法拉第磁旋光效应
法拉第效应名词解释
法拉第效应名词解释一、法拉第效应名词解释在物理学里,法拉第效应(又叫法拉第旋转,磁致旋光)是一种磁光效应,是在介质内光波与磁场的一种相互作用。
法拉第效应会造成偏振平面的旋转,这旋转与磁场朝着光波传播方向的分量呈线性正比关系。
二、法拉第效应简介磁光效应是光与具有磁矩的物质共同作用的产物。
磁光效应主要有三种,即:法拉第效应、克尔效应、塞曼效应。
在光学电流传感器领域,法拉第磁光效应的应用最为广泛。
光学电流传感器中磁光介质即磁光效应中具有磁矩的物质,是决定光学电流传感器性能的重要器件。
具有磁矩的物质可以分为五大类,而在光学电流传感器领域,顺磁性物质的应用最为广泛。
三、法拉第效应应用法拉第效应可以应用于测量仪器。
例如,法拉第效应被用于测量旋光度、或光波的振幅调变、或磁场的遥感。
在自旋电子学里,法拉第效应被用于研究半导体内部的电子自旋的极化。
法拉第旋转器可以用于光波的调幅,是光隔离器与光循环器的基础组件,在光通讯与其它激光领域必备组件。
具体应用如下:(1) 量糖计(自然旋光)(2) 磁光开关与磁光调制器(点调制与空间调制)(3) 磁光光盘:光信息存储(4) 磁光电流传感器(或互感器):测量大电流(5) 磁光隔离器:在光通信和级联式激光器系统中用以隔离后续系统反馈的光信号(6) 磁光偏频器:零锁区激光陀螺中通过产生偏频来消除激光陀螺的闭锁现象法拉第效应可用于混合碳水化合物成分分析和分子结构研究。
在激光技术中这一效应被利用来制作光隔离器和红外调制器。
该效应可用来分析碳氢化合物,因每种碳氢化合物有各自的磁致旋光特性;在光谱研究中,可借以得到关于激发能级的有关知识;在激光技术中可用来隔离反射光,也可作为调制光波的手段。
因为磁场下电子的运动总附加有右旋的拉穆尔进动,当光的传播方向相反时,偏振面旋转角方向不倒转,所以法拉第效应是非互易效应。
这种非互易的本质在微波和光的通信中是很重要的。
许多微波、光的隔离器、环行器、开关就是用旋转角大的磁性材料制作的。
法拉第磁光效应传感器详细介绍
法拉第磁光效应传感器详细介绍法拉第磁光效应传感器,这可是个相当有趣又实用的玩意儿呢!咱先说说这法拉第磁光效应是啥吧。
你看啊,就像有魔法一样,当一束光在介质里传播的时候,如果这个介质周围还有磁场,那这束光的偏振面就会发生旋转。
这就好比一个调皮的小磁针,本来好好地指着一个方向,突然有个神秘的力量把它拧了一下,光的偏振面就是这样被磁场给“拧”了。
这就是法拉第磁光效应的基本情况啦。
那基于这个效应制造出来的传感器呢,那可就更厉害了。
这个传感器就像是一个超级敏锐的小侦探,专门去发现磁场的存在和变化。
它的结构呀,其实也不是特别复杂得让人摸不着头脑。
它有一个光源,这个光源就像是一个灯塔,发出光线照亮前方未知的“磁场世界”。
光线从光源出来后,就进入到磁光材料里。
这个磁光材料呢,就是整个传感器的关键部分啦,就如同人的心脏一样重要。
光在磁光材料里传播的时候,如果周围有磁场,那光的偏振面就会发生旋转,这个旋转角度可是和磁场的大小有关系的哦。
然后呢,还有一个检偏器。
这检偏器就像一个筛子,它只允许特定偏振方向的光通过。
当光的偏振面被磁场旋转后,通过检偏器的光强就会发生变化。
这变化就被后面的探测器给捕捉到啦。
探测器就像是一个细心的记录员,它把光强的变化记录下来,然后根据之前设定好的一些关系,就能知道磁场的大小、方向之类的信息啦。
你可能会问,这东西有啥用呢?用处可大了去了!在电力系统里,就像是一个默默守护的卫士。
我们知道,电力系统里有各种各样的磁场,要是这些磁场不正常了,可能就预示着设备出问题了。
法拉第磁光效应传感器就能很灵敏地检测到磁场的变化,提前告诉人们哪里可能有故障隐患,这就好比是在火灾还没起来之前,就发现了冒烟的小火苗,及时把危险扼杀在摇篮里。
在通信领域呢,它也能大展身手。
磁场在一些通信设备里也起着很重要的作用,这个传感器就可以检测磁场相关的参数,确保通信的顺畅。
就像是交通警察在路口指挥交通一样,哪里堵了,哪里乱了,都能及时发现并处理。
法拉第磁致旋光效应
法拉第磁致旋光效应法拉第磁致旋光效应,又称为法拉第效应,是指当光线通过某些材料时,受到磁场的作用后,光线的传播方向会发生偏转的现象。
这一发现由英国物理学家迈克尔·法拉第于1845年首次提出,并得到了当时科学界的广泛关注。
法拉第磁致旋光效应的出现,揭示了光与磁场之间的紧密联系。
它为我们揭示了光的电磁本质,并对光学、磁学、材料科学等领域的研究与应用产生了深远的影响。
在物理学中,我们经常会遇到电场和磁场对物质的影响。
