八年级下学期期末数学试卷(含答案)

合集下载

湖北省武汉洪山区2023-2024学年八年级下学期期末数学试题(含答案)

湖北省武汉洪山区2023-2024学年八年级下学期期末数学试题(含答案)

洪山区2023—2024学年度第二学期期末质量检测八年级数学试卷2024.06.27亲爱的同学:在你答题前,请认真阅读下面的注意事项.1.本卷共6页,24题,满分120分.考试用时120分钟.2.答题前,请将你的学校、班级、姓名、考号填在试卷和答题卡相应的位置,并核对条码上的信息.3.答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.答在“试卷”上无效、4.认真阅读答题卡上的注意事项.预祝你取得优异成绩!第Ⅰ卷(选择题共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.若式子a+1有意义,则a的取值范围是()A.a≥1B.a≤-1C.a≠-1D.a≥-12.下列各式计算正确的是()A.2+2=4B.6÷3=2C.35×25=65D.8―2=23.下表记录了甲、乙、丙、丁四位选手各10次射击成绩的数据信息.选手甲乙丙丁平均数(环)9.69.69.39.3方差(环²)0.0340.0320.0340.032请你根据表中数据选一人参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁4.△ABC的三边分别为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.a=1,b=2,c=5B.a=3,b=4,c=5C.c²―a²=b²D.∠B:∠C:∠A=1:3:45.在Rt△ABC中,∠BAC=90°,∠B=60°,AC=3,则AB=()A.1B.2C.3D.236.若一次函数y=2x+b的图象不经过第二象限,则b的取值范围为()A.b<0B.b≤0C.b≥0D.b>07.已知四边形ABCD,下列条件能判定它是平行四边形的是()A.AB∥CD,AB=CDB.∠A=∠D,∠B=∠CC.AB∥CD,AD=BCD.AB=CD,∠A=∠C8.一个有进水管和出水管的容器,从某时刻开始3min内只进水不出水,在随后的5min内既进水又出水,最后的5min 只出水不进水,每分钟的进水量和出水量不变.容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示,则在整个过程中,容器内水量最多有()L.A.9.5B.10C.11D.129.如图,函数y =|kx ―b |(k ≠0)的图像与x 、y 轴分别交于点B 和A (0,3)两点,与函数y =12x 交于点C 、D ,若D 点纵坐标为1,则|kx ―b |≤12x 的解集为()A .56≤x ≤52B .56≤x ≤2C .65≤x ≤2D .65≤x ≤5210.如图,有5块正方形连在一起的钢板余料,要求分割成若干小块后能拼接成与原图形面积相等的正方形,下列四种分割的方法符合要求的有()种?(沿虚线分割,忽略接缝不计)A.1B.2C.3D.4第Ⅱ卷(非选择题共90分)二、填空题(共6小题,每小题3分,共18分)将答案直接写在答题卡指定的位置上.11.计算9的结果为______12.某次比赛中,赵海的得分为:演讲内容90分,演讲能力91分,演讲效果93分,若演讲内容、演讲能力、演讲效果按照2:2:1的比确定,则赵海的最终成绩是______分.13.某水库的水位在最近5小时内持续下降,水库的初始水位高度为10米,水位以每小时0.2米的速度匀速下降,则该水库的水位高度y(米)与时间x(小时)(0≤x≤5)的函数关系式为______.14.如图,矩形ABCD的对角线AC、BD交于点O,过点O作OF⊥AC交BC于点F.若AB=12,AD=18,则FC长为______.15.已知直线l:y=kx―k+1,下列四个结论:①直线一定经过第一象限;②关于x、y的方程组{y=kx―k+1x+y=2的解为{x=1y=1;③若点A(x₁,y₁),B(x₂,y₂)在直线l上,当x₁<x₂时,y₁>y₂;④若直线l向下平移2个.其中正确的是______.(填写序号)单位后过点(2,m),且不等式kx―k+1<m的解集为x>5,则k=―2316.如图,在平行四边形ABCD中,AB=5,AD=4,∠B=60°,点E,F分别为AB,BC边上的一点,连接EF.点B关于EF的对称点P恰好落在CD上.当BE最小时,求PF的长为______.三、解答题(共8小题,共72分)在答题卡指定的位置上写出必要的演算过程或证明过程.17.(本题满分8分)计算:(1)(26―4)÷2;―48.(2)27+61318.(本题满分8分)如图,点P(x,y)在第一象限,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S.(1)当点P的横坐标为5时,△OPA的面积为多少?(2)若△OPA的面积大于9,请求出x的取值范围.19.(本题满分8分)某校对初中生进行综合素质评价,划分为A,B,C,D四个等级,现从全体学生中随机抽取部分学生,调查他们的等级评定情况,将收集的数据整理后,制作了如下不完整的统计表和统计图.等级结果人数A优秀24B良好18C合格aD待合格b请根据图中提供的信息解答下列问题:(1)本次抽取的学生共有______人,表中a的值为______;(2)所抽取学生等级的众数落在______等级(填“A”,“B”,“C”或“D”);(3)若该校共有900名学生,请估计其中B等级的学生人数.20.(本题满分8分)已知四边形ABCD,(1)如图(1),若AC=BD,点E、F、G、H分别为AB、BC、CD、DA的中点,判断四边形EFGH的形状,并说明理由.(2)如图(2),若AC⊥BD于O,AB=4,CD=6,求BC²+AD²的值.21.(本题满分8分)如图是由小正方形组成的5×7网格,每个小正方形顶点叫做格点.三角形ABC的三个顶点都在格点上.仅用无刻度的直尺在给定网格中完成画图(画图过程用虚线表示,画图结果用实线表示).(1)在图(1)中,作△ABC的高AD;在AB边上找一点E,使得DE=BE;(2)在图(2)中,P是边AB上一点,∠ABC=α.先将线段AB绕点B顺时针旋转2α,得到线段BH,画出线段BH;再画点Q,使P,Q两点关于直线BC对称.22.(本题满分10分)为响应节能减排的号召,某品牌汽车4S店准备购进A型和B型两种不同型号电动汽车共30辆进行销售.两种型号汽车的进价和售价如下表:进价(万元/辆)售价(万元/辆)A型1617.8B型2729.6(1)如果该4S店购进30辆两种型号电动汽车共花费612万元,那么购进A和B型号电动汽车各多少辆?(2)为保证A型电动汽车购进量不少于B型电动汽车购进量的2倍但不超过B型电动汽车购进量的4倍,那么30辆车全部售出后,求购进多少辆A型电动汽车可使销售利润最大,最大利润是多少?(3)在(2)的条件下,实际销售时,政府大力补贴,A型电动汽车的进价下调a万元(0<a<1),请你设计出销售利润最大的进货方案.23.(本题满分10分)在矩形ABCD中,AD=4,E为BC边上一点,将ΔCDE沿DE折叠得△FDE,(1)如图(1),若CD=42,点F在AB边上,求AF长度;(2)如图(2),若点F在矩形ABCD外部,DF,EF分别与AB于点P、T,且CD=2EC,PF=BE,求CE 长度;(3)如图(3),若CD=AD=4,取AD中点K,作KQ⊥KF且KQ=KF,当AQ取最小值时,直接写出BF 长度.24.(本题满分12分)如图,平面直角坐标系中,点A,B的坐标分别为(0,2),(-4,0),以AB为边作菱形ABCD,菱形中心为坐标原点,点C在y轴负半轴上,点D在x轴正半轴上.(1)直接写出D点坐标______;直线AD的函数解析式______;(2)①在直线AB上找一点E,连CE,若∠ECO+∠ODC=45°,求点E的坐标;②点E为AB边上的任一点,将点E绕原点O顺时针旋转90°得到点Q,试证明点Q在一条定直线上运动,若EQ中点为T,求出O T最小值.答案一、选择题1.A 2.B 3.A 4.D 5.D 6.C 7.C 8.B 9.C 10.A二、填空题11.12.13.8814.2915.①③④16.三、解答题17.(1)解:原式(2)解:原式18.(1)解:四边形为菱形.理由如下:如图,连接,交于点,四边形是菱形,,又,又,四边形为平行四边形,平行四边形为菱形.(2)已知,,在中,由勾股定理得,,19.解:(1)由题意得,(名),答:一共抽取了200名学生;(2)(名),2321y x =+72=+-===AECF AC BD O Q ABCD ,,AC BD AO OC BO OD ∴⊥==BE FD =Q ,BE BO FD DO EO OF ∴-=-∴=AO OC =Q ∴AECF Q AC BD ⊥∴AECF 5,12AD EF ==1,2ED BD ED FB ==Q 1112344OD EF ∴==⨯=Rt ADO △4AO ==8AC ∴=1242ABCD S BD AC ∴=⋅=菱形4020%200÷=20030%60⨯=补全条形统计图如下:(3)(名),答:全校喜欢篮球的大约有1050名学生.20.解:(1)把代入中,得解得:,与的函数关系式为:;(2)当弹簧长度为时,即,解得:,当弹簧长度为时,所挂物体的质量为.21.解:(1)(2)(3)(每小题2分)(4.22.解:(1)由题意可知:(2)由题意得,解之得又,为整数,300070/2001050⨯=0,15;2,19x y x y ====y kx b =+219,15k b b +=⎧⎨=⎩215k b =⎧⎨=⎩∴y x 215y x =+20cm 21520y x =+=2.5x =∴20cm 2.5kg 400200(12)300(2)250(8)W x x x x =+⨯-+⨯-+⨯-2503800.W x ∴=+25038005000x +≤ 4.8x ≤20,2 4.8x x -≥∴≤≤Q x可取,共有三种调运方案.(3)中,是的一次函数,又,则随的值增大而增大,当时,的值最小,最小值是元.此时的调运方案是:市运往市0台,运往市6台;市运往市10台,运往市2台23.解:(1)(2)①②结论:.理由如下:如图,过点作,交与点.由轴对称知,,在正方形中,,又,为等腰直角三角形,,在Rt 中,由勾股定理得,,.24.解:(1)由得,即,,设的解析式为,将的坐标代入解析式,得∴x 2,3,4Q 2503800W x =+W x 2500≥W x 2x =W 250238004300W =⨯+=B C D A C D 45AGD ∠=︒135AGD ∠=︒FG DG -=A AM AG ⊥FD M ,,AE BF AB AF AFB ABF ⊥=∠=∠Q ABCD ,90AB AD BAD =∠=︒AD AF ∴=AFD ADF∴∠=∠90AFB ABF AFD ADF ∠+∠+∠+∠=︒45BFD ∴∠=︒9045AGF BFD ∴∠=︒-∠=︒AMG ∴△,135AM AG AGD AMF ∴=∠=∠=︒(AAS)AMF AGD ∴△≌△FM DG∴=FG DG MG∴-=AMG △222AM AG MG +=AM AG =Q MG ∴=FG DG ∴-=2(2)0a -=2,6a b ==(2,2)A -(0,6)B 21y kx b =+,A B解得的解析式为(2)作,则到的距离等于到的距离,,过,的解析式为,又在直线上,点的坐标为,当在的左侧时,求得点的坐标为,点的坐标为或.(3)存在.如图,若直线与轴交于点,过点作,交轴于点,过点作,交于点,过点作轴,作点关于轴的对称点,连接交于点.轴,,,,22,6k b b -+=⎧⎨=⎩26k b =⎧⎨=⎩∴2126y x =+BP AO ∥P AO B AO AOP AOBS S ∆∆∴=Q PB AO ∥PB (0,6)B ∴PB 6y x =-+P 8y =2,x ∴=-∴P (2,8)-P AO P (14,8)-∴P (2,8)-(14,8)-21x C B 45ABN ∠=︒x N C DC CB ⊥BN D D DE x ⊥N y F BF AO M BO x ⊥Q 90BOC CED BCD ∴∠=∠=∠=︒90CBO BCO ECD BCO ∠+∠=∠+∠=︒CBO ECD∴∠=∠45,ABN DC CB ∠=︒⊥Q CB CD∴=(AAS)CBO DCE ∴△≌△6,3CE OB DE CO ∴====(3,3)D ∴-设的解析式为,将代入解析式可得.解得直线的解析式为,当时,,点关于轴的对称点的坐标为.设的解析式为,将代入解析式可得.解得直线的解析式为,联立,解得BD 11y k x b =+(0,6),(3,3)B D -111336k b b +=-⎧⎨=⎩113,6k b =-=∴BD 36y x =-+0y =2,(2,0)x N =∴∴N y F (2,0)-BF 22y k x b =+(0,6),(2,0)B F -222206k b b -+=⎧⎨=⎩223,6k b ==∴BF 36y x =+36y x y x=+⎧⎨=-⎩33,22x y =-=33,.22M ⎛⎫∴- ⎪⎝⎭。

八年级数学下册期末考试卷(附带有答案)

八年级数学下册期末考试卷(附带有答案)

八年级数学下册期末考试卷(附带有答案)(满分: 120 分 考试时间: 120 分钟)一、选择题1、 以下问题,不适合用普查的是( )A. 了解全班同学每周体育锻炼的时间B. 旅客上飞机前的安检C. 学校招聘教师,对应聘人员面试D. 了解全市中小学生每天的零花钱 2、 下列图案中,不是中心对称图形的是( )3A. 全体实数B.x≠1C.x=1D. x >14、 把 118化为最简二次根式得( )1 1 1 1A. 18 18B. 18C. 2D.18 6 3 25、 若反比例函数y = (2m 1)x m 2-2 的图象在第二,四象限,则 m 的值是( )A. −1 或 1B. 小于 12 的任意实数C. −1D. 不能确定k6、 如图,在同一直角坐标系中,正比例函数 y=kx+3 与反比例函数 y = 的图象位置可能是( )x第 1 页 共 12 页3、 如果分式 有意义,则 x 的取值范围是( ) x 1第 2 页 共 12 页A. 1B. 2C. 一、填空题9、 当 x 时,分式 3 D. 4x 1的值为 0. x10、 若 x = 5 3 ,则 x 2 + 6x + 5 的值为 .12、 袋子里有 5 只红球,3 只白球,每只球除颜色以外都相同,从中任意摸出 1 只球,是红球的可能性 (选 填“大于”“小于”或“等于”)是白球的可能性。

13、 矩形 ABCD 的对角线 AC 、BD 交于点 O , ∠AOD =120 ,AC =4,则△ABO 的周长为 .14、 若关于 x 的分式方程 有增根,则.15、 某校高一年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分 100 分,学生成绩取整数),则成绩在 90.5 95.5 这一分数段的频率是a + 3b c11、 若 a:b:c=1:2:3,则 =a 3b + c第 3 页 共 12 页2 和 y =x△PAB 的面积是 3,则 k = .17、 图 1 所示矩形 ABCD 中, BC =x ,CD =y ,y 与 x 满足的反比例函数关系如图 2 所示,等腰直角三角形 AEF 的斜边 EF 过 C 点, M 为 EF 的中点,则下列结论正确的序号是 . ①当 x =3 时, EC <EM③当 x 增大时, EC ⋅CF 的值增大18、 如图 1,边长为 a 的正方形发生形变后成为边长为 a 的菱形,如果这个菱形的一组对边之间的距离为h , a我们把 的值叫做这个菱形的“形变度”。

八年级数学下学期期末测试卷(含答案)

八年级数学下学期期末测试卷(含答案)

八年级数学下学期期末测试卷题号一二三总分得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 木工师傅想利用木条制作一个直角三角形,那么下列各组数据不符合直角三角形的三边长的是( )A. 3,4,5B. 6,8,10C. 5,12,13D. 7,15,172. 要使二次根式√ 2x−4在实数范围内有意义,则x的取值范围是( )A. x>2B. x≥2C. x<2D. x=23. 下列各式计算正确的是( )A. √ 2+√ 3=√ 5B. 2+√ 2=2√ 2C. 3√ 2−√ 2=2√ 2D. √ 12−√ 10=√ 6−√ 524. 数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是( )A. x=20B. x=5C. x=25D. x=155. 甲、乙、丙、丁四位同学3次数学成绩的平均分都是120分,方差分别是S2甲=8.6,S2乙=2.6,S2丙=5.0,S2丁=7.2,则这四位同学3次数学成绩最稳定的是()A. 甲B. 乙C. 丙D. 丁6. 下列不能确定四边形ABCD为平行四边形的是( )A. ∠A=∠C,∠B=∠DB. ∠A=∠B=∠C=90∘C. ∠A+∠B=180∘,∠B+∠C=180∘D. ∠A+∠B=180∘,∠C+∠D=180∘7. 棱形ABCD中,对角线AC=5,BD=12,则棱形的高等于()A. 1513B. 3013C. 6013D. 308. 如图,矩形ABCD中,AC、BD交于点O,M、N分别为BC、OC的中点,若∠ACB=30°,AB=8,则MN的长为()A. 2B. 4C. 8D. 169. 如图,在矩形ABCD中,AB=6,AD=4,DM=2,动点P从点A出发,沿路径A→B→C→M 运动,则△AMP的面积y与点P经过的路径长x之间的函数关系用图像表示大致是()A. B.C. D.10. 如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB沿AE 折叠到AF,延长EF交DC于G,连接CF,现在有如下4个结论:①∠EAG=45°;②FG=FC;③FC//AG;④S△GFC=14其中正确结论的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)11. 在数轴上表示实数a的点如图所示,化简√ (a−5)2+|a−2|的结果为.12. 计算:(√ 3+√ 2)2−√ 24=______.13. 如图,在△ABC中,∠ACB=90°,以它的三边为边分别向外作正方形,面积分别为S1,S2,S3,已知S1=5,S2=12,则S3=________.14. 将直线y=2x+1的图象向下平移3个单位长度后所得直线的解析式是.15. 观察下列等式:①3−2√ 2=(√ 2−1)2,②5−2√ 6=(√ 3−√ 2)2,③7−2√ 12=(√ 4−√ 3)2,…请你根据以上规律,写出第6个等式______.16. 春耕期间,市农资公司连续8天调进一批化肥,并在开始调进化肥的第七天开始销售.若进货期间每天调进化肥的吨数与销售期间每天销售化肥的吨数都保持不变,这个公司的化肥存量s(单位:吨)与时间t(单位:天)之间的函数关系如图所示,则该公司这次化肥销售活动(从开始进货到销售完毕)所用的时间是______ 天.三、解答题(本大题共8小题,共52.0分。

初二数学下册期末考试试卷(含-答案)人教版

初二数学下册期末考试试卷(含-答案)人教版

明.)20。

如图,在四边形ABCD 中,AB =AD ,CB =CD ,E 为AB 的中点,在AC 上求作点P ,使EP +BP 的值最小。

(1)画出点P 的位置(保留作图痕迹,不写画法);(2)若AD =6,∠DAC =30°,求EP+BP 的最小值。

21.,办场时买来的80头小羊经过精心饲养,七个月就可以出售了。

下表数据是这些羊出售时的体重:(1)求这些“大耳羊"在出售时平均体重是多少? (2)“大耳羊”购进时每只成本平均为420元,饲养时每只成本平均为1060元,若按每千克32元的价格可以全部售完,在不计其它成本的情况下,求该农民合作组织饲养这批“大耳羊”可以获得多少利润(利润=总售价-购羊成本-饲养成本).22.某车间计划生产100件产品,由于采用新技术,每天可多生产4件,这样实际生产148件产品的时间与计划生产100件产品所需要的时间相等,求计划生产100件产品所需要的时间是多少天?23。

如图,反比例函数的图象经过边长为3正方形OABC 的顶点B ,点P (m ,n )为该函数图象上的一动点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F ,设矩形OEPF 和正方形OABC 不重合部分的面积为S (即图中阴影部分的面积). (1)求k 的值;(2)当m =4时,求n 和S 的值; (3)求S 关于m 的函数解析式.24.如图,四边形ABCD 是直角梯形,∠B =90°,AB =8cm,AD =24cm,BC =26cm 。

点P 从A 出发,以1cm/s 的速度向点D 运动;点Q 从点C 出发,以3cm/s 的速度向B 运动,若它们同时出发,运动时间为t 秒,并且当其中一个动点到达端点时,另一动点也随之停止运动,运动时间为t 秒.(1)当t =3时,求出P 、Q 两点运动的路程分别是多少?(3)四边形PQCD 有可能为菱形吗?试说明理由。

