光纤端面研磨

合集下载

光纤端面研磨处理工艺流程

光纤端面研磨处理工艺流程
问题二需选材料针管清洁剂环氧胶擦拭纸光纤显微镜光纤连接器剥线钳金刚石切刀研磨盘抛光盘金刚石磨料三材料价格及分析第一方案是thorlab光纤研磨材料的价格替代方案用相对便宜材料的替换四光纤工艺流程1备料2光纤连接器清洗把所需使用的光纤连接器浸泡在异丙酮里浸泡几分钟拿出
光纤端面研磨处理方案
一、光纤研磨方案目的 二、准备材料 三、材料价格及分析 四、光纤工艺流程
一、光纤研磨方案目的 问题: 由于在激光光纤耦合过程中,极易出现光纤端面破损或污染(其中
我们最初买来的10根0.2mm光纤和10根0.4毫米都已损坏,并且我们 买来的光纤端面本身也有质量问题)。
由于以上问题对我们的耦合效率及项目进度都有很大影响, 从而进行该方案的讨论。
二、需选材料
光纤连接器
剥线钳
5、装配光纤连接器 1)试验光纤与连接器是否匹配
2)将混合好的环氧胶填入注射器中
3)用注射器给连接器注胶
4)直到连接器金属插芯的外面出现一个小胶珠
5)从护缆管中伸出约50mm长的光纤,拿着外管和光纤,将连接器边 推入光纤,边缓慢转动。使连接器尾端紧挨着护缆管定位。
推入光纤时拿持位置
光纤固定位置
接头与抛光盘安装
5)分别用5µm、3µm和1µm的研磨片研磨。
研磨示意图
研磨后连接头
6)用0.3µm研磨片光学抛光
注意:
抛光后光纤图片
这一步可能会引出附加的划痕。如果发生 了,重做3µm和1µm的研磨来去掉划痕。
研磨工序总结。
端面研磨主要经过4道工序:粗面、中磨、细磨、抛光。
四道工序的时间和压力总共8个参数,配用不同方案,就可 以得到端面质量不同的结果。这器尾端和凯夫拉丝上。
6、切割、研磨 1)用一个光纤刻刀轻轻刻划光纤在环氧珠上的部分使用切削边平行于接头。

光纤研磨技术及工序

光纤研磨技术及工序

光纤研磨工艺介绍光纤研磨是指将光纤连接器和光纤进行接续,然后磨光的过程。

这是一项技术含很高的复杂工艺,所使用的工具和耗材,如表所示,操作流程如图所示:光纤研磨相关工具表光纤研磨加工安全防护在光纤研磨过程中,光纤的安全性操作是最被关注的问题之一。

光纤(光导纤维的简称)犹如人类的头发一样细小。

由于光纤是由玻璃和锋利的边缘组成,在操作时要小心以避免被伤害到皮肤。

曾经有人因为光纤进入血管而死亡,注意光异纤维不容易被X光检测到,当光纤进入人体后将随血液流动,一旦进入心脏地带就会引发生命危险;因此在进行光纤研磨操作时,应采取必要的保护措施。

1.安全的工作服穿上合适的工作服,会增强你的安全感,放心地和其他人一起高效率地工作。

一般情况下,在研磨实验中,要求穿着长袖的,面料厚实的外衣。

2.安全眼镜在一些环境中,带上安全眼镜不仅能保护你的眼睛,而且能减少意外事故的发生。

能防止光纤进入眼睛,在选购安全眼镜时应选择受外力而不易破碎或损坏的高质量眼镜。

3.手套在进行光纤研磨,熔接等操作时,手套是很有用处的,手套能防止细小的光纤刺入人体,保护操作者的安全。

4.安全工作区安全工作区是指进行光纤研磨操作的地点。

在选择时应避免选择那些污染严重,有灰尘和污染物的地点,因为在这种地方进行光纤的端接,可能会影响端接的效果。

此外也不能选择那些有风区作为为工作区,因为在这些地方进行光纤的端接存在一定的安全隐患,空气的流动会导致光纤碎屑在空气中扩散或被吹离工作区,容易落到工作人员的皮肤上,引起危险。

光纤研磨操作步骤1.专用注射器的准备工作从注射器上取下注射器帽,将附带金属注射器针头插入到针管上,旋转直至锁定。

注意:要保留注射器帽,以便盖住部分使用的注射器并放入盒中供以后使用。

2.混合胶水的配制将白胶和黄胶以3:1的比例进行调配。

并将调配均匀的混合胶水灌入专用针管内,完成后放在一边待用。

注意:此种混合胶水有一定的使用时限,大约在2 到3个小时后会自动干硬,因此希望及时使用。

裸光纤研磨工艺

裸光纤研磨工艺

裸光纤研磨工艺在光纤跳线制作领域,带插芯的尾纤研磨工艺已经非常成熟。

然而一些特殊领域,由于胶水的可靠性或者其他的原因使得我们无法使用带插芯的光纤连接头,所以必须直接使用裸光纤,比如高功率激光和传感器领域,裸光纤端面先需要研磨抛光,通过清洁目检后再其端面镀膜。