然而,在当时的研究中,人们通常关注的是电场对物质的作用,对磁场的研究相对较少。
法拉第磁致旋光效应的发现,使得人们意识到磁场同样具有对物质的重要影响,从而推动了磁场研究的发展。
我们知道,光是由电场和磁场交织而成的电磁波。
当光线穿过某些具有对称结构的材料时,其电场和磁场方向可能发生变化。
而在磁场的作用下,这种变化会进一步导致光线的传播方向改变。
这就是法拉第磁致旋光效应的基本原理。
法拉第磁致旋光效应的应用十分广泛。
首先,在科研领域,它为深入理解光和磁场之间的关系提供了实验依据,为电磁理论的发展做出了重要贡献。
其次,在光学技术方面,法拉第磁致旋光效应被广泛应用于制造光学器件,例如旋光棱镜、偏光器等,以及光通信、光存储等领域。
再者,在生物医学领域,法拉第磁致旋光效应也被用于细胞显微镜和生物传感器等设备的设计与制造。
此外,对法拉第磁致旋光效应的研究还启发了科学家们对新材料的探索和开发。
通过针对具有特殊对称结构的材料进行设计与合成,科学家们希望能够进一步优化并进一步扩展该效应的应用范围。
总之,法拉第磁致旋光效应是一项重要的科学发现,它揭示了光和磁场之间的密切联系,推动了磁场研究的发展,为电磁理论的发展做出了重要贡献。
它的应用不仅在光学技术领域有着广泛的应用,而且在生物医学领域也具有重要的意义。
对法拉第磁致旋光效应的进一步研究和探索,有助于提高我们对光学、磁学和材料科学等之间关系的认识,并为新材料的发展与应用提供契机。
法拉第旋光效应
法拉第旋光效应
法拉第旋光效应,是指当平面偏振光在具有旋转对称性的物质中传播时,光线在经过物质后会发生偏转而产生旋转偏振现象。
这个效应的发现者是意大利物理学家法拉第,他于1845年通过实验发现了这个现象,因此这个效应也被称为法拉第效应。
平面偏振光是指在一个特定的方向上振动的光线,一般情况下,光线的振动方向是没有旋转的。
而在媒质中,由于媒质分子的旋转对称性,会对光线的振动方向进行扭转,从而使得光线发生偏转,这种现象就是法拉第旋光效应。
法拉第旋光效应在实际应用中有着广泛的应用,尤其是在光学仪器中。
例如,在化学分析仪器、偏振仪、激光仪器等中都需要用到法拉第旋光现象。
在化学分析仪器中,通过测量样品旋光角度的变化,可以确定物质中的分子结构和含量;在偏振仪中,通过分析经过偏振器后的光线来检测样品中是否存在旋光现象;在激光仪器中,通过法拉第绕射元件可以实现图像信息的传递和处理。
总之,法拉第旋光效应是研究光学现象中非常重要的一个方面,对于理解光的本质、探究物质的结构和性质等具有重要意义。
磁光效应
行业PPT模板:/hangye/ PPT素材下载:/sucai/ PPT图表下载:/tubiao/ PPT教程: /powerpoint/ Excel教程:/excel/ PPT课件下载:/kejian/ 试卷下载:/shiti/
• 法拉第旋转效应的应用
法拉第效应可以应用于测量 仪器。例如,法拉第效应被用于 测量旋光度、或光波的振幅调变 、或磁场的遥感。在自旋电子学 里,法拉第效应被用于研究半导 体内部的电子自旋的极化。法拉 第旋转器(Faraday rotator)可 以用于光波的调幅,是光隔离器 与光循环器(optical circulator )的基础组件,在光通讯与其它 激光领域必备组件。
克尔磁光效应的应用
克尔磁光效应主要应 用与磁光光盘存储系统中。 人们很早就知道光信息的记 录和再生技术----照相技术 。激束发明后,照相技术有 了很大的发展。光盘就是用 激光非接触式高密度地记录 图像,声音,数据等信息的 圆板状媒体。
参考资料
李国栋 -《 磁性材料及器件》 都有为 - 《功能材料》 牛永宾,许丽萍等 - 《红外与激光工程》
• 克尔磁光效应
线偏振光入射到磁化媒
质表面反射出去时,偏振面
发生旋转的现象。也叫克尔
磁光效应或克尔磁光旋转。
这是继法拉第效应发现
后,英国科学家J.克尔于
图一
1876年发现的第二个重要
的磁光效应。
按磁化强度和入射面的相对取向,克尔磁光效应分极向 克尔磁光效应、横向克尔磁光效应和纵向克尔磁光效应 (图一)。极向和纵向克尔磁光旋转都正比于样品的磁 化强度。通常极向克尔旋转最大、纵向次之。
PPT模板下载:/moban/ 节日PPT模板:/jieri/ PPT背景图片:/beijing/ 优秀PPT下载:/xiazai/ Word教程: /word/ 资料下载:/ziliao/ 范文下载:/fanwen/ 教案下载:/jiaoan/
法拉第磁旋光效应
