x的系数化为1即可.【解答】解:(1)去括号得,7x+6x﹣6=20,移项得,7x+6x=20+6,合并同类项得,13x=26,x的系数化为1得,x=2;(2)去分母得,2(2x﹣1)=3(3x+5)﹣6,去括号得,4x﹣2=9x+15﹣6,移项得,4x﹣9x=15﹣6+2,合并同类项得,﹣5x=11,x的系数化为1得,x=−115.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解题的关键.39.(2023•开州区校级开学)解方程:(1)5x+34=2x+534;(2)K20.2=r10.5.【分析】(1)按照解一元一次方程的步骤:移项,合并同类项,系数化为1,进行计算即可解答;(2)先把分母的系数化为整数,然后再按照解一元一次方程的步骤进行计算,即可解答.【解答】解:(1)5x+34=2x+534,5x﹣2x=534−34,3x=5,x=53;(2)K20.2=r10.5,5x﹣10=2x+2,5x﹣2x=2+10,3x=12,x=4.【点评】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.40.(2023秋•镇海区校级期中)解方程:(1)3(20﹣y)=6y﹣4(y﹣11);(2)0.4r30.2−2=0.45−0.3.【分析】(1)方程去括号,移项合并,把y系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:60﹣3y=6y﹣4y+44,移项合并得:5y=16,解得:y=3.2;(2)去分母得:1.2x+9﹣1.2=0.9﹣2x,移项合并得:3.2x=﹣6.9,解得:x=−6932.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.41.(2022秋•张店区期末)解方程:(1)3(y﹣7)﹣5(4﹣y)=15;(2)r20.4−2K10.2=−0.5.【分析】(1)去括号,移项合并同类项,系数化为1即可得到答案;(2)去分母,去括号,移项合并同类项,系数化为1即可得到答案.【解答】解:(1)去括号得,3y﹣21﹣20+5y=15,移项得,3y+5y=15+21+20,合并同类项可得,8y=56系数化为1得,y=7;(2)去分母可得,10(x+2)﹣20(2x﹣1)=﹣2,去括号得,10x+20﹣40x+20=﹣2,移项得,10x﹣40x=﹣2﹣20﹣20,合并同类项得,﹣30x=﹣42,系数化为1得,=75.【点评】本题考查了解一元一次方程,掌握解一元一次方程的步骤是关键.42.(2022秋•莲湖区校级月考)解方程:(1)K32−2r13=1.(2)r12−3K14=1.【分析】(1)去分母、去括号、移项、合并同类项、系数化为1即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1即可求解.【解答】解:(1)K32−2r13=1,3(x﹣3)﹣2(2x+1)=6,3x﹣9﹣4x﹣2=6,3x﹣4x=6+9+2,﹣x=17,x=﹣17;(2)r12−3K14=1,2(x+1)﹣(3x﹣1)=4,2x+2﹣3x+1=4,﹣x=4﹣2﹣1,x=﹣1.【点评】本题考查了解一元一次方程,解答本题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a的形式转化.43.解下列方程:(1)2r13−10r16=1;(2)4K1.50.5−5K0.80.2=1.2−0.1.【分析】(1)利用等式的性质先去分母,再求解一元一次方程;(2)利用分数的基本性质去分母后,再解一元一次方程.【解答】解:(1)2r13−10r16=1,去分母,得2(2x+1)﹣(10x+1)=6,去括号,得4x+2﹣10x﹣1=6,移项,得4x﹣10x=6﹣2+1,合并同类项,得﹣6x=5,系数化为1,得x=−56;(2)4K1.50.5−5K0.80.2=1.2−0.1.去分母,得2(4x﹣1.5)﹣5(5x﹣0.8)=10(1.2﹣x),去括号,得8x﹣3﹣25x+4=12﹣10x,移项,得8x﹣25x+10x=12+3﹣4,合并同类项,得﹣7x=11,系数化为1,得x=−117.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤,灵活运用等式的性质和分数的性质去分母是解决本题的关键.44.解方程;(1)2K366−33−23=−1﹣x;(2)K10.2−r10.05=3.【分析】(1)利用等式的性质去分母后,求解一元一次方程;(2)利用分数的性质去分母后,求解一元一次方程.【解答】解:(1)2K366−33−23=−1﹣x,去分母,得2x﹣36﹣2(33﹣2x)=6(﹣1﹣x),去括号,得2x﹣36﹣66+4x=﹣6﹣6x,移项,得2x+4x+6x=﹣6+36+66,合并同类项,得12x=96,系数化为1,得x=8;(2)K10.2−r10.05=3.去分母,得5(x﹣1)﹣20(x+1)=3,去括号,得5x﹣5﹣20x﹣20=3,移项,得5x﹣20x=3+5+20,合并同类项,得﹣15x=28系数化为1,得x=−2815.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤,灵活运用等式的性质和分数的性质去分母是解决本题的关键.45.(2023春•周口月考)解方程:(1)34[2(+1)+13p=3;(2)3−2K83=−r54.【分析】(1)按照解一元一次方程的步骤,进行计算即可解答;(2)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答.【解答】解:(1)34[2(+1)+13p=3,32(x+1)+14x=3x,6(x+1)+x=12x,6x+6+x=12x,6x+x﹣12x=﹣6,﹣5x=﹣6,x=1.2;(2)3−2K83=−r54,36﹣4(2x﹣8)=﹣3(x+5),36﹣8x+32=﹣3x﹣15,﹣8x+3x=﹣15﹣36﹣32,﹣5x=﹣83,x=835.