光纤端面的抛光工艺对产品最终质量有明显的影响。

例如抛光麻点脏污可能吸收激光发热,端面的粗糙度会影响镀膜精度或者反射率。

由于用途的特殊和不广泛,目前裸光纤端面国内外鲜有研究,能批量生产的厂家更是寥寥无几。

本文主要针对目前常用的三种裸光纤端面加工工艺和福津光电新开发的抛光工艺进行对比分析。

(1) 采用切刀直接切割一般的光纤切割是很容易操作的,而且切割端面在很多应用是可以接受的,这个在带厚包层的光纤是没有问题的,例如50um /125um(纤芯/包层)的光纤,切刀切割的崩边一般影响不到纤芯。

但是对于那些包层很薄的(105 um/125 um)或者无包层的GRIN玻璃棒,切割带来的崩边和刀痕会影响纤芯如图1所示。

光纤纤芯是激光传输的主要区域,任何瑕疵都对激光都有吸收者漫反射的作用。

切刀切割工艺很难消除的崩边,而且除了崩边以外,有的端面还有明显的刀痕,虽然使用超声波切刀质量崩口可能会小一点,但是都无法避免这个崩边。

切割结果还跟操作熟练程度有很大关系,一般员工很难达到稳定的工艺,这对于批量生产来说是一件非常麻烦的事情。

图1. 裸光纤切刀切割端面图(2) 激光切割工艺激光切割是最快最便捷的工艺。

典型激光切割采用二氧化碳激光器,激光束横向掠过光纤,光纤材料吸收~1.0um波长产生高温瞬间融化玻璃,达到切割的目的。

激光切割是热切割,端面没有崩边或者切口,但是效果却不是理想的,因为激光切割会留下很多不同的端面缺陷,如纤芯区域凹凸不平,有熔融的痕迹和碎片等。

如图2所示。

图2.激光切割光纤端面端图(3)传统研磨工艺传统的裸光纤研磨工艺来自于尾纤阵列(fiber array)研磨工艺,一般都是多根光纤固定在V型槽上,用胶水临时固定进行研磨,研磨完成后再用洗涤剂把胶黏剂清洗,这种研磨出来的尾纤可适用低功率激光传输应用,但是由于端面现麻点,崩边和胶水残留,容易吸收激光产生热量积累,有可能发生光纤端面烧损。

光纤端面研磨加工机理研究 - 光学 精密工程

光纤端面研磨加工机理研究 - 光学 精密工程

第12卷 第6期光学精密工程Vol.12,No.6 2004年12月Optics and Precision Engineering Dec.2004文章编号 10042924X(2004)0620570206光纤端面研磨加工机理研究刘德福,段吉安(中南大学机电工程学院,湖南长沙410083)摘要:给出了研磨光纤时的材料去除机理,选用粒度为微米及亚微米级的金刚石磨料砂纸,在研磨压力为0.48Mpa时,在KE2OFP212型光纤连接器研磨机上对光纤端面进行了研磨实验。

结果表明:光纤研磨加工的材料去除存在脆性断裂、半脆性半延性、延性等3种模式。

材料去除模式主要取决于磨料的平均粒度,磨料粒度为3μm时,为脆性断裂到延性研磨的临界转换点。

并从理论上对结果进行了分析,光纤以延性模式研磨加工时,光纤表面粗糙度Ra可达到纳米级,其表面看不到任何划痕,而光纤以脆性断裂模式研磨加工时,其表面粗糙度只能达到亚微米级,证明材料以延性模式去除是提高光纤表面质量的有效方法。

关 键 词:光纤研磨;脆延转变;延性去除;表面粗糙度中图分类号:TG580.68,TN253 文献标识码:AMechanism research on lapping of optical f iber end2faceL IU De2fu,DUAN Ji2an(College of Mechanical and Electronic Engineering,C entral South University,Changsha410083,China)Abstract:The material removal mechanism in optical fiber lapping is presented.With diamond lapping2film whose abrasive grain size is from micron to sub2micron,when the nominal lapping pressure was0.48MPa, the optical fiber end2face lapping experiment was conducted on optical fiber connector lapping machine of KE2OFP212.The experiment results show that there are three material removal modes during lapping opti2 cal fiber,i.e.brittle fracture mode,semi2brittle and semi2ductile mode,and ductile mode.These modes are mainly controlled by abrasive grain size;there appears brittle2ductile transition’s critical point when the lapping2films whose abrasive grain size is3μm is used to lap optical fiber.And these material modes are an2 alyzed theoretically.The surface roughness can reach nanometer grade and there are not any scratches and cracks on the fiber end2face when fiber material is removed by ductile mode;and only sub2micron grade sur2 face roughness can be gotten when fiber material is removed by brittle fracture mode.It proves that the ductile lapping mode is an effective method that improves surface quality of fiber end2face.K ey w ords:optical fiber lapping;brittle ductile transition;ductile removal;surface roughness 收稿日期:2004208210;修订日期:2004210228. 基金项目:国家自然科学基金重点资助项目(No.502350400)1 引 言 目前,光纤技术一方面正在向高带宽、高数据速率的方向发展,另一方面在大力开发光纤到户技术,光纤连接器作为组成光纤系统最重要的光无源器件之一,在性能上要求其插入损耗更低、回波损耗更高[1],以提高光纤传输系统可靠性。