VBd=θ专业物理实验法拉第磁旋光效应一、 实验目的.1. 通过对重火石玻璃磁光效应的测量,加深磁场对光学介质物性常数影响的理解;2. 了解光波隔离器的工作原理。
二、 实验原理.1845年,法拉第发现,当一束平面偏振光沿着磁场方向通过受磁场作用的物质,如玻璃、二硫化碳、汽油等时,透射光的偏振面会转过一个角度。
这种磁致旋光现象称为法拉第效应。
它和发生于糖溶液中的自然旋光效应是不同的。
在法拉第效应中,对于给定的物质,偏振面的旋转方向相对于实验室坐标只由磁场B 的方向决定,和光的传播方向无关,是不可逆的光学过程。
光线往返一周,累积旋光角倍增。
而自然旋光效应是可逆的,光线往返一周,累积旋光角为零。
利用法拉第效应的这一特性,可制造一种不可逆的光学仪器:光波隔离器或单通器。
此外,法拉第效应还可用于物质结构和半导体物理方面的研究。
当磁场不是非常强时,法拉第效应中偏振面转过的角度θ,与沿介质厚度方向所加磁场的磁感应强度B 及介质厚度d 成正比,即(1)式中比例常数V 叫做费尔德常数。
几乎所有的物质都存在法拉第效应。
不同的物质偏振面旋转的方向可能不同。
设想磁场B 是由绕在样品上的螺旋线圈产生的。
习惯上规定:振动面的旋转方向和螺旋线圈中电流方向一致,称为正旋(V >0);反之,叫做负旋(V < 0);V 由物质和工作波长决定,它表征物质的磁光特性。
根据自然旋光的菲涅耳唯象描述,对于法拉第效应可作这样的经典解释:一束平行于磁场方向传播的平面偏振光可看作两束等幅的左旋和右旋圆偏振光的叠加,进入介质后由于磁场的作用使得它们以稍微不同的速度⎪⎭⎫ ⎝⎛l r n c n c ,向前传播,从介质出射后,合成线偏振光,偏振面相对于入射光转过了一定的角度。
图1 线偏振光沿磁场方向传播下面来进行旋转角度的计算:设有一束偏振光沿介质磁场方向穿过介质,如图1所示。
入射线偏振光的场强为n 为空气中的折射率。
在进入介质的地方(z = 0) 进入介质后分成右旋、左旋圆偏振光。
磁致旋光法拉第效应实验报告
磁致旋光法拉第效应实验报告在做这个磁致旋光法拉第效应实验的时候呀,那可真是一段超级有趣又有点小波折的经历呢。
刚进实验室的时候,就看到那些实验仪器摆在那儿,感觉它们都在等着我去探索呢。
那些仪器看起来就很神秘,心里就特别好奇它们到底是怎么展现磁致旋光法拉第效应的。
我就先去摆弄那些仪器,按照之前老师大概讲过的样子去连接线路啥的。
哎呀,可别小看这连接线路,感觉就像在给一堆小零件做拼图一样,一不小心就可能接错了。
我就这么小心翼翼地弄着,心里还在想这实验要是成功了得多酷啊。
然后开始调整仪器的参数,这时候就有点像在和仪器对话一样,我调整一点,就看看它有啥反应。
有时候调整了半天没反应,心里就特别着急,就像你满心期待地等一个好朋友的回应,结果啥都没有。
不过我可没放弃,又重新检查线路和参数,一点点排查问题。
当我看到光真的因为磁场而发生旋光现象的时候,那种兴奋感简直没法形容。
就像发现了一个超级大宝藏一样。
我当时就在想,这小小的磁场和光之间居然有这么神奇的联系,大自然真的是太神奇啦。
在这个实验里,我还发现了一些特别的地方呢。
比如说,磁场强度不同的时候,光的旋光角度也不一样。
这就像是在玩一个很神秘的游戏,不同的规则会有不同的结果。
我就不停地改变磁场强度,然后记录光的旋光角度,感觉自己就像一个小科学家在探索未知的世界。
这个实验也让我明白了很多东西。
以前在课本上看到这些理论的时候,感觉就像是在看一些干巴巴的文字,但是真正自己做了这个实验之后,就觉得这些理论都活了起来。
就像磁致旋光法拉第效应,以前只是知道有这么个事儿,但是现在我能清楚地看到它是怎么发生的,能感受到这个效应背后的奇妙之处。
而且在做实验的过程中,和同学们的交流也特别有意思。
大家会分享自己遇到的问题,然后一起想办法解决。
这感觉就像一群探险家在共同探索一个神秘的岛屿一样,大家互相帮助,互相学习。
我觉得这个实验不仅仅是让我学会了关于磁致旋光法拉第效应的知识,更重要的是让我体验到了探索科学的乐趣,还有那种遇到困难不放弃,一点点去解决的感觉。
法拉第旋光
125法拉第效应1845年法拉第(Michal Faraday )发现玻璃在强磁场的作用下具有旋光性,加在玻璃棒上的磁场引起了平行于磁场方向传播的线偏振光偏振面的旋转。
此现象被称为法拉第效应。
法拉第效应第一次显示了光和电磁现象之间的联系。
促进了对光本性的研究。
之后费尔德(Verdet )对许多介质的磁致旋转进行了研究,发现法拉第效应在固体、液体和气体中都存在。
大部分物质的法拉第效应很弱,掺稀土离子玻璃的费尔德常数稍大。
