概率的进一步认识知识点复习
第三章概率的进一步认识回顾与思考(教案)
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《第三章概率的进一步认识回顾与思考》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断事件独立性或使用概率来帮助做决策的情况?”(如抛硬币、抽奖等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索概率的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解事件独立性、条件概率和贝叶斯定理的基本概念。事件独立性是指两个事件的发生与否互不影响;条件概率是在某一事件发生的条件下,另一事件发生的概率;贝叶斯定理则是用来在已知某一结果时,反推事件发生概率的公式。这些概念在数据分析、决策制定等方面具有重要意义。
在学生小组讨论环节,我发现大家对于概率在实际生活中的应用有很丰富的想法,但有些小组在分享成果时表达不够清晰。针对这个问题,我计划在接下来的课程中,加强学生的口头表达和逻辑思维能力训练,帮助他们更好地展示自己的思考过程。
此外,我还注意到,部分学生在课堂上的参与度不高。为了提高他们的积极性,我将在下一节课尝试采用更多互动性强的教学方法,如小组竞赛、角色扮演等,激发学生的学习兴趣,让他们更主动地参与到课堂中来。
2.提高学生的数据分析能力,学会从实际情境中提取信息,运用概率知识解决实际问题,培养解决复杂问题的能力。
3.培养学生的创新意识和应用意识,将概率知识与社会生活实际相结合,激发学生运用概率知识解决实际问题的兴趣。
4.增强学生的团队合作意识,通过小组讨论和合作完成习题,培养学生的沟通能出问题、分析问题,培养勇于探索的精神。
五、教学反思
在这节课中,我发现学生们对概率的基本概念有了较好的掌握,特别是事件独立性、条件概率和贝叶斯定理。在导入新课环节,通过提问同学们在日常生活中遇到的概率问题,成功引起了他们对本节课的兴趣。在新课讲授环节,我注意引导学生理解这些概念在实际生活中的应用,并尝试用生动的案例进行分析,让学生更好地理解这些抽象的概念。
概率初步知识点
概率初步知识点归纳1,概率的有关概念1.概率的定义:某种事务在某一条件下可能发生,也可能不发生,但可以知道它发生的可能性的大小,我们把刻划(描述)事务发生的可能性的大小的量叫做概率.2,事务类型:①必定事务:有些事情我们事先确定它确定发生,这些事情称为必定事务.。
不可能事务:有些事情我们事先确定它确定不会发生,这些事情称为不可能事务.③不确定事务:很多事情我们无法确定它会不会发生,这些事情称为不确定事务.必定事务,不可能事务都是在事先能确定它们会发生,或事先能确定它们不会发生的事务,因此它们也可以称为确定性事务.不确定事务都是事先我们不能确定它们会不会发生,我们把这类事务称为随机事务。
练习:1 .足球竞赛前,裁判通常要掷一枚硬币来确定竞赛双方的场地及首先发球者,其主要缘由是()•A.让竞赛更富有情趣B.让竞赛更具有神奇色调C.体现竞赛的公允性D.让竞赛更有挑战性2 .小张掷一枚硬币,结果是一连9次掷出正面对上,则他第10次掷硬币时,出现正面对上的概率是().A.0B.IC.0.5D.不能确定3 .关于频率及概率的关系,下列说法正确的是().A.频率等于概率B.当试验次数很多时,频率会稳定在概率旁边C.当试验次数很多时,概率会稳定在频率旁边D.试验得到的频率及概率不可能相等4 .下列说法正确的是().A.一颗质地匀称的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次确定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张该种彩票确定会中奖C.天气预报说明天下雨的概率是50%.所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等5 .下列说法正确的是().A.抛掷一枚硬币5次,5次都出现正面,所以投掷一枚硬币出现正面的概率为1B. “从我们班上查找一名未完成作业的学生的概率为0”表示我们班上全部的学生都完成了作业C. 一个口袋里装有99个白球和一个红球,从中任取一个球,得到红球的概率为1%,所以从袋中取至少100次后必定可以取到红球(每次取后放同,并搅匀)D.抛一枚硬币,出现正面对上的概率为50%,所以投掷硬币两次,则一次出现正面,一次出现反面6 .在一个不透亮的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是().7 .在今年的中考中,市区学生体育测试分成了三类,耐力类,速度类和力气类.其中必测项目为耐力类,抽测项目为:速度类有50m,IOOm,50m×2来回跑三项,力气类有原地掷实心球,立定跳远,引体向上(男)或仰卧起坐(女)三项.市中考领导小组要从速度类和力气类中各随机抽取一项进行测试,请问同时抽中50mX2来同跑,引体向上(男)或仰卧起坐(女)两项的概率是().8 .元旦游园晚会上,有一个闯关活动:将20个大小,重量完全一样的乒乓球放入一个袋中,其中8个白色的,5个黄色的,5个绿色的,2个红色的.假如随意摸出一个乒乓球是红色,就可以过关,则一次过关的概率为().9 .下面4个说法中,正确的个数为().(1)“从袋中取出一只红球的概率是99%”,这句话的意思是确定会取出一只红球,因为概率已经很大(2)袋中有红,黄,白三种颜色的小球,这些小球除颜色外没有其他差别,因为小张对取出一只红球没有把握,所以小张说:“从袋中取出一只红球的概率是50%”(3)小李说,这次考试我得90分以上的概率是200%(4)“从盒中取出一只红球的概率是0",这句话是说取出一只红球的可能性很小A.3B.2C.1D.010 .下列说法正确的是().A.可能性很小的事务在一次试验中确定不会发生B.可能性很小的事务在一次试验中确定发生C.可能性很小的事务在一次试验中有可能发生D.不可能事务在一次试验中也可能发生3,(重点)概率的计算1,概率的计算方式:概率的计算有理论计算和试验计算两种方式,依据概率获得的方式不同,它的计算方法也不同.2,如何求具有上述特点的随机事务的概率呢?假如一次试验中共有n种可能出现的结果,而且这些结果出现的可能性都相同,其中事m务A包含的结果有m种,则事务A发生的概率P(A)=〃。
第三章 概率的进一步认识 课件 北师大版数学九年级上册(20张PPT)
第三章 复习课
复习目标
1.回顾本章的内容,梳理本章的知识结构,建立有关概率知
识的框架图.
