高中生必须掌握的9大物理解题思维方法附例题精讲

合集下载

高中物理解题方法大全:9图象法 含解析 精品

高中物理解题方法大全:9图象法 含解析 精品

9图象法图象作为表示物理规律的方法之一,可以直观地反映某一物理量随另一物理量变化的函数关系,形象地描述物理规律。

在进行抽象思维的同时,利用图象视觉感知,有助于对物理知识的理解和记忆,准确把握物理量之间的定性和定量关系,深刻理解问题的物理意义。

应用图象不仅可以直接求出或读出某些待求物理量,还可以用来探究某些物理规律,测定某些物理量,分析或解决某些复杂的物理过程。

图象的物理意义主要通过“点”、“线”、“面”、“形”四个方面来体现。

下面举例说明。

例题1] 一辆汽车在恒定功率牵引下,要平直的公路上由静止出发,在4min 的时间内行驶了1800m ,则4min 末的汽车速度( )A 、等于7.5m/sB 、大于7.5m/sC 、等于15m/sD 、小于15m/s解析:汽车在恒定功率牵引下做加速度越来越小的加速直线运动,如图6中图线1所示;如果让汽车从静止开始做匀加速直线运动,并且在4min 的时间内行驶1800m 的位移,那么当图中面积1和面积2相等时,则汽车在4min 末的速度为s m s m t x v /15/6041800221=⨯⨯==。

从图中可知汽车速度小于15m/s 。

若汽车做匀速直线运动,并且在4min 的时间内行驶1800m ,如图7所示,那么汽车在4min 末速度为s m s m t x v /5.7/60418002=⨯==,从图可知,汽车速度大于7.5m/s 。

故本题正确选项为B 、D 。

例题2] 一只蜗牛从地面开始沿竖直电线杆上爬,它上爬的速度v 与它离地面的高度h 之间满足的关系是hl lv v +=。

其中常数l=20cm ,v 0=2cm/s 。

求它上爬20cm 所用的时间。

解析:因蜗牛运动的时间是由每一小段时间v h v h t 1⋅∆=∆=∆累加而成。

即∑∆⋅=h v t 1,故可作出h v-1图象。

利用图象面积可得时间t 。

由h l lv v +=0,得)1(110lhv v +=,故h v -1图象为一条直线,如图8所示。

物理9种常用的思维方法

物理9种常用的思维方法

物理9种常用的思维方法
思维方法1:模型思维法。

将复杂的研究对象或物理过程,通
过运用理想化、抽象化、简化、类比等手段,突出事物的本质
特征和规律,形成样板式的概念、实物体系和情景过程,即物
理模型
思维方法2:图像思维法。

就是利用图像本身的数学特征所反映的物理意义解决物理问题,或者由物理量之间的函数关系与物理规律画出物理图像,并灵活应用图像来解决物理问题。

思维方法3:等效思维法。

就是要在保持效果或关系不变的前提下,对复杂的研究对象、背景条件、物理过程进行有目的地分解、重组变换或替代,使他们转换为我们所熟知的、更简单的理想化模型,从而达到简化问题的目的。

思维方法4:临界思维法。

指物体从一种运动状态转变为另一种运动状态的转折状态,它既具有前一种运动状态的特点,又具有后一种运动状态的特点。

思维方法5:极限思维法。

有极端思维法、微元法两种,顾名思义就可大致了解到该方法的目的和用途。

思维方法6:守恒思维法。

根据守恒定律的定义,可以避开状态变化的复杂过程,使问题大大简化。

思维方法7:逆向思维法。

逆着事件发生的顺序或者由果到因进行思考,寻求解决问题的方法。

例如“匀减速至静止”可以看成“从静止开始做匀加速运动”。

思维方法8:类比思维法。

对有相同或相似特征的不同物体、物理现象、物理过程、物理条件和物理方法,通过联系、区分于发展的思维视角对它们的属性、特征、运动规律等进行分析和总结,最后得出结论的思维方法。

思维方法9:整体法与隔离思维法。

是目前来说物理解题中最重要的思维方法,不管是在力学还是运动学里面,有尤为的重要。

高中物理16种常见题型的解题方法和思维模板(1)

高中物理16种常见题型的解题方法和思维模板(1)

高中物理16种常见题型的解题方法和思维模板题型1:直线运动问题题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。

单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题.思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系。

题型2:物体的动态平衡问题题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题。

物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题。

思维模板:常用的思维方法有两种.(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化。

题型3:运动的合成与分解问题题型概述:运动的合成与分解问题常见的模型有两类。

一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解.思维模板:主要有两种情况。

(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等.(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。