【点评】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.46.(2022秋•文登区期末)解方程:(1)4﹣2(x+4)=2(x﹣1);(2)13(+7)=25−12(−5);(3)0.3K0.40.2+2=0.5K0.20.3.【分析】(1)去括号,移项,合并同类项,系数化为1,求解即可;(2)去分母,去括号,移项,合并同类项,系数化为1,求解即可;(3)分母化为整数,去分母,去括号,移项,合并同类项,系数化为1,求解即可.【解答】解:(1)4﹣2(x+4)=2(x﹣1),去括号得:4﹣2x﹣8=2x﹣2,移项得:2x+2x=4﹣8+2,合并同类项得:4x=﹣2,系数化为1得:x=−12;(2)13(+7)=25−12(−5),去分母得:10(x+7)=12﹣15(x﹣5),去括号得:10x+70=12﹣15x+75,移项得:10x+15x=12+75﹣70,合并同类项得:25x=17,系数化为1得:x=1725;(3)0.3K0.40.2+2=0.5K0.20.3,分母化为整数得:3K42+2=5K23,去分母得:3(3x﹣4)+12=2(5x﹣2),去括号得:9x﹣12+12=10x﹣4,合并同类项得:9x=10x﹣4,移项、合并同类项得:x=4.【点评】本题考查了解一元一次方程,解题的关键是熟练掌握一元一次方程的解题步骤.47.解下列方程:(1)(5x﹣2)×30%=(7x+8)×20%;(2)34[43(14−1)+8]=73+23;(3)4K1.50.5−5K0.80.2=1.2−0.1.【分析】(1)方程去括号,移项,合并同类项,即可求出解;(2)方程去括号,去分母,移项,合并同类项,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)(5x﹣2)×30%=(7x+8)×20%,去括号得:15x﹣6=14x+16,移项得:15x﹣14x=16+6,合并同类项得:x=22;(2)34[43(14−1)+8]=73+23;去括号得:14x﹣1+6=73+23,去分母得:3x+60=28+8x,移项得:3x﹣8x=28﹣60,合并同类项得:﹣5x=﹣32,解得:x=325;(3)4K1.50.5−5K0.80.2=1.2−0.1.去分母得:2(4x﹣1.5)﹣5(5x﹣0.8)=10(1.2﹣x),去括号得:8x﹣3﹣25x+4=12﹣10x,移项得:8x﹣25x+10x=12﹣4+3,合并同类项得:﹣7x=11,解得:x=−117.【点评】此题考查了解一元一次方程,解决本题的关键是掌握解一元一次方程的步骤,为:去分母,去括号,移项合并,把未知数系数化为1,求出解.48.(2023春•朝阳区校级月考)解下列方程:(1)2x﹣19=7x+6;(2)4(x﹣2)﹣1=3(x﹣1);(3)K12=23+1;(4)2K13−10r112=2r14−1.【分析】(1)方程移项,合并同类项,把x系数化为1,即可求出解;(2)方程去括号,移项,合并同类项,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项,合并同类项,把m系数化为1,即可求出解;(4)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:(1)移项得:2x﹣7x=6+19,合并同类项得:﹣5x=25,解得:x=﹣5;(2)去括号得:4x﹣8﹣1=3x﹣3,移项得:4x﹣3x=﹣3+8+1,合并同类项得:x=6;(3)去分母得:3(m﹣1)=4m+6,去括号得:3m﹣3=4m+6,移项得:3m﹣4m=6+3,合并同类项得:﹣m=9,解得:m=﹣9;(4)去分母得:4(2x﹣1)﹣(10x+1)=3(2x+1)﹣12,去括号得:8x﹣4﹣10x﹣1=6x+3﹣12,移项得:8x﹣10x﹣6x=3﹣12+4+1,合并同类项得:﹣8x=﹣4,解得:x=0.5.【点评】此题考查了解一元一次方程,熟练掌握方程的解法是解本题的关键.49.(2023秋•香坊区校级月考)解方程:(1)3x﹣8=x+4;(2)1﹣3(x+1)=2(1﹣0.5x);(3)16(3−6)=25x﹣3;(4)3K14−1=5K76.【分析】(1)按照解一元一次方程的步骤:移项,合并同类项,系数化为1,进行计算即可解答;(2)按照解一元一次方程的步骤:去括号,移项,合并同类项,系数化为1,进行计算即可解答;(3)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答;(4)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答.【解答】解:(1)3x﹣8=x+4,3x﹣x=4+8,2x=12,x=6;(2)1﹣3(x+1)=2(1﹣0.5x),1﹣3x﹣3=2﹣x,﹣3x+x=2+3﹣1,﹣2x=4,x=﹣2;。
初中数学解一元一次方程经典练习题(含答案)
初中数学解一元一次方程经典练习题(含答案)解下列一元一次方程:1、3x+7 =2x+14;2、59 x + 2.5 = 23 x + 2.4;3、6(x+1)+7(x+2)= 8(x+3);4、x=2−x 3 + 2+x 4 ;5、2x +3(21+x )=6x +5(9+x );6、5−x 3 + 6-x = 1−x 2 + 20+x 4 ;7、23 [ x - 15( x +1)]= 14(x+14);8、4+3x−10.7 =2- 2x−30.5 ;9、5(x-2)+6x= 0.8(x+4)-3;10、3x+4(x+1)+5(x+2)=50;11、 13 - 15(16 x -1;12、1= x + x 2 + x 4 + x 6 + x12 ;参考答案1、3x+7=2x+14;解:3x+7=2x+143x-2x=14-7x=7故原方程的解是:x=72、59 x + 2.5 = 23 x + 2.4; 解:59 x + 2.5 = 23 x + 2.4 59 x - 23 x =2.4-2.5 5−2×39 