八年级(初二)数学参考答案与评分建议一、选择题(本大题共8小题,每小题3分,共24分.)1. B ; 2.C ; 3.A ; 4.A ; 5.C ; 6.D ; 7.B; 8.C .二、填空题(本大题共8小题,每小题3分,共24分.)9.; 10.; 11.6; 12. 1;13。

八年级数学下册期末试卷(附含答案)精选全文完整版

八年级数学下册期末试卷(附含答案)精选全文完整版

可编辑修改精选全文完整版八年级数学下册期末试卷(附含答案)(满分:120分;考试时间:120分)一、选择题(共10小题,每小题3分,满分30分) 1、使1x -有意义的x 的取值范围是( )A x >1B x >-1C x ≥1D x ≥-1 2、在根式xy 、12、2ab 、x y -、2x y 中,最简二次根式有( )A 1个B 2个C 3个D 4个 3、下列计算正确的是( )A 20210=B 5630⨯=C 2236⨯=D 2(3)3-=- 4、一元二次方程x (x-2)=2-x 的根式( )A -1B 2C 1和2D -1和2 5、下列命题中,真命题的个数有( )①对角线互相平分的四边形是平行四边形; ②两组对角分别相等的四边形是平行四边形; ③一组对边平行,另一组对边相等的四边形是平行四边形;A 3个B 2个C 1个D 0个 6、在△ABC 中,三边长分别为a 、b 、c ,且a+c=2b ,c-a=12b ,则△ABC 是( )A 直角三角形B 等边三角形C 等腰三角形D 等腰直角三角形 7、某公司为了解职工参加体育锻炼情况,对职工某一周平均每天锻炼 (跑步或快走)的里程进行统计(保留整数),并将他们平均每天锻炼 的里程数据绘制成扇形统计图,关于他们平均每天锻炼里程数据 下列说法不正确的是( )A 平均每天锻炼里程数据的中位数是2B 平均每天锻炼里程数据的众数是2C 平均每天锻炼里程数据的平均数是2.34D 平均每天锻炼里程数不少于4km 的人数占调查职工的20% 8、疫情期间居民为了减少外出时间,更愿意使用APP 在线上购物,某购物APP 今年二月份用户比一月份增加了44%,三月份用户比二月份增加了21%,则二、三两个月用户的平均每月增长率是( )A 28%B 30%C 32%D 32.5% 9、有两个一元二次方程:M :ax 2+bx+c=0,N :cx 2+bx+a=0,以下四个结论中,错误的是( ) A 如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根 B 如果方程M 有两根符号相同,那么方程N 也有两根符号相同 C 如果5是方程M 的一个根,那么15是方程N 的一个根D 如果方程M和方程N有一个相同的实数根,那么这个跟必是x=110、△ABC中,∠C=30°,AC=6,BD是△ABC的中线,∠ADB=45°,则AB=()二、填空题(共6小题,每小题3分,满分18分)11的结果是12、已知关于x的一元二次方程x2-bx+8=0,一个根为2,则另一个根是13、有一棵9米高的大树,如果大树距离地面4米处这段(没有断开),则小孩至少离开大树米之处才是安全的。

贵州省黔东南苗族侗族自治州2023-2024学年八年级下学期期末数学试题(含答案)

贵州省黔东南苗族侗族自治州2023-2024学年八年级下学期期末数学试题(含答案)

黔东南州2023—2024学年度第二学期期末文化水平测试八年级数学试卷同学你好!答题前请认真阅读以下内容:1.本卷为数学试题卷,全卷共6页,三大题25小题,满分150分,考试时间为120分钟.2.一律在《答题卡》相应位置作答,在试题卷上答题视为无效.3.不能使用计算器.一、选择题:以下每小题均有A、B、C、D、四个选项,其中只有一个选项正确,请用2B铅笔在答题卡相应位置作答,每题3分,共36分.1)A.4B.-4C.8D.2.下列计算中,正确的是A.B.CD3.某学校在6月6日全国爱眼日当天,组织学生进行了视力测试.小红所在的学习小组每人视力测试的结果分别为:5.0,4.8,4.5,4.8,4.6,这组数据的众数和中位数分别为()A.4.8,4.74B.4.8,4.5C.5.0,4.5D.4.8,4.84.下列函数中,是正比例函数的是()A.B.C.D.5.如图,平地上、两点被池塘隔开,测量员在岸边选一点,并分别找到和的中点、,测量得米,则、两点间的距离为()A.30米B.32米C.36米D.48米6.下列曲线中,不能表示是的函数的是()A.B.C.D.7.若,且,则函数的图象可能是()4±2-=3==5= 23y x=5y x=6yx=1y x=-A B C AC BC D E16DE=A By xkb<k b<y kx b=+A .B .C .D .8.如图,在平面直角坐标系中,已知点,,以点为圆心,长为半径画弧,交轴的正半轴于点,则点的坐标是()A .B .C .D .9.下列命题中:①对角线垂直且相等的四边形是正方形;②对角线互相垂直平分的四边形为菱形;③一组对边平行,另一组对边相等的四边形是平行四边形;④若顺次连接四边形各边中点得到的是矩形,则该四边形的对角线相等.是真命题的有( )A .1个B .2个C .3个D .4个10.如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形、、、的面积分别为2、5、1、2.则最大的正方形的面积是()A .5B .10C .15D .2011.如图,在中,对角线,相交于点,若,,,则的长为()A .8B .9C .10D .1212.如图1,将正方形置于平面直角坐标系中,其中边在轴上,其余各边均与坐标轴平行,直线沿轴的负方向以每秒1个单位长度的速度平移,在平移的过程中,该直线被正方形的边所截得的线段长为,平移的时间为(秒),与的函数图象如图2所示,则图2中的值为()(0,0)O (1,3)A O OA x BB(3,0)A B C D E ABCD AC BD O 90ADB ∠=︒6BD =4AD =ACABCD AD x :3l y x =-x ABCD m t m t bA .B .C .D .二、填空题:每小题4分,共16分.13的取值范围是______.14.某校学生期末美术成绩满分为100分,其中课堂表现占,平时绘画作业占,期末手工作品占,小花的三项成绩依次为90,85,95,则小花的期末美术成绩为______分.15.已知甲、乙两地相距,,两人沿同一公路从甲地出发到乙地,骑摩托车,骑电动车,图中,分别表示,两人离开甲地的路程与时间的关系图象.则两人相遇时,是在出发后______小时.16.在矩形中,点,分别是,上的动点,连接,将沿折叠,使点落在点处,连接,若,,则的最小值为______.三、解答题:本大题9小题,共98分.17.(8分)计算:(1)(2)18.(10分)如图,每个格子都是边长为1的小正方形,,四边形的四个顶点都在格点上.(1)求四边形的周长;(2)连接,试判断的形状,并求四边形的面积.x 30%50%20%90km A B A B DE OC A B (km)S (h)t B ABCD E F AB AD EF AEF △EF A P BP 2AB =3BC =BP 90ABC ∠=︒ABCD ABCD AC ACD △ABCD19.(10分)如图,在平行四边形中,点是边的中点,的延长线与的延长线相交于点.(1)求证:;(2)连接、,试判断四边形的形状,并证明你的结论.20.(12分)2024年4月30日,“神舟十七号”载人飞船成功着陆,激发了同学们的爱国热情.某校为了解七、八年级学生对“航空航天”知识的掌握情况,对七、八年级学生进行了测试,此次“航空航天”知识测试采用百分制,并规定90分及以上为优秀;80~89分为良好;60~79分为及格;59分及以下为不及格.现从七、八年级各随机抽取20名学生的测试成绩,并将数据进行以下整理与分析.①抽取的七年级20名学生的成绩如下:57 58 65 67 69 69 77 78 79 81838788898994969797100②抽取的七年级20名学生的成绩的频数分布直方图如图1所示,数据分成5组:,,,,)③抽取的八年级20名学生的成绩的扇形统计图如图2所示.④七、八年级各抽取的20名学生成绩的平均数、中位数、方差如下表所示.年级平均数中位数方差七年级81167.9八年级8281106.3请根据以上信息,解答下列问题.(1)______,______.并补全抽取的七年级20名学生的成绩的频数分布直方图.(2)目前该校七年级学生有300人,八年级学生有200人,估计两个年级此次测试成绩达到优秀的学生总人数.(3)从平均数和方差的角度分析,你认为哪个年级的学生成绩较好?请说明理由.21.(10分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°为30°.已知原传送带长为.(1)求新传送带的长度;(2)若需要在货物着地点的左侧留出2m 的通道,试判断和点相距5m (即)的货物是否需要挪走,并说明理由.)ABCD E AD BE CD F ABE DFE △≌△BD AF ABDF 5060x ≤<6070x ≤<7080x ≤<8090x ≤<90100x ≤≤aa =m =AB AC C B 5PB =MNQP 1.4≈ 1.7≈22.(12分)某小型企业获得授权生产甲、乙两种奥运吉祥物,生产每种吉祥物所需材料及所获利润如下表:种材料种材料所获利润(元)每个甲种吉祥物0.30.510每个乙种吉祥物0.60.220该企业现有种材料,种材料,用这两种材料生产甲、乙两种吉祥物共2000个.设生产甲种吉祥物个,生产这两种吉祥物所获总利润为元.(1)求出(元)与(个)之间的函数关系式,并求出自变量的取值范围;(2)该企业如何安排甲、乙两种吉祥物的生产数量,才能获得最大利润?最大利润是多少?23.(12分)如图,在矩形中,延长到,使,延长到,使,连接.(1)求证:四边形是菱形;(2)连接,若,,求的长.24.(12分)如图,在平面直角坐标系中,一次函数的图象与轴交于点,与轴交于点,且与正比例函数的图象的交点为.(1)求一次函数的解析式;(2)根据图像直接写出:当时,的取值范围.(3)一次函数的图象上有一动点,连接,当的面积为5时,求点的坐标.25.(12分)在正方形中,点是线段上的动点,连接,过点作(点在直线的下方),且,连接.A ()2m B ()2m A 2900m B 2850m x y y x x ABCO AO D DO AO =CO E EO CO =AE ED DC CA 、、、AEDC EB 4AE =60AED ∠=︒EB xOy 1y kx b =+x (3,0)A -y B 243y x =(,4)C m 1y kx b =+12y y >x 1y kx b =+P OP OPC △P ABCD E AB DE D DF DE ⊥F DE DF DE =EF(1)【动手操作】在图①中画出线段,;与的数量关系是:______;(2)【问题解决】利用(1)题画出的图形,在图②中试说明,,三点在一条直线上;(3)【问题探究】取的中点,连接,利用图③试求的值.黔东南州2023-2024学年度第二学期期末考试八年级数学参考答案一、选择题123456789101112ACDBBADAABCA二、填空题13、14、88.515、1.816、三、解答题17.(8分)(1)解:原式(2)解:原式18.(10分)解:(1),,,,(2),,,,,∴,∴△ACD 是直角三角形,19.(10分)(1)四边形ABCD 是平行四边形,AB //CDAB //CF ,ABE =∠DFE ,E 是边AD 的中点,AE =DEDF EF ADE ∠CDF ∠B C F EF P CP CPBE2≥x 313-4=-+432+===4=AB 3=BC 54322=+=CD 257122=+=AD 251225534+=+++=ABCD C 四边形5=AC 5=CD 25=AD 5022=+CD AC 502=AD 222AD CD AC =+2136225=-=-=ABC ACD ABCD S S S △△四边形 ∴∴∴∠ ∴在△ABE 与△DFE 中,△ABE ≌△DFE (AAS )(2)四边形ABDF 是平行四边形,如图:由(1)得:△ABE ≌△DFE ,则BE =EFBE = EF ,AE =ED ,四边形ABDF 是平行四边形20.(12分)(1)82;30(2)七年级优秀人数人,八年级优秀人数人75+60=135人,答:两个年级此次测试成绩达到优秀的学生总人数为135人.(3)八年级学生的成绩较好.理由:八年级学生成绩的平均数较大,而且方差较小,说明平均成绩较高,并且波动较小,所以八年级学生的成绩较好.21.(10分)(1),∴AD =BD ,∴解得:AD =4,在Rt △ACD 中∵∠ACD =30°,∴AC =2AD =8(2)货物MNQP 不需要挪走.理由:在Rt △ABD 中,BD =AD =4(米).在Rt△ACD 中,2.2>2∴货物MNQP 不需要挪走.22.(12分)AE DE ABE FAEB DEF =∠=∠∠=∠⎧⎪⎨⎪⎩∴ ∴75205300=⨯6030200=⨯%︒=∠45ABD ABD Rt 中,△在()222242==AB AD 2.28.258.24343422≈-≈-=∴≈-=-=∴=-=CB PB PC BD CD CB AD AC CD(1)解:根据题意得,,由题意,解得:,自变量的取值范围是,且是整数;(2)由(1),,随的增大而减小,又且是整数,当时,有最大值,最大值是(元),生产甲种吉祥物个,乙种吉祥物个,所获利润最大,最大为元.23.(12分)(1)证明:∵四边形是矩形,∴,∴,即,∵,,∴四边形是菱形.(2)解:连接,如图:∵四边形是菱形,,∴,∵,∴,∴,∴,∵四边形是矩形,∴,,∴.24.(12分)解(1)把,,∴C (3,4)把A (-3,0),C (3,4)代入得,解得∴解析式是()10202000y x x =+-1040000y x ∴=-+()()0.30.620009000.50.22000850x x x x +-≤⎧⎪⎨+-≤⎪⎩10001500x ≤≤∴x 10001500x ≤≤x 1040000y x =-+100k =-< y ∴x 10001500x ≤≤x ∴1000x =y 1010004000030000-⨯+=∴1000100030000ABCO =90AOC ∠︒AO OC ⊥AD EC ⊥DO AO =EO CO =AEDC EB AEDC 60AED ∠=︒30AEO ∠=︒904AOE AE ∠=︒=,122OA AE ==EO ===2CE EO ==ABCO 2BC OA ==90BCE ∠=︒EB ===()x y m C 3442=代入,443m =3m =b kx y +=13034k b k b -+=⎧⎨+=⎩232k b ⎧=⎪⎨⎪=⎩2321+=x y(2)<3(3)设点P ,∵B (0,2),C (3,4),所以或25.(12分)(1)如图,∠ADE =∠CDF(2)证明:如图②,连接CF .∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =,即∠ADE+∠EDC=,∵∠EDF =,即∠EDC+∠CDF=,∴∠ADE=∠CDF ∵DE =DF ,∴△ADE ≌△CDF ,∠DAE=∠DCF=∴∠BCD+∠DCF=,即B ,C ,F 三点在一条直线上(3)连接PB ,PD .在Rt △EDF 和Rt △EBF 中∵P 是斜边EF 的中点,∴x ⎪⎭⎫ ⎝⎛+232,m m 232-⋅=∴m S OPC △2,821-==m m ⎪⎭⎫ ⎝⎛-32,21P ⎪⎭⎫⎝⎛322,82P 90 90 90 90 90 180EF PB PD 21==又∵BC =DC ,PC =PC ,∴△BCP ≌△DCP ∴∠BCP=∠DCP=取BF 的中点P ,连接PG ,则PG ∥EB .∴∠PGF=∠EBF=,∴△PGC 是等腰直角三角形.设PG =x ,则CP =,BE =2x ,∴4521=∠BCD 90x 22222==x x BE CP。

河北省邯郸市冀南新区2023-2024学年八年级下学期期末数学试题(含答案)

河北省邯郸市冀南新区2023-2024学年八年级下学期期末数学试题(含答案)