题型4:抛体运动问题题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上.思维模板:主要有两种情况。

高中物理总复习 15种快速解题技巧

高中物理总复习 15种快速解题技巧

技巧一、巧用合成法解题【典例1】 一倾角为θ的斜面放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动,如图2-2-1所示,当细线(1)与斜面方向垂直;(2)沿水平方向,求上述两种情况下木块下滑的加速度.解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块有相同的加速度,方向必沿斜面方向.可以通过求小球的加速度来达到求解木块加速度的目的. (1)以小球为研究对象,当细线与斜面方向垂直时,小球受重力mg和细线的拉力T ,由题意可知,这两个力的合力必沿斜面向下,如图2-2-2所示.由几何关系可知F 合=mgsin θ根据牛顿第二定律有mgsin θ=ma 1所以a 1=gsin θ(2)当细线沿水平方向时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力也必沿斜面向下,如图2-2-3所示.由几何关系可知F 合=mg /sin θ根据牛顿第二定律有mg /sin θ=ma 2所以a 2=g /sin θ.【方法链接】 在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,则利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析.在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单.技巧二、巧用超、失重解题【典例2】 如图2-2-4所示,A 为电磁铁,C 为胶木秤盘,A和C (包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置用轻绳悬挂于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻绳上拉力F 的大小满足A.F=MgB.Mg <F <(M+m )gC .F=(M+m )g D.F >(M+m )g解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的加速度(其它部分都无加速度),所以系统有竖直向上的加速度,系统处于超重状态,所以轻绳对系统的拉力F 与系统的重力(M+m )g 满足关系式:F >(M+m )g ,正确答案为D.【方法链接】对于超、失重现象大致可分为以下几种情况:θ 图2-2-1 θ mg TF 合 图2-2-2 θ mgF 合 T 图2-2-3 图2-2-4(1)如单个物体或系统中的某个物体具有竖直向上(下)的加速度时,物体或系统处于超(失)重状态.(2)如单个物体或系统中的某个物体的加速度不是竖直向上(下),但有竖直向上(下)的加速度分量,则物体或系统也处于超(失)重状态,与物体水平方向上的加速度无关.在选择题当中,尤其是在定性判断系统重力与支持面的压力或系统重力与绳子拉力大小关系时,用超、失重规律可方便快速的求解.技巧三、巧用碰撞规律解题【典例3】 在电场强度为E 的匀强电场中,有一条与电场线平行的几何线,如图2-2-5虚线所示.几何线上有两个可视为质点的静止小球A 和B.两小球的质量均为m ,A 球带电量+Q ,B 球不带电.开始时两球相距L ,释放A 球,A 球在电场力的作用下沿直线运动,并与B 发生正碰,碰撞中A 、B 两球的总动能无损失.设在每次碰撞中,A 、B 两球间无电量转换,且不考虑重力及两球间的万有引力.求(1)A 球经多长时间与B 球发生第一次碰撞. (2)第二次碰撞前,A 、B 两球的速率各为多少? (3)从开始到第三次相碰,电场力对A 球所做的功. 解析:(1)设A 经时间t 与B 球第一次碰撞,根据运动学规律有L=at 2/2A 球只受电场力,根据牛顿第二定律有QE=ma∴(2)设第一次碰前A 球的速度为V A ,根据运动学规律有V A 2=2aL碰后B 球以速度V A 作匀速运动,而A 球做初速度为零的匀加速运动,设两者再次相碰前A 球速度为V A1,B 球速度为V B .则满足关系式V B = V A1/2= V A∴V B = V A =V A1=2 V A =2(3)第二次碰后,A 球以初速度V B 作匀加速运动,B 球以速度V A1作匀速运动,直到两者第三次相碰.设两者第三次相碰前A 球速度为V A2,B 球速度为V B1.则满足关系式V B1= V A1=(V B + V A2)/2∴V B1=2 V A ;V A2=3 V A第一次碰前A 球走过的距离为L ,根据运动学公式V A 2=2aL设第二次碰前A 球走过的距离为S 1,根据运动学公式V A12=2aS 1∴S 1=4L设第三次碰前A 球走过的距离为S 2,有关系式V A22-V A12=2aS 2∴S 2=8L即从开始到第三次相碰,A 球走过的路程为S=13L此过程中电场力对A 球所做的功为W=QES=13 QEL .【技巧点拨】 利用质量相等的两物体碰撞的规律考生可很容易判断出各球发生相互作用前后的运动规律,开始时B 球静止,A 球在电场力作用下向右作匀加速直线运动,当运m m L B A 图2-2-5图2-2-6 动距离L 时与B 球发生相碰.两者相碰过程是弹性碰撞,碰后两球速度互换,B 球以某一初速度向右作匀速直线运动,A 球向右作初速度为零的匀加速运动.当A 追上B 时两者第二次发生碰撞,碰后两者仍交换速度,依此类推.技巧四、巧用阻碍规律解题【典例4】 如图2-2-6所示,小灯泡正常发光,现将一与螺线管等长的软铁棒沿管的轴线迅速插入螺线管内,小灯泡的亮度如何变化A 、不变B 、变亮C 、变暗D 、不能确定解析:将软铁棒插入过程中,线圈中的磁通量增大,感应电流的效果要阻碍磁通量的增大,所以感应电流的方向与线圈中原电流方向相反,以阻碍 磁通量的增大,所以小灯泡变暗,C 答案正确.【方法链接】 楞次定律“效果阻碍原因”的几种常见形式.(1)就磁通量而言:感应电流的磁场总是阻碍引起感应电流的磁通量(原磁通量)的变化.即当原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,简称口诀“增反减同”.(2)就相对运动而言:感应电流的效果阻碍所有的相对运动,简称口诀“来拒去留”,从运动效果上看,也可形象的表述为“敌进我退,敌逃我追”.(3)就闭合电路的面积而言:致使电路的面积有收缩或扩张的趋势.收缩或扩张是为了阻碍电路磁通量的变化.若穿过闭合电路的磁感线都为同一方向,则磁通量增大时,面积有收缩趋势;磁通量减少时,面积有扩张趋势.简称口诀“增缩减扩”.若穿过回路的磁感线有两个相反的方向,则以上结论不一定成立,应根据实际情况灵活应用,总之要阻碍磁通量的变化.(4)就电流而言:感应电流阻碍原电流的变化,即原电流增大时,感应电流与原电流反向;原电流减小时,感应电流与原电流同向,简称口诀“增反减同”.技巧五、巧用整体法解题【典例5】 如图2-2-7所示,光滑水平面上放置质量分别为m 和2m 的四个木块,其中两个质量为m 的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是μmg .现用水平拉力F 拉其中一个质量为2 m 的木块,使四个木块以同一加速度运动,则轻绳对m 的最大拉力为A 、5mg 3μB 、4mg 3μC 、2mg 3μ D 、mg 3μ解析:以上面2个木块和左边的质量为2m 的木块整体为研究对象,根据牛顿第二定律有μmg=4ma再以左边两木块整体为研究对象,根据牛顿第二定律有T=3ma∴T=4mg 3μ B 答案正确. 【技巧点拨】 当系统内各物体有相同加速度时(一起处于静止状态或一起加速)或题意要求计算系统的外力时,巧妙选取整体(或部分整体)为研究对象可使解题更为简单快捷.技巧六、巧用几何关系解题图2-2-7图2-2-9 图2-2-10 图2-2-11 【典例6】 如图2-2-8所示,在真空区域内,有宽度为L 的匀强磁场,磁感应强度为B ,磁场方向垂直纸面向里,MN 、PQ 是磁场的边界.质量为m ,带电量为-q 的粒子,先后两次沿着与MN 夹角为θ(0<θ<90º)的方向垂直磁感线射入匀强磁场B 中,第一次,粒子是经电压U 1加速后射入磁场,粒子刚好没能从PQ 边界射出磁场.第二次粒子是经电压U 2加速后射入磁场,粒子则刚好垂直PQ 射出磁场.不计重力的影响,粒子加速前速度认为是零,求:(1)为使粒子经电压U 2加速射入磁场后沿直线运动,直至射出PQ 边界,可在磁场区域加一匀强电场,求该电场的场强大小和方向.(2)加速电压12U U 的值. 解析:(1)如图答2-2-9所示,经电压2U 加速后以速度2v 射入磁场,粒子刚好垂直PQ 射出磁场,根据几何关系可确定粒子在磁场中做匀速圆周运动的圆心在PQ 边界线的O 点,半径2R 与磁场宽L 的关系式为2cos L R θ=又因为22mv R Bq =所以2cos BqL v m θ= 加匀强电场后,粒子在磁场中沿直线运动射出PQ 边界的条件为Eq =Bq 2v ,电场力的方向与磁场力的方向相反. 所以2cos B qL E m θ=,方向垂直磁场方向斜向右下,与磁场边界夹角为2παθ=-,如图答2-2-10所示.(2)经电压1U 加速后粒子射入磁场后刚好不能从PQ 边界射出磁场,表明在磁场中做匀速圆周运动的轨迹与PQ 边界相切,要确定粒子做匀速圆周运动的圆心O 的位置,如图答2-2-11所示,圆半径1R 与L 的关系式为:111cos ,1cos L L R R R θθ=+=+ 又11mv R Bq= 所以1(1cos )BqL v m θ=+ 根据动能定理有21112U q mv =,22212U q mv =, 所以22112222cos (1cos )U v U v θθ=+. 【方法链接】 解决带电粒子在匀强磁场中匀速圆周运动问题,关键是确定圆心的位置,正确画出粒子运动的草图,利用几何关系结合运动规律求解.技巧七:巧用可逆原理解题【典例7】 某同学在测定玻璃折射率时得到了多组入射角i 与折射角r ,并作出了sini 与sinr 的图象如图2-2-12所示.则下列说法正确的是 A . 实验时,光线是由空气射入玻璃 B . 实验时,光线是由玻璃射入空气C . 利用sini /sinr 可求得玻璃的折射率D . 该玻璃的折射率为1.5解析:由图象可知入射角的正弦值小于折射角的正弦值.根据折射定律可知光线是从光密介质射向光疏介质,即由玻璃射向空气,B 答案正确;根据折射定律n=sini /sinr 可求得介质的折射率,但一定要注意此公式一定要满足光线从空气射向介质,而本题中光线是由玻璃射入空气,所以不能直接利用sini /sinr 求介质的折射率,根据光路可逆原理,当光线反转时,其传播路径不变,即光从空气中以入射角r 射到该玻璃界面上时,折射后的折射角一定为i ,根据折射定律可得玻璃的折射率n= sinr / sini=1.5(这里要注意很容易错选C ),C 错误,D 正确.正确答案为B 、D.【方法链接】 在光的反射或折射现象中,光路具有可逆性.即当光线的传播方向反转时,它的传播路径不变.在机械运动中,若没有摩擦阻力、流体的粘滞阻力等耗散力做功时,机械运动具有可逆性.如物体的匀减速直线运动可看作反向的加速度不变的匀加速运动.方法八:巧用等效法解题【典例8】 如图2-2-13所示,已知回旋加速器中,D 形盒内匀强磁场的磁感应强度B =1.5T ,盒的半径R =60 cm ,两盒间隙d =1.0 cm ,盒间电压U =2.0×104 V ,今将α粒子从近于间隙中心某点向D 形盒内以近似于零的初速度垂直B 的方向射入,求粒子在加速器内运行的总时间.