光纤端面研磨

光纤端面研磨

光纤端面研磨在光通信中,光纤的质量和性能是至关重要的。

而光纤端面的质量直接影响着光传输的效率和质量。

因此,光纤端面的研磨是保证光纤质量的重要环节之一。

一、光纤端面的要求光纤端面的要求主要包括两方面,一是光学性能,二是机械性能。

1. 光学性能光纤的传输效果和质量与其端面的平整度和光泽度有直接关系。

光纤端面应该是光滑、平整、无划痕、无气泡、无杂质等缺陷。

同时,光纤端面的面积也应该足够大,以保证光的传输效率和质量。

2. 机械性能光纤端面的机械性能主要指其强度和耐磨性。

光纤端面应该具有足够的强度,能够承受光纤连接时产生的压力和拉力。

同时,光纤端面的磨损程度也应该尽可能小,以保证其长期稳定的性能。

二、光纤端面研磨的方法光纤端面研磨的方法主要包括机械研磨和化学研磨两种。

1. 机械研磨机械研磨是利用机械力和研磨粒子对光纤端面进行研磨。

机械研磨的优点是研磨速度快、效果好、成本低。

但是,机械研磨也存在一些缺点,比如研磨粒子易产生划痕,研磨过程中产生的热量容易导致光纤变形等。

2. 化学研磨化学研磨是利用化学反应对光纤端面进行研磨。

化学研磨的优点是研磨精度高、不会产生划痕、不会产生热变形等缺点。

但是,化学研磨的成本较高,研磨过程中的化学物质对环境和人体也有一定的危害。

三、光纤端面研磨的步骤光纤端面研磨的步骤主要包括以下几个方面:1. 清洗在进行光纤端面研磨之前,必须先将光纤端面清洗干净,以去除表面的灰尘、油脂、污渍等杂质。

2. 粗磨粗磨是将光纤端面研磨至平整度较高的过程。

一般采用机械研磨的方法,使用较大的研磨粒子进行研磨,以快速去除表面的凹凸不平。

3. 中磨中磨是将光纤端面研磨至更高的平整度的过程。

一般采用机械研磨的方法,使用较小的研磨粒子进行研磨,以去除表面的微小凹凸。

4. 细磨细磨是将光纤端面研磨至最高的平整度的过程。

一般采用化学研磨的方法,使用化学物质进行研磨,以去除表面的微小凹凸和化学反应产生的氧化物等杂质。

光纤端面研磨处理工艺流程

光纤端面研磨处理工艺流程

光纤端面研磨处理工艺流程首先是预处理。

预处理的目的是为了去除光纤端面的污染物和残留杂质,确保研磨的有效性和可靠性。

预处理一般包括下列几个步骤:1.清洗:使用低含量的有机溶剂或特定的清洗液对光纤端面进行清洗,去除表面的污染物。

清洗时要使用无粉尘的纤维棒,用柔软的布擦拭光纤端面,保持纤维端面的完整性。

2.确认:使用显微镜或光纤检测仪对清洗后的光纤端面进行检查,确认无剩余杂质和损坏。

3.修正:如有需要,对发现的损坏或有问题的光纤进行修复或更换。

完成预处理后,即可进行光纤端面研磨。

1.选择研磨片:根据不同的要求,选择相应的研磨片。

常用的研磨片有金刚砂片、钻石研磨片等。

2.粗磨:使用粗研磨片对光纤端面进行粗磨。

粗磨的目的是迅速修复载波线轮廓,并且去除表面的毛刺和凸起。

3.平磨:使用中号研磨片进行平磨。

平磨能够有效地将光纤端面磨平和光滑。

4.精磨:使用细研磨片进行精磨。

精磨是为了获得更高的光滑度和更好的表面质量。

在进行研磨过程中,要注意研磨片的选用和更换,控制研磨压力和时间,保持稳定的研磨速度。

研磨过程中要经常检查光纤端面的质量,确保符合要求。

研磨完成后,需要对光纤端面进行清洗。

1.清洗:使用无粉尘的纤维棒和特定的清洗液对光纤端面进行清洗,去除研磨过程中产生的残留杂质和污染物。

清洗时要注意不用用力过大,避免损坏光纤。

2.干燥:使用纯净的氮气或其他适用的方法对光纤进行干燥,确保光纤端面干燥无水。

最后,完成清洗后,需要对光纤端面进行检测。

1.检测:使用光纤检测仪或显微镜对光纤端面进行检查,确认光纤端面的质量和精度是否符合要求。

检测时要注意保持光纤端面的干净,避免再次污染。

2.记录:将检测结果进行记录,包括光纤端面的精度、表面质量等信息。

这就是光纤端面研磨处理的工艺流程,通过预处理、研磨、清洗和检测等步骤,可以确保光纤端面的质量和精度,提高光纤连接的可靠性和性能。

光纤研磨技术与方法

光纤研磨技术与方法

光纤研磨技术与方法光纤作为一种重要的光传输媒介,在通信、医疗、工业等领域有着广泛的应用。

而光纤的质量与性能受到研磨工艺的影响,因此光纤研磨技术与方法的研究和应用显得尤为重要。

本文将介绍光纤研磨的基本原理、常用技术和方法,以及研磨过程中需注意的关键点。

一、光纤研磨的基本原理光纤研磨的基本原理是通过研磨工具与光纤端面之间的接触,将光纤的外层材料去除,使光纤端面变得光滑。

这样可以减少光纤的损耗和反射,提高光纤的传输效率和质量。