2023~2024学年八年级第二学期期末考试数学(人教版)本试卷共8页.总分120分,考试时间120分钟.注意事项:1.仔细审题,工整作答,保持卷面整洁.2.考生完成试卷后,务必从头到尾认真检查一遍.一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列统计量中,能够反映运动员射击成绩稳定性的是( )A .平均数B .中位数C .众数D .方差2.函数的图象一定经过下列四个点中的( )A .B .C .D .3.如图1,在平行四边形中,E 是边延长线上一点,若,则的度数为()A .B .C .D .4.下列化简或计算结果与不相等的是( )ABC .D5.如图2,在中,,,,D 为边的中点,点A 与点D 的距离为()A .1.5B .2C .2.5D .36.把一个长为8,宽为3的长方形的宽增加,长不变,所得新长方形的面积y 关于x 的函数解析式为( )A .B .C .D .7.一组数据,5,3,7,增加一个数据后,众数为7,则增加数据后中位数是( )A .5B .3C .4D .72y x =-(1,2)(2,1)-1,12⎛⎫-⎪⎝⎭11,2⎛⎫- ⎪⎝⎭ABCD BC 130BAD ∠=︒DCE ∠50︒80︒100︒130︒6ABC △4AB =3AC =5BC =BC (05)x x ≤<8y x=824y x =+24y x=-824y x =-2-8.如图3,一段斜坡上有两棵树,两棵树之间的水平距离为12m ,竖直距离为5m ,树的高度都是2m .一只小鸟从一棵树的顶端飞到另一棵树的顶端,至少要飞()A .12mB .13mC .14mD .15m9.在中,,利用尺规作矩形.甲、乙两位同学的作法如图4所示,关于两人的作法判断正确的是()甲:作的垂直平分线交于点O ;连接,在射线上截取(A ,C 不重合),连接,,四边形即为所求.乙:以B 为圆心,长为半径画圆弧;以D 为圆心,长为半径画圆弧;两弧在上方交于点C ,连接,,四边形即为所求.A .只有甲的可以B .只有乙的可以C .甲、乙的都可以D .甲、乙的都不可以10.在平面直角坐标系中,直线,直线,若,与y 轴围成的三角形的面积为5,则k 的值为( )A .2B .1C .D .11.如图5,E 为菱形的对角线上的动点,以,为邻边作平行四边形,若,,则的最小值为( )A .24B .12C .20D .1012.甲、乙两个体育专卖店的优惠活动如图6所示,设购买体育用品的原价总额为x 元,甲、乙两个专卖店实际付款分别为元,元.对于结论Ⅰ,Ⅱ,判断正确的是( )结论Ⅰ:当时,与x 之间的函数解析式为;结论Ⅱ:当在甲、乙两个专卖店一次性购买商品的原价总额相同,且实际付款相差20元时,x 的值为100或800甲店:所有商品按原价八折出售;Rt ABD △90DAB ∠=︒ABCD BD BD AO AO OC OA =BC CD ABCD AD AB AB BC CD ABCD 1:24l y x =-+2:1(0)l y kx k =->1l 2l 1312ABCD AC EA EB AFBE 15AB =18AC =EF y 甲y 乙200x >y 乙0.760y x =+乙店:一次性购买商品总额不超过200元时按原价付款;超过200元时,其中200元无优惠,超过200元的部分享受七折优惠A .只有结论Ⅰ正确B .只有结论Ⅱ正确C .结论Ⅰ,Ⅱ都正确D .结论Ⅰ,Ⅱ都不正确二、填空题(本大题共4个小题,每小题3分,共12分)13.从,0,1,2中,选取两个不同的数作为一次函数的系数 k ,b ,使一次函数的y 值随着x 的增大而增大,且图象经过第一、三、四象限,写出一个满足条件的一次函数为________.14.若期末体育的综合成绩由平时成绩和期末测试成绩按4:6的比例组成.小佳的平时成绩为90分,期末测试成绩为95分,小佳期末体育的综合成绩为________分.15.一块矩形木板采用如图7所示的方式在木板上截出两个面积分别为27和75的正方形木板后,剩余的木板(阴影部分)的面积为________.16.如图8,在正方形中,E ,F 分别是边,的中点,连接,,G ,H 分别是,的中点,连接,若,则的长度为________.三、解答题(本大题共8个小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)计算下列各小题.(1)(2).18.(本小题满分8分)如图9,在平行四边形中,对角线,交于点O,过A ,C 两点作,,垂足分别为M ,N,且分别交,于点G ,H .(1)求证:四边形是平行四边形;(2)若,,,,求的长及的周长.2-y kx b =+y kx b =+2dm 2dm 2dm ABCD AB BC EC FD EC FD GH 4AB =GH --(2-++÷ABCD AC BD AG BD ⊥CH BD ⊥CD AB AHCG 3DG =2AH =5AC =8BD =AB AOB △19.(本小题满分8分)如图10,一条南北走向的高速公路经过县城C ,村庄A 位于高速公路西侧,村庄A 和县城C 之间有一大型水库.从A 村修建了两条笔直公路通往高速公路,分别是公路和,千米,千米,千米.(1)公路是否为村庄A 到高速公路的最近道路?请通过计算说明理由;(2)通过无人机测得,求村庄A 到县城C 的直线距离的长.20.(本小题满分8分)在平面直角坐标系中,函数的图象经过点.(1)求函数的解析式,并在如图11所示的坐标系中画出函数的图象;(2)判断点是否在该函数的图象上,并说明理由;(3)当时,对于x 的每一个值,函数(n 为正整数)的值不小于函数的值,直接写出n 的值.21.(本小题满分9分)某校举行校园安全知识竞赛活动,从七、八年级学生的知识问答成绩中,各随机抽取了20名学生的成绩进行统计分析,绘制了如图12所示的统计图和统计表.样本中学生成绩统计表AB AD 10AB =6BD =8AD =AD AC BC =AC 2y x b =+(1,3)A 2y x b =+(7,15)P --1x ≤-y nx =2(0)y x b k =+≠七年级八年级平均数7.657.55中位数8b 众数a7(1)根据题目信息填空:________,________,________;(2)若七年级的小宇和八年级的小乐的分数都为8分,请判断小宇、小乐在各自年级的线排名哪位更靠前?请简述你的理由;(3)若该校七年级有16个班,每个班有50名学生,请估计七年级学生中成绩优秀(9分及9分以上为优秀)的人数.22.(本小题满分9分)市政府决定实施“煤改气”供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y (米)与挖掘时间x (天)之间的关系如图13所示.(1)前2天乙队平均每天挖管道________米;(2)求段及段所在直线的函数解析式(不写自变量的取值范围);(3)开始挖掘后,几天时甲、乙两队所挖管道长度相同?23.(本小题满分10分)如图14,在四边形中,,,,,.动点M 从点B 出发沿边以2的速度向终点C 运动;同时动点N 从点D 出发,以4的速度沿射线运动.当点M 到达终点时,点N 也随之停止运动,设点M 运动的时间为t s .(1)求边的长;(2)当以点A ,B ,M ,N 为顶点的四边形为平行四边形时,求t 的值;(3)当时,直接写出的值.24.(本小题满分12分)如图15-1,图15-2,在平面直角坐标系中,点B ,D 的坐标分别为,,过点B 分别作x 轴、y 轴的垂线,垂足分别为C ,A ,直线经过点A 和点D .a =b =m =OA BC ABCD AD BC ∥60ABC ∠=︒90C ∠=︒6cm AB =10cm AD =BC cm/s cm/s DP BC 2PNM ABC ∠=∠ANBM(4,3)(1,1)-1:l y kx b =+(1)四边形的形状是________;(2)求直线的函数解析式;(3)如图15-2,将直线沿y 轴以每秒1个单位长度的速度向下平移,当直线经过点C 时,停止移动,设平移的时间为t s .①在平移过程中,求直线在四边形内的线段的长度保持不变的时长;②当直线使四边形内部(不包括边界)的整点(横、纵坐标均为整数的点)平均分布在它的两侧时,直接写出t 的取值范围.河北省2023—2024学年八年级第二学期期末考试数学(人教版)参考答案评分说明:1.本答案仅供参考,若考生答案与本答案不一致,只要正确,同样得分.2.若答案不正确,但解题过程正确,可酌情给分. 一、(本大题共12个小题,每小题3分,共36分)题号123456789101112答案DCADCBABCDBA二、(本大题共4个小题,每小题3分,共12分)13.(或) 14.93 15.18 16三、17.解:(1)原式;(4分)(2)原式.(4分)18.解:(1)证明:,,,,.∵四边形是平行四边形,,∴四边形是平行四边形;(4分)(2)∵四边形是平行四边形,四边形是平行四边形,,.,;(2分)为,的中点,,,OCBA 1l 1l 1l 1l OCBA 1l OCBA 2y x =-22y x =-=6=AG BD ⊥ CH BD ⊥90AMB ∴∠=︒90HNB ∠=︒AG CH ∴∥ABCD AB CD ∴∥AHCG ABCD AHCG AB CD ∴=2CG AH ==3DG = 325AB CD DG CG ∴==+=+=O AC BD 115 2.522AO AC ∴==⨯=118422BO BD ==⨯=的周长为.(2分)19.解:(1)公路是村庄A 到高速公路的最近道路;(1分)理由:,是直角三角形,,,∴公路是村庄A 到高速公路的最近道路;(3分)(2)设千米,则千米,在中,由勾股定理得,,,解得,即村庄A 到县城C 的直线距离的长为千米.(4分)20.解:(1)将代入中,得,解得,∴函数的解析式为;(2分)如图;(1分)(2)不在;(1分)理由:当时,,∴点不在该函数的图象上;(2分)(3)n 的值为1.(2分)21.解:(1)9;7;15;(3分)(2)八年级小乐的排名更靠前;(1分)理由:∵七年级的中位数是8,八年级的中位数是7,∴分数都为8分时,小乐的排名更靠前;(3分)(3)(人),答:七年级学生中成绩优秀的约有360人.(2分)22.解:(1)150;(2分)(2)设段的函数解析式为,把点代入得,解得,段的函数解析式为;(2分)设段的函数解析式为(,b 为常数,且).将和分别代入,得解得段的函数解析式为;(3分)(3)当甲、乙两队所挖管道长度相同时,得,解得.∴开始挖掘后,4天时甲、乙两队所挖管道长度相同.(2分)23.解:(1)过点A 作,垂足为H ,则.,,,∴四边形为矩形,.AOB ∴△ 2.54511.5AO BO AB ++=++=AD 2222286100AD BD AB +=+== ABD ∴△90ADB ∠=︒AD BD ∴⊥AD AC x =(6)CD BC BD AC BD x =-=-=-Rt ACD △222AC AD CD =+2228(6)x x ∴=+-253x =AC 253(1,3)A 2y x b =+321b =⨯+1b =21y x =+7x =-2(7)11315y =⨯-+=-≠-(7,15)P --1650(3015)360⨯⨯+=%%OA 11(0)y k x k =≠(6,600)16006k =1100k =OA ∴100y x =BC 2y k x b =+2k 20k ≠(2,300)(8,600)2y k x b =+222300,8600,k b k b +=+=⎧⎨⎩250,200,k b ==⎧⎨⎩BC ∴50200y x =+10050200x x =+4x =AH BC ⊥90AHC AHB ∠=∠=︒AD BC ∥ 90C ∠=︒90ADC ∴∠=︒AHCD 10cm HC AD ∴==,,,,,;(3分)(2)当四边形为平行四边形时,,即,解得;当四边形为平行四边形时,点N 在的延长线上,此时,即,解得;综上所述,当以点A ,B ,M ,N 为顶点的四边形为平行四边形时,t的值为或5;(4分)(3)的值为.(3分)【精思博考:在点M ,N 运动过程中,逐渐变大.当点N 与点A 重合时,,此时,,,不是等边三角形,,即,∴点N 在的延长线上.如图,作的平分线,交射线于点Q ,则.,.,,为等边三角形,,.,∴四边形是平行四边形,,,解得,,,的值为】24.解:(1)矩形;(2分)(2)∵四边形为矩形,.∵点B 的坐标为,,∴点A 的坐标为.将点A ,D 的坐标代入中,得解得∴直线的解析式为;(4分)(3)①将直线向下平移,函数解析式为.6cm AB = 60ABC ∠=︒90AHB ∠=︒30BAH ∴∠=︒1163(cm)22BH AB ∴==⨯=31013(cm)BC BH HC ∴=+=+=ABMN AN BM =1042t t -=53t =ANBM DA AN BM =4102t t -=5t =53ANBM 18PNM ∠2.5t =5BM =6AB = BM AB ∴≠ABM ∴△60BAM ∴∠≠︒120PAM ∠≠︒DA PNM ∠CB 12PNQ QNM PNM ∠=∠=∠2PNM ABC ∠=∠ 60PNQ QNM ∴∠=∠=︒DP BC ∥ 60Q PNQ ∴∠=∠=︒NQM ∴△Q ABC ∠=∠NQ AB ∴∥AD BC ∥ NQBA 410QB AN t ∴==-2(410)6QM NQ AB t t ∴===+-=83t =8241033AN ∴=⨯-=816233BM =⨯=AN BM ∴18OCBA OA BC ∴=(4,3)3OA ∴=(0,3)y kx b =+3,1,b k b =⎧⎨-+=⎩2,3,k b =⎧⎨=⎩1l 23y x =+1l 23y x t =+-直线在四边形内的线段的长度先增加,经过点O 时长度最大,,∴线段长度开始保持不变,当直线经过点B 后,线段长度开始减小.当经过点O 时,,解得,当经过点B 时,,解得,∴线段长度保持不变的时长为;(4分)②t 的取值范围为.(2分)【精思博考:四边形内部的整点有6个,分别是,,,,,.当经过点时,有,解得;当经过点时,有,解得,∴t 的取值范围为】1l OCBA AB OC ∥ 1l 003t =+-3t =1l 3243t =⨯+-8t =835()s -=56t <<OCBA (1,1)(1,2)(2,1)(2,2)(3,1)(3,2)1l (2,2)2223t =⨯+-5t =1l (2,1)1223t =⨯+-6t =56t <<。

2024—2025学年最新北师大新版八年级下学期数学期末考试试卷(含答卷和参考答案)

2024—2025学年最新北师大新版八年级下学期数学期末考试试卷(含答卷和参考答案)

2024—2025学年最新北师大新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、二十四节气是中国劳动人民独创的文化遗产,能反映季节的变化,指导农事活动.下面四副图片分别代表“芒种”、“白露”、“立夏”、“大雪”,其中是中心对称图形的是()A.B.C.D.2、若a>b﹣1,则下列结论一定正确的是()A.a+1<b B.a﹣1<b C.a>b D.a+1>b3、若点P(1﹣2a,a)在第二象限,那么a的取值范围是()A.B.C.D.4、将分式中的x,y的值同时扩大2倍,则分式的值()A.扩大2倍B.缩小到原来的C.保持不变D.无法确定5、下列命题中,假命题是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行且另一组对边相等的四边形是平行四边形C.两组对角相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形6、如图,在Rt△ABC中,∠ACB=90°,DE垂直平分AB交BC于点D,若△ACD的周长为50cm,则AC+BC=()A.25cm B.45cm C.50cm D.55cm7、甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的1.2倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工x个零件,可列方程为()A.﹣=30B.﹣=30C.﹣=D.﹣=8、如图,在▱ABCD 中,点O 是BD 的中点,EF 过点O ,下列结论:①AB ∥DC ;②EO =ED ;③∠A =∠C ;④S 四边形ABOE =S 四边形CDOF ,其中正确结论的个数为( )A .1个B .2个C .3个D .4个9、如图,在Rt △ABC 中,∠C =90°,∠B =30°,BC =6,AD 平分∠CAB 交BC 于点D ,点E 为边AB 上一点,则线段DE 长度的最小值为( )A .B .C .2D .310、关于x 的不等式组整数解仅有4个,则m 的取值范围是( )A .﹣5≤m <﹣4B .﹣5<m ≤﹣4C .﹣4≤m <﹣3D .﹣4<m ≤﹣3二、填空题(每小题3分,满分18分)11、分解因式:3a 3﹣12a= .12、如果一个多边形的每一个外角都是40°,那么这个多边形的边数为 .13、如图,在△ABC 中,∠DCE =40°,AE =AC ,BC=BD ,则∠ACB 的度数为 .14、使得分式值为零的x 的值是 .15、如图,五边形ABCDE 是正五边形.若l 1∥l 2,则∠1﹣∠2= °.16、若关于x 的方程﹣=1无解,则k 的值为 .2024—2025学年最新北师大新版八年级下学期数学期末考试试卷 第7题图 第8题图 第9题图考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、解不等式组:.18、先化简,再求值:(+1)÷,其中x=﹣3.19、已知不等式组的解集是﹣1<x<1,求(a+b)2024的值20、已知方程组的解为正数.(1)求a的取值范围;(2)化简:.21、如图,在△ABC中,CD平分∠ACB交AB于点D,E为AC上一点,且DE∥BC.(1)求证:DE=CE;(2)若∠A=90°,AD=4,BC=12,求△BCD的面积.22、某商场购进A,B两种商品,已知购进3件A商品比购进4件B商品费用多60元;购进5件A商品和2件B商品总费用为620元.(1)求A,B两种商品每件进价各为多少元?(2)该商场计划购进A,B两种商品共60件,且购进B商品的件数不少于A 商品件数的2倍.若A商品按每件150元销售,B商品按每件80元销售,为满足销售完A,B两种商品后获得的总利润不低于1770元,则购进A商品的件数最多为多少?23、如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC.(1)求证:四边形ABCD为平行四边形;(2)点E为BC边的中点,连接AE,过E作EF⊥AE交边CD于点F,连接AF.①求证:AF=AB+CF;②若AF⊥CD,CF=3,DF=4,求AE与CE的值.24、如图,在△ABC中,∠ACB=90°,AB=5,AC<BC.以AC为边向形外作等边△ACD,以BC为边向形外作等边△BCE,以AB为边向上作等边△ABF,连接DF,EF.(1)记△ACD的面积为S1,△BCE的面积为S2,求S1+S2的值(2)求证:四边形CDFE是平行四边形.(3)连接CF,若CF⊥EF,求四边形CDFE的面积.25、如图,在平面直角坐标系中,直线y=﹣x+8与x轴交于点A,与y轴交于点B,直线y=kx+b经过点B,且与x轴交于点C(﹣6,0).(1)求直线BC的表达式;(2)点E为射线BC上一点,过点E作EF∥x轴交AB于点F,且EF=7,设点E的横坐标为m.①求m的值;②在y轴上取点M,在直线BC上取点N,在平面内取点Q,使得点E,M,N,Q构成的四边形是以EN为对角线的正方形,求出此正方形的面积.2024—2025学年最新北师大新版八年级下学期数学期末考试参考答案考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、3a(a+2)(a﹣2)12、9 13、100°14、2 15、7216、2或﹣1三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、﹣<x≤4.18、,19、120、(1)﹣1<a<3;(2)3﹣a.21、(1)证明略(2)24.22、(1)A商品的进价是100元/件,B商品的进价是60元/件;(2)购进A商品的件数最多为20件.23、(1)证明略(2)①证明略②AE的长是5,CE的长是.24、(1);(2)证明略(3)四边形CDFE的面积=S=a2=.△ADC25、(1)直线BC的表达式:y=x+8(2)①m=﹣3②正方形的面积为:或450。

八年级数学下册期末试卷(附答案解析)

八年级数学下册期末试卷(附答案解析)