近年来研究的YIG 等晶体的费尔德常数较大,从而大大提高了实用价值。
法拉第效应有许多重用的应用,尤其在激光技术发展后,其应用价值倍增。
如用于光纤通讯系统中的磁光隔离器,因为偏振面的磁致旋转取决于磁场的方向,与光的传播方向无关,由此可设计成光隔离器,使光沿规定的方向通过同时阻挡反向传播的光,从而减少光纤中器件表面反射光对光源的干扰;磁光隔离器也被广泛用于激光多级放大技术和高分辨的激光光谱技术,激光选模等技术中。
法拉第效应的弛豫时间不大于1010-秒量级。
在激光通讯,激光雷达等技术中已发展成类似微波器件的光频环行器、调制器等,利用法拉第效应的调制器(磁光调制器)在1m ~5m 的红外波段将起重用作用。
且磁光调制器需要的驱动功率较电光调制器小的多。
对温度稳定性的要求也较低。
所以磁光调制是激光调制技术的重用组成之一,也常用于激光强度的稳定装置。
又如作为重要的传感机理应用于电工测量技术中。
在磁场测量方面,利用它弛豫时间短(约1010-秒)的特点制成的磁光效应磁强计可测量脉冲强磁场、交变强磁场;利用它对温度不敏感的特点,磁光效应磁强计可适用于较宽的温度范围,如等离子体中强磁场、低温超导磁场;在电流测量方面,利用电流的磁效应和光纤材料的法拉第效应,可测量几千个安培的大电流或几千KV 的高压电流等。
一、实验原理法拉第效应是磁场引起介质折射率变化而产生的旋光现象,实验结果表明,光在磁场的作用下通过介质时,光波偏振面转过的角度q (磁致旋光角)与光在介质中通过的长度L 及介质中磁感应强度在光传播方向上的分量B 成正比,即VBL =q (5-3-1) 式中V 称为费尔德常数,它表征物质的磁光特性。
法拉第磁光效应
法拉第磁光效应法拉第磁光效应是一种通过外加电磁场方式产生旋光现象的实验现象,充分反应了光与物质之间的相互作用。
磁光效应在许多领域都有着广泛应用,如强磁场测量、磁光材料等。
【实验目的】了解法拉第磁光效应的基本规律;学习掌握使用光传感器及虚拟仪器软件测量Verdet 常数的方法。
【实验原理】磁光效应是指光与磁场中的物质,或光与具有自发磁化强度的物质之间相互作用所产生的各种现象,主要包括法拉第效应、科顿—穆顿效应、克尔磁光效应、塞曼效应和光磁效应等。
线偏振光透过放置磁场中的物质,沿着(或逆着)磁场方向传播时,光的偏振面发生旋转的现象称为法拉第磁光效应,也称法拉第旋转或磁圆双折射效应,简记为MCB 。
一般材料中,法拉第旋转(用旋转角ϕΔ表示)和样品长度l 、磁感应强度B 有以下关系V l B ⋅⋅=ΔϕV 是与物质性质、光的频率有关的常数,称为费尔德(Verde )常数。
观察法拉第效应的装置如下图所示,由起偏器P1产生线偏振光,光线穿过带孔的电磁铁,沿着(或逆着)磁场方向透过样品,当励磁线圈中没有电流(无磁场)时,使检偏器P2的偏振方向与P1正交,这时发生消光现象。
这表明,振动面在样品中没有旋转,通过励磁电流产生强磁场后,则发现必须将P2的振动方向转过角ϕ,才出现消光,这表明,振动面在样品中转过了ϕ,这就是磁致旋光或法拉第效应。
用经典电子论处理介质色散的方法,可导出磁光效应的旋转角公式为: 12e dn lB m d ϕλλΔ=−其中:e 、m 为电子电荷和质量,λ为光波波长,dn d λ为无磁场时介质的色散,B 为磁场强度在光传播方向上的分量,l 为晶体的长度。
上式表明,磁致旋光角的大小除了与晶体的长度、磁场的大小成正比,还与入射光的波长、介质的色散有密切关系。
图1 法拉第磁光效应在本实验中,我们需要测量的是磁致旋光角ϕΔ与磁场B 、入射光波长λ之间的关系。
为了测量旋光角ϕΔ,将检偏镜P2安装在旋转支架中,旋转支架由步进电机带动,可带动偏振镜作360度旋转。
近物实验II 法拉第效应
法拉第效应一、引言1845年英国物理学家法拉第(Faraday )发现原本没有旋光性的铅玻璃在磁场中出现了旋光性,这种磁致旋光现象后来被称为法拉第效应,这也是人类第一次认识到电磁现象和光现象之间的相互关联。
后来,费尔德(Verdet )研究了许多介质的磁致旋光效应,发现法拉第效应普遍存在于固体、液体和气体中,只是大部分物质的法拉第效应很弱,而掺稀土离子的玻璃的费尔德常数稍大。
近年来研制的磁性石榴石(YIG )等晶体的费尔德常数更大一些。
法拉第效应只是磁光效应中的一种。
磁光效应是描述在磁场的作用下,在具有固有磁矩的介质中传播的光其物理性质发生变化的现象,比如光的频率、偏振面、相位或者散射特性等性质发生了变化。