二、常用的光纤研磨技术和方法1. 机械研磨法:机械研磨法是光纤研磨中常用的一种方法。

它利用研磨片与光纤端面之间的接触,通过旋转或振动的方式进行研磨。

研磨片的选择和研磨头的角度都会对研磨效果产生影响,因此需要根据不同的光纤类型和需求进行调整。

2. 化学机械研磨法:化学机械研磨法是一种结合了化学溶解和机械研磨的方法。

它利用了化学溶解剂对光纤端面外层材料的溶解作用,结合机械研磨的方式将溶解后的材料去除。

这种方法可以更加精细地控制研磨的深度和光滑度。

3. 激光研磨法:激光研磨法是一种非接触式的研磨方法,它利用激光的高能量密度对光纤端面进行研磨。

激光研磨法可以实现高精度的研磨,但需要特殊的设备和操作技术。

三、光纤研磨过程中的关键点1. 研磨片的选择:不同材料的光纤需要选择不同硬度和颗粒大小的研磨片。

研磨片的选择不当会导致研磨过程中划伤或过度研磨光纤。

2. 研磨头的角度:研磨头的角度对于研磨效果有着重要的影响。

合适的角度可以使光纤端面得到均匀的研磨,提高研磨效率和质量。

3. 研磨过程的控制:研磨过程中需要控制研磨的时间、力度和速度。

过长的研磨时间或过大的力度会导致光纤损伤,而过快的研磨速度则会影响研磨效果。

4. 清洁和保护:研磨后的光纤端面需要进行清洁和保护,以防止污染和损伤。

清洁时应使用无纺布或棉纱棒轻柔擦拭,并避免使用有机溶剂。

光纤研磨技术与方法是保证光纤质量和性能的重要环节。

通过选择合适的研磨技术和方法,控制关键点,可以实现高质量的光纤研磨。

光纤端面研磨处理工艺流程

光纤端面研磨处理工艺流程

05 清洁与检查
使用无水乙醇清洁光纤端面
清洁目的:去除光纤端面上的污渍 和杂质,提高端面质量和光信号传 输效率
清洁注意事项:清洁后应立即进行 干燥处理,避免残留物对端面造成 影响
添加标题
添加标题
添加标题
添加标题
清洁方法:使用无水乙醇(或丙酮) 浸泡或擦拭光纤端面,注意避免损 坏涂层和纤芯结构
清洁效果评估:通过目视检查、擦 拭纸巾等方法对清洁效果进行评估, 确保端面干净无痕
光纤端面研磨处理工 艺流程
XX,a click to unlimited possibilities
汇报人:XX
目录 /目录
01
研磨前的准备
02
粗磨阶段
04
抛光阶段
05
清洁与检查
03
细磨阶段
06
结束工作
01 研磨前的准备
清洁光纤
准备工具:酒精、 无尘布、光纤切 割刀
操作步骤:使用酒 精擦拭光纤表面, 使用无尘布清除光 纤端面杂质
感谢您的观看
汇报人:XX
添加标题
添加标题
添加标题
添加标题
方法:使用特殊的封装材料和工艺
注意事项:确保封装材料的兼容性 和端面的清洁度
填写研磨记录表
记录研磨过程中的各项参数,如研磨盘转速、研磨液浓度等 记录研磨后光纤端面的形貌和光学性能,如端面平整度、反射率等 填写研磨操作人员和研磨时间等信息 保存研磨记录表,以便后续分析和改进
06 结束工作
整理研磨工具和材料
清洗研磨工具和材料,确保无残留 物
检查研磨工具和材料的磨损情况, 及时更换
添加标题
添加标题
添加标题
添加标题
分类整理研磨工具和材料,以便下 次使用

光纤端面处理工艺流程

光纤端面处理工艺流程

光纤端面处理工艺流程一、光纤端面清洁光纤通常在使用前需要进行清洁处理,以去除表面的污物和油脂,同时保证光纤端面的光滑度。

清洁工艺主要包括以下几个步骤:1.使用洗涤剂和去离子水混合液将光纤浸泡片刻;2.使用柔软的刷子轻轻刷拭光纤表面;3.用去离子水冲洗光纤,彻底去除洗涤剂和污物;4.用氮气吹干光纤表面。

二、光纤端面打磨光纤端面的平整度对光纤连接的稳定性和传输性能有着重要影响,因此需要使用研磨片对光纤端面进行打磨。

打磨工艺主要包括以下几个步骤:1.使用粗砂砂纸对光纤端面进行初步打磨,大约需要10-15分钟;2.使用细砂砂纸进一步细化打磨,大约需要10-15分钟;3.使用液体研磨剂和研磨片对光纤端面进行最终的打磨,直到达到光滑平整的效果。

三、光纤端面清洁二次处理光纤端面在打磨后可能会留下一些细微的划痕和残留,因此需要进行清洁二次处理,以保证端面的光滑度和洁净度。

清洁二次处理工艺主要包括以下几个步骤:1.使用洗涤剂和去离子水混合液将光纤浸泡片刻;2.使用柔软的刷子轻轻刷拭光纤表面;3.用去离子水冲洗光纤,彻底去除洗涤剂和污物;4.用氮气吹干光纤表面。

四、光纤端面镀金为了提高光纤连接的接触稳定性和传输性能,光纤端面通常需要进行镀金处理。

镀金工艺主要包括以下几个步骤:1.在光纤端面涂覆一层镀金溶液,保持一定的时间;2.使用高温加热炉将镀金溶液加热,使其固化成金属膜;3.将光纤端面放入水中冷却;4.用洗净剂和去离子水清洗光纤端面,去除多余的镀金溶液。