x= -0.1 −19x= -0.1x= -0.9故原方程的解是:x= -0.93、6(x+1)+7(x+2)= 8(x+3);解:6(x+1)+7(x+2)= 8(x+3)6x+6+7x+14 =8x+2413x+20 =8x+2413x-8x=24-205x= 4x= 45故原方程的解是:x= 454、x= 2−x3 + 2+x4;解:x= 2−x3 + 2+x412x =4(2-x)+3(2+x)12x=8-4x+6+3x12x=14-x12x+x =1413x=14x= 1413故原方程的解是:x= 14135、2x +3(21+x)=6x +5(9+x);解:2x +3(21+x)=6x +5(9+x)2x+63+3x =6x+45+5x5x+63 =11x+455x-11x=45-63-6x= -18x=3故原方程的解是:x=36、5−x3 + 6-x = 1−x2+ 20+x4;解:5−x3 + 6-x = 1−x2+ 20+x4等式两边同时乘以124(5-x)+12(6-x)=6(1-x)+3(20+x)20-4x+72-12x =6-6x+60+3x-16x+92 =-3x+66-16x+3x =-92+66-13x= -26x=2故原方程的解是:x=27、23[ x - 15( x +1)]=14(x+14);解:23[ x - 15( x +1)]=14(x+14)等式两边同时乘以128 [ x - 15( x +1)]=3(x+14)8x- 85( x +1)=3x+42- 85( x +1)= 3x-8x+42- 85( x +1)= -5x+42等式两边同时乘以5-8(x+1)=5(-5x+42)-8x-8 =-25x+21025x-8x=210+817x=218x= 21817故原方程的解是:x=218178、4+ 3x−10.7 =2- 2x−30.5 ;解:4+ 3x−10.7 =2- 2x−30.5等式两边同时乘以0.7×0.54×0.7×0.5 +0.5(3x-1)=2×0.7×0.5 -0.7(2x-3)1.4+1.5x-0.5= 0.7-1.4x+2.10.9+1.5x= -1.4x+2.81.5x+1.4x=2.8-0.92.9x= 1.9x= 1929 故原方程的解是:x= 19299、5(x -2)+6x= 0.8(x+4)-3;解:5(x -2)+6x= 0.8(x+4)-35x-10+6x =0.8x+3.2-35x+6x-0.8x =3.2-3+10(5+6-0.8)x=10.210.2x=10.2x=1故原方程的解是:x=110、3x+4(x+1)+5(x+2)=50; 解:3x+4(x+1)+5(x+2)=503x+4x+4+5x+10=503x+4x+5x= 50-4-10(3+4+5)x= 3612x= 36x= 3故原方程的解是:x=311、 13 - 15(16 x -1;解: 13 - 15(16 x -1等号两边同时乘以15 - 15(16 x -1)] = x 等号左边去中括号(16 x -1)=x 等号左边去小括号- 16 x +1=x等号两边同时乘以2430x-4x+24=24x26x+24=24x2x= -24x= -12故原方程的解是:x= -1212、1= x + x2 + x4+ x6+ x12;解:1= x + x2 + x4+ x6+ x12等式两边同时乘以12 12=12x+6x+3x+2x+x12=24xx= 12故原方程的解是:x= 12。
人教版数学七年级上册3.3《解一元一次方程(二)》同步练习(有答案)
《解一元一次方程(二)》同步练习一、选择题1.解方程1443312=---x x 时,去分母正确的是( ) A .1129)12(4=---x x B .12)43(348=---x xC .1129)12(4=+--x xD .12)43(348=-+-x x2.将方程5)24(32=--x x 去括号正确的是( )A .52122=--x xB .56122=--x xC .56122=+-x xD .5632=+-x x3.将方程131212=--+x x 去分母正确的是( ) A .62216=+-+x x B .62236=--+x xC .12236=+-+x xD .62236=+-+x x4.解方程256133x x x -=--+,去分母所得结果正确的是( ) A .x x x -=+-+15132 B .x x x 315162-=+-+C .x x x -=--+15162D .x x x 315132-=+-+5.下列解方程的过程中正确的是( )A .将5174732+-=--x x 去分母得)17(4)75(52+-=--x x B .由102.07.015.03.0=--x x 得10027015310=--x x C .)28(2)73(540+=--x x 去括号得41671540+=--x xD .552=-x ,得225-=x 6.下列方程,解是0=x 的是( )A .8.034.057x x =- B .13423--=-x x C .()[]{}98765432=---x D .x x 322)73(72-=+ 7.方程)1(332+=-y y 的解是( )A .-6B .6C .54 D .0 8.式子33+x 的值比式子512-x 的值大1,则x 为( ) A .3 B .4 C .5 D .6 9.若代数式23-y 的值比312-y 的值大1,则y 的值是( ) A .15 B .13 C .-13 D .-1510.方程60)1(4)2(4=+--x x 的解是( )A .7=xB .76=x C .76-=x D .7-=x 11.若213+x 比322-x 小1,则x 的值为( ) A .513 B .-135 C .-513 D .135 12.某项工作甲单独做4天完成,乙单独做6天完成,若甲先做一天,然后甲、乙合作完成此项工作,若甲乙共做了x 天,所列方程为( )A .1641=++x x B .1614=++x x C .1614=-+x x D .161414=+++x x 13.