解析:带电粒子在回旋加速器转第一周,经两次加速,速度为v 1,则根据动能定理得:0.1 0.2 sinrsini0.3 0.4 0.5 0.2 0.1 0.40.3 0.5 图2-2-122qU =21mv 12 设运转n 周后,速度为v ,则:n 2qU =21 mv 2 由牛顿第二定律有qvB =m Rv 2粒子在磁场中的总时间:t B =nT =n ·qB m π2=qmU R q B 4222·qB m π2 =UB R 22π 粒子在电场中运动就可视作初速度为零的匀加速直线运动,由公式:t E =a v v t 0-,且v 0=0,v t = ,a =dmqU 得:t E =UBRd 故:t =t B +t E =U BR (2R π+d )=4.5×10-5×(0.94+0.01) s =4.3×10-5s.【技巧点拨】 粒子在间隙处电场中每次运动时间不相等,且粒子多次经过间隙处电场,如果分段计算,每一次粒子经过间隙处电场的时间,很显然将十分繁琐.我们注意到粒子离开间隙处电场进入匀强磁场区域到再次进入电场的速率不变,且粒子每在电场中加速度大小相等,所以可将各段间隙等效“衔接”起来,把粒子断断续续在电场中的加速运动等效成初速度为零的匀加速直线运动.技巧九:巧用对称法解题【典例9】 一根自由长度为10 cm 的轻弹簧,下端固定,上端连一个质量为m 的物块P ,在P 上放一个质量也是m 的物块Q.系统静止后,弹簧长度为6 cm ,如图2-2-14所示.如果迅速向上移去Q ,物块P 将在竖直方向做简谐运动,此后弹簧的最大长度为A .8 cmB .9 cmC .10 cmD .11 cm 解析:移去Q 后,P 做简谐运动的平衡位置处弹簧长度8 cm ,由题意可知刚移去Q 时P 物体所处的位置为P 做简谐运动的最大位移处.即P 做简谐运动的振幅为2 cm.当物体P 向上再次运动到速度为零时弹簧有最大长度,此时P 所处的位置为另一最大位移处,根据简谐运动的对称性可知此时弹簧的长度 为10 cm ,C 正确.【方法链接】在高中物理模型中,有很多运动模型有对称性,如(类)竖直上抛运动的对称性,简谐运动中的对称性,电路中的对称性,带电粒子在匀强磁场中匀速圆周运动中几何关系的对称性.方法十:巧用假设法解题假设法是解决物理问题的一种常见方法,其基本思路为假设结论正确,经过正确的逻辑推理,看最终的推理结果是否与已知条件相矛盾或是否与物理实际情境相矛盾来判断假设是否成立.【典例10】如图2-2-15,abc 是光滑的轨道,其中图2-2-14 P Q 6cmdd 21 ab 是水平的,bc 为与ab 相切的位于竖直平面内的半圆,半径R =0.3m.质量m =0.2kg 的小球A 静止在轨道上,另一质量M=0.6kg ,速度V 0=5.5m/s 的小球B 与小球A 正碰.已知相碰后小球A 经过半圆的最高点C ,落到轨道上距b 为L = 处,重力加速度g =10m/s 2,试通过分析计算判断小球B 是否能沿着半圆轨道到达C 点.解析 :A 、B 组成的系统在碰撞前后动量守恒,碰后A 、B 运动的过程中只有重力做功,机械能守恒,设碰后A 、B 的速度分别为V 1、V 2,由动量守恒定律得M V 0=M V 2+m V 1A 上升到圆周最高点C 做平抛运动,设A 在C 点的速度为V C ,则A 的运动满足关系式2R=gt 2/2 V C t=LA 从b 上升到c 的过程中,由机械能守恒定律得(以ab 所在的水平面为零势面,以下同)m V 12/2= m V C 2/2+2mgR∴V 1=6 m/s ,V 2=3.5 m/s方法1:假设B 球刚好能上升到C 点,则B 球在C 点的速度V C '应满足关系式Mg=M V C '2/R所以V C '=1.73 m/s则B 球在水平轨道b 点应该有的速度为(设为V b )由机械能守恒定律得M V b 2/2=M V C '2/2+2MgR则由V b 与V 2的大小关系可确定B 能否上升到C 点若V 2≥V b ,B 能上升到C 点若V 2<V b ,B 不能上升到C 点代入数据得V b =3.9 m/s >V 2 =3.5 m/s ,所以B 不能上升到C 点.【方法链接】 假设法在物理中有着很广泛的应用,凡是利用直接分析法很难得到结论的问题,用假设法来判断不失为一种较好的方法,如判断摩擦力时经常用到假设法,确定物体的运动性质时经常用到假设法.技巧十一、巧用图像法解题【典例11】 部队集合后开发沿直线前进,已知部队前进的速度与到出发点的距离成反比,当部队行进到距出发点距离为d 1的A位置时速度为V 1,求(1)部队行进到距出发点距离为d 2的B 位置时速度为V 2是多大? (2)部队从A 位置到B 位置所用的时间t 为多大.解析:(1)已知部队前进的速度与到出发点的距离成反比,即有公式V =k/d (d 为部队距出发点的距离,V 为部队在此位置的瞬时速度),根据题意有V 1=k / d 1 V 2=k / d 2 ∴ V 2=d 1 V 1 / d 2. (2)部队行进的速度V 与到出发点的距离d 满足关系式d =k/V ,即d -图象是一条过原点的倾斜直线,如图2-2-16所示,由题意已知,部队从A 位置到B 位置所用的时间t 即为图中斜线图形(直角梯形)的面积.由数学知识可知t =(d 1 + d 2)(1/V 2-1/V 1)/2∴t =(d 22-d 12)/2 d 1 V 1【方法链接】1.此题中部队行进时速度的变化即不是匀速运动,也不是匀变速运动,很图2-2-16V 图2-2-18难直接用运动学规律进行求解,而应用图象求解则使问题得到简化.2.考生可用类比的方法来确定图象与横轴所围面积的物理意义.v-t图象中,图线与横轴围成图形的面积表示物体在该段时间内发生的位移(有公式S =v t ,S 与v t 的单位均为m );F -S 图象中,图线与横轴围成图形的面积表示F 在该段位移S 对物体所做的功(有公式W =FS ,W 与FS 的单位均为J ).而上述图象中t =d ×1/V (t 与d ×1/V 的单位均为s ),所以可判断出该图线与横轴围成图形的面积表示部队从出发点到此位置所用的时间.技巧十二、巧用极限法解题【典例12】 如图2-2-17所示,轻绳的一端系在质量为m的物体上,另一端系在一个轻质圆环上,圆环套在粗糙水平杆MN上,现用水平力F 拉绳上一点,使物体处于图中实线位置,然后改变F 的大小使其缓慢下降到图中虚线位置,圆环仍在原来的位置不动,则在这一过程中,水平拉力F 、环与杆的摩擦力F 摩和环对杆的压力F N 的变化情况是A.F 逐渐增大,F 摩保持不变,F N 逐渐增大B.F 逐渐增大,F 摩逐渐增大,F N 保持不变C.F 逐渐减小,F 摩逐渐增大,F N 逐渐减小D.F 逐渐减小,F 摩逐渐减小,F N 保持不变解析:在物体缓慢下降过程中,细绳与竖直方向的夹角θ不断减小,可把这种减小状态推到无限小,即细绳与竖直方向的夹角θ=0;此时系统仍处于平衡状态,由平衡条件可知,当θ=0时,F=0,F 摩 =0.所以可得出结论:在物体缓慢下降过程中,F 逐渐减小,F 摩也随之减小,D 答案正确. 【方法链接】 极限法就是运用极限思维,把所涉及的变量在不超出变量取值范围的条件下,使某些量的变化抽象成无限大或无限小去思考解决实际问题的一种解题方法,在一些特殊问题当中如能巧妙的应用此方法,可使解题过程变得简捷.方法十三、巧用转换思想解题【典例13】 如图2-2-18所示,电池的内阻可以忽略不计,电压表和可变电阻器R 串联接成通路,如果可变电阻器R 的值减为原来的1/3时,电压表的读数由U 0增加到2U 0,则下列说法中正确的是A .流过可变电阻器R 的电流增大为原来的2倍B .可变电阻器R 消耗的电功率增加为原来的4倍C .可变电阻器两端的电压减小为原来的2/3D .若可变电阻器R 的阻值减小到零,那么电压表的示数变为4U 0确 解析: 在做该题时,大多数学生认为研究对象应选可变电阻器,因为四个选项中都问的是有关R的问题;但R 的电阻、电压、电流均变,判断不出各量的定量变化,从而走入思维的误区.若灵活地转换研究对象,会出现“柳暗花明”的意境;分析电压表,其电阻为定值,当它的读数由U 0增加到2U 0时,通过它的电流一定变为原来的2倍,而R 与电压表串联,故选项A 正确.再利用P =I 2R 和U =IR ,R 消耗的功率P ′=(2I )2R/3=4P/3;R 后来两端的电压U =2IR/3,不难看出C 对B 错.又因电池内阻不计,R 与电压表的电压之和为U 总,当R 减小到零时,电压表的示数也为总电压U总;很轻松地列出U 总=IR +U 0=2 IR/3+2U 0,解得U 总=4U 0,故D 也对.图2-2—17图2-2-22 2-2-19【方法链接】 常见的转换方法有研究对象的转换、时间角度的转换、空间角度的转换、物理模型的转换,本例题就是应用研究对象的转换思想巧妙改变问题的思考角度,从而达到使问题简化的目的.技巧十四、巧用结论解题【典例14】如图2-2-19所示,如图所示,质量为3m 的木板静止放在光滑的水平面上,木板左端固定着一根轻弹簧.质量为m 的木块(可视为质点),它从木板右端以未知速度V 0开始沿木板向左滑行,最终回到木板右端刚好未从木板上滑出.若在小木块压缩弹簧的过程中,弹簧具有的最大弹性势能为E P ,小木块与木板间的动摩擦因数大小保持不变,求: (1)木块的未知速度V 0(2)以木块与木板为系统,上述过程中系统损失的机械能解析:系统在运动过程中受到的合外力为零,所以系统动量定恒,当弹簧压缩量最大时,系统有相同的速度,设为V ,根据动量守恒定律有m V 0=(m+3m )V木块向左运动的过程中除了压缩弹簧之外,系统中相互作用的滑动摩擦力对系统做负功导致系统的内能增大,根据能的转化和守恒定律有m V 02/2-(m+3m )V 2/2=E P +μmgL (μ为木块与木板间的动摩擦因数,L 为木块相对木板走过的长度)由题意知木块最终回到木板右端时刚好未从木板上滑出,即木块与木板最终有相同的速度由动量守恒定律可知最终速度也是V.整个过程中只有系统内相互作用的滑动摩擦力做功(弹簧总功为零),根据能量守恒定律有m V 02/2-(m+3m )V 2/2=2μmgL∴有 , E P =μmgL故系统损失的机械能为2 E P .【误点警示】根据能的转化和守恒定律,系统克服滑动摩擦力所做的总功等于系统机械能损失,损失的机械能转化为系统的内能,所以有f 滑L 相对路程=△E (△E 为系统损失的机械能).在应用公式解题时,一定要注意公式成立所满足的条件.当系统中只有相互作用的滑动摩擦力对系统做功引起系统机械能损失(其它力不做功或做功不改变系统机械能)时,公式f 滑L 相对路程=△E 才成立.如果系统中除了相互作用的滑动摩擦力做功还有其它力对系统做功而改变系统机械能,则公式f 滑L 相对路程=△E 不再成立,即系统因克服系统内相互作用的滑动摩擦力所产生的内能不一定等于系统机械能的损失.所以同学们在应用结论解题时一定要注意公式成立的条件是否满足,否则很容易造成错误.方法十五、巧用排除法解题【典例15】 如图2-2-22所示,由粗细均匀的电阻丝制成的边长为L 的正方形线框abcd ,其总电阻为R .现使线框以水平向右的速度v匀速穿过一宽度为2L 、磁感应强度为B 的匀强磁场区域,整个过程中ab 、cd 两边始终保持与磁场边界平行.令线框的cd 边刚好与磁场左边界重合时开始计时(t =0),电流沿abcda 流动的方向为正,U o =BLv .在下图中线框中a 、b 两点间电势差U ab 随线框cd 边的位移x 变化的图像正确的是下图中的x x解析:当线框向右穿过磁场的过程中,由右手定则可判断出总是a点的电势高于b点电势,即U ab>0,所以A、C、D错误,只有B项正确.【方法链接】考生可以比较题设选项的不同之外,而略去相同之处,便可得到正确答案,或者考生能判断出某三个选项是错误的,就没必要对另外一个选项做出判断而应直接把其作为正确答案.对本例题,考生只需判断出三个过程中(进磁场过程、全部进入磁场过程、出磁场过程)中a、b两点电势的高低便可选择出正确答案,而没有必要对各种情况下a、b 两点电势大小规律做出判断.。