五、光纤端面检测经过以上工艺处理后,需要对光纤端面进行检测,以确保质量符合要求。

端面检测主要包括以下几个项目:1.使用显微镜检查光纤端面表面是否光滑、无划痕;2.使用光源照射光纤端面,观察是否有明显光损失;3.使用光功率计测量光纤端面的传输功率;4.使用衰减测试仪测试光纤端面的衰减值。

以上就是光纤端面处理的工艺流程,通过正确的端面处理工艺可以提高光纤连接的稳定性和传输性能,从而保证光纤通信的质量。

光纤端面研磨

光纤端面研磨

光纤端面研磨光纤端面研磨是一项非常重要的技术,它是保证光纤通信质量的关键步骤之一。

光纤通信作为现代通信技术的代表,已经成为人们生活中不可或缺的一部分。

在光纤通信中,光纤端面研磨是一项必要的工作,目的是为了保证光纤连接的质量和稳定性。

一、光纤端面研磨的原理光纤端面研磨是利用研磨片对光纤端面进行磨削,以达到光纤端面质量的要求。

在研磨过程中,需要使用一定的研磨液来冷却和润滑研磨片和光纤端面,以防止研磨过程中产生的热量对光纤的损伤。

研磨液的选择和使用也是影响光纤端面研磨质量的一个重要因素。

二、光纤端面研磨的步骤1、清洗光纤在进行光纤端面研磨之前,需要先对光纤进行清洗。

清洗的目的是为了去除光纤表面的污垢和油脂,以保证研磨的质量。

清洗时可以使用清洁剂和纯净水,但是一定要注意不要弯曲光纤,以免对光纤产生损伤。

2、研磨光纤将清洗干净的光纤放置在研磨机中,使用研磨片进行研磨。

研磨的过程中需要注意研磨片的选择和使用,以及研磨液的选择和使用。

研磨的时间和次数也需要根据实际情况进行调整,以达到最佳的研磨效果。

3、清洗光纤研磨完成后,需要对光纤进行清洗,以去除研磨过程中产生的研磨液和残留物。

清洗时可以使用纯净水和清洁剂,但是一定要注意不要弯曲光纤,以免对光纤产生损伤。

4、检查光纤清洗完成后,需要对光纤进行检查,以确认光纤端面的质量是否符合要求。

如果发现光纤端面存在问题,需要重新进行研磨,直到达到要求为止。

三、光纤端面研磨的影响因素1、研磨片的选择和使用研磨片的选择和使用对光纤端面的质量影响非常大。

不同的研磨片材料和粒度会对研磨效果产生不同的影响,因此需要根据实际情况进行选择。

同时,在使用研磨片的过程中,需要注意研磨片的磨损情况,及时更换研磨片,以保证研磨效果。

2、研磨液的选择和使用研磨液的选择和使用也是影响光纤端面研磨质量的一个重要因素。

不同的研磨液对光纤端面的研磨效果和光纤的损伤情况会产生不同的影响。

因此,在选择研磨液时需要根据实际情况进行选择,并且需要根据使用时间的长短及时更换。

光纤端面研磨加工的表面质量

光纤端面研磨加工的表面质量
5min。
采用KYKY--2800型扫描电子显微镜(SEM)观 察研磨后的光纤表面,用MFH--III型非接触式光 学表面轮廓仪(WYKO)钡U量表面粗糙度。光纤连接 器回波损耗值的测量采用RIFOCS 588RL回损仪, 插入损耗值的测量采用RIFOCS 575L光功率计。
3光纤研磨的材料去除机理
参考文献
[1】林学煌.光无源器件[M).北京:人民邮电Hl版社,1998 【2】扎齐斯基·J.玻璃与非晶态材料[M].北京:科学出
版社,2001. 【3j3辛企明.光学玻璃金刚石加工机理初探Ⅲ.仪器仅表
学报,1990,11f2、:216.219 [4】NAMBA Y ABE M Ulwaprecision grinding of optical
为O 5~6 0儿m金刚石磨料砂纸,在KE—OFP一12型光纤连接器研磨机上对光纤端面进行研磨,发现光纤研磨加_l:=
存在脆性断裂、半脆性半延性和延性等三种材料去除模式,且材料去除模式主要由磨料粒度控制,磨料粒度为3 um
时,为其脆延转换的临界点,并从理论上对其进行了分析。试验证明以延性去除得到的光纤表面粗糙度远低于以
机械工程学报
第42卷第2期
料粒度与光纤表面粗糙度的关系,连接器的插入损
耗及回波损耗与光纤表面的粗糙度存在对应关系,
表面粗糙度值越低,光纤连接器的插入损耗值越小,
回波损耗值越高。例如6.09 nm,
连接器插入损耗仅为o.06 dB,回波损耗高达3628
工机理有关的材料力学性能,石英光纤的维氏显微 硬度由MHT.4型显微硬度计测量得到,其他参数 由参考文献[2,121查得。
表1石英玻璃光纤及金刚石磨料的材料性能
的要求“J。参考文献[7.9】认为对陶瓷、玻璃等脆性 材料进行磨削、研磨加工时,只要磨粒的切削深度

光纤连接器的研磨与抛光

光纤连接器的研磨与抛光

光纤连接器的研磨与抛光1、光纤连接器的研抛的原因光纤连接器作为组成光纤系统最重要的光无源器件之一,在性能上要求其插入损耗更低、回波损耗更高,以提高光纤传输系统可靠性。