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①1431040-=+m m ②4314010+=+n n ③4314010-=-n n ④1431040+=+m m 其中符合题意的是( ) (A )①② (B )③④ (C )①③ (D )②④14.若方程)23()12(3+-=++a x a x 的解是0,则a 的值等于( )A .51B .53C .-51D .-53 15.甲、乙两人骑自行车同时从相距65千米的两地相向而行,2小时相遇,若甲比乙每小时多骑2.5千米,则乙的时速是( )A .12.5千米/时B .15千米/时C .17.5千米/时D .20千米/时二、填空题1.____=m 时,式子212-m 的值是3; 2.如果4是关于x 的方程a a x x a 2)(353++=-的解,则____=a ;3.若x y x y -=+=8,3521,当1y 比2y 大于1时,____=x ;4.关于x 的方程054)2(2=-++k kx x k 是一元一次方程,则____=k5.若)9(312y --与)4(5-y 的值相等,则____=y6.当____=x 时,31-x 的值比21+x 的值大-3 7.当____=m 时,方程3445-=+x x 和方程)2(2)1(2-=-+m m x 的解相同.8.要使21+m 与23-m 不相等,则m 不能取的值是_______ 9.方程332=-x 与方程0331=--x a 有相同的解,则____=a . 10.某数x 的21倍比另一数y 的23倍多5,则____=y . 11.一个两位数,两个数位上的数字之和为12,且个位数字比十位数字大2,则这个两位数为________________;12.某商品先按批发价a 元提高10%零售,后又按零售价降低10%出售,则它最后的单价是___________.13.甲能在11天内完成此项工作,乙的工作效率比甲高10%,那么乙完成这项工作的天数为_______天.14.某超市规定,如果购买不超过50元的商品时,按全额收费,购买超过50元的商品时,超过部分按九折消费,某顾客在一次消费中向售货员交纳了212元,那么在此消费中该顾客购买的是价值________________元的商品.15.下面是甲商场电脑产品的进货单,其中进价一栏被墨迹污染.读了进货单后,请你求出这台电脑的进价,是__________元.元三、计算题1.解下列方程(1)521215++=--y y y (2)13.02.18.12.06.02.1=-+-x x (3)5162.15.032.08+-=--+x x x (4)23241233431=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x 2.解下列方程(1)250)104(2)3010(5-=--+x x(2)2233)5(54--+=--+x x x x (3)1612213-+=-x x (4)⎥⎦⎤⎢⎣⎡+-=⎪⎭⎫ ⎝⎛---4)3(551014224123x x x x (5)5:63:2=m(6)7:23:4t =(7))1(27)1(4)1(31)1(3+--=--+x x x x (8))1(32)1(2121-=⎥⎦⎤⎢⎣⎡--x x x 3.利用等式的性质解方程:(1))1(9)14(3)2(2x x x -=--- (2)37615=-y(3)14126110312-+=+--x x x (4)x x 5.12)73(72-=+ (5)103.02.017.07.0+-=x x (6)y y 535.244.2=-- 4.列方程求解:(1)已知6--x 的值与71互为倒数,求x ; (2)x 等于什么数时,133-+x 等于1752++x 的值? (3)x 取何值时,235x -和[])53(521--x x 互为相反数? (4)a 为何值时,关于x 的方程03=+a x 的解比方程0432=--x 的解大2? 5.已知2021at t v S +=,如果81,4,13===a t S ,求0v . 6.若4=y 是方程)(532m y m y -=-+的解,求13-m 的值. 四、应用题1.小王在超市中买了单价是2.8元的某品牌鲜奶若干袋,过了一段时间再去超市,发现这种鲜奶正进行让利销售,每袋让利0.3元,于是他比上次多买了2袋,却只比上次多花了2元钱,问上次买了多少袋这样的鲜奶?2.冷饮厅中A 种冰激凌比B 种冰激凌贵1元,小明和同学要了3个B 种冰激凌、2个A 种冰激凌,一共花了16元.两种冰激凌每个多少钱?3.班级的书架宽88厘米,某一层上摆满一种历史书和一种文学书,共90本.小明量得一本历史书厚0.8厘米,一本文学书厚1.2厘米.你知道这层书架上历史书和文学书各有多少本吗?4.一个两位数,十位上的数比个位上的数小1,十位与个位上的数的和是这个两位数的51,求这个两位数. 5.元旦期间,某商场搞优惠促销,决定由顾客抽奖确定折扣.某顾客购买甲、乙两种商品,分别抽到7折和9折,共付款386元,这两种商品的原销售价之和为500元.问,这两种商品的原销售价分别为多少钱?6.一个蓄水池装有甲、乙、丙三个进水管.单独开放甲管,45分钟可以注满全池;单独开放乙管,60分钟可以注满全池;单独开放丙管,90分钟可以注满全池.现将三管一齐开放,多少分钟可以注满水池?7.某中学开展校外植树活动,六年级学生单独种植,需要7.5小时完成;七年级学生单独种植,需要5小时完成.现在六年级、七年级学生先一起种植1小时,再由七年级学生单独完成剩余部分.共需多少时间完成?8.朝阳中学在预防“非典”的活动中,初二(2)班45名同学被平均分配到甲、乙、丙三处打扫环境卫生.甲处的同学最先完成打扫任务,班卫生委员根据实际情况及时把甲处的同学全部调到乙、丙两处支援,调动后乙处的人数恰好为丙处人数的1.5倍.问从甲处调往乙、丙两处各多少人?9.国家从多方面保障农民的根本利益,重视农业的发展.王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,共用去了44 000元.