高中物理解题常用思维方法

高中物理解题常用思维方法

高中物理解题常用思维方法高中物理解题常用思维方法一、逆向思维法逆向思维是解答物理问题的一种科学思维方法,对于某些问题,运用常规的思维方法会十分繁琐甚至解答不出,而采用逆向思维,即把运动过程的“末态”当成“初态”,反向研究问题,可使物理情景更简单,物理公式也得以简化,从而使问题易于解决,能收到事半功倍的效果。

高中物理解题常用思维方法二、对称法对称性就是事物在变化时存在的某种不变性。

自然界和自然科学中,普遍存在着优美和谐的对称现象。

利用对称性解题时有时可能一眼就看出答案,大大简化解题步骤。

从科学思维方法的角度来讲,对称性最突出的功能是启迪和培养学生的直觉思维能力。

用对称法解题的关键是敏锐地看出并抓住事物在某一方面的对称性,这些对称性往往就是通往答案的捷径。

高中物理解题常用思维方法三、图象法图象能直观地描述物理过程,能形象地表达物理规律,能鲜明地表示物理量之间的关系,一直是物理学中常用的工具,图象问题也是每年高考必考的一个知识点。

运用物理图象处理物理问题是识图能力和作图能力的综合体现。

它通常以定性作图为基础(有时也需要定量作出图线),当某些物理问题分析难度太大时,用图象法处理常有化繁为简、化难为易的功效。

高中物理解题常用思维方法四、假设法假设法是先假定某些条件,再进行推理,若结果与题设现象一致,则假设成立,反之,则假设不成立。

求解物理试题常用的假设有假设物理情景,假设物理过程,假设物理量等,利用假设法处理某些物理问题,往往能突破思维障碍,找出新的解题途径。

在分析弹力或摩擦力的有无及方向时,常利用该法。

高中物理解题常用思维方法五、整体、隔离法物理习题中,所涉及的往往不只是一个单独的物体、一个孤立的过程或一个单一的题给条件。

这时,可以把所涉及到的多个物体、多个过程、多个未知量作为一个整体来考虑,这种以整体为研究对象的解题方法称为整体法;而把整体的某一部分(如其中的一个物体或者是一个过程)单独从整体中抽取出来进行分析研究的方法,则称为隔离法。