评价光纤连接器的质量,需要测量连接器插针体端面在研磨抛光后的形状参数,包括曲率半径、顶点偏移量及纤芯凹陷量等三个重要参数。

只有使端面形状参数保证在一定的范围之内,才能保证光纤保持良好的物理接触;另外,还要尽量去除光纤端面的变质层,并测试光纤端面是否有划痕或其它污损。

最后要满足插入损耗低、回波损耗高的性能。

因此,光纤连接器的研磨与抛光过程对提高其光学性能非常关键。

2、光纤连接器研抛的设备(1)精工技研特点:压力大,四角弹簧加压,效率高,夹具头数18头/20头/12头/6头;(2)精工电子压力小,中心砝码加压;夹具头数12头居多;加压不稳,精度不够但操作简单。

(3)另外还有domail机器、纳米机器即MCP-24/-32等。

3、光纤连接器研抛工艺光纤研磨加工过程是研磨砂纸表面众多单个磨粒于光纤表面综合作用结果。

四部研磨法:去胶包——粗研磨——半精研磨——精研磨——抛光(1)对于外包是陶瓷套管的光纤连接器,如FC型、SC型、ST型、LC型的光纤连接器主要采用金刚石系列的研磨片进行研磨,用ADS进行抛光。

研磨工艺:SC30/15-D9-D6-D3-D1-ADS/氧化铈抛光膜+SiO2抛光液;或SC30/15-D9-D3-D1-ADS/氧化铈抛光膜+SiO2抛光液;或SC30/15-D9-D1-ADS/氧化铈抛光膜+SiO2抛光液。

其中SC30/15碳化硅研磨片用于去胶包;D9或D6或D3金刚石研磨片用于粗研磨;D1金刚石研磨片用于半精磨磨;D0.5金刚石研磨片用于精磨。

ADS/氧化铈抛光膜+SiO2抛光液用于抛光。

研磨垫采用橡胶垫。

(2)APC陶瓷套管的光纤连接器,研磨过程中首先需要大粒度金刚石研磨纸开斜面,之后在用D9-D1-ADS研抛。

如何定义光纤跳线的端面三项值标准?

如何定义光纤跳线的端面三项值标准?

如何定义光纤跳线的端面三项值标准?光纤的两个端面必须精密对接起来,以使发射光纤输出的光能量能最大限度地耦合到接收光纤中去。

光纤线路的成功连接取决于光纤物理连接的质量,两个光纤端面需要达到充分的物理接触,如同融为一体的介质。

物理接触对保证光纤连接点的低插入损耗和高回波损耗至关重要,光纤端面形状的演化,经历了PC、UPC和APC三种类型,如图1所示。

PC是Physical Contact,物理接触。

UPC(Ultra Physical Contact),超物理端面。

APC(Angled Physical Contact)称为斜面物理接触,光纤端面通常研磨成8°斜面。

图1光纤连接器端面的研磨类型所有端面都研磨成球面,其中UPC连接器的端面曲率半径小于PC连接器,而APC连接器的端面通常研磨成8°斜面。

PC、UPC和APC三类连接器能够保证的回波损耗分别为40dB、55dB和65dB。

光纤跳线的端面要求研磨成球面,然而经实际生产工艺制造出来的产品不可能是完美的。

因此在技术标准中对端面形状进行了规范,包括曲率半径ROC、顶点偏移和光纤高度,如图2所示。

曲率(Radius of Curvature):端面研磨圆弧状的曲率半径。

表1中总结了IEC 组织给出的相关技术标准,其中ROC应取适当大小的值(对PC型连接器为10~25mm,对APC型连接器为5~15mm),ROC太大则不能在压力下产生足够的形变以保证光纤之间的物理接触,ROC太小则在重复插拔之后易压碎光纤。