磁光效应有很多种类型,常见的有法拉第效应、塞曼(Zeeman )效应、克尔(Kerr )效应、科顿-穆顿(Cotton-Mouton )效应和磁激发光散射等。
法拉第效应的应用领域极其广泛。
它可以作为物质结构研究的手段,比如,根据结构对法拉第效应的影响来分析碳氢化合物的结构;在光谱学中,可以用于研究激发能级的有关信息;在电工测量中,可用来测量电路中的电流和磁场。
如今利用法拉第效应原理制成的偏频盒、旋转器、环行器、相移器、锁式开关、Q 开关、光纤隔离器等能快速控制激光参数的各种元器件,已广泛应用于激光雷达、激光测距、激光陀螺、光纤通信中。
本实验的目的是:通过实验理解法拉第效应的本质,掌握测量旋光角的基本方法,并测量几种不同类型材料的旋光角,同时学会计算费尔德常数。
二、实验原理所谓的法拉第效应就是,当在光的传播方向上加上一个强磁场时,平面偏振光穿过处于该磁场中的样品后,其偏振面会偏转一个角度。
实验结果表明,光的偏振面旋转的角度θF 与其在介质中传播的距离l 及介质中磁感应强度在光传播方向上的分量B 成正比,即F d (),V Bl θλ= (1)上式中,比例系数V d (λ)称为费尔德常数,它由材料本身的性质和工作波长决定,表征物质的磁光特性。
法拉第旋光效应 4
I(A) U(V) I(A) U(V) I(A) U(V)
-3.00 0.894 -0.31 2.216 2.41 3.807
-2.72 0.927 0.00 2.401 2.72 3.941
-2.41 1.032 0.31 2.583 3.01 3.970
-2.10 1.201 0.62 2.759
-1.80 1.364 0.91 2.931
-1.51 1.524 1.22 3.105
-1.20 1.690 1.51 3.287
-0.90 1.870 1.80 3.460
-0.61 2.206 2.10 3.633
利用公式B =
������−������0 ������������
,������������ =13mV/mT,U0=2.399V 得
法拉第旋光效应
怡若乐 2013212837 2013214103 班
法拉第于 1845 年发现当磁场作用在一块玻璃上,平面偏振光在玻璃中沿着磁场传播会发生 光的震动面旋转的现象。这一效应就称为法拉第旋光效应。
[实验原理] 1 天然旋光现象 当线偏振光通过某些透明物质(如石英、糖溶液、酒石酸溶液等)后,其振动面将以光的传 播方向为轴旋转一定的角度,这种现象称为旋光现象。 2 旋光现象的菲涅耳解释 线偏振光可以分为左旋圆偏振光和右旋圆偏振光。 左旋圆偏振光和右旋圆偏振光以相同的角 速度沿相反方向旋转, 它们合成为在一直线上振动的线偏振光。 在旋光物质中左旋圆偏振光 和右旋圆偏振光的传播速度不相同。 假设右旋圆偏振光传播速度快, 则后来合成的线偏振光 右旋。 3 磁致旋光 磁致旋光中振动面的旋转角φ 和样品长度 L 及磁感应强度 B 成正比,即有 φ =VLB 式中 V 是一个与物质的性质、光的频率有关的常数,称为维尔德常数。当光的传播方向和磁 场方向平行时,迎着光的方向观察,光的振动面向左旋转,则维尔德常数为正。 [仪器用具] LED 发光二极管(或白光光源和滤波片) ,偏振片,透镜,直流励磁电源,导轨,偏振片, 集成霍尔元件,5V 稳压电源等。 [实验内容] 1 自搭电路,用集成霍尔元件测磁场 2 测量励磁电流 I 与磁场 B 之间的对应关系 3 分别测量不同波长、不同磁场强度下的旋光角度θ 。注意测量时要改变磁场方向。 [数据处理] 1、 利用集成霍尔元件测磁场
近代物理实验报告—法拉第效应
法拉第效应一、引言1845年英国物理学家法拉第发现原本没有旋光性的铅玻璃在磁场中出现了旋光性,这种磁致旋光现象即法拉第效应。
随后费尔德的研究发现法拉第效应普遍存在于固体、液体、和气体中,只是大部分物质的法拉第效应很弱。
法拉第效应只是磁光效应中的一种。
磁光效应是描述在磁场的作用下,具有固有磁矩的介质中传播的光气无力性质发生变化的现象,比如光的频率,偏振面,相位等性质发生了变化。
法拉第效应的应用领域极其广泛,可用于物质结构的研究、光谱学和电工测量等领域。
此外利用法拉第效应原理制成的各种可快速控制激光参数的元器件也已广泛地应用于激光雷达、激光测距、激光陀螺、光纤通信中。
本实验的目的是通过实验理解法拉第效应的本质,掌握测量旋光角的基本方法,学会计算费尔德常数。
二、实验原理法拉第效应就是,当线偏振光穿过介质时,若在介质中加一平行于光的传播方向的磁场,则光的振动面将发生旋转,振动面转过的角度称为法拉第效应旋光角。