其中种茄子每亩用了1700元,获纯利2 400元;种西红柿每亩用了1800元,获纯利2 600元.你知道王大伯今年一共获纯利多少元吗?10.我国古代数学问题:有大小两种盛米的桶,已经知道5个大桶加上1个小桶可以盛3斛米,1个大桶加上5个小桶可以盛2斛米.问1个大桶、1个小桶分别可以盛多少斛米?选自《九章算术》卷七“盈不足”.“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”11.我国古代数学问题:好马每天走240里,劣马每天走150里.劣马先走12天,好马几天可以追上劣马?选自《算学启蒙》.“良马日行二百四十里,劣马日行一百五十里.努马先行一十二日,问良马几何日追及之.”12.在城市中公交车的发车间隔时间是一定的.小明放学后走在回家的路上,他发现每隔6分钟从后面开来一辆公交车,每隔2分钟从前面开来一辆公交车,他想,公交车到底是几分钟发车一辆呢?你能帮他计算一下吗?13.某工程队每天安排120个劳力修建水库,平均每天每个劳力能挖土5方或运土3方,为了使挖出的土及时运走,问应如何安排挖土和运土的劳力?14.一个两位数,十位数字比个位数字的4倍多1,将两个数字调换顺序后所得数比原数小63,求原数.15.某商店为了促销G牌空调机,2000年元旦那天购买该机可分期付款,在购买时先付一笔款,余下部分及它的利息(年利率为5.6%)在2001年元旦付清,该空调机售价每台8224元.若两次付款数相同,问每次应付款多少元?16.某商场出售某种文具,每件可盈利2元,为了支援贫困山区,现在按原售价的7折出售给一山区学校,结果每件盈利0.2元.问该文具每件的进货价是多少元?17.某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.在安全检查中,对4道门进行了测试.当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,1分钟内可以通过200名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤(尽管有老师组织),出门的效率将降低10%;安全检查规定,在紧急情况下全大楼的师生应在5分钟内通过这4道门安全撤离.假设每间教室可容纳50名学生,此校教师是学生数的10%,教师通过门的速度快于学生,问:建造的这4道门是否符合安全规定?参考答案一、选择题1.B 2.C 3.D 4.B 5.D 6.D 7.A 8.A 9.C10.D 11.C 12. A 13.B 14.D 15.B二、填空题1.27 2.-16 3.1 4.-2 5.25 6.413 7.38- 8.1 9.2 10.310-x 11.57 12.0.99a 13.10 14.答案:230.利用等量关系50元+九折消费=212元.设购买的是价值x 元的商品,则212%90)50(50=⨯-+x去括号整理得2079.0=x ,解得230=x (元).15.4470(设进价为x 元,则2101085850+=⨯x ,解得4470=x 三、计算题1.(1)两边乘以10得)2(210)1(52++=--y y y去括号,得95-=y 所以,59-=y(2)转化为1312182612=-+-x x 简化为14636=-+-x x 解得32=x (3)转化为5162.153********+-=--+x x x 去分母,得)16(212)3010(2)8010(5+-=--+x x x去括号整理得48032-=x ,解得15-=x(4)两边同乘以3,去掉中括号得632412334=-⎪⎭⎫ ⎝⎛-x 32-移到右边再乘以43,去掉小括号得 54123=-x 解得27=x 2.(1)10-=x (2)6=x (3)72-=x (4)4=x (5)8.1=m (6)314=t (7)5-=x (8)511=x 3.(1)10-=x (2)3=y (3)61=x (4)0=x (5)1714=x (6)4=y 4.(1)13,1)6(71-==--x x (2)36,1752133=++=-+x x x (3)10,0)]53(5[21235==--+-x x x x (4)解03=+a x 得,3a x -=,解0432=--x 得,6-=x ,依题意得2)6(3=---a ,∴12=a 5.3,48121413020=⨯⨯+=v v 6.将4=y 代入方程得)4(5324m m -=-+ 整理得m m 5202-=-,所以,29=m , 则22513=-m 四、应用题1.设上次买了x 袋鲜奶,则128.2)2)(3.08.2(=+=+-x x x2.设A 种冰激凌每个x 元,则8.3=x3.设书有x 本,则5088)90(2.18.0==-+x x x4.设个位数字为x ,则5])1(10[511=+-=-+x x x x x ,此数为45 5.设甲种商品的原售价为x 元,则320%38)500%(90%70==-+x x x6.设x 分可以注满水池,则201904560==++x x x x 7.设共需x 小时完成,则313)1(51515.711=-=⎪⎭⎫ ⎝⎛+-x x 8.设甲种调往乙处x 人,则12)1515(5.115=-+=+x x x9.设种茄子x 亩,则1044000)5(18001700==-+x x x ,总获利为:630002600)1025(240010=⨯-+⨯10.设1个小桶盛y 斛米,则247,3)52(5==+-y y y ,大桶可盛米:241352=-y 11.设好马x 天可以追上劣马,则1.20240)12(150==+⨯x x x12.设公交车x 分钟发车一辆,则32266=-=-x x x13.设安排x 人挖土,则安排)120(x -人运土,则75120,45),120(35=-=-=x x x x (人)14.设个位数字为x ,则十位数字为14+x .2,63])14(10[1410=-=++-++x x x x x ,所以原数是92.15.分析:设第一次付款x 元,则第二次付款%)6.51)(8224(+-x 元,由两次付款数相同,可得 %)6.51)(8224(+-=x x .