顶点偏移(Apex Offset )指的是曲面顶点与光纤轴线之间的偏移量,图3展示了顶点偏移对光纤之间物理接触的影响。

如果顶点偏移太大,端面的形变足以让光纤之间发生物理接触,因此技术标准中要求光纤跳线的顶点偏移≤50μm 。

光纤高度(Fiber Height )值得是光纤端面相对于插芯端面的高度,光纤端面可能是凸出于插芯端面之上的,也可能是凹陷于插芯端面之下的。

光纤研磨技术与方法

光纤研磨技术与方法

光纤研磨技术与方法光纤研磨技术与方法是一项非常重要的技术,它用于光纤电缆制造中的工艺步骤,以确保最佳的传输性能和信号质量。

光纤研磨的目的是消除光纤断面上的不规则,并使光纤端面平整,以减少传输过程中的信号损失。

在光纤研磨中,最常用的方法是机械研磨。

机械研磨基于研磨片的旋转和光纤的旋转运动。

研磨片通常由钨钢和钻石制成,其硬度较高,能够在光纤表面产生较好的效果。

通常,研磨片上涂有研磨颗粒,这些颗粒会与光纤表面接触,并去除表面的不规则。

为了实现最佳的研磨效果,研磨过程需要严格控制一些参数。

首先,研磨片的选择非常重要。

不同的研磨片适用于不同的光纤尺寸和研磨要求。

其次,研磨速度也需要精确控制。

过慢的研磨速度可能导致表面不光滑,而过快的研磨速度可能导致表面烧伤。

另外,压力的控制也非常重要。

适当的压力可以提供足够的研磨切削力,并避免过度磨损。

除了机械研磨外,还有一种常用的方法是化学机械研磨(CMP)。

CMP结合了化学溶解和机械研磨的优点。

在CMP过程中,光纤端面首先通过化学溶解剂进行处理,然后在机械研磨片的作用下,表面的不规则被去除。

与传统的机械研磨相比,CMP可以在更短的时间内获得更平整的端面。

无论是机械研磨还是CMP,研磨过程中的清洁非常重要。

任何一点粉尘或杂质都可能对光纤传输性能产生不利影响。

因此,在研磨过程中需要保持良好的清洁环境,并确保工具和设备的清洁。

总之,光纤研磨技术和方法在光纤电缆制造过程中起着至关重要的作用。

通过选择合适的研磨片、控制研磨参数和保持清洁环境,可以实现最佳的研磨效果,确保光纤传输的高品质和高性能。

随着科技的不断发展,相信光纤研磨技术和方法会得到进一步的改进和创新,为光纤通信领域的发展做出更大贡献。

光纤端面研磨机

光纤端面研磨机

1/2
规格: � � � � � � � � 研磨垫外径:110mm 净重:28Kg 尺寸:390×240×580(mm) (长×宽×高) 研磨时间设定:99m59s(最大) 研磨垫速度:0rpm ~ 180 rpm 安装压力:2.1 ~ 3.6 kgf/cm2 研磨垫振幅:<10um 电源:AC220V, 50 Hz
图 1: SUN-PM1800 中心加压式光纤研磨机
SUN-PM1800 中心加压研磨插芯夹具:
ф1.25mm 插芯夹具
ф2.5mm 插芯夹具
• +86-21-54481280 • sales@
Fiber Optic Solutions
Fiber Optic Solutions
SUN-PM1800 中心加压式光纤研磨机
特性: � � � � � � � � � � � � 适用于陶瓷,石英,玻璃,金属和塑料等材质的插芯的研磨; 可根据需要设置压力和时间; 可编辑,存储压力参数; 方便装卸,更换研磨片; 研磨品质稳定,返修率低 生产效率更高(能和几个研磨机搭配组成一个生产线) ; 清水即可研磨,节约生产成本; 机器的标志和颜色可以定制; 可调节速度,保证研磨品质; 空气/水,和电源是分开的,保证了操作的安全; 单独控制,分开连接,方便修理; 如需更详细的信息,请联系我们。
SUN-PM1800 中心加压研磨连接器夹具:
2/2
FC/PC-12
FC/APC-12
SC/PC-12
SC/APC-12
LC/PC-16
LC/APC-12ST/PC12本文内容如有更改,恕不另行通知!
• +86-21-54481280 • sales@