高中物理复习:解答物理问题的10种思想方法

高中物理复习:解答物理问题的10种思想方法

高中物理复习:解答物理问题的10种思想方法专题概述现如今,高考物理愈来愈注重考查考生的能力和科学素养,其命题愈加明显地渗透着对物理思想、物理方法的考查.在平时的复习备考过程中,物理习题浩如烟海,千变万化,我们若能掌握一些基本的解题思想,就如同在开启各式各样的“锁”时,找到了一把“多功能的钥匙”.思想方法1:整体法、隔离法1.整体法和隔离法的选用原则(1)如果动力学系统各部分运动状态相同,求解整体的物理量优先考虑整体法;如果要求解系统各部分的相互作用力,再用隔离法.(2)如果系统内部各部分运动状态不同,一般选用隔离法.2.在比较综合的问题中往往两种方法交叉运用,相辅相成,两种方法的取舍,并无绝对的界限,必须具体问题具体分析,灵活运用.如图所示,质量均为m 的斜面体A 、B 叠放在水平地面上,A 、B 间接触面光滑,用一与斜面平行的推力F 作用在B 上,B 沿斜面匀速上升,A 始终静止.若A 的斜面倾角为θ,下列说法正确的是( )A .F =mg tan θB .A 、B 间的作用力为mg cos θC .地面对A 的支持力大小为2mgD .地面对A 的摩擦力大小为F解析:B 以B 为研究对象,在沿斜面方向、垂直于斜面方向根据平衡条件求得F =mg sin θ,支持力N =mg cos θ,故A 错误,B 正确;以整体为研究对象,根据平衡条件可得地面对A 的支持力大小为F N =2mg -F sin θ,地面对A 的摩擦力大小为f =F cos θ,故C 、D 错误.思想方法2:估算与近似计算1.物理估算题,一般是指依据一定的物理概念和规律,运用物理方法和近似计算方法,对所求物理量的数量级或物理量的取值范围,进行大致的、合理的推算.物理估算是一种重要的方法,有的物理问题,在符合精确度的前提下可以用近似的方法便捷处理;有的物理问题,由于本身条件的特殊性,不需要也不可能进行精确计算.在这些情况下,估算就很实用.2.估算时经常用到的近似数学关系(1)角度θ很小时,弦长近似等于弧长.(2)θ很小时,sin θ≈θ,tan θ≈θ,cos θ≈1.(3)a ≫b 时,a +b ≈a ,1a +1b ≈1b. 3.估算时经常用到的一些物理常识数据解题所需数据,通常可从日常生活、生产实际、熟知的基本常数、常用关系等方面获取,如成人体重约600 N ,汽车速度约10~20 m/s ,重力加速度约为10 m/s 2……引体向上是中学生体育测试的项目之一,引体向上运动的吉尼斯世界纪录是53次/分钟.若一个普通中学生在30秒内完成12次引体向上,该学生此过程中克服重力做功的平均功率最接近于( )A .5 WB .20 WC .100 WD .400 W解析:C 学生体重约为50 kg ,每次引体向上上升的高度约为0.5 m ,引体向上一次克服重力做功为W =mgh =50×10×0.5 J =250 J ,全过程克服重力做功的平均功率为P =nW t=12×250 J 30 s=100 W ,故C 正确,A 、B 、D 错误. 思想方法3:控制变量法在比较复杂的物理问题中,某一物理量的变化可能与多个变量均有关,定性分析或定量确定因变量与自变量的关系时,常常需要用到控制变量法,即先保持其中一个量不变,研究因变量与另外一个变量的关系,如研究加速度与质量和合外力的关系时,先保持物体的质量不变,研究加速度与合外力的关系,再保持合外力不变,研究加速度与物体质量的关系,最终通过数学分析,得到加速度与质量和合外力的关系.如果有三个或三个以上的自变量,需要控制不变的量,做到变量每次只能有一个.在研究球形固体颗粒在水中竖直匀速下沉的速度与哪些因素有关的实验中,得到的实验数据记录在下面的表格中(水的密度为ρ0=1.0×103 kg/m 3). 次序固体颗粒的半径 r /(×10-3 m) 固体颗粒的密度 ρ/(×103 kg ·m -3) 匀速下沉的速度 v /(m ·s -1) 10.50 2.0 0.55 21.002.0 2.20 31.502.0 4.95 40.50 3.0 1.10 51.00 3.0 4.40 60.50 4.0 1.65 7 1.00 4.0 6.60 颗粒的半径r 的关系:v 与________(填“r ”或“r 2”)成正比.(2)根据以上1、4、6组实验数据,可知球形固体颗粒在水中匀速下沉的速度v 与水的密度ρ0、固体的密度ρ的关系:v 与________(填“ρ”或“ρ-ρ0”)成正比.(3)综合以上实验数据,推导球形固体颗粒在水中匀速下沉的速度与水的密度、固体的密度、固体颗粒的半径的关系表达式v =________,比例系数可用k 表示.解析:(1)由控制变量法容易得出,当ρ一定时,从表格中1、2、3组数据可以得出结论:v ∝r 2.(2)观察表格中的1、4、6组数据,当r 一定时,v 和ρ的关系难以立即判断,因此需要换个角度考虑.当r 一定时,在每个ρ值后都减去1.0×103 kg/m 3(即水的密度),得到的数值与v 成正比,即v ∝(ρ-ρ0).(3)综合以上实验数据,可推导出球形固体颗粒在水中匀速下沉的速度与水的密度、固体的密度、固体颗粒的半径的关系表达式:v =kr 2(ρ-ρ0),k 为比例系数.答案:(1)r 2 (2)ρ-ρ0 (3)k (ρ-ρ0)r 2思想方法4:对称思想对称是一种美,只要对称,必有相等的某些量存在.对称法是从对称的角度研究、处理物理问题的一种思维方法,时间和空间上的对称,表明物理规律在某种变换下具有不变的性质.用这种思维方法来处理问题可以开拓思路,使复杂问题的求解变得简捷.高中物理中的对称主要有受力对称和运动对称.电场中等量电荷产生的电场具有对称性,带电粒子在匀强有界磁场中的运动轨迹具有对称性,简谐运动和波在时间和空间上具有对称性,光路具有对称性……解题时,要充分利用这些特点.如图所示,挂钩连接三根长度均为L 的轻绳,三根轻绳的另一端与一质量为m 、直径为1.2L 的水平圆环相连,连接点将圆环三等分,在轻绳拉力作用下圆环以加速度a =12g 匀加速上升,已知重力加速度为g ,则每根轻绳上的拉力大小为( )A.512mg B .59mg C.58mg D .56mg 解析:C 设每根轻绳与竖直方向的夹角为θ,由几何关系可知sin θ=0.6,则cos θ=0.8;对圆环进行受力分析,由牛顿第二定律有3T cos θ-mg =ma ,解得T =58mg ,故选C. 思想方法5:分解思想有些物理问题的运动过程、情景较为复杂,在运用一些物理规律或公式不奏效的情况下,将物理过程按照事物发展的顺序分成几段熟悉的子过程来分析,或者将复杂的运动分解成几个简单或特殊的分运动(如匀速直线运动、匀变速直线运动、圆周运动等)来考虑,往往能事半功倍.某弹射管每次弹出的小球速度相等.在沿光滑竖直轨道自由下落过程中,该弹射管保持水平,先后弹出两只小球.忽略空气阻力,两只小球落到水平地面的( )A .时刻相同,地点相同B .时刻相同,地点不同C .时刻不同,地点相同D .时刻不同,地点不同解析:B 弹射管沿光滑竖直轨道自由下落,向下的加速度大小为g ,且下落时保持水平,故先后弹出的两只小球在竖直方向的分速度与弹射管的分速度相同,即两只小球同时落地;又两只小球先后弹出且水平分速度相等,故两只小球在空中运动的时间不同,则运动的水平位移不同,落地点不同,选项B 正确.思想方法6:数形结合的思想数形结合的思想,就是把物体的空间形式和数量关系结合起来进行考查,通过“数”与“形”之间的对应和转化来解决问题的思想,其实质是把抽象的数学语言、数量关系与直观的图形结合起来,把抽象思维和形象思维结合起来.数形结合的思想,一方面可以以“形”助“数”,实现抽象概念与具体形象的联系与转化,化抽象为直观,化难为易;另一方面可以以“数”解“形”,可以由数入手,将有些涉及图形的问题转化为数量关系来研究,对图形做精细的分析,从而使人们对直观图形有更精确、理性的理解.一弹簧秤的秤盘质量为m 1,盘内放一质量为m 2的物体,弹簧质量不计,其劲度系数为k ,系统处于静止状态,如图所示.t 0时刻给物体施加一个竖直向上的力F ,使物体从静止开始向上做加速度为a 的匀加速直线运动,经2 s 物体与秤盘脱离,用F N 表示物体与秤盘间的相互作用力的大小,已知重力加速度大小为g ,则下列F 和F N 随时间变化的关系图像正确的是( )解析:C 对秤盘和物体整体分析,系统处于静止状态时,弹簧形变量为x 0,利用牛顿第二定律得,kx 0=(m 1+m 2)g ,F +kx -(m 1+m 2)g =(m 1+m 2)a ,又x =x 0-12a (t -t 0)2,解上述两式得F =(m 1+m 2)a +12ka (t -t 0)2,所以选项A 、B 错误;以物体为研究对象,物体静止时,F N =m 2g ,运动后对秤盘受力分析,利用牛顿第二定律得kx -m 1g -F N =m 1a ,F N =m 2g -m 1a -12ka (t -t 0)2,所以选项C 正确,D 错误. 