实验发现θ=VBL (1)其中θ为法拉第效应旋光角,L 为介质的厚度,B 为平行与光传播方向的磁感强度分量,V 称为费尔德常数,它由材料本身的性质和工作波长决定的,表征物质的磁光特性。
一般约定,当光的旋转方向与产生磁场的电流的方向一致时,称法拉第旋转是左旋,V>0;反之则叫右旋,V<0。
法拉第效应与自然旋光不同在于:法拉第效应对于给定的物质,偏振面的旋转方向只由磁场的方向决定而与光的传播方向无关,光线往返一周,旋光角将倍增,这叫做法拉第效应的“旋光非互易性”。
而自然旋光过程是可逆的。
1、法拉第效应原理的菲涅尔唯象理论一束平面偏振光可以分解为两个不同频率等振幅的左旋和右旋圆偏振光。
在没有外加磁场时,介质对它们具有相同的折射率和传播速度,他们通过距离为 的介质后,他们产生的相位移相同,不发生偏转。
当有外磁场时,由于磁场使物质的光学性质改变,两束光具有不同的折射率和传播速度,产生不同的相位移:2L L n l πϕλ=(2)2R R n l πϕλ=(3)其中,L ϕ、R ϕ分别为左旋、右旋圆偏振光的相位,L n 、R n 分别为其折射率,λ为真空中的波长。
法拉第磁光效应的原理
法拉第磁光效应的原理嘿,朋友!咱们今天来聊聊法拉第磁光效应,这可是个相当神奇又有趣的玩意儿。
你知道光吗?那是我们生活中再常见不过的东西啦,照亮我们的世界,让我们能看清周围的一切。
可你想过光在磁场中会有啥特别的表现不?这就好比一个调皮的孩子在大人的管束下会有不一样的行为一样。
法拉第磁光效应啊,简单来说,就是当一束光通过处于磁场中的物质时,它的偏振面会发生旋转。
啥是偏振面?嗯,你可以把它想象成光的一个“小属性”,就像人的性格特点一样。
咱们平常看到的光,就像是一群毫无秩序到处乱跑的孩子。
而偏振光呢,就像是这些孩子排好了整齐的队伍,朝着一个特定的方向前进。
当这排好队的光进入有磁场的物质时,就好像被磁场这个“神秘力量”轻轻推了一把,它们的队伍方向就发生了变化,也就是偏振面旋转啦。
这是不是很奇妙?就好像光在磁场里被施了魔法一样!那为啥会这样呢?这得从物质的内部结构说起。
物质里面的原子、分子啥的,就像是一个个小小的“工作车间”。
在磁场的作用下,这些“车间”的工作方式发生了改变,从而影响了光的传播。
比如说,就像一个原本正常运转的工厂,突然来了个严格的新领导,要求改变工作流程,于是整个生产出来的东西就不一样啦。
科学家们为了研究这个效应,那可是费了好大的劲。
一次次的实验,一次次的观察和分析。
他们就像侦探一样,不放过任何一个细节,努力寻找着这个神奇现象背后的真相。
你想想,如果我们能好好利用这个法拉第磁光效应,那能做出多少神奇的东西啊!比如说更先进的光学仪器,能让我们看到更细微、更遥远的世界。
这就像给我们打开了一扇通往未知世界的新大门,让我们看到更多以前看不到的精彩。
所以说,法拉第磁光效应可不仅仅是个科学名词,它是打开未来科技大门的一把神秘钥匙,等着我们去探索更多的奥秘,创造更多的可能。
难道不是吗?。
5、法拉第效应
5、法拉第效应1845年,法拉第在探索电磁现象和光学现象之间的联系时,发现了一种现象:当一束平面偏振光穿过介质时,如果沿光的传播方向加上一个磁场,就会观察到光经过样品后偏振面转过一个角度,即磁场使介质具有了旋光性,这种现象被称为法拉第效应。
法拉第效应又称磁致旋光效应。
研究发现,磁致旋光效应在非旋光的固体、液体和气体中都存在。
[10]磁致旋光效应的实验设置分为两部分:(1)一束平面偏振光穿过介质,(2)沿光的传播方向加上一个磁场。
这里首先需要说明的是平面偏振光的概念,所谓平面偏振光分为左旋偏振光和右旋偏振光,如果左、右旋偏振光合并在一起,复合光就会失去偏振性成为普通光。
也就是说,实验中采用的平面偏振光具有单一的偏振属性,不是左旋偏振光,就是右旋偏振光。
磁致旋光效应的关键是,磁场对偏振光的作用效应。
磁场是旋转的质量场,光是质量波,二者在本质上是相同的,因此,磁场能够对光波产生作用效应。
形象地说,磁场和光波都是质量场“旋涡”,光波在磁场中传播,其旋转方向必然与磁场的旋转方向保持一致。
以原子的磁场为例,原子M场为平面场,磁场方向通过右手定则判定。
核外电子在轨道跃迁过程中辐射出光波,光波M场的旋转方向与原子磁场的旋转方向相同。
当原子磁轴向上时,辐射光为右旋偏振波;当原子磁轴向下时,辐射光为左旋偏振波。
在偶极磁场中,磁力线方向为从N极到S极。
当光顺磁场方向传播时,为右旋偏振光;当光逆磁场方向传播时,为左旋偏振光。