八年级数学下册期末试卷(附答案解析)学校:___________姓名:___________班级:_____________一、单选题(每题3分,共27分)1( )A B .C D 2.下列图形中,不是中心对称图形的是( )A .B .C .D .3.下列表达式中,y 是x 的函数的是( )A .2y x =B .||1y x =+C .||y x =D .221y x =-4.下列几组数中,能作为直角三角形三边长度的是( )A .2,3,4a b c ===B .5,6,8a b c ===C .5,12,13a b c ===D .7,15,12a b c === 5.下列运算中正确的是( )AB =C 2±D =6.下列说法不正确的是( )A .数据0、1、2、3、4、5的平均数是3B .选举中,人们通常最关心的数据是众数C .数据3、5、4、1、2的中位数是3D .甲、乙两组数据的平均数相同,方差分别是S 甲2=0.1,S 乙2=0.11,则甲组数据比乙组数据更稳定 7.如图①,正方形ABCD 在平面直角坐标系中,其中AB 边在y 轴上,其余各边均与坐标轴平行,直线:1l y x =-沿y 轴的正方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m (米),平移的时间为t (秒),m 与t 的函数图象如图①所示,则图①中b 的值为( )A .B .C .D .8.在下列给出的条件中,能判定四边形ABCD 是平行四边形的是( )A .//AB CD ,AD BC =B .A B ∠=∠,CD ∠=∠ C .//AD BC ,AD BC = D .AB AD =,CD BC =9.下列哪个点在一次函数34y x =-上( ).A .(2,3)B .(-1,-1)C .(0,-4)D .(-4,0)10.如图,菱形ABCD 的对角线AC 、BD 交于点O ,将①BOC 绕着点C 旋转180°得到B O C '',若AC =2,AB ='AB 的长是( )A .4B .C .5D .二、填空题(每题5分,共25分)11在实数范围内有意义,则x 应满足的条件是_____.12.一个正方形的面积是5,那么这个正方形的对角线的长度为_______.13.新定义[a ,b ]为一次函数y =ax +b (其中a ≠0,且a ,b 为实数)的“关联数”,若“关联数”[3,m +2]所对应的一次函数是正比例函数,则关于x 的方程1111x m+=-的解为____. 14.如图,已知面积为1的正方形ABCD 的对角线相交于点O ,过点O 任作一条直线分别交AD BC ,于E F ,,则阴影部分的面积是________.15.在平面直角坐标系中,若点P(x﹣2,x+1)关于原点的对称点在第四象限,则x的取值范围是_____.三、解答题16.(6分)计算:;)031+;17.在数轴上表示a、b、c三数点的位置如下图所示,化简:|c||a-b|.18.(6分)如图,四边形ABCD是平行四边形,AE①BC于E,AF①CD于F,且BE=DF.(1)求证:四边形ABCD是菱形;(2)连接EF,若①CEF=30°,BE=2,直接写出四边形ABCD的周长.19.(10分)2019年10月1日是新中国成立七十周年,某校为庆祝国庆,组织全校学生参加党史知识竞赛,从中抽取200名学生的成绩(得分取正整数,满分100分)进行统计,绘制了如图尚不完整的统计图表.200名学生党史知识竞赛成绩的频数表请结合表中所给的信息回答下列问题:(1)频数表中,a = ,b = ,c = ;(2)将频数直方图补充完整;(3)若该校共有1500名学生,请估计本次党史知识竞赛成绩超过80分的学生人数.20.(10分)某校有一露天舞台,纵断面如图所示,AC 垂直于地面,AB 表示楼梯,AE 为舞台面,楼梯的坡角①ABC =45°,坡长AB =2m ,为保障安全,学校决定对该楼梯进行改造,降低坡度,拟修新楼梯AD ,使①ADC =30°.(1)求舞台的高AC (结果保留根号);(2)求DB 的长度(结果保留根号).21.(10分)如图,直线6y kx =+与x 轴、y 轴分别交于点E 、点F ,点E 的坐标为()8,0-,点A 的坐标为()6,0-.(1)求一次函数的解析式;(2)若点(),P x y 是线段EF (不与点E 、F 重合)上的一点,试写出OPA ∆的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)在(2)的条件下探究:当点P 在什么位置时,OPA ∆的面积为278,并说明理由. 22.(10分)如图,矩形ABCD 的对角线相交于点O ,分别过点C 、D 作//CE BD 、//DE AC ,CE 、DE 交于点E .(1)求证:四边形OCED 是菱形;(2)将矩形ABCD 改为菱形ABCD ,其余条件不变,连结OE .若10AC =,24BD =,则OE 的长为多少?23.(10分)某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).(1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围);(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用. 24.(10分)如图,ABC 中,D 是AB 边上任意一点,F 是AC 中点,过点C 作CE ①AB 交DF 的延长线于点E ,连接AE ,CD .(1)求证:四边形ADCE 是平行四边形:(2)若4BC =,45CAB ∠=︒,AC =AB 的长.参考答案与解析:1.D=故答案为:D .【点睛】本题考查了无理数化简的问题,掌握无理数化简的方法是解题的关键.2.B【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A 、是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项正确;C 、是中心对称图形,故本选项错误;D 、是中心对称图形,故本选项错误.故选:B .【点睛】本题考查中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.C【分析】根据函数的定义:在某一变化过程中有两个变量x 与y ,如果对x 的每一个值,y 都有唯一确定的值与之对应,那么就说x 是自变量,y 是x 的函数,进行求解即可.【详解】解:A 、2y x =,对于一个x ,存在有两个y 与之对应,例如:当x =1时,y =±1,y 不是x 的函数,故此选项不符合题意;B 、||1y x =+对于一个x ,存在有两个y 与之对应,例如:当x =1时,y =±2,y 不是x 的函数,故此选项不符合题意;C 、||y x =对于一个x ,对于任意的x ,y 都有唯一的值与之对应,y 是x 的函数,故此选项符合题意;D 、221y x =-对于一个x ,存在有两个y 与之对应,例如:当x =0时,y =±1,y 不是x 的函数,故此选项不符合题意;故选C .【点睛】本题主要考查了函数的定义,解题的关键在于能够熟记定义.4.C【分析】由勾股定理的逆定理逐一分析各选项,从而可得答案.【详解】解:22222223134,a b c +=+=≠= 故A 不符合题意;22222256618,a b c +=+=≠= 故B 不符合题意;22222251216913,a b c +=+=== 故C 符合题意;22222271219315,a c b +=+=≠= 故D 不符合题意;故选:.C【点睛】本题考查的是勾股定理的逆定理,掌握“利用勾股定理的逆定理判断三角形是不是直角三角形.”是解题的关键5.D【分析】根据二次根式的加法、混合运算以及二次根式的化简等知识逐一进行分析即可得.【详解】A.,故A 选项错误;B.42=-=2,故B 选项错误;C.2=,故C 选项错误;D.故选D.【点睛】本题考查了二次根式的混合运算以及二次根式的化简等知识,熟练掌握各运算的运算法则是解题的关键.6.A【详解】试题分析:A 、数据0、1、2、3、4、5的平均数是16×(0+1+2+3+4+5)=2.5,此选项错误; B 、选举中,人们通常最关心的数据是得票数最多的,即众数,此选项正确;C 、数据3、5、4、1、2从小到大排列后为1、2、3、4、5,其中位数为3,此选项正确;D 、①S 甲2<S 乙2,①甲组数据比乙组数据更稳定,此选项正确;故选A .考点:平均数;众数;中位数;方差.7.D【分析】先根据图①分析a 和b 的含义,先求出a 后再利用勾股定理求出b 即可.【详解】解:由图①可知,当直线l 运动a 秒时,m 的值最大为b ,当直线l 运动10秒时,m 的值又变为0,①可以得出直线l 运动到经过A 点时用了a 秒,经过D 点时用了10秒,①55a AB ==,,即正方形边长为5,①AC = ①b =故选:D .【点睛】本题考查了正方形的性质、勾股定理、一次函数的图象与性质等知识,解题关键是理解图象中的点的含义.8.C【分析】根据平行四边形的判定条件判断即可;【详解】根据分析可得当//AD BC ,AD BC =时,根据一组对边平行且相等的四边形是平行四边形能证明;故答案选C .【点睛】本题主要考查了平行四边形的判定,准确判断是解题的关键.9.C【详解】A 选项:①当x=2时,y=3×2-4=2≠3,①点(2,3)不在此函数的图象上,故本选项错误; B 选项:①当x=-1时,y=3×(-1)-4=-7≠-1,①点(-1,-1)不在此函数的图象上,故本选项错误; C 选项:当x=0时,y=0-4=-4,①点(0,-4)在此函数的图象上,故本选项正确;D 选项:当x=-4时,y=3×(-4)-4=-16≠0,①点(-4,0)不在此函数的图象上,故本选项错误. 故选C .10.C【分析】利用菱形的性质求出OB 的长度,再利用勾股定理求出'AB 的长即可.【详解】解:①菱形ABCD ,①BD ①AC ,AB =BC ,AO =OC =1在Rt①OBC 中,4OB =,①旋转,①OB O B ''=,90O '∠=︒,在Rt①AO B ''中,'5AB =,故选:C .【点睛】本题主要考查菱旋转和形的性质,能够利用勾股定理结合性质解三角形是解题关键.11.x ≥5.【分析】直接利用二次根式的定义分析得出答案.x﹣5≥0,解得:x≥5.故答案为:x≥5.【点睛】本题考查二次根式有意义的条件以及绝对值的性质,解题关键是掌握二次根式中的被开方数是非负数.12【详解】解:设正方形的对角线长为x,由题意得,12x2=5,解得13.5 3【详解】试题分析:根据“关联数”[3,m+2]所对应的一次函数是正比例函数,得到y=3x+m+2为正比例函数,即m+2=0,解得:m=-2,则分式方程为11112x-=-,去分母得:2-(x-1)=2(x-1),去括号得:2-x+1=2x-2,解得:x=53,经检验x=53是分式方程的解.考点:1.一次函数的定义;2.解分式方程;3.正比例函数的定义.14.1 4【详解】依据已知和正方形的性质及全等三角形的判定可知△AOE①①COF,则得图中阴影部分的面积为正方形面积的14,因为正方形的边长为1,则其面积为1,于是这个图中阴影部分的面积为14. 故答案为14. 15.﹣1<x <2【分析】根据题意可得点P 在第二象限,再利用第二象限内点的坐标符号可得关于x 的不等式组,然后解不等式组即可.【详解】解:①点P (x ﹣2,x +1)关于原点的对称点在第四象限,①点P 在第二象限,①2010x x -<⎧⎨+>⎩, 解得:﹣1<x <2,故答案为:﹣1<x <2.【点睛】此题主要考查了关于原点对称点的坐标,关键是掌握第二象限内点的坐标符号.16.(1)(2)4【分析】(1)根据二次根式的加减运算法则即可求出答案;(2)原式利用二次根式的除法,绝对值的意义,以及0指数幂的法则计算即可的到结果.(1==(2)031+(31=-+31+=4 【点睛】本题考查二次根式的混合运算,以及0指数幂,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.17.2a【分析】首先根据数轴可以确定,,a b c 的符号,以及各个绝对值数内的数的大小,然后即可去掉绝对值符号,从而对式子进行化简.【详解】解:根据数轴可以得到:0c a b <<<,且a b c <<,①c a b -()(),c c a b b a =-+++--,c c a a =-+++=2a .18.(1)见解析(2)16【分析】(1)根据平行四边形的性质可得①B =①D ,进而易证△ABE ≌△ADF (ASA ),即得出AB =AD ,进而即可求证结论:▱ABCD 是菱形;(2)由菱形的性质可知BC =CD ,进而可得CE =CF ,再由等腰三角形的性质和三角形内角和定理即可求出①ECF =120°,即求出①B =60°,最后利用含30°角的直角三角形的性质即可求出AB 的长,进而即可求出菱形的周长.(1)证明:①四边形ABCD 是平行四边形①①B =①D ,①AE ①BC ,AF ①CD ,①①AEB =①AFD =90°,在①AEB 和①AFD 中,B D BE DFAEB AFD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ①①AEB ①①AFD (ASA ),①AB =AD ,①四边形ABCD 是菱形.(2)如图,由(1)可知BC =CD ,①BE =DF ,①CE =CF ,①①CFE =①CEF =30°,①①ECF =180°−2①CEF =120°,①①B =180°−①ECF =60°,在Rt①ABE中,①BAE=30°,①24==,AB BE⨯=.①菱形ABCD的周长为4416【点睛】本题考查平行四边形的性质,菱形的判定和性质,全等三角形的判定和性质,等腰三角形的判定和性质以及含30°角的直角三角形的性质等知识.利用数形结合的思想是解答本题的关键.19.(1)20,80,0.32;(2)补全的频数分布直方图见解析;(3)本次党史知识竞赛成绩超过80分的学生有1080人.【分析】(1)根据频数表可直接进行求解;(2)由(1)可直接进行作图;(3)由(1)、(2)可得成绩超过80分的学生人数的频率,然后直接列式求解即可.【详解】(1)a=200×0.10=20,b=200×0.40=80,c=64÷200=0.32,故答案为:20,80,0.32;(2)由(1)知,a=20,b=20,补全的频数分布直方图见右图;(3)1500×(0.40+0.32)=1500×0.72=1080(人),即本次党史知识竞赛成绩超过80分的学生有1080人.【点睛】本题主要考查频数与频率,熟练掌握频数与频率是解题的关键.20.(2)m【分析】(1)在Rt △ABC 中,根据①ABC =45°,得到AC =BC =AB •sin45°=; (2)根据Rt △ADC 中,①ADC =30°,得到CD=tan AC ADC=∠推出BD =CD ﹣BC =)m . (1)解:①AC ①BC ,①①ACB =90°,①在Rt △ABC 中,AB =2m ,①ABC =45°,①①BAC =90°-①ABC =45°,①AC =BC =AB •sin45°=2×2m ),答:舞台的高ACm ; (2)在Rt △ADC 中,①ADC =30°,则CD=tan AC ADC==∠①BD =CD ﹣BC =)m ,答:DBm . 【点睛】本题考查了解直角三角形,熟练运用含30°角的直角三角形性质和含45°角的直角三角形的性质,是解决本题的关键.21.(1)364y x =+;(2)9184s x =+;80x -<<;(3)当P 的坐标为139,28⎛⎫- ⎪⎝⎭时,OPA ∆的面积为278,见解析【分析】(1)把点E 的坐标为(-8,0)代入6y kx =+求出k 即可解决问题;(2)△OP A 是以OA 长度6为底边,P 点的纵坐标为高的三角形,根据1••2PAO y SOA P =, 列出函数关系式即可;(3)利用(2)的结论,列出方程即可解决问题;【详解】解:(1)把()8,0E -代入6y kx =+中有086k =-+ ①34k = ①一次函数解析式为364y x =+ (2)如图:①OPA ∆是以OA 为底边,P 点的纵坐标为高的三角形①()6,0A -①6OA = ①1139666182244s y x x ⎛⎫=⨯⨯=⨯+=+ ⎪⎝⎭ 自变量x 的取值范围:80x -<<(3)当OPA ∆的面积为278时,有9271848x += 解得132x =-把132x =-代入一次函数364y x =+中,得98y = ①当P 的坐标为139,28⎛⎫- ⎪⎝⎭时,OPA ∆的面积为278 【点睛】本题考查一次函数综合题、三角形的面积、一元一次方程等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会构建一次函数或方程解决实际问题.22.(1)见解析;(2)13【分析】(1)先证明四边形OCED 是平行四边形,再根据矩形性质证明OC=OD ,即可证得结论;(2)根据菱形的性质和勾股定理可得到CD =13,再根据矩形的判定和性质即可得到OE 的长.【详解】(1)证明:①//DE AC 、//CE BD ,①四边形OCED 是平行四边形,①四边形ABCD 是矩形,①AC BD =,12OC AC =,12OD BD =, ①OC OD =,①四边形OCED 是菱形;(2)解:①四边形ABCD 是菱形,①AC BD ⊥,152OC AC ==,1122OD BD ==,①13CD ,①//DE AC 、//CE BD ,①四边形OCED 是平行四边形,①AC BD ⊥,①四边形OCED 是矩形,①13OE CD ==.【点睛】本题考查矩形的判定与性质、平行四边形的判定、菱形的判定与性质、勾股定理,熟练掌握相关知识的联系与运用是解答的关键.23.1)22800y x =+;(2)购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元.【详解】试题分析:(1)根据购车的数量以及价格根据总费用直接表示出等式;(2)根据购买中型客车的数量少于大型客车的数量,得出y=22x+800,中x 的取值范围,再根据y 随着x 的增大而增大,得出x 的值.试题解析:(1)因为购买大型客车x 辆,所以购买中型客车(20)x -辆.()62402022800y x x x =+-=+.(2)依题意得< x . 解得x >10.① 22800y x =+,y 随着x 的增大而增大,x 为整数,① 当x=11时,购车费用最省,为22×11+800="1" 042(万元).此时需购买大型客车11辆,中型客车9辆.答:购买大型客车11辆,中型客车9辆时,购车费用最省,为1 042万元.考点:一次函数的应用24.(1)证明见解析(2)2【分析】(1)根据平行线的性质得到CAD ACE ∠=∠,ADE CED ∠=∠.根据全等三角形的性质得到AD CE =,于是得到四边形ADCE 是平行四边形;(2)过点C 作CG AB ⊥于点G ,根据等腰三角形的性质和勾股定理即可得到结论.(1)证明:①AB CE ,①CAD ACE ∠=∠,ADE CED ∠=∠.①F 是AC 中点,①AF CF =.在AFD △与CFE 中,CAD ACE ADE CED AF CF ∠∠⎧⎪∠∠⎨⎪=⎩==,①AFD CFE AAS ≌(),①AD CE =.①AB CE ,①四边形ADCE 是平行四边形;(2)解:过点C 作CG AB ⊥于点G ,在ACG 中,=90AGC ∠︒,4BC =,45CAB ∠=︒,AC =由勾股定理得(22228CG AG AC +===,①2CG AG ==,在BCG 中,90BGC ∠=︒,2CG =,4BC =,①BG =①2AB AG BG =+=.【点睛】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,解直角三角形,正确的识别图形是解题的关键.。

八年级数学下册期末考试卷(含有答案)

八年级数学下册期末考试卷(含有答案)

八年级数学下册期末考试卷(含有答案)(满分:120分;时间120分钟)一、选择题(本大题共10个小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案A超过一个均记零分。

)1. 若式子√2x−4在实数范围内有意义,则x的取值范围是( )A. x≠2B. x≥2C. x≤2D. x≠−22. 下列方程是一元二次方程的是( )=5 D. x2=0A. x2+2y=1B. x3−2x=3C. x2+1x23. 下列说法中正确的有( ) ①四边相等的四边形一定是菱形; ②顺次连接矩形各边中点形成的四边形定是正方形; ③对角线相等的四边形一定是矩形; ④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分.A. 4个B. 3个C. 2个D. 1个4. 把代数式(a−1)⋅√1中的a−1移到根号内,那么这个代数式等于( )1−aA. −√1−aB. √a−1C. √1−aD. −√a−15. 陈师傅应客户要求加工4个长为4cm、宽为3cm的矩形零件.在交付客户之前,陈师傅需要对4个零件进行检测.根据零件的检测结果,图中有可能不合格的零件是( )A. B. C. D.6. 已知m是一元二次方程x2−3x+1=0的一个根,则2022−m2+3m的值为( )A. 2023B. 2022C. 2021D. −20207. 对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,B′两点重合,MN是折痕.若B′M=1,则CN的长为( )A. 7B. 6C. 5D. 48. 若最简二次根式√7a+b与√6a−bb+3是同类二次根式,则a+b的值为( )A. 2B. −2C. −1D. 19. 关于x的一元二次方程(m−3)x2+m2x=9x+5化为一般形式后不含一次项,则m的值为( )A. 0B. ±3C. 3D. −3A. 2个B. 3个C. 4个D. 5个二、填空题(本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分只要求填写最后结果。

2023-2024学年八年级第二学期期末考数学试卷附答案

2023-2024学年八年级第二学期期末考数学试卷附答案

第1页(共23页)2023-2024学年八年级下学期期末考数学试卷
一、选择题(本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)
1.(3分)下列图形是中心对称图形但不是轴对称图形的是()
A .
B .
C .
D .2.(3分)若−2在实数范围内有意义,则x 的取值范围(
)A .x ≥2B .x ≤2C .x >2
D .x <23.(3分)下列调查中,适合采用全面调查方式的是(
)A .对大运河水质情况的调查B .对端午节期间市场上粽子质量情况的调查
C .对某班40名同学体重情况的调查
D .对江苏省中小学的视力情况的调查
4.(3分)下列各式中,与2是同类二次根式的是()A .24B .18C .4
D .125.(3分)下列式子从左到右变形不正确的是()A .33=B .−=−C .2+2r
=a +b D .K11−=−16.(3分)已知点A (﹣2,y 1)、B (1,y 2)、C (3,y 3)三点都在反比例函数y =(k <0)的图象上,则下列关系正确的是(
)A .y 2<y 3<y 1B .y 3<y 2<y 1C .y 1<y 3<y 2D .y 1<y 2<y 3
7.(
3分)如图,已知四边形ABCD 是平行四边形,下列结论中错误的是(
)A .当AB =BC 时,它是菱形
B .当A
C ⊥B
D 时,它是菱形C .当AC =BD 时,它是矩形D .当∠ABC =90°时,它是正方形
8.(3分)如图,矩形ABCD 的对角线AC 、BD 交于点O ,∠AOD =60°,AD =
3,则BD 的长为()。

湖北省武汉市江岸区2023-2024学年下学期八年级期末数学试题卷(含答案)

湖北省武汉市江岸区2023-2024学年下学期八年级期末数学试题卷(含答案)

2023-2024学年下学期期末八年级数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑.1.有意义的条件是( )A. B. C. D.2.下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是( )A.1,2,3B.2,3,4C.3,4,5D.4,5,63.下列图象中不能表示y 是x 的函数关系的是()A. B.C. D.4.下列计算正确的是( )B.5.将直线向上平移4个单位长度后所得的直线的解析式为( )A.B. C. D.6.对甲、乙、丙、丁四名选手进行射击测试,每人射击10次,平均成绩均为9.5环,方差如下表所示,则四名选手中成绩最稳定的是()选手甲乙丙丁方差1.340.16 2.560.21A.甲B.乙C.丙D.丁7.如图,函数的图象与函数的图象交于点,其中k ,b ,m ,n 为常数,.则关于x 的不等式的解集是( )A. B. C. D.7题图8题图8.《九章算术》记载:今有坦高九尺,瓜生其上,蔓日长七寸;瓠生其下﹐蔓日长一尺.问几何日相逢?意思是有一道墙,高9尺,在墙头种一株瓜,瓜蔓沿墙向下每天长7寸(1尺=10寸);同时地上种着瓠沿墙向上每天长1尺,问瓜蔓、瓠蔓要多少天才相遇?小李绘制如图的函数模型解决了此问题.图中h (单位:尺)表示瓜蔓与瓠蔓离地面的高度,x (单位:天)表示生长时间.根据小李的模型,点P 的横坐标为( )A.B.C.D.3x ≤3x ≥3x <3x >=2===22y x =-2y x=24y x =-22y x =+26y x =-y kx b =+y mx n =+()2,3P -0k m >>kx b mx n +≤+2x >-2x ≥-2x <-2x ≤-9890179171739.如图,将四根木条用钉子钉成一个矩形框架,,.然后向左扭动框架,得到新的四边形(点E 在的上方).若在扭动后四边形面积减少了8,点P 和Q 分别为四边形和四边形对角线的交点,则的长为()D.29题图 10题图10.1765年数学家欧拉在其著作《三角形几何学》中首次提出定理:三角形三边的垂直平分线的交点,三条中线的交点以及三条高线的交点在一条直线上,这条线也被称为欧拉线.如图,已知的三个顶点分别为,,,则的欧拉线的解析式为( )A. B. C. D.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接写在答题卡的指定位置.11._______.12.一次函数的图象不经过第_______象限.13.小明在课间活动中进行了8次一分钟跳绳练习,所跳个数分别为160,163,160,157,160,161,162,165.则160,163,160,157,160,161,162,165这8个数的众数为_______.14.如图,点E 为正方形对角线上一点,,点F 在边上,,则_______15.已知一次函数(k 为常数),其图象为直线l.下列四个结论:①无论k 取何值,直线l 都过点;②一次函数的图象与直线l 没有公共点,则;③直线l 不经过第三象限,则;④点和在直线l 上,若,则;其中正确的是_______.(填序号)16.如图,点O 为等边边的中点.以为斜边作(点A 与点D 在同侧且点D 在外),点F 为线段上一点,延长到点E 使,,若,,则ABCD 5AB =8AD =BCEF BC ABCD BCEF PQ OAB △()0,0O ()2,4A ()6,0B OAB △22y x =-3xy =4y x =-+2023y x =-+=32y x =-ABCD AC 20ADE ∠=︒AB ED BF =FED ∠=4y kx k =++()1,4A -2y x =2k =40k -≤<()11,B x y ()22,C x y ()()12120x x y y --<1k >-ABC △CB BC Rt DBC △BC ABC △OD AF EF AF =ABD DBE ∠=∠2OF =5CE =_______。

八年级下册数学期末试卷测试卷(含答案解析)

八年级下册数学期末试卷测试卷(含答案解析)