思想方法7:特殊值法与极限法在中学物理问题中,有一类问题具有这样的特点,如果从题中给出的条件出发,需经过较复杂的计算才能得到结果的一般形式,并且条件似乎不足,使得结果难以确定,这时我们可以尝试采用极限思维的方法,将其变化过程引向极端的情况,就能把比较隐蔽的条件或临界现象暴露出来,从而有助于结论的迅速取得.对于某些具有复杂运算的题目,还可以通过特殊值验证的方法排除错误选项,提高效率.图示为一个内、外半径分别为R 1和R 2的圆环状均匀带电平面,其单位面积带电量为σ.取环面中心O 为原点,以垂直于环面的轴线为x 轴.设轴上任意点P 到O 点的距离为x ,P 点电场强度的大小为E .下面给出E 的四个表达式(式中k 为静电力常量),其中只有一个是合理的.你可能不会求解此处的场强E ,但是你可以通过一定的物理分析,对下列表达式的合理性做出判断.根据你的判断,E 的合理表达式应为( )A .E =2πk σ⎝ ⎛⎭⎪⎫R 1x 2+R 21-R 2x 2+R 22x B .E =2πk σ⎝ ⎛⎭⎪⎫1x 2+R 21-1x 2+R 22x C .E =2πk σ⎝ ⎛⎭⎪⎫R 1x 2+R 21+R 2x 2+R 22x D .E =2πk σ⎝ ⎛⎭⎪⎫1x 2+R 21+1x 2+R 22x 解析:B 当R 1=0时,带电圆环演变为带电圆面,则中心轴线上任意一点的电场强度的大小E 不可能小于0,而A 项中,E <0,故A 错误;当x →∞时E →0,而C 项中E =2πk σ·⎝ ⎛⎭⎪⎫ R 21x 2x 2+R 21+ R 22x 2x 2+R 22=2πk σ·⎝ ⎛⎭⎪⎪⎫ 11x 2+1R 21+ 11x 2+1R 22,x →∞时,E →2πk σ(R 1+R 2),同理可知D 项中x →∞时,E →4πk σ,故C 、D 错误;所以正确选项只能为B.思想方法8:等效思想1.等效法是科学研究中重要的思维方法之一,所谓等效法就是在保证某方面效果相同的前提下,用熟悉和简单的物理对象、过程、现象替代实际上陌生和复杂的物理对象、过程、现象的方法.例如:合力与分力、合运动与分运动、总电阻与分电阻等.利用等效法不但能将问题、过程由繁变简、由难变易,由具体到抽象,而且能启迪思维,增长智慧,从而提高能力.2.运用等效法解决实际问题时,常见的有:过程等效、概念等效、条件等效、电器元件等效、电路等效、长度等效、场等效等.在运用等效法时,一定要注意必须是在效果相同的前提下,讨论两个不同的物理过程或物理现象的等效及物理意义.若在运用等效法解决问题时,不抓住效果相同这个条件,就会得出错误的结论.近年来,含有等效法思维方式的试题在高考中频频出现,主要考查物理模型等效、过程等效、条件等效、电路等效等.如图所示,在方向水平向左、范围足够大的匀强电场中,固定一由内表面绝缘光滑且内径很小的圆管弯制而成的圆弧BD ,圆弧的圆心为O ,竖直半径OD =R ,B 点和地面上A 点的连线与地面成θ=37°角,AB =R .一质量为m 、电荷量为q 的小球(可视为质点)从地面上A 点以某一初速度沿AB 方向做直线运动,恰好无碰撞地从管口B 进入管道BD 中,到达管中某处C (图中未标出)时恰好与管道间无作用力.已知sin 37°=0.6,cos 37°=0.8,重力加速度大小为g .求:(1)匀强电场的场强大小E 和小球到达C 处时的速度大小v ;(2)小球的初速度大小v 0以及到达D 处时的速度大小v D .解析:(1)小球做直线运动时的受力情况如图甲所示,小球带正电,则qE =mg tan θ,得E =4mg 3q, 小球到达C 处时电场力与重力的合力恰好提供小球做圆周运动的向心力,如图乙所示,OC ∥AB ,则mg sin θ=m v 2R得v = 53gR . (2)小球“恰好无碰撞地从管口B 进入管道BD ”,说明AB ⊥OB小球从A 点运动到C 点的过程,根据动能定理有-mg sin θ·2R =12m v 2-12m v 20得v 0=253gR , 小球从C 处运动到D 处的过程,根据动能定理有mg sin θ(R -R sin θ)=12m v 2D -12m v 2, 得v D =3gR .答案:(1)4mg 3q 53gR (2) 253gR 3gR思想方法9:微元累积法高中物理中有很多复杂模型不能直接用已有知识和方法解决,可以在对问题做整体的考察后,选取该问题过程中的某一微小单元进行分析,通过对微元的物理分析和描述,找出该微元所具有的物理性质和运动变化规律,从而获得解决该物理问题整体的方法.比如,物体做变加速运动时,若从整体着手研究,则难以在高中物理层面展开,不过当我们用过程微元法,把物体的运动过程按其经历的位移或时间等分为多个小量,将每个微元过程近似为高中物理知识所能处理的过程,在得出每个微元过程的相关结果后,再进行数学求和,这样就能得到物体复杂运动过程的规律.再比如研究对象难以选择的情形,可以把实体模型等分为很多很多的等份,变成一个理想化模型,如刚体可以等分成无数个质点、带电体可以等分成很多点电荷来研究,先研究其中一份,再研究个体与整体的关系,运用物理规律,辅以数学方法求解,由此求出整体受力或运动情况,在中学阶段比较常见的有流体或类似流体问题、链条类的连续体模型等.如图所示,空间存在竖直向下的匀强磁场,磁感应强度B =0.5 T .在匀强磁场区域内,同一水平面内有一对足够长的光滑平行金属导轨,导轨间距L =1 m ,电阻可忽略不计.质量均为m =1 kg 、电阻均为R =2.5 Ω的金属导体棒MN 和PQ 垂直放置于导轨上,且与导轨接触良好.先将PQ 暂时锁定,金属棒MN 在垂直于棒的拉力F 作用下,由静止开始以加速度a =0.4 m/s 2向右做匀加速直线运动,5 s 后保持拉力F 的功率不变,直到棒以最大速度v m 做匀速直线运动.(1)求棒MN 的最大速度v m ;(2)当棒MN 达到最大速度v m 时,解除PQ 锁定,同时撤去拉力F ,两棒最终均匀速运动.求解除棒PQ 锁定后,到两棒最终匀速运动的过程中,电路中产生的总焦耳热;(3)若PQ 始终不解除锁定,当棒MN 达到最大速度v m 时,撤去拉力F ,棒MN 继续运动多远后停下来?(运算结果可用根式表示)解析:(1)棒MN 做匀加速直线运动,5 s 时的速度为:v =at 1=2 m/s此时对棒MN 由牛顿第二定律得:F -BIL =ma棒MN 做切割磁感线运动,产生的感应电动势为:E =BL v在两棒组成的回路中,由闭合电路欧姆定律得:I =E 2R联立并代入数据解得:F =0.5 N5 s 时拉力F 的功率为:P =F v联立并代入数据解得:P =1 W棒MN 最终做匀速直线运动,则有:P v m-BI m L =0, 其中I m =BL v m 2R联立并代入数据解得:v m =2 5 m/s.(2)解除棒PQ 锁定后,两棒运动过程中动量守恒,最终两棒以相同的速度做匀速运动,设速度大小为v ′,以水平向右为正方向,则有:m v m =2m v ′设从解除棒PQ 锁定到两棒达到相同速度的过程中,两棒共产生的焦耳热为Q ,由能量守恒定律可得:Q =12m v 2m -12×2m v ′2 联立并代入数据解得:Q =5 J.(3)以棒MN 为研究对象,设某时刻棒中电流为i ,在极短时间Δt 内,由动量定理得:-BiL Δt =m Δv对式子两边求和有:∑(-BiL Δt )=∑(m Δv )而Δq =i Δt联立解得:BLq =m v m又对于电路有:q =It =E 2Rt 设棒MN 继续运动距离为x 后停下来,由法拉第电磁感应定律得:E =BLx t联立得q =BLx 2R代入数据解得:x =2Rq BL =2Rm v m B 2L 2=40 5 m. 答案:(1)2 5 m/s (2)5 J (3)40 5 m思想方法10:守恒思想物理学中最常用的一种思维方法——守恒.高中物理涉及的守恒定律有能量守恒定律、动量守恒定律、机械能守恒定律、质量守恒定律、电荷守恒定律等,它们是我们处理高中物理问题的主要工具.如图所示,长R =0.6 m 的不可伸长的细绳一端固定在O 点,另一端系着质量m 2=0.1 kg 的小球B ,小球B 刚好与水平面相接触.现使质量m 1=0.3 kg 的物块A 沿光滑水平面以v 0=4 m/s 的速度向B 运动并与B 发生弹性正碰,A 、B 碰撞后,小球B 能在竖直平面内做圆周运动.已知重力加速度g =10 m/s 2,A 、B 均可视为质点,试求:(1)在A 与B 碰撞后瞬间,小球B 的速度v 2的大小;(2)小球B 运动到最高点时对细绳的拉力.解析:(1)物块A 与小球B 碰撞时,由动量守恒定律和机械能守恒定律有: m 1v 0=m 1v 1+m 2v 212m 1v 20=12m 1v 21+12m 2v 22 解得碰撞后瞬间物块A 的速度v 1=m 1-m 2m 1+m 2v 0=2 m/s 小球B 的速度v 2=2m 1m 1+m 2v 0=6 m/s (2)碰撞后,设小球B 运动到最高点时的速度为v ,则由机械能守恒定律有: 12m 2v 22=12m 2v 2+2m 2gR 又由向心力公式有:F +m 2g =m 2v 2R联立解得F =1 N ,由牛顿第三定律知小球B 对细绳的拉力F ′=F =1 N.答案:(1)6 m/s (2)1 N。