解:设第一次付款x 元,则%)6.51)(8224(+-=x x解得4224=x答:每次应付款4224元.说明:本题是分期付款问题,是一道紧扣生活实际和社会热点的好题.16.分析:利用等量关系盈利=售价-进价.解:设每件文具进货价为x 元,则标价为)2(+x 元,则x x -⨯+=%70)2(2.0, 整理后,2.13.0=x ,所以,4=x (元).因此,该文具每件的进价为4元.17.(1)设平均每分钟一道正门可以通过x 名学生,则一道侧门可以通过)200(x -名学生,则560)]200(2[2=-+x x解得120=x (名) 80200=-x 名所以,平均每分钟一道正门可以通过120名学生,一道侧门可以通过80名学生(2)这栋楼可容纳50×8×4=1 600(名)师生总和为1 600+1 600×10%=1 760(名)5分钟4道门能通过(120+80)×2×5=2 000(名)拥护时可通过2 000×(1-10%)=1 800(名)而17601800>且教师出门又快于学生所以,建造的4道门符合规定.。
最新初一数学一元一次方程练习题及答案,非常难优秀名师资料
初一数学一元一次方程练习题及答案,非常难精品文档初一数学一元一次方程练习题及答案,非常难A卷一、填空题1、若2a与1?a互为相反数,则a等于2、y?1是方程2?3?m?y??2y的解,则m?3、方程2?4、如果3x2x?4,则x??4?0是关于x的一元一次方程,那么a?h中,已知S?800, a=30, h?20,则b?22a?25、在等式S?6、甲、乙两人在相距10千米的A、B两地相向而行,甲每小时走x千米,乙每小时走2x千米,两人同时出发1.5小时后相遇,列方程可得7、将1000元人民币存入银行2年,年利息为5,,到期后,扣除20,的利息税,可得取回本息和为9、某品牌的电视机降价10,后每台售价为2430元,则这种彩电的原价为每台元。
10、有两桶水,甲桶有水180升,乙桶有水150升,要使甲桶水的体积是乙桶水的体积的两倍,则应由乙桶向甲桶倒升水。
二、选择题1、下列方程中,是一元一次方程的是1 / 24精品文档2A、x?x?3?x?x?2? B、x??4?x??0 C、x?y?1 D、1?x?0 y2、与方程x?1?2x的解相同的方程是A、x?2?1?2xB、x?2x?1C、x?2x?1D、x?3、若关于x的方程mxm?2x?1?m?3?0是一元一次方程,则这个方程的解是A、x?0B、x?C、x??D、x?24、一队师生共328人,乘车外出旅行,已有校车可乘64人,如果租用客车,每辆可乘44人,那么还要租用多少辆客车,在这个问题中,如果还要租x辆客车,可列方程为A、44x?328?B、44x?64?32C、328?44x?D、328?64?44x5、小明在做解方程作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是:2y?115?y,怎么呢,小明想了一想,便翻看书后答案,此方程的解是y??,很快补好了这个223常数,并迅速地完成了作业,同学们,你们能补出这个常数吗,它应是A、1B、C、3D、47、把方程xx?1??1去分母后,正确的是。
七年级数学上册解一元一次方程去括号与去分母练习题
七年级数学上册解一元一次方程去括号与去分母练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.有理数a 在数轴上的对应点的位置如图所示,化简2a a --的结果是______.2.把同类项的系数_______,所得的结果作为_____,字母和字母的指数______.3.有理数a 满足等式|-4|2|-1|a a =,则a 所有可能的值为____.4.若x =3是关于x 的一元一次方程mx ﹣n =3的解,则代数式10﹣3m +n 的值是___.5.若关于x 的方程()22x m x +=-的解满足方程112x -=,则m 的值是________. 6.定义:对于任意两个有理数a ,b ,可以组成一个有理数对(a ,b ),我们规定(a ,b )=a +b -1.例如(2,5)2512-=-+-=.根据上述规定解决下列问题:(1)有理数对(2,1)-=_______;(2)当满足等式(5,32)5x m -+=的x 是正整数时,则m 的正整数值为_______.二、单选题7.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图有3张黑色正方形纸片,第2个图有5张黑色正方形纸片,第3个图有7张黑色正方形纸片,…,按此规律排列下去,若第n 个图中有201张黑色正方形纸片,则n 的值为( )A .99B .100C .101D .1028.一本故事书,小明看了全书的14后,还剩90页没有看,这本故事书的总页数为( )A .360B .120C .72D .1509.若方程2(21)33x x +=+的解与关于x 的方程262(3)k x +=+的解相同,则k 的值为( )A .1B .1-C .7D .7-10.数学实践活动课上,陈老师准备了一张边长为a 和两张边长为()b a b >的正方形纸片如图1、图2所示,将它们无重叠的摆放在矩形ABCD 内,矩形未被覆盖的部分用阴影表示,设左下阴影矩形的周长为1l ,右上阴影矩形的周长为2l .陈老师说,如果126l l -=,求a 或b 的值.下面是四位同学得出的结果,其中正确的是( )A .甲:6a =,4b =B .乙:6a =,b 的值不确定C .丙:a 的值不确定,3b =D .丁:a ,b 的值都不确11.下列说法中,不正确的个数是( ) ①若a +b =0,则有a ,b 互为相反数,且a b=﹣1;①若|a |>|b |,则有(a +b )(a ﹣b )是正数;①三个五次多项式的和也是五次多项式;①a +b +c <0,abc >0,则||ab ab ﹣||bc bc +||ac ac ﹣||abc abc 的结果有三个;①方程ax +b =0(a ,b 为常数)是关于x 的一元一次方程.A .1个B .2个C .3个D .4个12.