八年级下册数学期末试卷测试卷(含答案解析)一、选择题1.下列二次根式,无论x 取什么值都有意义的是( ) A .xB .21x -C .21x D .21x +2.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( ) A .2、3、4B .3、4、5C .5、12、13D .30、50、603.如图,下列四组条件中,不能判定四边形ABCD 是平行四边形的是( )A .AB =CD ,AD =BC B .AB //CD ,AB =CD C .AB =CD ,AD //BCD .AB //CD ,AD //BC4.某校有17名同学报名参加信息学竞赛,测试成绩各不相同,学校取前8名参加决赛,小童已经知道了自己的成绩,他想知道自己能否参加决赛,还需要知道这17名同学测试成绩的( ) A .中位数B .平均数C .众数D .方差5.如图,在正方形ABCD 中,取AD 的中点E ,连接EB ,延长DA 至F ,使EF =EB ,以线段AF 为边作正方形AFGH ,交AB 于点H ,则AHAB的值是( )A 51- B 51+ C 352D .126.如图,在菱形ABCD 中MN 分别在AB 、CD 上且AM=CN ,MN 与AC 交于点O ,连接BO 若∠DAC=62°,则∠OBC 的度数为( )A .28°B .52°C .62°D .72°7.如图,等腰Rt ABC 中,AB =AC ,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:①DF =DN ;②DMN 为等腰三角形;③DM 平分∠BMN ;④AE =23EC ;⑤AE=NC ,其中正确结论有( )A .2个B .3个C .4个D .5个8.如图,直线 y 1 与 y 2 相交于点C , y 1 与 x 轴交于点 D ,与 y 轴交于点(0,1), y 2 与 x 轴 交于点 B (3,0),与 y 轴交于点 A ,下列说法正确的个数有( )①y 1的 解 析 式 为12y x =+;② OA = OB ;③2AC BC =④12y y ⊥;⑤ ∆AOB ≅ ∆BCD . A .2 个B .3个C .4 个D .5 个二、填空题9.5x -中字母x 的取值范围是__________.10.如图,在菱形ABCD 中,AC ,BD 两对角线相交于点O .若∠BAD =60°,BD =2cm ,则菱形ABCD 的面积是____cm 2.11.如图,每个小正方形的边长都为1,则ABC ∆的三边长a ,b ,c 的大小关系是________(用“>”连接).12.如图,点P 在矩形ABCD 的对角线AC 上,且不与点A C 、重合,过点P 分别作边AB AD 、的平行线,交两组对边于点E F 、和G H 、.四边形PEDH 和四边形PFBG 都是矩形并且面积分别为S 1,S 2,则S 1,S 2之间的关系为__________.13.一次函数图象过点()0,2-日与直线23y x =-平行,则一次函数解析式__________. 14.如图,两个完全相同的三角尺ABC 和DEF 在直线l 上滑动.要使四边形CBFE 为菱形,还需添加的一个条件是____(写出一个即可).15.星期六下午,小张和小王同时从学校沿相同的路线去书店买书,小王出发4分钟后发现忘记带钱包,立即调头按原速原路回学校拿钱包,小王拿到钱包后,以比原速提高20%的速度按原路赶去书店,结果还是比小张晚4分钟到书店(小王拿钱包的时间忽略不计).在整个过程中,小张保持匀速运动,小王提速前后也分别保持匀速运动,如图所示是小张与小王之间的距离y (米)与小王出发的时间x (分钟)之间的函数图象,则学校到书店的距离为________米.16.已知矩形ABCD,点E在AD边上,DE AE>,连接BE,将ABE△沿着BE翻折得到BFE△,射线EF交BC于G,若点G为BC的中点,1FG=,6DE=,则BE长为________.三、解答题17.计算:(1)(25﹣2)0+|2﹣5|+(﹣1)2021;(2)(6+3)(6﹣3)+14÷7.18.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几”.此问题可理解为:如图,有一架秋千,当它静止时,踏板离地的距离AB的长度为1尺.将它往前推送,当水平距离为10尺时.即10A C'=尺,则此时秋千的踏板离地的距离A D'就和身高5尺的人一样高.若运动过程中秋千的绳索始终拉得很直,求绳索OA的长.19.如图,在4×4的网格直角坐标系中(图中小正方形的边长代表一个单位长),已知点A(﹣1,﹣1),B(2,2).(1)线段AB的长为;(2)在小正方形的顶点上找一点C,连接AC,BC,使得S△ABC=92.①用直尺画出一个满足条件的△ABC;②写出所有符合条件的点C 的坐标.20.已知:如图,在Rt △ABC 中,D 是AB 边上任意一点,E 是BC 边中点,过点C 作CF ∥AB ,交DE 的延长线于点F ,连接BF 、CD . (1)求证:四边形CDBF 是平行四边形.(2)当D 点为AB 的中点时,判断四边形CDBF 的形状,并说明理由.21.先观察下列等式,再回答问题: 2211+2+()1 =1+1=2;2212+2+()212=2 12;2213+2+()3=3+13=313;…(1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用 n (n 为正整数)表示的等式,并用所学知识证明.22.某航空公司规定,旅客乘机所携带行李的质量x (kg )与其运费y (元)由如图所示的一次函数图象确定,问: (1)求一次函数解析式(2)旅客可携带的免费行李的最大质量是多少kg ?23.如图.正方形ABCD 的边长为4,点E 从点A 出发,以每秒1个单位长度的速度沿射线AD 运动,运动时间为t 秒(t >0),以AE 为一条边,在正方形ABCD 左侧作正方形AEFG ,连接BF .(1)当t =1时,求BF 的长度;(2)在点E 运动的过程中,求D 、F 两点之间距离的最小值; (3)连接AF 、DF ,当△ADF 是等腰三角形时,求t 的值.24.如图1,已知直线24y x =+与y 轴,x 轴分别交于A ,B 两点,以B 为直角顶点在第二象限作等腰Rt ABC ∆.(1)求点C 的坐标,并求出直线AC 的关系式;(2)如图2,直线CB 交y 轴于E ,在直线CB 上取一点D ,连接AD ,若AD AC =,求证:BE DE =.(3)如图3,在(1)的条件下,直线AC 交x 轴于点M ,72P a ⎛⎫- ⎪⎝⎭,是线段BC 上一点,在x 轴上是否存在一点N ,使BPN ∆面积等于BCM ∆面积的一半?若存在,请求出点N 的坐标;若不存在,请说明理由.25.如图1,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作直线EF ⊥BD ,且交AC 于点E ,交BC 于点F ,连接BE 、DF ,且BE 平分∠ABD.(1)①求证:四边形BFDE 是菱形;②求∠EBF 的度数.(2)把(1)中菱形BFDE 进行分离研究,如图2,G ,I 分别在BF ,BE 边上,且BG=BI ,连接GD ,H 为GD 的中点,连接FH ,并延长FH 交ED 于点J ,连接IJ ,IH ,IF ,IG .试探究线段IH 与FH 之间满足的数量关系,并说明理由;(3)把(1)中矩形ABCD 进行特殊化探究,如图3,矩形ABCD 满足AB=AD 时,点E 是对角线AC 上一点,连接DE ,作EF ⊥DE ,垂足为点E ,交AB 于点F ,连接DF ,交AC 于点G .请直接写出线段AG ,GE ,EC 三者之间满足的数量关系.【参考答案】一、选择题 1.D 解析:D 【分析】直接利用二次根式有意义,则被开方数是非负数,进而得出答案. 【详解】解:A.x 0x 时,二次根式有意义,故此选项不合题意;2B.1x -210x -时,二次根式有意义,故此选项不合题意;21C.x 0x ≠时,二次根式有意义,故此选项不合题意; 2D.1x +x 取什么值,二次根式都有意义,故此选项符合题意.故选:D . 【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.2.C解析:C 【分析】先求出两小边的平方和,再求出最长边的平方,最后看看是否相等即可. 【详解】解:A 、22+32≠42,不能构成直角三角形,故此选项不符合题意;B 32+42≠52,不能构成直角三角形,故此选项不符合题意;C 、52+122=132,能构成直角三角形,故此选项符合题意;D 、302+502≠602,不能构成直角三角形,故此选项不符合题意.故选:C.【点睛】本题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.C解析:C【解析】【分析】根据平行四边形的判定定理分别进行分析即可.【详解】解:A、根据两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;B、根据一组对边平行且相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题;C、不能判定四边形ABCD是平行四边形,故此选项符合题意;D、根据两组对边分别平行的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;故选:C.【点睛】本题主要考查了平行四边形的判定,解题的关键是掌握平行四边形的判定定理.4.A解析:A【解析】【分析】由于比赛取前8名参加决赛,共有17名选手参加,根据中位数的意义分析即可.【详解】解:由于总共有17个人,且他们的分数互不相同,第9名的成绩是中位数,要判断是否进入前8名,故应知道自己的成绩和中位数.故选:A.【点睛】本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数.5.A解析:A【分析】设AB=2a,根据四边形ABCD为正方形,E点为AD的中点,可得EF的长,进而可得结果.【详解】解:设AB=2a,∵四边形ABCD为正方形,∴AD=2a,∵E点为AD的中点,∴AE=a,∴BE225AE AB=+=a,∴EF5=a,∴AF=EF﹣AE=(5-1)a,∵四边形AFGH为正方形,∴AH=AF=(5-1)a,∴()515122aAHAB a--==.故选:A.【点睛】本题考查了正方形的性质,解决本题的关键是掌握正方形的性质.6.A解析:A【解析】【分析】连接OB,根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.【详解】解:连接OB,∵四边形ABCD为菱形∴AB∥CD,AB=BC,∴∠MAO=∠NCO,∠AMO=∠CNO,在△AMO和△CNO中,∵MAO NCOAM CNAMO CNO ∠∠⎧⎪⎨⎪∠∠⎩===,∴△AMO≌△CNO(ASA),∴AO=CO , ∵AB=BC , ∴BO ⊥AC , ∴∠BOC=90°, ∵∠DAC=62°, ∴∠BCA=∠DAC=62°, ∴∠OBC=90°-62°=28°. 故选A . 【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.7.C解析:C 【解析】 【分析】先根据等腰直角三角形的性质得出BD AD =,DBF DAN ∠=∠,BDF ADN ∠=∠,进而证DFB DAN △≌△,即可判断①,再证ABF CAN △≌△,推出CN AF AE ==,即可判断⑤;根据全等三角形的判定与性质可得M 为AN 的中点,进而可证得12DM AM NM AN ===,由次可判断②,再根据等腰三角形的性质及外角性质可判断③,最后再根据垂直平分线的判定与性质以及直角三角形的勾股定理可判断④. 【详解】解:90BAC ∠=︒,AC AB =,AD BC ⊥,45ABC C ∴∠=∠=︒,AD BD CD ==,90ADN ADB ∠=∠=︒,45BAD CAD ∴∠=︒=∠,BE 平分ABC ∠,122.52ABE CBE ABC ∴∠=∠=∠=︒,9022.567.5BFD AEB ∴∠=∠=︒-︒=︒,67.5AFE BFD AEB ∴∠=∠=∠=︒,AF AE ∴=,又∵M 为EF 的中点, ∴AM BE ⊥,90AMF AME ∴∠=∠=︒,9067.522.5DAN CAN MBN ∴∠=∠=︒-︒=︒=∠,在FBD 和NAD 中,FBD DAN BD ADBDF ADN ∠=∠⎧⎪=⎨⎪∠=∠⎩FBD NAD ∴△≌△(ASA ),DF DN ∴=,故①正确;在AFB △和CNA 中4522.5BAF C AB ACABF CAN ∠=∠=︒⎧⎪=⎨⎪∠=∠=︒⎩AFB CAN ∴△≌△(ASA ),AF CN ∴=,AF AE =,AE CN ∴=,故⑤正确;在ABM 和NBM 中ABM NBM BM BMAMB NMB ∠=∠⎧⎪=⎨⎪∠=∠⎩ABM NBM ∴△≌△(ASA ),AM NM ∴=,∴点M 是AN 的中点,又∵90ADN ∠=︒, ∴12DM AM NM AN ===,DM NM =, DMN ∴是等腰三角形,故②正确;DM AM =,22.5DAM ADM ∴∠=∠=︒,45DMN DAM ADM ∴∠=∠+∠=︒,9045DMB DMN DMN ∴∠=︒-∠=︒=∠,DM ∴平分BMN ∠,故③正确;如图,连接EN ,∵AM NM =,AM BE ⊥,∴BE 垂直平分AN ,∴EA =EN ,22.5ENA EAN ∴∠=∠=︒,45CEN ENA EAN ∴∠=∠+∠=︒,又∵45C ∠=︒,∴90ENC ∠=︒,且EN CN =,在Rt ENC 中,22222EC EN CN EN =+=, ∴EC ,AE ∴,故④错误, 即正确的有4个,故选:C .【点睛】本题考查了全等三角形的判定与性质,三角形外角性质,三角形内角和定理,直角三角形斜边上中线性质,等腰三角形的判定与性质,垂直平分线的判定与性质以及勾股定理等相关知识的应用,能熟练运用相关图形的判定与性质是解此题的关键,主要考查学生的推理能力.8.A解析:A【分析】通过待定系数法,求出直线y 1的解析式,于是可对①进行判断;利用待定系数法求出y 2的解析式为y =﹣x +3,则可确定A (0,3),所以OA =OB ,于是可对②进行判断;通过两点间的距离公式求出AC 、BC 的长,从而对③进行判断;计算∠EDO 和∠ABO 的度数,再通过三角形的内角和定理得出∠DCB 的度数,即可对④进行判断;通过计算BD 和AB 的长可对⑤进行判断.【详解】由图可知:直线y 1过点(0,1),(1,2),∴直线y 1的解析式为11y x =+,所以①错误;设y 2的解析式为y =kx +b ,把C (1,2),B (3,0)代入得:230k b k b +=⎧⎨+=⎩,解得:13k b =-⎧⎨=⎩,所以y 2的解析式为y =﹣x +3,当x =0时,y =﹣x +3=3,则A (0,3),则OA =OB ,所以②正确;∵A (0,3),C (1,2),B (3,0),∴ACBC ,∴12AC BC ==,所以③错误; 在11y x =+中,令y 1=0,得x =-1,∴D (-1,0),∴OD =1.∵OE =1,∴OD =OE ,∴∠EDO =45°.∵OA =OB =3,∴∠ABO =45°,∴∠DCB =180°-45°-45°=90°,∴DC ⊥AB ,∴12y y ⊥,故④正确;因为BD =3+1=4,而AB ,所以△AOB 与△BCD 不全等,所以⑤错误.故正确的有②④.故选A.【点睛】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;也考查了全等三角形的判定.二、填空题9.5x≥【解析】【分析】根据二次根式成立的条件可直接进行求解.【详解】解:由题意得:x-≥,解得:5x≥;50x≥.故答案为5【点睛】本题主要考查二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.10.A解析:3【解析】【分析】BD=1,可证△ABD是等由菱形的性质可得AB=AD,AC⊥BD,AO=CO,BO=DO=12边三角形,可得AB=BD=4,由勾股定理可求AO的长,即可求解.【详解】解:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,AO=CO,BO=DO=1BD=1cm,2∵∠BAD=60°,∴△ABD是等边三角形,∴AB=BD=2cm,∴223cm=-AO AB BO∴AC=3,∴菱形ABCD 的面积=12AC ×BD =2,故答案为:【点睛】本题主要考查了菱形的性质,勾股定理,解题的关键在于能够熟练掌握相关知识进行求解. 11.c a b >>;【解析】【分析】观察图形根据勾股定理分别计算出a 、b 、c ,根据二次根式的性质即可比较a 、b 、c 的大小.【详解】解:在图中,每个小正方形的边长都为1,由勾股定理可得:===a==b=c ∵>>∴c a b >>,故答案为:c a b >>.【点睛】本题考查了勾股定理和比较二次根式的大小,本题中正确求出a 、b 、c 的值是解题的关键.12.S 1=S 2【分析】由矩形的性质找出90D B ∠=∠=︒,结合对边互相平行即可证出四边形PEDH 和四边形PFBG 都是矩形,再根据矩形的性质可得出三对三角形的面积相等,由此即可得结果.【详解】解:∵四边形ABCD 为矩形,∴90D B ∠=∠=︒.又∵////EF AB CD ,////GH AD BC ,∴四边形PEDH 和四边形PFBG 都是矩形.∵//EF AB ,//HG BC ,四边形ABCD 为矩形,∴四边形AEPG 和四边形PHCF 也是矩形,∴ACD ABC SS =,PHC PCF S S =,AEP APG S S =, ∴ACD PHC AEP ABC PCF APG S S S S S S --=--,∴12S S故答案为:12S S .【点睛】本题考查了矩形的性质与判定,掌握矩形的性质与判定是解题的关键.13.32y x =--【解析】【分析】设一次函数解析式为y=kx+b ,先把(0,-2)代入得b=-2,再利用两直线平行的问题得到k=-3,即可得到一次函数解析式.【详解】解:设一次函数解析式为y=kx+b ,把(0,-2)代入得b=-2,∵直线y=kx+b 与直线y=2-3x 平行,∴k=-3,∴一次函数解析式为y=-3x-2.故答案为:y=-3x-2.【点睛】本题考查两直线相交或平行的问题:若两条直线是平行的关系,那么它们的自变量系数相同,即k 值相同.14.C解析:CB=BF ;BE ⊥CF ;∠EBF=60°;BD=BF 等(写出一个即可).【分析】根据邻边相等的平行四边形是菱形或对角线互相垂直的平行四边形是菱形进而判断即可.【详解】解:根据题意可得出:四边形CBFE 是平行四边形,当CB=BF 时,平行四边形CBFE 是菱形,当CB=BF ;BE ⊥CF ;∠EBF=60°;BD=BF 时,都可以得出四边形CBFE 为菱形. 故答案为:如:CB=BF ;BE ⊥CF ;∠EBF=60°;BD=BF 等.【点睛】此题主要考查了菱形的判定,关键是熟练掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.15.840【分析】结合题意根据最后一段图象可求得根据小王后来的速度,进而可求得小王原来的速度,再根据第一段图象可求得小张的速度,最后根据两人行完全程的时间相差4分钟可得方程,解方程即可求得答案.【解析:840【分析】结合题意根据最后一段图象可求得根据小王后来的速度,进而可求得小王原来的速度,再根据第一段图象可求得小张的速度,最后根据两人行完全程的时间相差4分钟可得方程,解方程即可求得答案.【详解】解:由题意可知:最后一段图象是小张到达书店后等待小王前往书店的图象,则小王后来的速度为:336÷4=84(米/分钟),∴小王原来的速度为:84÷(1+20%)=70(米/分钟),根据第一段图象可知:v 王-v 张=40÷4=10(米/分钟),∴小张的速度为:70-10=60(米/分钟),设学校到书店的距离为x 米, 由题意得:4448460x x ⎛⎫++-= ⎪⎝⎭, 解得:x =840,答:学校到书店的距离为840米,故答案为:840.【点睛】本题考查了函数图象的实际应用,行程问题的基本关系,一元一次方程的应用,有一定的难度,求出两人的速度是解题的关键. 16.【分析】先设,根据,,可得,,再根据,可得,进而得出方程,即可得到的长,可求得,再利用勾股定理可以,再用一次勾股定理即可算出.【详解】解:设,,,,,又为的中点,,由折叠可得,,解析:【分析】先设AE EF x ==,根据6DE =,1FG =,可得6AD x BC =+=,1EG x =+,再根据GEB GBE ∠=∠,可得EG BG =,进而得出方程612x x ++=,即可得到AE 的长,可求得EG BG =,再利用勾股定理可以BF ,再用一次勾股定理即可算出BE .【详解】解:设AE EF x ==,6DE =,1FG =,6AD x BC ∴=+=,1EG x =+,又G 为BC 的中点,1622x BG BC +∴==,由折叠可得,AEB GEB ∠=∠,由//AD BC ,可得AEB GBE ∠=∠,GEB GBE ∴∠=∠,EG BG ∴=,612x x +∴+=, 解得4x =,即4AE =,5EG BG EF FG ∴==+=,90BAE BFE ∠=∠=︒,BF ∴BE ∴=故答案是:【点睛】本题主要考查了折叠问题,勾股定理、三角全等、解题的关键是折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题17.(1)﹣2;(2)3+.【分析】(1)先化简零指数幂,绝对值,有理数的乘方,然后再计算;(2)先利用平方差公式,二次根式的除法运算法则计算乘除,最后算加减.【详解】解:(1)原式=1+﹣2解析:(12;(2)【分析】(1)先化简零指数幂,绝对值,有理数的乘方,然后再计算;(2)先利用平方差公式,二次根式的除法运算法则计算乘除,最后算加减.【详解】解:(1)原式=2﹣12;(2)22=6﹣=【点睛】本题考查二次根式的混合运算,零指数幂,掌握二次根式混合运算的运算顺序和计算法则及平方差公式(a +b )(a ﹣b )=a 2﹣b 2的结构是解题关键.18.绳索OA 的长为14.5尺.【分析】设绳索OA 的长为x 尺,根据题意知,可列出关于 的方程,即可求解.【详解】解:由题意可知: 尺,设绳索OA 的长为x 尺,根据题意得,解得.答:绳索OA 的解析:绳索OA 的长为14.5尺.【分析】设绳索OA 的长为x 尺,根据题意知,可列出关于x 的方程,即可求解.【详解】解:由题意可知:5A D '= 尺,设绳索OA 的长为x 尺,根据题意得()2221015x x ++-=, 解得14.5x =.答:绳索OA 的长为14.5尺.【点睛】本题主要考查了勾股定理的应用,明确题意,列出方程是解题的关键.19.(1)3;(2)①见解析;②C1(2,﹣1),C2(﹣1,2),C3(﹣2,1),C4(1,﹣2).【解析】【分析】(1)直接利用勾股定理求出AB 的长度即可;(2)①根据三角形ABC 的面积画解析:(1)2)①见解析;②C 1(2,﹣1),C 2(﹣1,2),C 3(﹣2,1),C 4(1,﹣2).【解析】【分析】(1)直接利用勾股定理求出AB 的长度即可;(2)①根据三角形ABC 的面积92画出对应的三角形即可; ②根据点C 的位置,写出点C 的坐标即可.【详解】解:(1)如图所示在Rt △ACB 中,∠P =90°,AP =3,BP =3 ∴AB ==(2)①如图所示Rt △ACB 中,∠C =90°,AC =3,BC =3 ∴119=33222ABC S AC BC =⨯⨯=△②C 1(2,﹣1),C 2(﹣1,2),C 3(﹣2,1),C 4(1,﹣2).满足条件的三角形如图所示.C 1(2,﹣1),C 2(﹣1,2),C 3(﹣2,1),C 4(1,﹣2).【点睛】本题主要考查了勾股定理,三角形的面积,点的坐标,解题的关键在于能够熟练掌握相关知识点进行求解.20.(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF=BD ,再由CF ∥DB ,即可得出结论; (2)由直角三角形斜边上的直线性质得CD=DB ,即解析:(1)见解析;(2)四边形CDBF 是菱形,理由见解析【分析】(1)证△CEF ≌△BED (ASA ),得CF =BD ,再由CF ∥DB ,即可得出结论;(2)由直角三角形斜边上的直线性质得CD =DB ,即可证平行四边形CDBF 是菱形.【详解】(1)证明:∵CF ∥AB ,∴∠ECF =∠EBD ,∵E 是BC 中点,∴CE =BE ,在△CEF 和△BED 中,ECF EBD CE BECEF BED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△CEF ≌△BED (ASA ),∴CF =BD ,又∵CF ∥AB ,∴四边形CDBF 是平行四边形.(2)解:四边形CDBF 是菱形,理由如下:∵D 为AB 的中点,∠ACB =90°,∴CD =12AB =BD ,由(1)得:四边形CDBF 是平行四边形,∴平行四边形CDBF 是菱形.【点睛】本题考查了平行四边形的判定和性质、菱形的判定、全等三角形的判定和性质、直角三角形斜边上的中线性质等知识;熟练掌握平行四边形的判定与性质,证明△CEF ≌△BED 是解题的关键,属于中考常考题型. 21.(1);(2),证明见解析.【解析】【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,即可猜想出第四个等式为44;(2)根据等式的变化,找出变化规律“n解析:(1144+=144;(2211n n n n ++=,证明见解析.【解析】【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,即=414+=414;(2)根据等式的变化,找出变化规律=n 211n n n ++=”,再利用222112n n n n++=+()()开方即可证出结论成立. 【详解】(1)∵1+1=2;=212+=212;=313+=313;里面的数字分别为1、2、3,∴ 144+= 144.(21+1=2,212+=212313+=313=414+=414,…,∴= 211n n n n ++=.证明:等式左边==n 211n n n++==右边.=n 211n n n ++=成立. 【点睛】本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数字为4;(2)找出变化规律n 211n n n ++=”.解决该题型题目时,根据数值的变化找出变化规律是关键.22.(1)y=20x-300;(2)15【分析】(1)根据图象,用待定系数法即可求出函数的解析式;(2)根据解析式取y=0,求出对应的x 即可.【详解】解:(1)设y=kx+b ,代入(20,10解析:(1)y =20x -300;(2)15【分析】(1)根据图象,用待定系数法即可求出函数的解析式;(2)根据解析式取y =0,求出对应的x 即可.【详解】解:(1)设y=kx+b,代入(20,100),(30,300),得:1002030030k bk b=+⎧⎨=+⎩,解得:20300kb=⎧⎨=-⎩,∴y=20x-300;(2)取y=0,则20x-300=0,解得x=15,∴免费行李的最大质量为15kg.【点睛】本题主要考查一次函数的图形,关键是能根据图象用待定系数法求出函数的解析式,然后根据y的值即可求出x的值.23.(1)(2)(3)2或或4【分析】(1)由勾股定理可求出答案;(2)延长AF,过点D作射线AF的垂线,垂足为H,设AH=DH=x,在Rt△AHD中,得出x2+x2=42,解方程解析:(1)(2)(3)2或或4【分析】(1)由勾股定理可求出答案;(2)延长AF,过点D作射线AF的垂线,垂足为H,设AH=DH=x,在Rt△AHD中,得出x2+x2=42,解方程求出x即可得出答案;(3)分AF=DF,AF=AD,AD=DF三种情况,由正方形的性质及直角三角形的性质可得出答案.【详解】解:(1)当t=1时,AE=1,∵四边形AEFG是正方形,∴AG=FG=AE=1,∠G=90°,∴BF===,(2)如图1,延长AF,过点D作射线AF的垂线,垂足为H,∵四边形AGFE是正方形,∴AE=EF,∠AEF=90°,∴∠EAF=45°,∵DH⊥AH,∴∠AHD=90°,∠ADH=45°=∠EAF,∴AH=DH,设AH=DH=x,∵在Rt△AHD中,∠AHD=90°,∴x2+x2=42,解得x1=﹣2(舍去),x2=2,∴D、F两点之间的最小距离为2;(3)当AF=DF时,由(2)知,点F与点H重合,过H作HK⊥AD于K,如图2,∵AH=DH,HK⊥AD,∴AK==2,∴t=2.当AF=AD=4时,设AE=EF=x,∵在Rt△AEF中,∠AEF=90°,∴x2+x2=42,解得x1=﹣2(舍去),x2=2,∴AE=2,即t=2.当AD=DF=4时,点E与D重合,t=4,综上所述,t为2或2或4.【点睛】本题是四边形综合题,考查了勾股定理,正方形的性质,等腰三角形的性质等知识,解题的关键是熟练掌握正方形的性质,学会用分类讨论的思想思考问题.24.(1)y=x+4;(2)见解析;(3)存在,点N(﹣,0)或(,0).【解析】【分析】(1)根据题意证明△CHB≌△BOA(AAS),即可求解;(2)求出B、E、D的坐标分别为(-1,0)、解析:(1)y =13x+4;(2)见解析;(3)存在,点N (﹣463,0)或(343,0). 【解析】【分析】(1)根据题意证明△CHB ≌△BOA (AAS ),即可求解;(2)求出B 、E 、D 的坐标分别为(-1,0)、(0,12)、(1,-1),即可求解; (3)求出BC 表达式,将点P 代入,求出a 值,再根据AC 表达式求出M 点坐标,由S △BMC =12MB×y C =12×10×2=10,S △BPN =12S △BCM =5=12 NB×a=38NB 可求解. 【详解】解:(1)令x =0,则y =4,令y =0,则x =﹣2,则点A 、B 的坐标分别为:(0,4)、(﹣2,0),过点C 作CH ⊥x 轴于点H ,∵∠HCB+∠CBH =90°,∠CBH+∠ABO =90°,∴∠ABO =∠BCH ,∠CHB =∠BOA =90°,BC =BA ,在△CHB 和△BOA 中,===BCH ABO CHB BOA BC BA ∠∠∠∠⎧⎪⎨⎪⎩, ∴△CHB ≌△BOA (AAS ),∴BH =OA =4,CH =OB=2,∴ 点C (﹣6,2),将点A 、C 的坐标代入一次函数表达式:y= m x+ b 得:426b m b=⎧⎨=-+⎩, 解得:134m b ⎧=⎪⎨⎪=⎩, 故直线AC 的表达式为:y =13x+4;(2)同理可得直线CD 的表达式为:y =﹣12x ﹣1①,则点E (0,﹣1),直线AD 的表达式为:y =﹣3x+4②,联立①②并解得:x =2,即点D (2,﹣2),点B 、E 、D 的坐标分别为(﹣2,0)、(0,﹣1)、(2,﹣2),故点E 是BD 的中点,即BE =DE ;(3)将点BC 的坐标代入一次函数表达式并解得:直线BC 的表达式为:y =﹣12x-1,将点P (﹣72,a )代入直线BC 的表达式得:34a =, 直线AC 的表达式为:y =13x+4, 令y=0,则x=-12,则点M (﹣12,0),S △BMC =12MB×y C =12×10×2=10, S △BPN =12S △BCM =5=12NB×a=38NB , 解得:NB =403, 故点N (﹣463,0)或(343,0). 【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、求函数表达式、面积的计算等,综合性较强,理清题中条件关系,正确求出点的坐标是解题的关键. 25.(1)①证明见解析;②;(2);(3).【分析】(1)①由,推出,,推出四边形是平行四边形,再证明即可.②先证明,推出,延长即可解决问题.(2).只要证明是等边三角形即可.(3)结论:.如解析:(1)①证明见解析;②60EBF ∠=︒;(2)IH =;(3)222EG AG CE =+.【分析】(1)①由DOE BOF ∆≅∆,推出EO OF =,OB OD =,推出四边形EBFD 是平行四边形,再证明EB ED =即可.②先证明2ABD ADB ∠=∠,推出30ADB ∠=︒,延长即可解决问题.(2)IH =.只要证明IJF ∆是等边三角形即可.(3)结论:222EG AG CE =+.如图3中,将ADG ∆绕点D 逆时针旋转90︒得到DCM ∆,先证明DEG DEM ∆≅∆,再证明ECM ∆是直角三角形即可解决问题.【详解】(1)①证明:如图1中,四边形ABCD 是矩形,//AD BC ∴,OB OD =,EDO FBO ∴∠=∠,在DOE ∆和BOF ∆中,EDO FBO OD OBEOD BOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, DOE BOF ∴∆≅∆,EO OF ∴=,OB OD =,∴四边形EBFD 是平行四边形,EF BD ⊥,OB OD =,EB ED ∴=,∴四边形EBFD 是菱形.②BE 平分ABD ∠,ABE EBD ∴∠=∠,EB ED =,EBD EDB ∴∠=∠,2ABD ADB ∴∠=∠,90ABD ADB ∠+∠=︒,30ADB ∴∠=︒,60ABD ∠=︒,30ABE EBO OBF ∴∠=∠=∠=︒,60EBF ∴∠=︒.(2)结论:3IH FH =.理由:如图2中,延长BE 到M ,使得EM EJ =,连接MJ .四边形EBFD 是菱形,60B ∠=︒,EB BF ED ∴==,//DE BF ,JDH FGH ∴∠=∠,在DHJ ∆和GHF ∆中,DHG GHF DH GHJDH FGH ∠=∠⎧⎪=⎨⎪∠=∠⎩, DHJ GHF ∴∆≅∆,DJ FG ∴=,JH HF =,EJ BG EM BI ∴===,BE IM BF ∴==,60MEJ B ∠=∠=︒,MEJ ∴∆是等边三角形,MJ EM NI ∴==,60M B ∠=∠=︒在BIF ∆和MJI ∆中,BI MJ B M BF IM =⎧⎪∠=∠⎨⎪=⎩, BIF MJI ∴∆≅∆,IJ IF ∴=,BFI MIJ ∠=∠,HJ HF =,IH JF ∴⊥,120BFI BIF ∠+∠=︒,120MIJ BIF ∴∠+∠=︒,60JIF ∴∠=︒,JIF ∴∆是等边三角形,在Rt IHF ∆中,90IHF ∠=︒,60IFH ∠=︒,30FIH ∴∠=︒, 3IH FH ∴=.(3)结论:222EG AG CE =+.理由:如图3中,将ADG ∆绕点D 逆时针旋转90︒得到DCM ∆,90FAD DEF ∠+∠=︒,AFED ∴四点共圆,45EDF DAE ∴∠=∠=︒,90ADC ∠=︒,45ADF EDC ∴∠+∠=︒,ADF CDM ∠=∠,45CDM CDE EDG ∴∠+∠=︒=∠,在DEM ∆和DEG ∆中,DE DE EDG EDM DG DM =⎧⎪∠=∠⎨⎪=⎩, DEG DEM ∴∆≅∆,GE EM ∴=,45DCM DAG ACD ∠=∠=∠=︒,AG CM =,90ECM ∴∠=︒222EC CM EM ∴+=,EG EM =,AG CM =,222GE AG CE ∴=+.【点睛】本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.。