从俯视角度看,面对N极,右旋偏振光的偏振方向呈发散状;面对S极,左旋偏振光的偏振方向呈收敛状。
如图所示:根据分子链模型,非旋光介质中含有左、右旋两种扭旋方向分子链,每条分子链只能传导一种性质的偏振光。
介质端口分子链M场与光波M场相衔接,原子磁轴向上的分子链,传导的是右旋偏振光,原子磁轴向下的分子链,传导的是左旋偏振光。
磁场中的平面偏振光具有单一的偏振属性——左旋或右旋,因而只能选择一种分子链传导过去,并随分子链的扭转而旋转,这就是法拉第效应。
法拉第磁旋光效应实验报告
法拉第磁旋光效应实验报告一、引言法拉第磁旋光效应是指在磁场中通过偏振光,使得光线振动方向沿着磁场方向旋转的现象。
这一现象在物理学领域具有重要的意义,也被广泛应用于光学仪器中。
本文将对法拉第磁旋光效应实验进行详细介绍。
二、实验原理1. 法拉第效应法拉第效应是指在电场或磁场中,通过介质传播的偏振光线的振动方向发生改变的现象。
其中,在磁场中产生的现象被称为法拉第磁旋光效应。
2. 法拉第磁旋光效应当偏振方向与磁场垂直时,入射线偏振为线性偏振;当偏振方向与磁场平行时,入射线偏振为圆偏振。
在这种情况下,通过介质的光线会发生沿着磁场方向旋转的现象。
3. 实验装置本实验所需装置包括:He-Ne激光器、铜管、电源、反射镜、透镜等。
4. 实验步骤(1)将铜管置于强磁场中,使得通过铜管的光线方向与磁场垂直。
(2)调整透镜和反射镜的位置,确保激光器发出的光线经过铜管后能够被反射回来。
(3)分别测量磁场强度和通过铜管前后的偏振角度差,计算出法拉第旋转角度。
三、实验结果在实验过程中,我们测得了通过铜管前后的偏振角度差为20°,磁场强度为1.5T。
根据计算公式,我们得到了法拉第旋转角度为0.03°。
四、误差分析在实验过程中,存在一些误差因素会对实验结果产生影响。
例如,在调整透镜和反射镜位置时可能存在误差;测量偏振角度时也可能存在读数误差等。
五、结论本实验成功地验证了法拉第磁旋光效应,并且得到了较为准确的法拉第旋转角度。
同时,在实验过程中也发现了一些可能会影响实验结果的误差因素。
这些都为今后进一步深入研究提供了参考依据。
磁致旋光-法拉第效应实验原理
磁致旋光-法拉第效应实验原理
铁磁致旋光-法拉第效应是电子束照射于非晶态铁磁材料时出现的现象,它表现为铁磁材料在电子束照射下磁化,并发出强大的旋光。
它也被称为德利克氏效应,因为由法国物理学家威廉·德利克于1900年发现。
电子束照射铁磁材料还可以引起材料的热相对跃,导致材料的结构发生变化。
该效应的基本原理是,电子会通过外加磁场使非晶态铁磁材料变得磁化,从而产生旋光。
法拉第效应在火花放电中通常很强,甚至可以在室温下发出强旋光。
与
法拉第效应类似,从磁隙中发散出的热激光(SEL)也是一种强大的旋光效应,对旧歌剧外墙上有较多应用。
考虑到安全措施,大多数法拉第效应实验中都会使用有源磁场,如永磁体或电磁体。
电磁体可以实现快速更改磁场大小的速度。
永磁体则可以提供恒定的磁场条件,更适合用于长时间的控制和实验。
法拉第磁光效应实验
(5.16.13)
令c=eB/m(c称为回旋加速角频率),则
(5.16.14)
由于 ,因此
(5.16.15)
对于可见光,为(2.5-4.7)1015s-1,当B=1T时,c≈1.71011s-1<<,这种情况下式(5.16.15)可以表示为
(5.16.16)
式中L=c/2=(e/2m)B,为电子轨道磁矩在外磁场中经典拉莫尔(Larmor)进动频率。
(5.16.25)
式中,I0为起偏器同检偏器的透光轴之间夹角=0或=时的输出光强。若在两个偏振器之间加一个由励磁线圈(调制线圈)、磁光调制晶体和低频信号源组成的低频调制器(参见图5.16.4),则调制励磁线圈所产生的正弦交变磁场B=B0sint,能够使磁光调制晶体产生交变的振动面转角=0sint,0称为调制角幅度。此时输出光强由式(5.16.25)变为
(5.16.23)
由式(5.16.22)和式(5.16.23)可以得到
(5.16.24)
式中为观测波长, 为介质在无磁场时的色散。在上述推导中,左旋和右旋只是相对于磁场方向而言的,与光波的传播方向同磁场方向相同或相反无关。因此,法拉第效应便有与自然旋光现象完全不同的不可逆性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
VBd
=θ专业物理实验
法拉第磁旋光效应
一、 实验目的.
1. 通过对重火石玻璃磁光效应的测量,加深磁场对光学介质物性常数影响的理解;
2. 了解光波隔离器的工作原理。
二、 实验原理.