如图,已知数轴上点A 表示的数为a ,点B 表示的数为b,(a ﹣10)2+|b +6|=0.动点P 从点A 出发,以每秒8个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.若点P 、Q 同时出发,当P 、Q 两点相距4个单位长度时, t 的值为( )A .3B .5C .3或5D .1或53三、解答题13.解方程:(1)()()413217x x --+=; (2)12123x x -+-=. 14.求未知数x . (1)916x =1336(2)(1-23)x =20 (3)58+2x =7815.已知关于x 的方程2233x m x x ---=的解是非负数,m 是正整数,求m 的值.参考答案:1.2-【分析】由题意可得a >2,利用绝对值化简可求解.【详解】解:由题意可得:a >2,222,a a a a --=--=-∴故答案为:2-【点睛】本题考查绝对值的化简,利用数轴比较数的大小从而正确化简计算是解题关键.2. 相加 系数 保持不变【解析】略3.2±【分析】根据绝对值的性质分类讨论,去掉绝对值符号,即可求解.【详解】当4a ≥时,()421a a -=-,解得:2a =-,不合题意,舍去;当14a ≤<时,()421a a -=-,解得:2a =;当1a <时,()421a a -=--,解得:2a =-;综上,2a =±,故答案为:2±.【点睛】本题考查了绝对值的应用,对a 的取值分类讨论是解题的关键.4.7【分析】根据题意得到﹣3m +n =﹣3,然后代入代数式10﹣3m +n 求解即可.【详解】解:由题意得:3m ﹣n =3,①﹣3m +n =﹣3,①原式=10﹣3=7.故答案为:7.【点睛】此题考查了一元一次方程的解的含义以及解一元一次方程,解题的关键是熟练掌握一元一次方程的解的含义.5.14或134 【分析】根据112x -=解出x 的值,代入()22x m x +=-,即可求解 【详解】解112x -=,得 112x -=±, 112x ∴=±+, 32x ∴= 或12x =-, 代入()22x m x +=-,得22x m x +=+, 134m ∴= 或14, 故答案为14或134. 【点睛】本题考查解绝对值方程与根据解的情况求解参数,属于基础题.6. 0 1或4##4或1【分析】(1)根据定义求解即可;(2)由定义可得53215x m -++-=,解方程得1123m x -=,再由题意,可得1123,1129m m -=-=,求出相应的m 值即可.【详解】解:(1)①(a ,b )=a +b -1①(2,1)=2+(1)1=11=0----故答案为:0;(2)①(5,32)5x m -+=①53215x m -++-= ①1123m x -= ①x 是正整数,m 的值也是正整数①1123,1129m m -=-=解得,41m m ==,故答案为:4或1【点睛】本题考查新定义,理解定义,将所求问题转化为一元一次方程进行求解即可.7.B【分析】仔细观察图形知道第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,由此得到规律,第n 个图形中正方形的个数为201求解即可.【详解】解:观察图形知:第一个图中有3=1+2×1个正方形,第二个图中有5=1+2×2个正方形,第三个图中有7=1+2×2个正方形,…故第n 个图中有1+2×n =2n +1=201(个)正方形,解得n =100故选B .【点睛】此题主要考查了图形的变化规律,是根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.8.B【分析】设这本故事书共有x 页,根据总页数-已经看的页数=还没有看的页数,列方程运算即可.【详解】解:设这本故事书共有x 页,根据总页数-已经看的页数=还没有看的页数, 列方程为1904x x -=, 解得120x =.故选:B .【点睛】本题主要考查一元一次方程的实际应用,属于基础题,比较简单,根据题意列出合适的方程是解题的关键.9.A【分析】先解方程2(21)33x x +=+可得1x =,再将1x =代入方程262(3)k x +=+,得262(13)k +=⨯+,由此即可求得k 的值.【详解】解:2(21)33x x +=+,去括号,得:4233x x +=+,移项,得:4332x x -=-,合并同类项,得:1x =,将1x =代入方程262(3)k x +=+,得:262(13)k +=⨯+,整理,得:268k +=,解得:1k =,故选:A .【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的基本步骤(去分母、去括号、移项、合并同类项,系数化为1)是解决本题的关键.10.C【分析】设左下阴影矩形的宽为x ,则AB =CD =a +x , 分别表示出左下阴影矩形的周长为1l ,右上阴影矩形的周长为2l ,根据已知条件即可求得3b =,进而即可求解.【详解】设左下阴影矩形的宽为x ,则AB =CD =a +x ,∴右上阴影矩形的宽为a +x -2b∴左下阴影矩形的周长l1=2(a +x ),右上阴影矩形的周长l 2=2(a +x -b )∴l 1-l 2=2(a +x )-2(a +x -b )=2b ,即2b =6,解得b =3,此时a 不确定,故选C.【点睛】本题考查了整式加减的应用,一元一次方程的应用,数形结合是解题的关键.11.C【分析】根据相反数的概念、平方差公式、合并同类项、一元一次方程的概念判断.【详解】解:①若a +b =0,则有a ,b 互为相反数,当a =b =0时,a b无意义,不正确; ①①|a |>|b |,①a 2>b 2,①(a +b )(a ﹣b )=a 2﹣b 2>0,是正数,正确;①(2a 5+a ﹣3)+(﹣a 5+2a ﹣3)+(﹣a 5+a 2﹣30)=a 2+3a ﹣36,则三个五次多项式的和不一定是五次多项式,不正确;①当a +b +c <0,abc >0时,a 、b 、c 有一个正数、两个负数,当a>0,b<0,c<0时,原式=-1-1-1-1=-4;当a<0,b>0,c<0时,原式=-1+1+1-1=0;当a<0,b<0,c>0时,原式=1+1-1-1=-2; ①||ab ab ﹣||bc bc +||ac ac ﹣||abc abc 的结果有三个,正确; ①方程ax +b =0(a ,b 为常数),当a =0时,不是关于x 的一元一次方程,不正确;故选:C .