八年级下册数学期末试卷练习(Word版含答案)

八年级下册数学期末试卷练习(Word版含答案)

八年级下册数学期末试卷练习(Word 版含答案)一、选择题1.要使二次根式3x -有意义,x 的值可以是( ) A .﹣1B .0C .2D .42.已知下列三角形的各边长:①3、4、5,②3、4、6,③5、12、13,④5、11、12其中直角三角形有( ) A .4个B .3个C .2个D .1个3.四边形ABCD 的对角线AC 和BD 相交于点O ,下列判断正确的是( ) A .若AO =OC ,则ABCD 是平行四边形 B .若AC =BD ,则ABCD 是平行四边形C .若AO =BO ,CO =DO ,则ABCD 是平行四边形 D .若AO =OC ,BO =OD ,则ABCD 是平行四边形4.如图是甲、乙两人6次投篮测试(每次投篮10个)成绩的统计图,甲、乙两人测试成绩方差分别记作2S 甲、2S 乙,则下列结论正确的是( )A .22 S S <甲乙B .22S S >甲乙 C .22S S =甲乙 D .无法确定5.如图,点E 是边长为8的正方形ABCD 的对角线BD 上的动点,以AE 为边向左侧作正方形AEFG ,点P 为AD 的中点,连接PG ,在点E 运动过程中,线段PG 的最小值是( )A.2 B.2C.22D.426.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CFD等于()A.50°B.60°C.70°D.80°7.如图,在直角三角形ABC中,∠C=90°,AB=10,AC=8,点E,F分别为AC和AB的中点,则EF=()A.3 B.4 C.5 D.68.如图1,在矩形ABCD中,E是CD上一点,动点P从点A出发沿折线AE→EC→CB运动到点B时停止,动点Q从点A沿AB运动到点B时停止,它们的速度均为每秒1cm.如果点P、Q同时从点A处开始运动,设运动时间为x(s),△APQ的面积为ycm2,已知y与x的函数图象如图2所示,以下结论:①AB=5cm;②cos∠AED=35;③当0≤x≤5时,y=225x;④当x=6时,△APQ是等腰三角形;⑤当7≤x≤11时,y=55522x+.其中正确的有()A.2个B.3个C.4个D.5个二、填空题9.2021x-x的取值范围是____________.10.已知菱形ABCD的边长为4,∠A=60°,则菱形ABCD的面积为_________.11.如图,在△ ABC 中,∠C=90°,∠ABC 的平分线 BD 交 AC 于点 D.若 BD=10cm,BC=8cm,则点 D 到直线 AB 的距离= ________.12.如图,在矩形ABCD 中,AB =8,AD =6,将矩形沿EF 翻折,使点C 与点A 重合,点B 落在B ′处,折痕与DC ,AB 分别交于点E ,F ,则DE 的长为______.13.已知一次函数的图象经过(2,0),(0,4)-两点,则该一次函数解析式是______. 14.如图,O 是矩形ABCD 的对角线AC 、BD 的交点,OM ⊥AD ,垂足为M ,若AB=8,则OM 长为_______.15.如图,已知直线1:1l y x =+与x 轴交于点,A 与直线21:22l y x =+交于点B ,点C 为x 轴上的一点,若ABC ∆为直角三角形,则点C 的坐标为__________.16.如图,矩形ABCD 中,AB =6,BC =8,E 为AD 中点,F 为AB 上一点,将△AEF 沿EF 折叠后,点A 恰好落到CF 上的点G 处,则折痕EF 的长是_____.三、解答题17.(1)148312242÷+⨯- (2)(32126)2352--⨯+18.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力,有一台风中心沿东西方向AB 由点A 行驶向点B ,已知点C 为一海港,且点C 与直线AB 上两点A 、B 的距离分别为300km 和400km ,又AB =500km ,以台风中心为圆心周围250km 以内为受影响区域. (1)海港C 会受台风影响吗?为什么?(2)若台风的速度为20km/h ,台风影响该海港持续的时间有多长?19.如图,每个小正方形的边长都是1.A 、B 、C 、D 均在网格的格点上.(1)求边BC 、BD 的长度.(2)∠BCD 是直角吗?请证明你的判断.(3)找到格点E ,画出四边形ABED ,使其面积与四边形ABCD 面积相等(一个即可,且E 与C 不重合).20.如图,在平行四边形ABCD 中,点P 是AB 边上一点(不与A ,B 重合),过点P 作PQ ⊥CP ,交AD 边于点Q ,且∠QPA =∠PCB ,QP =QD . (1)求证:四边形ABCD 是矩形; (2)求证:CD =CP .21.743+743+7212+437+=,4312⨯=,即:22(4)(3)7+=,4312=2227437212(4)243(3)((43)23++=+⨯+=+=问题:(1)填空:423+=__________,526-=____________﹔(2)进一步研究发现:形如2m n ±的化简,只要我们找到两个正数a ,b (a b >),使a b m +=,ab n =,即22()()a b m +=,a b n ⨯=﹐那么便有:2m n ±=__________.(3)化简:415-(请写出化简过程)22.由于持续高温和连日无雨,某水库的蓄水量y (万立方米)与干旱时间t (天)之间的关系满足一次函数y kt b =+,(k ,b 为常数,且k ≠0),其图象如图所示.(1)由图象知k = ,其实际意义是 ;(2)若水库的蓄水量小于360万立方米时,将发生严重干旱警报,那么多少天后将发生严重干旱警报?(3)在(2)的条件下,照这样干旱下去,预计再持续多少天,水库将干涸? 23.如图,四边形ABCD ,,动点P 从点B 出发,沿BC 方向以每秒的速度运动到C 点返回,动点Q 从点A 出发,在线段AD 上以每秒的速度向点D 运动,点P ,Q 分别从点B ,A 同时出发,当点Q 运动到点D 时,点P 停止运动,设运动时间为t (秒).(1)当时,是否存在点P ,便四边形PQDC 是平行四边形,若存在,求出t 值;若不存在,请说明理由;(2)当t 为何值时,以C ,D ,Q ,P 为顶点的四边形面积等于;(3)当时,是否存在点P ,使是等腰三角形?若存在,请求出所有满足要求的t 的值;若不存在,请说明理由.24.直线1l :3y x =-交x 轴于A ,交y 轴于B .(1)求AB 的长;(2)如图1,直线1l 关于y 轴对称的直线2l 交x 轴于点C ,直线3l :12y x b =+经过点C ,点D 、T 分别在直线2l 、3l 上.若以A 、B 、D 、T 为顶点的四边形是平行四边形,求点D 的坐标;(3)如图2,平行y 轴的直线2x =交x 轴于点E ,将直线1l 向上平移5个单位长度后交x轴于M ,交y 轴于N ,交直线2x =于点P .点()2,F t t 在四边形ONPE 内部,直线PF 交OE于G ,直线OF 交PE 于H ,求()GE ME HE +的值.25.探究:如图①,△ABC 是等边三角形,在边AB 、BC 的延长线上截取BM =CN ,连结MC 、AN ,延长MC 交AN 于点P . (1)求证:△ACN ≌△CBM ;(2)∠CPN = °;(给出求解过程)(3)应用:将图①的△ABC 分别改为正方形ABCD 和正五边形ABCDE ,如图②、③,在边AB 、BC 的延长线上截取BM =CN ,连结MC 、DN ,延长MC 交DN 于点P ,则图②中∠CPN = °;(直接写出答案)(4)图③中∠CPN = °;(直接写出答案)(5)拓展:若将图①的△ABC 改为正n 边形,其它条件不变,则∠CPN = °(用含n 的代数式表示,直接写出答案).【参考答案】一、选择题 1.D 解析:D 【分析】二次根式的被开方数大于等于零,由此计算解答. 【详解】 解:∵30x -≥,x≥,∴3观察只有D选项符合,故选:D.【点睛】此题考查二次根式有意义的条件:被开方数大于等于零.2.C解析:C【分析】判断是否可以构成直角三角形,只需验证两小边的平方和是否等于最长边的平方,即可得出答案.【详解】解:①222+=,能构成直角三角形;345②222+≠,不能构成直角三角形;346③222+=,能构成直角三角形;51213④222+≠,不能构成直角三角形;51112∴其中直角三角形有2个;故选:C.【点睛】本题主要考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足222a b c,那么+=这个三角形就是直角三角形.3.D解析:D【解析】【分析】根据平行四边形的判定条件进行逐一判断即可.【详解】解:∵AO=OC,BO=OD,∴四边形的对角线互相平分∴D能判定ABCD是平行四边形.若AO=BO,CO=DO,证明AC=BD,并不能证明四边形ABCD是平行四边形,故C错误,若AO=OC,条件不足,无法明四边形ABCD是平行四边形,故A错误,若AC=BD,条件不足,无法明四边形ABCD是平行四边形,故B错误,故选D.【点睛】本题主要考查了平行四边形的判定,解题的关键在于能够熟练掌握平行四边形的判定条件. 4.A解析:A【解析】【分析】根据甲、乙的进球的统计图可知,甲的成绩波动幅度比乙的波动幅度小,由此即可得到答案.【详解】解:有题意可知,甲的成绩波动幅度比乙的波动幅度小,∴22S S甲乙,故选A.【点睛】本题主要考查了方差的定义,解题的关键在于能够熟练掌握,波动越小,方差越小.5.C解析:C【分析】连接DG,可证△AGD≌△AEB,得到G点轨迹,利用点到直线的最短距离进行求解.【详解】解:连接DG,如图,,∵四边形ABCD、四边形AEFG均为正方形,∴∠DAB=∠GAE=90°,AB=AD,AG=AE,∵∠GAD+∠DAE=∠DAE+∠BAE,∴∠GAD=∠BAE,∵AB=AD,AG=AE,∴△AEB≌△AGD(S A S),∴∠PDG=∠ABE=45°,∴G点轨迹为线段DH,当PG⊥DH时,PG最短,在Rt△PDG中,∠PDG=45°,P为AD中点,DP=4,设PG=x,则DG=x,由勾股定理得,x2+x2=42,解得x=2.故选:C.【点睛】本题主要考查正方形的性质,全等三角形的判定和性质,掌握连接DG,得到G点轨迹,是解题的关键.6.D解析:D 【解析】 【分析】连接BF ,根据菱形的性质得出△ADF ≌△ABF ,从而得到∠ABF =∠ADF ,然后结合垂直平分线的性质推出∠ABF =∠BAC ,即可得出结论. 【详解】解:如图,连接BF ,∵四边形ABCD 是菱形,∠BAD =80°, ∴AD =AB ,∠DAC =∠BAC=12∠BAD =40°, 在△ADF 和△ABF 中, AD AB DAF BAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△ABF (SAS ), ∴∠ABF =∠ADF ,∵AB 的垂直平分线交对角线AC 于点F ,E 为垂足, ∴AF =BF ,∴∠ABF =∠BAC =40°, ∴∠DAF =∠ADF =40°, ∴∠CFD =∠ADF +∠DAF =80°. 故选:D .【点睛】本题考查菱形的性质,全等三角形的判定与性质以及三角形的外角定理等,理解图形的基本性质是解题关键.7.A解析:A 【解析】 【详解】∵直角三角形ABC 中,∠C =90°,AB =10,AC =8, ∴221086BC =-=.∵点E 、F 分别为AC 、AB 的中点,∴EF 是△ABC 的中位线, ∴116322EF BC ==⨯=. 故选A .8.B解析:B 【分析】根据图中相关信息即可判断出正确答案. 【详解】解:图2知:当57x ≤≤ 时y 恒为10,∴当5x =时,点Q 运动恰好到点B 停止,且当57x ≤≤ 时点P 必在EC 上, 5AB cm ∴=,故①正确; ∵当57x ≤≤ 时点P 必在EC 上,且当7x > 时,y 逐渐减小, ∴当7x = 时,点Q 在点B 处,点P 在点C 处,此时10y =,47BC cm AE EC cm ∴+=,=,设EC acm =,则7AE a cm =(﹣), 5DE a cm =(﹣), 在Rt ADE ∆ 中,由勾股定理得:222457a a +(﹣)=(﹣),解得:2a =,235EC cm DE cm AE cm ∴=,=,=, 35DE cos AED AE ∴∠==,故②正确; 当05x ≤≤ 时,由5AE cm = 知点P 在AE 上,过点P 作PH AB ⊥,如图:35DE cos EAB cos AED AE ∠∠===, 45sin EAB ∴∠=,AP AQ xcm ==,45PH xcm ∴=,212•25y AQ PH y ∴===x ,故③正确;当6x = 时,5AQ AB cm ==,172PQ cm AP cm =,=, APQ ∴∆ 不是等腰三角形,故④不正确;当711x ≤≤时,点P 在BC 上,点Q 和点B 重合,115555(74)2222y AQ PQ x x ==⨯⨯+-=-+ 故⑤ 不正确;故选B .【点睛】本题主要考查了动点问题的函数图像,理解题意,读懂图像信息,灵活运用所学知识是解题关键,属于中考选择题中的压轴题.二、填空题 9.x ≥2021【解析】【分析】直接利用二次根式的定义分析得出答案.【详解】解:∵2021x -有意义,∴20210x -≥,解得:2021x ≥.故答案为:2021x ≥.【点睛】本题主要考查了二次根式有意义的条件,正确掌握定义是解题关键.10.A解析:83【解析】【分析】作出图形,利用30°直角三角形的性质求出高,利用菱形的面积公式可求解.【详解】如图所示,菱形ABCD 中,AB=AD=4,∠A=60°,过点D 作DE ⊥AB 于点E ,则3sin 6043DE AD =︒== ∴菱形ABCD 的面积为AB ∙DE=4×2383故答案为:83【点睛】本题考查了菱形的性质,熟练运用30°直角三角形的性质以及菱形的面积公式是本题的关键.11.D解析:6cm【解析】【分析】过点D作DE⊥AB于E,利用勾股定理列式求出CD,再根据角平分线上的点到角的两边距离相等可得DE=CD即可求解.【详解】如图,过点D作DE⊥AB于E,∵∠C=90°,BD=10cm,BC=8cm,∴226BD BC-cm,∵∠C=90°,BD是∠ABC的平分线,∴DE=CD=6cm,即点D到直线AB的距离是6cm.故答案为:6cm.【点睛】本题考查了勾股定理、角平分线的性质、点到直线的距离等知识,在解题时要能灵活应用各个知识点是本题的关键.12.D解析:7 4【分析】设DE=x,则CE=8-x,根据折叠的性质知:CE=8-x.在直角△AED中,利用勾股定理列出关于x的方程并解答即可.【详解】解:如图,在矩形ABCD中,AB=DC=8,AD=6.设DE=x,则CE=8-x,根据折叠的性质知:AE=CE=8-x.在直角△AED中,由勾股定理得:AD2+DE2=AE2,即62+x2=(8-x)2.解得x=74.即DE的长为74.故答案是:74.【点睛】本题主要考查了翻折变换(折叠问题),矩形的性质,解题时,借用了方程思想,求得了相关线段的长度.13.y=2x-4【分析】由一次函数的图象经过(2,0),(0,-4)两点,可设一次函数解析式为y=kx+b(k≠0).然后将点的坐标代入解析式,故得2k+b=0,b=-4.进而推导出函数解析式为y=2x-4.【详解】解:设该一次函数的解析式为:y=kx+b(k≠0).由题意得:2004k bk b+=⎧⎨⋅+=-⎩,解得:24kb=⎧⎨=-⎩,∴该一次函数的解析式为y=2x-4.故答案为:y=2x-4.【点睛】本题主要考查用待定系数法求一次函数解析式,熟练掌握用待定系数法求一次函数解析式是解决本题的关键.14.A解析:4【解析】【分析】根据三角形的中位线即可求解.【详解】∵O 是矩形ABCD 的对角线AC 、BD 的交点,∴O 是AC 中点,又OM ⊥AD ,AD ⊥CD ∴12∥OM CD ,又AB=CD=8 故OM=4故填:4【点睛】此题主要考查矩形的性质,解题的关键是熟知三角形中位线的性质.15.(2,0)或(5,0)【分析】先求出A ,再求出,解得,则点B (2,3),分类讨论直角顶点,当点C 为直角顶点时,当点B 为直角顶点时,根据△ABC 为等腰直角三角形即可求出点C 坐标.【详解】与轴交解析:(2,0)或(5,0)【分析】先求出A ,再求出1122y x y x =+⎧⎪⎨=+⎪⎩,解得=23x y ⎧⎨=⎩,则点B (2,3),分类讨论直角顶点,当点C 为直角顶点时,当点B 为直角顶点时,根据△ABC 为等腰直角三角形即可求出点C 坐标.【详解】1:1l y x =+与x 轴交于点A ,∴y=0,x=-1,∴A(-1,0),直线1:1l y x =+与直线21:22l y x =+交于点B , 1122y x y x =+⎧⎪⎨=+⎪⎩, 解得=23x y ⎧⎨=⎩, ∴B (2,3),当点C 为直角顶点时,∴BC ⊥AC ,∴BC ∥y 轴,B 、C 横坐标相同,C (2,0),当点B为直角顶点时,∴BC⊥AB,1:1l y x=+,k=1,∴∠BAC=45°,∴△ABC为等腰直角三角形,∴AB=()222+1+3=32,AC=2AB=6,AO=1,CO=AC-AO=5,C(5,0),C点坐标为(2,0)或(5,0).故答案为:(2,0)或(5,0).【点睛】本题考查等腰直角三角形的性质,掌握直角三角形的顶点分两种情况讨论解决问题是关键.16.【分析】连接EC,利用矩形的性质以及折叠的性质,即可得到△CDE与△CGE全等,设AF=x,则可得CF=x+6,BF=6-x,在Rt△BCF中利用勾股定理即可得到x的值,在Rt△AEF中利用勾股4133【分析】连接EC,利用矩形的性质以及折叠的性质,即可得到△CDE与△CGE全等,设AF=x,则可得CF=x+6,BF=6-x,在Rt△BCF中利用勾股定理即可得到x的值,在Rt△AEF中利用勾股定理即可求出EF的长度.