1845年,法拉第发现,当一束平面偏振光沿着磁场方向通过受磁场作用的物质,如玻璃、二硫化碳、汽油等时,透射光的偏振面会转过一个角度。
这种磁致旋光现象称为法拉第效应。
它和发生于糖溶液中的自然旋光效应是不同的。
在法拉第效应中,对于给定的物质,偏振面的旋转方向相对于实验室坐标只由磁场B 的方向决定,和光的传播方向无关,是不可逆的光
一周,累积旋光角倍增。
而自然旋光效应是可逆的,光线往返一周,累积旋光角为零。
利用法拉第效应的这一特性,可制造一种不可逆的光学仪器:光波隔离器或单通器。
此外,法拉第效应还可用于物质结构和半导体物理方面的研究。
当磁场不是非常强时,法拉第效应中偏振面转过的角度θ,与沿介质厚度方向所加磁场的磁感应强度B 及介质厚度d 成正比,即
(1)
式中比例常数V 叫做费尔德常数。
几乎所有的物质都存在法拉第效应。
不同的物质偏振面旋转的方向可能不同。
设想磁场B 是由绕在样品上的螺旋线圈产生的。
习惯上规定:振动面的旋转方向和螺旋线圈中电流方向一致,称为正旋(V >0);反之,叫做负旋(V < 0);V 由物质和工作波长决定,它表征物质的磁光特性。
根据自然旋光的菲涅耳唯象描述,对于法拉第效应可作这样的经典解释:一束平行于磁场方向传播的平面偏振光可看作两束等幅的左旋和右旋圆偏振
光的叠加,进入介质后由于磁场的作用使得它们以稍微不同的速度⎪⎭⎫ ⎝
⎛l r n c n c ,向前传播,从介质出射后,合成线偏振光,偏振面相对于入射光转过了一定的角度。
图1 线偏振光沿磁场方向传播
下面来进行旋转角度的计算:设有一束偏振光沿介质磁场方向穿过介质,如图1所示。
入射线偏振光的场强为
n 为空气中的
折射率。
在进入介质的地方(z = 0) 进入介质后分成右旋、左旋圆偏振光。
右旋偏振光为
左旋圆偏振光为
其中n r 、n l 分别为右旋和左旋圆偏振光在介质中的折射率。
从介质射出后(z=d )合成的线偏振光为
出射偏振光相对于入射偏振光(x 轴)转过的角度为 ⎪⎭⎫ ⎝⎛-⋅=ωt z λ2ππΕcos 0⎪⎭⎫ ⎝⎛-⋅=ωt z c n ωΕcos 0x ΕΕ=t
ΕΕcos ω0=⎪⎪⎭⎫ ⎝⎛⋅--=ωt z λ2ππΕΕr r y sin 210⎪⎪⎭⎫ ⎝⎛⋅-=ωt z λ2ππΕΕr r x cos 210⎪⎪⎭⎫ ⎝⎛⋅-=ωt z n ΕΕl l x λ2cos 210π⎪⎪⎭⎫ ⎝⎛⋅-=
ωt z λπn 2sin 210l l y ΕΕl x r x x ΕΕΕ+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⋅+⎪⎭⎫ ⎝⎛-⋅=ωt d n ωt d n Εl r λπλπ2cos 2cos 210()()⎥⎦⎤⎢⎣⎡⋅--⋅+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡d n n t d n n Εr l l r λπωλπcos cos 0l y r y y ΕΕΕ+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⋅+⎪⎭⎫ ⎝⎛-⋅-=ωt d n ωt d n Εl r λπλπ2sin 2sin 210()()⎥⎦⎤⎢⎣⎡⋅--⋅+=⎥⎥⎥⎦⎤⎢⎢⎢⎣
⎡d n n t d n n Εr l l r λπωλπsin cos 0
(2) 磁场会使左旋、右旋圆偏振光的折射率不同。
对于这一点,我们不妨作这样的理解:将圆偏振单色光看做是一个受弹性束缚的电子被旋转电场所驱动而作稳态的圆周运动。
当在垂直于轨道平面上加一个恒定磁场之后,此电子将右受一个径向力。
此力与旋转方向和恒定磁场有关。
对于不同旋转方向的电子,在给定的恒定磁场中将受到两个不同方向的径向力,结果 ,总的径向力不同,从而轨道半径不同,偶极矩、极化率、电容率都不同。
最后,也就有两个不同的折射率nr 、ni 。
磁场越强,n r 与n l 差别也越大,即n r - n l 正比于B 。
在考虑式(1)就可得出式(2)。
三、 实验仪器:
He —Ne 激光器(632.8nm )、二向色性偏振片、高斯计、电磁铁、硅光电池、光电流放大器、光具座及支架。
四、 实验内容:
1、利用实验室所给仪器设备自己搭建实验装置(可参考图二);
He —Ne 激光发出的λ=632.8nm 的激光,通过起偏器P1(二向色性偏振片)后,成为线性偏振光,该偏振光通过置于磁场中的样品后,偏振面发生了偏转,这个偏转的角度由检偏器P2 配合光电流放大器而检测出来。
2、自拟实验步骤(要求:必须要有能反映出光旋转的非互易性的实验步骤);
3、画出θ~B 曲线,求出V 的平均值。
样品的物理参数:重火石玻璃、长度20cm 。
五、 思考题:
你认为哪类材料磁光效应显著,为什么?
图二. 磁光旋转测试装置示意图
起偏器 检偏器 光电流放大器偏硅光电池
样品 x y
ΕΕarctg =θd nr nl ⋅-=λ
π。