【点评】本题考查了相反数的概念、绝对值的定义、平方差公式、整式的加减、一元一次方程的概念,熟练掌握定义是解答本题的关键.12.C【分析】根据(a ﹣10)2+|b +6|=0,得a =10,b =﹣6,由已知得P 表示的数是10﹣8t ,Q 表示的数是﹣6﹣4t ,而P 、Q 两点相距4个单位长度,故可列方程|(10﹣8t )﹣(﹣6﹣4t )|=4,即可解得答案.【详解】解:①(a ﹣10)2+|b +6|=0,①a ﹣10=0,b +6=8,①a =10,b =﹣6,①动点P 从点A 出发,以每秒8个单位长度的速度沿数轴向左匀速运动,以每秒8个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒6个单位长度的速度沿数轴向左匀速运动,①P 表示的数是10﹣8t ,Q 表示的数是﹣6﹣6t ,①|(10﹣8t )﹣(﹣6﹣6t )|=4,即|16﹣4t |=6,解得t =3或t =5,故选:C .【点睛】本题考查了数轴上两点间的距离,一次方程的应用,解题的关键是用含t 的代数式表示P 、Q 表示的数,再列方程解决问题.13.(1)x =-7;(2)x =1.【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.(1)解:去括号,得:4x -4-6x -3=7,移项,得:4x -6x =7+4+3,合并同类项,得:-2x =14,系数化为1,得:x=-7.(2)解:去分母,得:6-3(x-1)=2(x+2),去括号,得:6-3x+3=2x+4,移项,得:-3x-2x=4-6-3,合并同类项,得:-5x=-5,系数化为1,得:x=1.【点睛】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.14.(1)x=52 81(2)x=60(3)x=1 8【分析】(1)将系数化为1即可求出答案;(2)将系数化为1即可求出答案;(3)移项,将系数化为1即可求出答案.(1)解:916x=133613165236981x=⨯=;(2)解:(1-23)x=20120 3x=60x=;(3)解:58+2x=78 124 x=18x . 【点睛】本题主要考查解一元一次方程,掌握解一元一次方程的方法是解题的关键. 15.m 的值为1或2【分析】先求出方程2233x m x x ---=的解,再由x 为非负数,可得到关于m 的不等式,解出即可. 【详解】解:2233x m x x ---= 去分母得:()322x x m x --=- , 解得:x =22m -, 因为x 为非负数,所以22m -≥0,即m ≤2, 又m 是正整数,所以m 的值为1或2.【点睛】本题主要考查了方程的解和解一元一次不等式,根据题意得到关于m 的不等式是解题的关键.。
人教版七年级数学试题:3.4列一元一次方程解应用题(含答案)
列一元一次方程解应用题专项练习1.小葫芦艺术团在世纪广场组织了一场义演为“灾区”募捐活动,共售出3000张门票,已知成人票每张15元,学生票每张6元,共收入票款34200元,问:成人票和学生票各多少张?2.某校3班举办了一次集邮展览,展出的邮票若平均每人3张则多24张,若平均每人4张则少26张,这个班级有多少名学生?一共展出了多少张邮票?3.某商场一种品牌的服装标价为每件1000元,为了参与市场竞争,商场按标价的8.5折(即标价的85%)再让利40元销售,结果每件服装仍可获利20%,这种服装每件的进价是多少元?4.如图,小明将一张正方形纸片剪去一个宽为3cm的长条后,再从剩下的长方形纸片上剪去一个宽为4cm的长条,如果两次剪下的长条面积正好相等,求原正方形的面积.5.甲乙两地相距240千米,从甲站开出一列慢车,速度为每小时80千米,从乙站开出一列快车,速度为每小时120千米.(1)若两车同时开出,背向而行,经过多长时间两车相距540千米?(2)若两车同时开出,同向而行(快车在后),经过多长时间快车可追上慢车?(3)若两车同时开出,同向而行(慢车在后),经过多长时间两车相距300千米?6.甲乙两个工厂,去年计划总产值为360万元,结果甲厂完成了计划的112%,乙厂比原计划增加了10%,这样两厂共完成的产值为400万元,求去年两厂各超额完成产值多少万元?7.一小船由A港到B港顺流需行6小时,由B港到A港逆流需行8小时,如果小船在静水中航行的速度为14km/h.问A、B两港之间的距离是多少km及小船在顺流时的速度比逆流时的速度快多少?8.一项工作,如果由甲单独做,需7.5小时完成;如果由乙单独做.需要5小时完成.如果让甲、乙两人一起做1小时,再由乙单独完成剩余部分,还需多长时间完成?9.某车间20个工人生产螺钉和螺母,每人每天平均生产螺母800个或螺钉600个,一个螺钉要配2个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉呢?10.足球循环赛中,A队胜B队,比分为3:1(即A队进3球,B队进1球);B队胜C队,比分为2:0,C队胜A队,比分为1:0;计算各队在这轮循环中的净胜球数.11.某商店在某一时间以每件60元的价格卖两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?12.有一些分别标有5,10,15,20,25,…的卡片,后一张卡片上的数比前一张卡片上的数大5,小明拿到了相邻的3张卡片,且这些卡片上的数字之和为240.(1)小明拿到了哪3张卡片?(2)你能拿到相邻的3张卡片,使得这些卡片上的数之和是63吗?13.走进采花毛尖销售部,打开中秋礼盒,4个小巧精致的圆圆月饼和1袋精美大气的采花毛尖茶就呈现在眼前。