【详解】解:如图所示,连接CE,∵E 为AD 中点,∴AE =DE =4,由折叠可得,AE =GE ,∠EGF =∠A =90°,∴DE =GE ,又∵∠D =90°,∴∠EGC =∠D =90°,又∵CE =CE ,∴Rt △CDE ≌Rt △CGE (HL ),∴CD =CG =6,设AF =x ,则GF =x ,BF =6﹣x ,CF =6=x ,∵∠B =90°,∴Rt △BCF 中,BF 2+BC 2=CF 2,即(6﹣x )2+82=(x+6)2,解得x =83, ∴AF =83, ∵∠A =90°,∴Rt △AEF 中,EF 22AE AF +2284()3+4133 4133【点睛】 本题主要考查了矩形的性质以及折叠问题,解题时我们常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.三、解答题17.(1);(2)【分析】(1)先计算二次根式的除法和乘法,再进行二次根式的加减运算;(2)先化简最简二次根式,然后进行二次根式的乘法,最后合并同类二次根式即可.【详解】(1)原式;解析:(1)4;(2)18-【分析】(1)先计算二次根式的除法和乘法,再进行二次根式的加减运算;(2)先化简最简二次根式,然后进行二次根式的乘法,最后合并同类二次根式即可.【详解】(1)原式=4=4=(2)原式=⨯624=--18=-【点睛】本题考查了二次根式的混合运算,掌握二次根式的运算法则并能正确进行运算是关键. 18.(1)会,理由见解;(2)7h【分析】(1)利用勾股定理的逆定理得出△ABC 是直角三角形,进而利用三角形面积得出CD 的长,从而判断出海港C 是否受台风影响;(2)利用勾股定理得出ED 以及EF 的长解析:(1)会,理由见解;(2)7h【分析】(1)利用勾股定理的逆定理得出△ABC 是直角三角形,进而利用三角形面积得出CD 的长,从而判断出海港C 是否受台风影响;(2)利用勾股定理得出ED 以及EF 的长,进而得出台风影响该海港持续的时间.【详解】解:(1)如图所示,过点C 作CD ⊥AB 于D 点,∵AC =300km ,BC =400km ,AB =500km ,∴222AC BC AB +=,∴△ABC 为直角三角形, ∴1122··AC BC AB CD =, ∴300400500CD ⨯=,∴240km CD =,∵以台风中心为圆心周围250km 以内为受影响区域,∴海港C 会受到台风影响;(2)由(1)得CD =240km ,如图所示,当EC =FC =250km 时,即台风经过EF 段时,正好影响到海港C ,此时△ECF为等腰三角形,∵2270km=-=,ED EC CD∴EF=140km,∵台风的速度为20km/h,∴140÷20=7h,∴台风影响该海港持续的时间有7h.【点睛】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.19.(1),;(2)不是直角,证明见解析;(3)见解析【解析】【分析】(1)利用勾股定理求解即可.(2)利用勾股定理的逆定理判断即可.(3)利用等高模型解决问题即可.【详解】解:(1)BC解析:(12922)不是直角,证明见解析;(3)见解析【解析】【分析】(1)利用勾股定理求解即可.(2)利用勾股定理的逆定理判断即可.(3)利用等高模型解决问题即可.【详解】解:(1)BC2225+29,BD22+4244(2)结论:不是直角.理由:∵CD5BC29,BD=42∴BC2+CD2≠BD2,∴∠BCD≠90°.(3)如图,四边形ABED即为所求.【点睛】本题考查作图-应用与设计作图,勾股定理,勾股定理的逆定理,四边形的面积等知识,解题的关键是掌握勾股定理以及勾股定理的逆定理解决问题,属于中考常考题型.20.(1)见解析;(2)见解析【分析】(1)根据垂直求出∠QPC=90°,求出∠QPA+∠BPC=90°,求出∠BPC+∠PCB=90°,根据三角形内角和定理求出∠B=90°,再根据矩形的判定得出即解析:(1)见解析;(2)见解析【分析】(1)根据垂直求出∠QPC=90°,求出∠QPA+∠BPC=90°,求出∠BPC+∠PCB=90°,根据三角形内角和定理求出∠B=90°,再根据矩形的判定得出即可;(2)连接CQ,根据全等三角形的判定定理HL推出Rt△CDQ≌Rt△CPQ,根据全等三角形的性质推出即可.【详解】解:证明:(1)∵PQ⊥CP,∴∠QPC=90°,∴∠QPA+∠BPC=180°-90°=90°,∵∠QPA=∠PCB,∴∠BPC+∠PCB=90°,∴∠B=180°-(∠BPC+∠PCB)=90°,∵四边形ABCD是平行四边形,∴四边形ABCD是矩形;(2)连接CQ,∵四边形ABCD是矩形,∴∠D=90°,∵∠CPQ=90°,∴在Rt△CDQ和Rt△CPQ中,CQ CQ DQ PQ=⎧⎨=⎩, ∴Rt △CDQ ≌Rt △CPQ (HL ),∴CD =CP .【点睛】本题考查了三角形内角和定理,垂直的定义,矩形的判定和性质,全等三角形的性质和判定,能求出∠B =90°和Rt △CDQ ≌Rt △CPQ 是解此题的关键.21.(1),;(2);(3)【解析】【分析】(1)根据题目所给的方法将根号下的数凑成完全平方的形式进行计算; (2)根据题目给的a ,b 与m 、n 的关系式,用一样的方法列式算出结果; (3)将写成,4解析:(112)a b >;(3【解析】【分析】(1)根据题目所给的方法将根号下的数凑成完全平方的形式进行计算;(2)根据题目给的a ,b 与m 、n 的关系式,用一样的方法列式算出结果;(34写成3522+,就可以凑成完全平方的形式进行计算. 【详解】解:(11;(2)a b ===>;(3. 【点睛】本题考查二次根式的计算和化简,解题的关键是掌握二次根式的运算法则.22.(1);水库蓄水量每天减少30万立方米;(2)38;(3)12【分析】(1)根据图像运用待定系数法求得函数解析式即可得k 的值,解释k 的具体意义即可;(2)根据(1)中函数解析式,令万立方米时,解析:(1)30-;水库蓄水量每天减少30万立方米;(2)38;(3)12【分析】(1)根据图像运用待定系数法求得函数解析式即可得k 的值,解释k 的具体意义即可; (2)根据(1)中函数解析式,令360y =万立方米时,求出对应的干旱天数t 即可; (3)根据(1)中函数解析式,令0y =万立方米时,求出对应的干旱天数t ,减去(2)中的干旱天数即为所求.【详解】解:(1)一次函数y kt b =+,(k ,b 为常数,且k ≠0),根据图像可得:900=2030040k b k b+⎧⎨=+⎩, 解得:301500k b =-⎧⎨=⎩, 所以一次函数解析式为:301500y t =-+,k 的值代表每干旱一天水库蓄水量将减少30万立方米,故答案为:-30;水库蓄水量每天减少30万立方米;(2)由(1)知一次函数解析式为:301500y t =-+,令360y =,即360301500t =-+,解得:38t =,故38天后将发生严重干旱警报;(3)由(1)知一次函数解析式为:301500y t =-+,令0y =,即0301500t =-+,解得:50t =,503812-=(天),故预计再持续12天,水库将干涸.【点睛】此题考查了函数的图像问题,一次函数的实际应用,根据图像求出一次函数的解析式是解题的关键.23.(1)存在,t=3;(2)秒;(3)存在,t=3秒或t=秒【分析】(1)根据运动得出CP=15-3t ,DQ=12-2t ,进而用平行四边形的对边相等建立方程求解即可;(2)要使以C 、D 、Q 、P 为解析:(1)存在,t =3;(2)秒;(3)存在,t =3秒或t =秒【分析】(1)根据运动得出CP =15-3t ,DQ =12-2t ,进而用平行四边形的对边相等建立方程求解即可;(2)要使以C 、D 、Q 、P 为顶点的梯形面积等于30cm 2,可以分为两种情况,点P 、Q 分别沿A D 、BC 运动或点P 返回时,再利用梯形面积公式,即=30,因为Q 、P点的速度已知,A D、A B、BC的长度已知,用t可分别表示DQ、BC的长,解方程即可求得时间t;(3)使△PQD是等腰三角形,可分三种情况,即PQ=P D、PQ=Q D、QD=PD;可利用等腰三角形及直角梯形的性质,分别用t表达等腰三角形的两腰长,再利用两腰相等即可求得时间t.【详解】解:(1)∵四边形PQDC是平行四边形∴DQ=CP当0<t<5时,点P从B运动到C,∵DQ=AD-AQ=12-2t,CP=15-3t,∴12-2t=15-3t解得t=3,∴t=3时,四边形PQDC是平行四边形;(2)如图2,①当点P是从点B向点C运动,由(1)知,CP=15-3t,DQ=12-2t,∵以C、D、Q、P为顶点的四边形面积等于30cm2,∴S四边形CDQP==30,即12(15−3t+12−2t)×10=30,解得:t=,②当点P是从点C返回点B时,由运动知,DQ=12-2t,CP=3t-15,∵以C、D、Q、P为顶点的四边形面积等于30cm2,∴S四边形CDQP=12(DQ+CP)•AB=12(12−2t+3t−15)×10=30,解得:t=9(舍去),∴当t为秒时,以C、D、Q、P为顶点的四边形面积等于30cm2;(3)当PQ=PD时,如图3,作PH⊥AD于H,则HQ=HD,∵QH =HD =12DQ =12(12-2t )=6-t ,由AH =BP ,∴6-t +2t =3t解得:t =3秒;当PQ =DQ 时,QH =AH -AQ =BP -AQ =3t -2t =t ,DQ =12-2t ,∵DQ 2=PQ 2=t 2+102,∴(12-2t )2=102+t 2,整理得:3t 2-48t +44=0,解得:t =秒, ∵0<t <5,∴t =秒, 当DQ =PD 时,DH =AD -AH =AD -BP =12-3t ,∵DQ 2=PD 2=PH 2+HD 2=102+(12-3t )2∴(12-2t )2=102+(12-3t )2即5t 2-24t +100=0,∵△<0,∴方程无实根,综上可知,当t =3秒或t =秒时,△PQD 是等腰三角形. 【点睛】本题是四边形综合题,主要考查了平行四边形的判定与性质、梯形的面积、等腰三角形的性质,解题的关键是分类思想与方珵思想的综合运用.24.(1);(2)点D 的坐标为或或;(3).【解析】【分析】(1)根据直线的解析式求出其与x 轴的交点A 和与y 轴的交点B 的坐标,进而求出OA 与OB 的长度,再使用勾股定理即可求出AB 的长度;(2)根解析:(1)32AB =2)点D 的坐标为(2,1)--或(4,1)-或(2,5)-;(3)()8GE ME HE +=.【解析】【分析】(1)根据直线1l 的解析式求出其与x 轴的交点A 和与y 轴的交点B 的坐标,进而求出OA 与OB 的长度,再使用勾股定理即可求出AB 的长度;(2)根据直线1l 和直线2l 关于y 轴对称求出直线2l 的解析式,再求出直线3l 的解析式,根据点D 在直线2l 上,可设点(,3)D m m --,然后分类讨论点D 是在线段BC 上,还是在线段BC 的延长线上,或者在线段CB 的延长线上,在每一种情况下结合平行四边形的性质和平移的性质,可用含有m 的式子表示点T 的坐标,再根据点T 在直线3l 上求出m 的值,即可求出点D 的坐标;(3)根据平移的性质求出直线MN 的解析式,再结合直线x =2求出点(2,0)E ,点(2,4)P 和点(2,0)M -,进而求出ME 的长度,然后再结合点()2,F t t 求出直线:(2)2PF y t x t =+-和直线:OF y tx =,进而求出点2,02t G t ⎛⎫ ⎪+⎝⎭和(2,2)H t ,即可得到GE 与HE 的长度,最后再代入计算()GE ME HE +即可.【详解】解:(1)∵直线1:3l y x =-交x 轴于A ,交y 轴于B ,∴0A y =,0B x =.∴03A x =-,03B y =-.∴3A x =,3B y =-.∴(3,0)A ,(0,3)B -.∴3OA =,3OB =.∵AO BO ⊥, ∴AB =(2)∵直线1l 关于y 轴对称的直线2l 交x 轴于点C ,直线1l 交x 轴与点(3,0)A , ∴点A 与点C 关于y 轴对称.∴(3,0)C -.∵点(0,3)B -在y 轴上,∴直线2l 经过点B .∴设直线23:l y kx =-.∵直线2l 经过点(3,0)C -,∴033k =--.解得:1k =-.∴直线23:l y x =--.∵直线31:2l y x b =+经过点(3,0)C -, ∴10(3)2b =⨯-+.解得:32b =. ∴直线31322:y x l =+. ∵点D 在直线23:l y x =--上,∴设点(,3)D m m --.①如下图所示,当点D 在线段BC 上时.∵四边形ABDT 是平行四边形,∴//,AT BD AT BD =.∴BD 经过平移之后到达AT .∴(3,)T m m +-.∵点T 在直线31322:y x l =+上, ∴13(3)22m m -=++,解得2m =-. ∴1(2,1)D --;②如下图所示,当点D 在线段BC 的延长线上时.∵四边形ABTD 是平行四边形,∴//,AD BT AD BT =.∴AD 经过平移之后到达BT .∴(3,6)T m m ---.∵点T 在直线31322:y x l =+上, ∴136(3)22m m --=-+,解得4m =-. ∴2(4,1)D -;③如下图所示,当点D 在线段CB 的延长线上时.∵四边形ADBT 是平行四边形,∴//,AT DB AT DB =.∴BD 经过平移之后到达TA .∴(3,)T m m -.∵点T 在直线31322:y x l =+上, ∴13(3)22m m =-+,解得2m =. ∴3(2,5)D -.综上所述,点D 的坐标为(2,1)--或(4,1)-或(2,5)-.(3)直线1l 向上平移5个单位长度得到的直线MN 解析式为352y x x =-+=+. ∵直线x =2与x 轴交于点E ,与直线MN 交于点P ,直线MN 交x 轴于点M ,∴(2,0)E ,2P x =,0M y =.∴22P y =+,02M x =+.∴4P y =,2M x =-.∴(2,4)P ,(2,0)M -.∴2(2)4E M ME x x =-=--=,设直线PF 的解析式为y px q =+,∵直线PF 经过点(2,4)P 与()2,F t t , ∴242,,p q t tp q =+⎧⎨=+⎩解得2,2p t q t =+⎧⎨=-⎩. ∴直线PF 的解析式为(2)2y t x t =+-.∵直线PF 与x 轴交于点G ,∴0G y =.∴0(2)2G t x t =+-. 解得:22G t x t =+. ∴2,02t G t ⎛⎫ ⎪+⎝⎭. ∴24222E G t GE x x t t =-=-=++. 设直线OF 的解析式为y =cx ,∵直线OF 经过点()2,F t t , ∴2t ct =.解得:c t =.∴直线OF 的解析式为y tx =.∵直线OF 与直线2x =交于点H .∴2H x =.∴22H H y tx t t ==⨯=.∴(2,2)H t .∴202H E HE y y t t =-=-=. ∴4()(42)82GE ME HE t t +=+=+. 【点睛】本题考查了一次函数的综合应用,涉及坐标与长度的关系,勾股定理,轴对称和平移的性质,平行四边形的性质和判定定理,代数式求值,应用一次函数的性质正确求出点的坐标是解题关键. 25.(1)见解析;(2)120;(3)90;(4)72;(5).【分析】(1)利用等边三角形的性质得到BC=AC ,∠ACB=∠ABC ,从而得到△ACN ≌△CBM.(2)利用全等三角形的性质得到∠C解析:(1)见解析;(2)120;(3)90;(4)72;(5)360n. 【分析】(1)利用等边三角形的性质得到BC=AC ,∠ACB=∠ABC ,从而得到△ACN ≌△CBM.(2)利用全等三角形的性质得到∠CAN=∠BCM ,再利用三角形的外角等于与它不相邻的两个内角的和,即可求解.(3)利用正方形(或正五边形)的性质得到BC=DC ,∠ABC=∠BCD ,从而判断出△DCN ≌△CBM ,再利用全等三角形的性质得到∠CDN=∠BCM ,再利用内角和定理即可得到答案.(4)由(3)的方法即可得到答案.(5)利用正三边形,正四边形,正五边形,分别求出∠CPN 的度数与边数的关系式,即可得到答案.【详解】(1)∵△ABC 是等边三角形,∴BC=AC ,∠ACB=∠BAC=∠ABC=60︒,∴∠ACN=∠CBM=120︒,在△CAN 和△CBM 中,CN BM ACN CBM AC BC =⎧⎪∠=∠⎨⎪=⎩, ∴△ACN ≌△CBM.(2)∵△ACN ≌△CBM.∴∠CAN=∠BCM ,∵∠ABC=∠BMC+∠BCM ,∠BAN=∠BAC+∠CAN ,∴∠CPN=∠BMC+∠BAN=∠BMC+∠BAC+∠CAN=∠BMC+∠BAC+∠BCM=∠ABC+∠BAC=60︒+60︒,=120︒,故答案为:120.(3)将等边三角形换成正方形,∵四边形ABCD 是正方形,∴BC=DC ,∠ABC=∠BCD=90︒,∴∠MBC=∠DCN=90︒,在△DCN 和△CBM 中,DC BC DCN MBC CN BM =⎧⎪∠=∠⎨⎪=⎩, ∴△DCN ≌△CBM ,∴∠CDN=∠BCM ,∵∠BCM=∠PCN ,∴∠CDN=∠PCN ,在Rt △DCN 中,∠CDN+∠CND=90︒,∴∠PCN+∠CND=90︒,∴∠CPN=90︒,故答案为:90.(4)将等边三角形换成正五边形,∴∠ABC=∠DCB=108︒,∴∠MBC=∠DCN=72︒,在△DCN 和△CBM 中,DC BC DCN MBC CN BM =⎧⎪∠=∠⎨⎪=⎩, ∴△DCN ≌△CBM ,∴∠BMC=∠CND ,∠BCM=∠CDN ,∵∠BCM=∠PCN ,∴∠CND=∠PCN ,在△CDN 中,∠CDN+∠CND=∠BCD=108︒,∴∠CPN=180︒-(∠CND+∠PCN)=180︒-(∠CND+∠CDN)=180︒-108︒,=72︒,故答案为:72.(5)正三边形时,∠CPN=120︒=3603, 正四边形时,∠CPN=90︒=3604, 正五边形时,∠CPN=72︒=3605, 正n 边形时,∠CPN=360n , 故答案为:360n . 【点睛】此题考查正多边形的性质,三角形全等的判定及性质,图形在发生变化但是解题的思路是不变的,依据此特点进行解题是解此题的关键.。