(完整)高中物理16种常见题型的解题方法和思维模板

(完整)高中物理16种常见题型的解题方法和思维模板

高中物理16种常见题型的解题方法和思维模板,一定要收藏!高中状元计划今天高中物理考试常见的类型无非包括以下16种,今天为同学们总结整理了这16种常见题型的解题方法和思维模板,同时介绍给大家高考物理各类试题的解题方法和技巧,提供各类试题的答题模版,飞速提升你的解题能力,力求做到让你一看就会,一想就通,一做就对!题型1:直线运动问题题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查.单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题.思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系.题型2:物体的动态平衡问题题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题.物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题.思维模板:常用的思维方法有两种.(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化.题型3:运动的合成与分解问题题型概述:运动的合成与分解问题常见的模型有两类.一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解.思维模板:(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等.(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。

高中物理常见解题技巧及思路

高中物理常见解题技巧及思路

高中物理常见解题技巧及思路巧,提供各类试题的答题模版,飞速提升你的解题能力,力求做到让你一看就会,一想就通,一做就对!步骤/方法直线运动问题题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查.单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题.思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系.物体的动态平衡问题题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题.物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题.思维模板:常用的思维方法有两种.(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化.运动的合成与分解问题题型概述:运动的合成与分解问题常见的模型有两类.一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解.思维模板:(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等.(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析.抛体运动问题题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上.思维模板:(1)平抛运动物体在水平方向做匀速直线运动,在竖直方向做匀加速直线运动,其位移满足x=v0t,y=gt2/2,速度满足vx=v0,vy=gt;(2)斜抛运动物体在竖直方向上做上抛(或下抛)运动,在水平方向做匀速直线运动,在两个方向上分别列相应的运动方程求解圆周运动问题题型概述:圆周运动问题按照受力情况可分为水平面内的圆周运动和竖直面内的圆周运动,按其运动性质可分为匀速圆周运动和变速圆周运动.水平面内的圆周运动多为匀速圆周运动,竖直面内的圆周运动一般为变速圆周运动.对水平面内的圆周运动重在考查向心力的供求关系及临界问题,而竖直面内的圆周运动则重在考查最高点的受力情况.思维模板:(1)对圆周运动,应先分析物体是否做匀速圆周运动,若是,则物体所受的合外力等于向心力,由F合=mv2/r=mrω2列方程求解即可;若物体的运动不是匀速圆周运动,则应将物体所受的力进行正交分解,物体在指向圆心方向上的合力等于向心力.(2)竖直面内的圆周运动可以分为三个模型:①绳模型:只能对物体提供指向圆心的弹力,能通过最高点的临界态为重力等于向心力;②杆模型:可以提供指向圆心或背离圆心的力,能通过最高点的临界态是速度为零;③外轨模型:只能提供背离圆心方向的力,物体在最高点时,若v<(gR)1/2,沿轨道做圆周运动,若v≥(gR)1/2,离开轨道做抛体运动.牛顿运动定律的综合应用问题题型概述:牛顿运动定律是高考重点考查的内容,每年在高考中都会出现,牛顿运动定律可将力学与运动学结合起来,与直线运动的综合应用问题常见的模型有连接体、传送带等,一般为多过程问题,也可以考查临界问题、周期性问题等内容,综合性较强.天体运动类题目是牛顿运动定律与万有引力定律及圆周运动的综合性题目,近几年来考查频率极高.思维模板:以牛顿第二定律为桥梁,将力和运动联系起来,可以根据力来分析运动情况,也可以根据运动情况来分析力.对于多过程问题一般应根据物体的受力一步一步分析物体的运动情况,直到求出结果或找出规律.对天体运动类问题,应紧抓两个公式:GMm/r2=mv2/r=mrω2=mr4π2/T2 ①。

完整高中物理16种常见题型的解题方法和思维模板

完整高中物理16种常见题型的解题方法和思维模板

一定要收16种常见题型的解题方法和思维模板,高中物理藏!今天高中状元计划种常见题16高中物理考试常见的类型无非包括以下16种,今天为同学们总结整理了这提供型的解题方法和思维模板,同时介绍给大家高考物理各类试题的解题方法和技巧,各类试题的答题模版,飞速提升你的解题能力,力求做到让你一看就会,一想就通,一做就对!:直线运动问题1题型直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合题型概述:在计算.单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;考查题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇.问题思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两.个物体间的联系主要是位移关系题型2:物体的动态平衡问题物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变题型概述:物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分化的问题..析三力平衡的方法推广到四个力作用下的动态平衡问题.常用的思维方法有两种思维模板:由所列方程分析受力变化;(1)解析法:解决此类问题可以根据平衡条件列出方程,.图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化(2):运动的合成与分解问题题型3末端速度分解的(杆)题型概述:运动的合成与分解问题常见的模型有两类.一是绳.问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解思维模板:杆)(末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时在绳(1)两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳.方向速度相等杆)相连,则两个物体沿绳(杆)((2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。

高中物理常用的解题思维方法

高中物理常用的解题思维方法

高中物理常用的解题思维方法解物理习题是学好物理的重要环节,它在建立和发展学生的物理认知结构,形成和提高学生的物理思维能力等方面有着不可替代的作用。

用物理思维方法指导解题有助于学生创新意识的培养和创造性思维的发展。

物理解题思维方法解物理习题是学好物理的重要环节,它在建立和发展学生的物理认知结构,形成和提高学生的物理思维能力等方面有着不可替代的作用。

用物理思维方法指导解题有助于学生创新意识的培养和创造性思维的发展。

那么,高中高中物理常用的解题思维方法有哪些呢?一、高中学生在物理学习中的几种主要思维错误,究其原因主要有:1、没有深入理解物理概念的物理意义和概念所反映的物理事物、现象的本质;2、不能准确区分相近的物理量;3、忽视或误解物理规律的适用条件;4、没有搞清物理公式中各物理量的含义而乱写乱套公式;5、片面分析问题,只见局部不顾整体;6、凭自己的主观想象,缺乏从论证推理得出结论的习惯;7、死记硬背物理公式和某些结论,对具体问题不会具体分析;8、不能全面、准确地分析题目描述的全物理过程;9、不能对题意的分析建立起清晰的物理图景。