浅谈光纤连接器的压接与研磨

浅谈光纤连接器的压接与研磨

浅谈变频器中塑料光纤的压接与研磨摘要:随着科学技术的发展和应用的扩大,光纤技术也迅速发展。

光纤不仅是光纤技术的重要组成部分,而且已成为电子器件领域的重要组成部分。

光纤用来传输光信号的重要介质,因此,光纤的压接与研磨的质量关系到传输性能和可靠性的一个至关重要的问题。

文中讨论了塑料光纤的基本结构、制作方法。

关键词:塑料光纤、压接、研磨0 前言随着电力电子技术的不断发展,光纤在光电传输系统的应用更为广泛。

同时,也对光纤提出了更多的、更高的要求,其主要是对可靠性的要求越来越高。

光纤是传输光信号的一种特殊电缆,其可靠连接是保证信号传输的前提。

光纤端子的压接、光纤芯线的处理是保证信号传输质量的重要环节。

因此必须确保光纤的压接、研磨质量。

下面就光纤的种类特点和变频器中塑料光纤的基本传输原理、压接工艺、研磨方式进行了逐步阐述。

1 光纤的结构光纤是由纤芯包层组成的,中心部分是纤芯(实心)纤芯以外的部分是包层。

纤芯的作用是传导光波。

包层的作用是将光波封闭在光纤中传播。

涂覆层的作用是起保护作用。

2 光纤的分类与特点2.1按材料分类(1) 高纯度石英(SiO2)玻璃纤维。

这种材料的光损耗比较小,在波长λ=1.2μm 时、最低损耗约为0.47dB/km 。

(2) 多组分玻璃光纤用常规玻璃制成,损耗也很低。

如硼硅酸钠玻璃光纤,在波长λ=0.84μm 时,最低损耗为3.4dB/km 。

(3) 塑料光纤。

用人工合成导光塑料制成,其损耗较大。

当λ=0.63μm 时,损耗高达100~200 dB/km ;但重量轻,成本低,柔软性好,适用于短距离导光。

2.2 按传输模数分类 (1)单模光纤单模光纤纤芯直径仅有几微米,接近光的波长。

单模光纤通常是指跃变光纤中,内芯尺寸很小,光纤传输模数很少,原则上只能传送一种模数的光纤,常用于光纤传感器。

这类光纤传输性能好、频带很宽,具有较好的线性度;但因内芯尺寸小,难以制造和耦合。

(2)多模光纤。

光纤研磨技术

光纤研磨技术

光纤研磨技术
光纤研磨是光纤端面处理的重要环节,它涉及的技术主要有三种:PC、UPC和APC。

PC(Physical Contact)即物理接触,是微球面研磨抛光,插芯表面研磨成轻微球面。

UPC(Ultra Physical Contact)即超物理端面,是在PC的基础上更加优化了端面抛光和表面光洁度,端面看起来更加呈圆顶状。

APC(Angled Physical Contact)即斜面物理接触,光纤端面通常研磨成8°斜面。

不同的研磨方式决定了光纤传输质量,主要体现在插入损耗和回波损耗。

插入损耗是指光信号通过光纤跳线后,输出光功率相对输入光功率的分贝数。

一般情况下,PC、UPC和APC光纤连接器的插入损耗应小于0.3dB。

与APC光纤连接器相比,由于空气间隙更小,UPC/PC 光纤连接器通常更容易实现低插入损耗。

此外,插入损耗也可能由光纤连接器端面之间的灰尘微粒引起。

回波损耗又称为反射损耗,是指光信号通过光纤跳线连接处,后向反射光功率相对入射光功率的分贝数。

APC光纤连接器的端面是斜面抛光的,所以APC光纤跳线的回波损耗通常优于UPC光纤连接器。

一般情况下,采用PC研磨方式的光纤跳线的回波损耗为-40dB。

UPC 回波损耗相对于PC来说更高,一般是在-55dB。

以上信息仅供参考,如需了解更多信息,建议查阅光纤研磨技术相关书籍或咨询专业人士。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光纤端面研磨
随着通信技术的快速发展,光纤通信已经成为信息传输的主要方式之一。

光纤通信的可靠性和高速传输能力,使得它在现代通信领域中占据着重要的地位。

而光纤端面研磨作为光纤连接中不可或缺的一环,其质量的好坏直接影响着光纤连接的稳定性和通信质量。

因此,光纤端面研磨的技术和方法也越来越受到人们的关注。

一、光纤端面研磨的重要性
光纤的传输速度很快,但它的连接技术却十分复杂。

光纤连接需要保证光信号的传输质量,而光纤端面的质量直接影响着光信号的损耗和反射。

如果光纤端面不光滑或者存在缺陷,就会导致光信号的反射和散射,从而降低光信号的传输效率和质量。

因此,光纤端面的质量对于光纤通信的稳定性和可靠性至关重要。

二、光纤端面研磨的方法
光纤端面研磨的方法有很多种,常见的方法包括机械研磨、化学机械研磨和激光研磨等。

1. 机械研磨
机械研磨是最常见的光纤端面研磨方法之一。

它采用研磨片和研磨液对光纤端面进行研磨,使其变得平整光滑。

机械研磨的优点是研磨效果比较稳定,而且操作简单,成本也比较低。

但是机械研磨的缺点是研磨片和研磨液会产生一定的热量,容易损伤光纤端面,而且研磨效率比较低,需要较长的时间才能完成。

2. 化学机械研磨
化学机械研磨是一种结合了化学反应和机械研磨的方法。

它采用研磨液和研磨片对光纤端面进行研磨,同时通过化学反应来加速研磨过程。

化学机械研磨的优点是研磨效率比较高,而且能够得到非常平整光滑的光纤端面。

但是化学机械研磨的缺点是成本比较高,而且操作比较复杂,需要一定的技术和经验。

3. 激光研磨
激光研磨是一种非常先进的光纤端面研磨方法。

它采用激光束对光纤端面进行打磨,可以得到非常平整光滑的光纤端面。

激光研磨的优点是研磨效率非常高,而且不会产生热量,不会损伤光纤端面。

但是激光研磨的缺点是成本比较高,而且需要非常专业的技术和设备。

三、光纤端面研磨的注意事项
无论采用哪种光纤端面研磨方法,都需要注意以下几点:
1. 选择合适的研磨液和研磨片,不同的光纤材料需要不同的研磨液和研磨片。

2. 保持研磨片和光纤端面的水平,避免出现划痕和凹陷。

3. 控制研磨时间和研磨压力,避免过度研磨。

4. 在研磨前要对研磨设备进行清洁和消毒,避免污染光纤端面。

5. 研磨后要对光纤端面进行检查,确保没有缺陷和异物。

四、光纤端面研磨的应用
光纤端面研磨在光纤通信中应用广泛,其主要作用是提高光纤
连接的可靠性和稳定性。

在光纤通信系统中,光纤端面研磨通常用于光纤连接头、光纤分路器和光纤衰减器等器件的制造和维护中。

此外,光纤端面研磨还应用于医疗、工业和科研等领域。

在医疗领域,光纤端面研磨通常用于光学成像和光学治疗设备中;在工业领域,光纤端面研磨通常用于激光加工、光纤传感和光学测量等领域;在科研领域,光纤端面研磨通常用于光学实验和光学研究中。

五、结论
光纤端面研磨是光纤连接中不可或缺的一环,其质量的好坏直接影响着光纤连接的稳定性和通信质量。

随着通信技术的不断发展,光纤端面研磨的技术和方法也在不断创新和改进。

在光纤端面研磨过程中,需要注意选择合适的研磨液和研磨片,保持研磨片和光纤端面的水平,控制研磨时间和研磨压力,避免过度研磨,以及在研磨后对光纤端面进行检查等。

光纤端面研磨在光纤通信、医疗、工业和科研等领域都有广泛的应用前景。

相关文档
最新文档