八年级数学(下)期末考试试卷含答案

八年级数学(下)期末考试试卷含答案

得分评卷人人八年级数学(下)期末考试试卷(全卷共五个大题,满分150分,考试时间100分钟)题号 一 二 三 四 五总分 总分人 复查人 得分友情提示:答题前先写好自己的学校、姓名、考号等信息;答题时,请你认真审题,做到先易后难;答题后,要注意检查.祝你成功! 一、选择题:(本大题共12个小题,每小题4分,共48分)每小题只有一个答案是正确的,请将正确选项的字母填在下列括号内.1.下列手机屏幕解锁图案中不是轴对称图形的是( )2.以下列各组线段为边,能组成三角形的是( )A .2 cm ,3 cm ,5 cmB .3 cm ,3 cm ,6 cmC .5 cm , 8 cm , 2 cmD .4 cm ,5 cm ,6 cm3.下列运算正确的是( )A . 235=x x x +B .()222=x y x y ++ C . 236=x x x ⋅ D . ()326=x x4.一枚一角硬币的直径约为0.022m ,用科学记数法表示为( )A .32.210m -⨯B .22.210m -⨯C .12.210m -⨯ D .32210m -⨯5.下列各式从左到右的变形是因式分解的是( )A .2)1(3222++=++x x xB .22))((y x y x y x -=-+ C .222()x xy y x y -+=- D .)(222y x y x -=-6.如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知∠BAC =60° ,PA=6,则PE长是( )A .3B .4C .5D .67.已知△ABC 的三个内角满足关系:∠A+∠B=∠C ,则此三角形是( ) A .等边三角形 B .锐角三角形 C .直角三角形 D .钝角三角形8.“尊老、敬老”是中华民族的传统美德.重阳节当天,我区一中学 “善行文学社”的全体同学租一辆面包车前去“夕阳红”老年公寓看望那里的老年人面包车的租金为180元,出发时又增加了两名同学,结果每个同学比原来少花费了3元车费.若设“善行文学社”有x 人,则所列方程为( )A .18018032x x -=- B .18018032x x -=+ C .18018032x x -=+ D .18018032x x-=-9.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1、P 2、P 3、P 4四个点中找出符合条件的点P ,则点P 有( )A . 1个B .2个C . 3个D . 4个10.一个正方形和两个等边三角形的位置如图所示,若∠3=50°,则∠1+∠2=( )A . 90°B . 100°C . 130°D . 180°11. 分式1x mx --中,当x m =时,下列结论正确的是( )A.分式的值为零B .分式无意义C .若1m ≠时,分式的值为零D .若1m =时,分式的值为零 12.如图所示,△ABC 为等边三角形,AQ=PQ ,PR=PS ,PR ⊥AB 于R ,PS ⊥AC 于S ,现有①点P 在∠BAC 的平分线上; ②AS=AR ;③QP ∥AR ; ④△BRP ≌△QSP 四个结论.第10题图第12题图得分评卷人人• 则对四个结论判断正确的是( ).A .仅①和②正确B .仅②③正确C .仅①和③正确D .全部都正确二、填空题:(本大题6个小题,每小题4分,共24分)请将答案直接填写在题后的横线上.13.若点A (m ,7)与点B (8,n )关于x 轴对称,则m = . 14.因式分解:23aa -= .15.如图,∠ABC =∠DCB ,请补充一个条件: ,使△ABC ≌△DCB.(只填一个即可)16.如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若 △ABC 的面积为122cm ,则图中阴影部分的面积是____________2cm .17.如图,在△ABC 中,将△ABC 沿DE 折叠,使顶点C 落在△ABC 三边的垂直平分线的交点O 处,若BE=BO ,则∠BOE=____________度.18.如果记22()1x y f x x ==+,并且f (1)表示当1x =时y 的值,即f (1)=2211112=+;得分评卷人人得分评卷人人f (12)表示当12x =时y 的值,即f (12)=221()12151()2=+.那么111(1)(2)()(3)()(4)()234f f f f f f f ++++++1(2017)()2017f f +++= _.三、解答题:(本大题2个小题,19题10分,20题6分,共16分)下列各题解答时必须给出必要的演算过程或推理步骤.19.计算或化简(每小题5分,共10分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八 年 級 数 学 试 卷
(时量:90分钟,满分:100分)
亲爱的同学:
祝贺你完成了一个阶段的学习,现在是展示你的学习成果之时,你可以尽情地发挥,仔细、仔细、再仔细!祝你成功! 一、填空题(每小题3分,共24
分) 1.(-6)2的平方根是 . 2.若x 2=1,则=3
x .
3.已知一次函数2+=kx y ,请你补充一个条件: .使y 随x 的增在而减小.
4.正比例函数kx y -=的图象经过原点和第一、三象限,则直线3+=kx y 不经过 象限.
5. 如图,AB =DC ,AD =BC ,E 、F 是DB 上两点且BE =DF ,若∠AEB =100°,∠ADB =30°,则∠BCF = .
6.已知甲、乙两人在同一地点出发,甲往东走4km ,乙往南走了3km ,这时甲、乙两人相距 .
7. 有人做过掷硬币的实验,掷一枚一元硬币4040次,结果正面(有国徽的一面)向上的次数为2048次,则正面向上的频率是 . (保留两位有效数字)
8.如图,在直角坐标系中,点A 的坐标为(1,3),线段OA 绕O 点逆时钟旋转90°到达OB ,这时B 点的坐标是 . 二、
选择题
(每小题3
B
第5题图
第8题图
x 第11题图
A B C D
第12题图
分,共24分.每小题给出的四个选项中,只有一项是符合题目要求的,请把你认为符合题目要求的选项代号填在相应的位置)
9.在下列各数0,
5
3
,3.14,π,0.021021012…,34.120120012…,3中无理数的个数有( )
A. 1个
B. 2个
C. 3个
D. 4个
10.已知a<0,则2
23a
a-等于()
A. -2a
B. 2a
C. 4a
D. -4a
11.已知矩形OABC在平面直角坐标系中的位置如图所示,点B的
坐标为(-2,3),则矩形的面积是( )
A. -6平方单位
B. 3平方单位
C. -3平方单位
D. 6平方单位
12.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,
当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达终点.用s1、s2分别表示乌龟和兔子所行的路程,t为时间,则下列图象中与故事情节相吻合的是
( )
13.若函数2
2(4)
y
mx m
=
-
--的图象经过原点,且y随x的增大而增大,则
( )
A. m=2
B. m=-2
C. m=±2
D. 以上答案都不对
14.图中,不能由旋转得到的图形是( )
A B C D
第14题图
15.下列条件中,不能判定△ABC≌△A′B′C′的是( )
A. AB=A′B′,∠A=∠A′,AC=A′C′
B. AB=A′B′,∠A=∠A′,∠B=∠B′
C. AB=A′B′,∠A=∠A′,∠C=∠C′
D. AB=A′B′,∠B=∠B′,AC=A′C′
16.直角三角形中斜边上的中线长为2.5cm,周长为12cm,则三角形的面积为 ( )
A. 3cm2
B. 6cm2
C. 12cm2
D. 24cm2
三、解答题(本大题8个小题,共52分)
17.(5分)如图,作出△ABC关于点O旋转180°的图形.(不写作法,保留作图痕迹)
B
第17题图
18.(5分)欢欢家装修客厅,铺地面砖32.4平方米,用去正方形的地面砖90块,请你算出所用
地面砖的边长.
9.(6分)如图,AC⊥CE,AD=BE=13,BC=5,DE=7,求AC.
第19题图
20.(6分)新邵佳惠超市采购部准备用10000元从厂家购进一批出厂价分别为16元和20元的甲、乙两种酸奶,然后将甲、乙两种酸奶分别加价20%和25%向外销售.如果设购进甲种酸奶为x(箱),全部售出这批酸奶所获销售利润为y(元).
(1)求所获销售利润y(元)与x(箱)之间的函数关系式;
(2)根据市场调查,甲、乙两种酸奶在保质期内销售量都不超过300箱,那么食品批发部怎样进货获利最大,最大销售利润是多少?
21.(6分)如图,要在资江赛双清公园内湖的两岸A、B两间建一座观赏桥,由于条件限制,无法直接度量A、B两点间的距离,请你用学过的数学知识按以下要求设计一种测量方案.
(1)画出测量图案;
(2)写出测量步骤(测量数据用字母表示);
(3)计算AB的距离(写出求解或推理过程,结果用字母表示).
第21题图
22.(6分)某中学在一次科技知识测试中,抽取部分学生成绩(分数为整数,满分100分)将所得得数据整理后,画出频率分布直方图,已知图中从左到右的三个小组的频率分别为0.04,
0.06,0.82,第二小组的频数为3.
(1)本次测试中抽取的学生有多少人?
(2)分数在89.5~100.5这一组的频率是多少?有多少人?
(3)若这次成绩在80分以上(含80分)为优秀,则优秀率不低于多少?
23.(8分)一次函数y=kx+b的图象过A(6,-4),B(3,0).
(1)求解析式;
(2)求图象与x轴,y轴的交点坐标,并画出图象;
(3)求图象与坐标轴两交点B、C之间的距离.
24.(10分)如图1,正方形ABCD中,E是BC的中点,EF⊥AE交∠DCE外角的平分线于F.
(1)求证:AE=EF;
(2)如图2,当E是BC上任意一点,而其它条件不变,AE=EF是否仍然成立,若成立,请证明,若不成立,请说明理由.
B C
E
-1
第24题图
B C
E
第24题图-2
B C
E
第24题图-1
二00九年下学期期末考试八年级数学试卷
参考答案及评分标准
一、(本题8个小题,每个小题3分,满分24分)
二、(本题共8个小题,每个小题3分,满分24分)
三、(本题有8个小题, 共52分) 17.略
18. 0.6 (5分)
19. 12 (6分) 20.(1)求出y = =-0.8x +2500 (2分) (2) 因为16×20%<20×25%,即乙种酸奶每箱的销售利润大于甲种酸奶的销售利润,因此最大限度的购进乙种酸奶时所获销售利润最大,即购进乙种酸奶300箱,(4分) 则25016
3002010000=⨯-=x (箱)
∴当x =250时,y 值最大,
此时y =-0.8×250+2500=2300(元). (5分) 答:略 (6分) 21.(1)、(2)、(3) 每小题各2分,共6分 22. (1)50人,(2)0.08,4人, (3)90%,每小题各2分,共6分.
23.(1)由⎩⎨⎧+=+=-b k b k 3064解得⎪⎩
⎪⎨⎧
=-
=4
34b k
因此43
4
+-=x y (2分)
(2) B (3,0),C (0,4) (4分) 图象:略 (6分) (3) 5 (8分) 24.(1)取AB 的中点H ,连结EH ;(2分) ∵ABCD 是正方形, AE ⊥EF ; ∴∠1+∠AEB =90°, ∠2+∠AEB =90° ∴∠1=∠2 (3分) ∵BH =BE ,∠BHE =45°,
且∠FCG =45°,
∴∠AHE =∠ECF =135°,AH =CE (4分)
∴△AHE≌△ECF∴AE=EF (6分) (2)成立 (7分) 提示:在AB上取BH=BE,连结EH,
仿(1)可证出AE=EF. (10分)。

相关文档
最新文档