究其根源,有:(1)是物理知识本身抽象程度高,与实际联系紧密,运用物理知识解决实际问题时灵活多变;(2)是教材的编写比较原则,缺少形象化的说明;(3)是缺少训练学生思路的典型范例;(4)是学生还没有把握住学习物理的科学方法,不善于从多方面去理解物理概念,不善于作比较分类工作,没有掌握解决实际问题的科学思维方法,不能从分析题中抽象出物理模型—确定遵循的规律—找出已知和未知的联系—建立方程—探讨答案的物理过程。

一部分学生在学了物理之后,观察物理现象还仅仅停留在日常生活经验的水平上,心理层次来得到发展,错误未得到纠正,新观念未曾建立。

二、高中物理常用的解题思维方法总结1、“假设方法”常有一些物理过程,其发生、发展以及变化的方向存在着多种可能,在对这些过程做出定量分析之前,往往很难对所存在的各种可能性做出正确的取舍,而此时一般需要运用“假设法”来对物理过程做出分析。

高考物理力学部分要掌握哪些解题方法和思维方法

高考物理力学部分要掌握哪些解题方法和思维方法

高考物理力学部分要掌握哪些解题方法和思维
方法
问题:
学生:复习力学部分,需要掌握哪些解题方法和思维方法?
老师:复习力学,要熟练掌握解答物理问题的基本解题方法,如隔离法、整体法、归纳法、演绎法、实验法、分析法、图像法、综合法和基本思维方法,如实验证明的思想、化归的思想等。

比如解连接体问题常用的隔离法、整体法;处理复杂曲线运动常用运动合成与分解法;物理实验中的控制变量和等效思想等,均为中学物理中基本的思维方法。

这些思想与方法,要好好总结与掌握。

在解题中运用这些方法,往往能大大提高学习能力。

第 1 页。

高中物理解题思维方法全解析

高中物理解题思维方法全解析

高中物理解题思维方法全解析在高中物理习题解决“一块”,提及许多常用解题方法,即:整体法,隔离法,微元法,图像法,等效法,极端法,特殊值法,对称法,全过程法,逆向思维法,递推法,类比法等物理解题中常用的方法。

下面,笔者曾经用过的一组备用习题。

一、整体法例1:在水平光滑桌面上放置两个物体A、B如图1-1所示,m A=1kg,m B=2kg,它们之间用不可伸长的细线相连,细线质量忽略不计,A、B分别受到水平间向左拉力F1=10N 和水平向右拉力F2=40N的作用,求A、B间细线的拉力。

例2:如图1-2所示,上下两带电小球,a、b质量均为m,所带电量分别为q和-q,两球间用一绝缘细线连接,上球又用绝缘细线悬挂在开花板上,在两球所在空间有水平方向的匀强电场,场强为E,平衡细线都被拉紧,右边四图中,表示平衡状态的可能是:例3:如图1-3所示,质量为M 的木箱放在水平面上,木箱中的立杆上套着一个质量为m 的小球,开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的12,即12a g =,则小球在下滑的过程中,木箱对地面的压力为多少?例4:如图1-4,质量为m 的物体A 放置在质量为M 的物体B 上,B 与弹簧相连,它们一起在光滑水平面上做简谐振动,振动过程中A 、B之间无相对运动,设弹簧的劲度系数为k ,当物体离开平衡位置的位移为x 时,A 、B 间摩擦力f 的大小等于( )A 、0B 、kxC 、()m kx MD 、()m kx M m +巧练:1、如图1-6所示,位于水平地面上的斜面倾角为а,斜面体的质量为M ,当A 、B 两物体沿斜面无摩擦下滑时,A 、B 间无相对滑动,斜面体静止,设A 、B 的质量均为m ,则地面对斜面体的支持力F N 及摩擦力f 分别是多少?若斜面体不是光滑的,物体A 、B 一起沿斜面匀速下滑时,地面对斜面体的支持力F N 及摩擦力f 又分别是多少?。

高中物理解题常用的思维方法

高中物理解题常用的思维方法

高中物理解题常用的思维方法方法是沟通思想、知识和能力的一个桥梁,物理方法也是物理思想的具体表现。

运用方法的过程也是思维的过程,思维主要包括抽象思维和形象思维。

下面小编给大家整理了关于高中物理解题的思维方法的内容,欢迎阅读,内容仅供参考!高中物理解题的思维方法实验法:实验法是利用相关的仪器仪表和设计的装置通过对现象的观测,数据的采集、处理、分析后得出正确结论的一种方法。

它是研究、探讨、验证物理规律的根本方法,也是科学家研究物理的主要途径。

正因如此,物理学是一门实验科学,也是区别于其它学科的特点所在。

假设法:假设法是解决物理问题的一种重要方法。

用假设法解题,一般是依题意从某一假设入手,然后运用物理规律得出结果,再进行适当讨论,从而找出正确答案。

这种解题科学严谨、合乎逻辑,而且可拓宽思路。

在判断一些似是而非的物理现象,一般常用假设法。

科学家在研究物理问题时也常采用假设法。

我们同学在解题时往往不敢大胆假设,不懂的怎样去创设物理图景和物理量,也就觉的无从下手了。

极限法:极限法是利用物理的某些临界条件来处理物理问题的一种方法,也叫临界(或边界)条件法。

在一些物理的运动状态变化过程中,往往达到某个特定的状态(临界状态)时,有关的物理量将要发生突变,此状态叫临界状态,这时却有临界值。

如果题目中出现如“最大、最小、至少、恰好、满足什么条件”等一类词语时,一般都有临界状态,可以利用临界条件值作为解题思路的起点,设法求出临界值,再作分析讨论得出结果。

综合法(也叫程序法):综合法就是通过题设条件,按顺序对已知条件的物理各过程和各因素联系起来进行综合分析推出未知的思维方法。

即从已知到未知的思维方法,是从整体到局部的一种思维过程。

此法要求从读题开始,注意题中能划分多少个不同的过程或不同状态,然后对各个过程、状态的已知量进行分析,追踪寻求与未知量的关系,从而求得未知量。

分析法:分析法是综合法的逆过程,它是从求未知到已知的推理思维方法。

完整版)高中物理解题技巧

完整版)高中物理解题技巧

完整版)高中物理解题技巧物体在重力场中的状态分为三种:超重、失重和重力平衡状态。

在解题时,要根据题目所给出的情况,确定物体所处的状态,再根据物理规律进行分析和计算。

在本例中,利用超重状态下的竖直向上的加速度,可以得出正确答案为D。

技巧一:合成法解题典例1】一倾角为θ的斜面上放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动。

当细线(1)与斜面方向垂直,或沿水平方向时,求上述两种情况下木块下滑的加速度。

解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块有相同的加速度,方向必沿斜面方向。

可以通过求小球的加速度来达到求解木块加速度的目的。

在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析。

在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单。

技巧二:超、失重解题典例2】如图2-2-4所示,A为电磁铁,C为胶木秤盘,A 和C(包括支架)的总质量为M,B为铁片,质量为m,整个装置用轻绳悬挂于O点,当电磁铁通电,铁片被吸引上升的过程中,轻绳上拉力F的大小满足:A。

F=MgB。

Mg<F<(M+m)gC。

F=(M+m)gD。

F>(M+m)g解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的加速度(其它部分都无加速度),所以系统有竖直向上的加速度,系统处于超重状态,所以轻绳对系统的拉力F与系统的重力(M+m)g满足关系式:F>(M+m)g,正确答案为D。

对于超、失重现象大致可分为以下几种情况:物体在重力场中的状态分为三种:超重、失重和重力平衡状态。

在解题时,要根据题目所给出的情况,确定物体所处的状态,再根据物理规律进行分析和计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档