2.知道求概率的一般方法——树状图和列表法.
3.知道试验频率与理论概率的关系;会合理运用概率的思想,
解决生活中的实际问题.
◎重点:会用树状图或列表法计算简单事件的概率,以及用
试验或模拟试验的方法估计复杂事件发生的概率.
时,用列表法.
(3)用树状图或表格求概率的关键:
①各种情况出现的可能性 一定要相同 ;
事件发生的次数 )
②P(A)= 各种情况出现的次数 ;
(
③在统计各种情况出现的次数和某一事件发生的次数时,
要做到不重不漏.
预习导学
4.估计总体数目.
通过试验法估计总体数目的方法:(1) 抽取 法估算总体
数目;(2)用 放入 法估算总体数目.
预习导学
·导学建议·
本节可通过问题的形式引导学生,梳理知识结构,重点关
注以下几个问题:(1)频率与概率的区别;(2)计算概率的两种方
法;(3)概率与统计之间的内在的联系.
合作探究
随机事件的概率计算
1.某市体育中考现场考试内容有三项:50米跑为必测项目,
另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二
(2)小国同学的父亲认为,如果到A处不买,到B处发现比A
处便宜就马上购买,否则到C处购买,这样更有希望买到最低价
格的礼物.这个想法是否正确?试通过树状图分析说明.
解:(1)∵在每一处都有价格最低,最高,较高的可能,
∴P(A处买到最低价格礼物)= .
合作探究
(2)作出树状图如下:
九年级数学上册第3章 概率的进一步认识
本课程,若小波和小睿两名同学每人随机选择其中一门课
程,则小波和小睿选到同一门课程的概率是( B )
A.21
B.13
C.61
D.91
数学
2.在一个口袋中有3个完全相同的小球,把它们分别标号为
1,2,3,随机地摸取一个小球然后放回,再随机地摸出一个小
球,则两次取的小球的标号相同的概率为( A )
A.31
(C ) A.甲 B.甲和乙 C.丙 D.甲、乙、丙三人赢的机会均等
数学
4.小明和小亮做游戏,先是各自背着对方在纸上写一个不
大于100的正整数,然后都拿给对方看.他们约定:若两人 所写的数都是奇数或都是偶数,则小明获胜;若两个人所写
的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏
(C ) A.对小明有利 C.是公平的
B.16
C.21
D.91
数学
3.“扬州鉴真国际半程马拉松”的赛事共有三项:A.“半程
马拉松”,B.“10公里”,C.“迷你马拉松”.小明参加
了该项赛事的志愿者服务工作,组委会随机将志愿者分配到
三个项目组.
1
(1)小明被分配到“迷你马拉松”项目组的概率为 3 ;
数学
(2)为估算本次赛事参加“迷你马拉松”的人数,小明对部分 参赛选手作如下调查:
数学
知识要点4 判断游戏的公平性 【例4】甲、乙两人玩游戏,判定游戏公平的标准是( D ) A.游戏的规则由甲方确定 B.游戏的规则由乙方确定 C.游戏的规则由甲、乙双方商定 D.游戏双方要各有50%赢的机会
数学 【例 5】如图,可以自由转动的转盘被 3 等分,指针落在每个 扇形内的机会均等.小明和小华利用这个转盘做游戏,若采 用下列游戏规则,你认为对双方公平吗?请用列表或画树状 图的方法说明理由.
第三章概率的进一步认识回顾与思考课件
二、典例讲授 9.有两组牌,每组牌都是4张,牌面数字分别是1,2, 3,4,从每组牌中任取一张,求抽取的两张牌的数字 之和等于5的概率,并画出树状图. 解:树状图如图.
共有16种等可能的情况,和为5的情况有4种 ∴P(和为5)=1/4.
二、典例讲授
的概率为( C)
A.
B.
C.
D.
二、典例讲授
2.一个袋中装有2个黑球3个白球,这些球除颜色外,
大小、形状、质地完全相同,在看不到球的情况下,
随机的从这个袋子中摸出一个球不放回,再随机的
从这个袋子中摸出一个球,两次摸到的球颜色相同
的概率是( A)
A. 2
5
B. 3
5
C. 8
25
D. 13
25
二、典例讲授
率是0.25,则本来盒中有白色棋子( C )
A. 8颗
B. 6颗
C. 4颗 D. 2颗
二、典例讲授
8.一个密闭不透明的盒子里有若干个白球,在不允 许将球倒出来的情况下,为估计白球的个数,小刚 向其中放入8个黑球,摇匀后从中随机摸出一个球记 下颜色,再把它放回盒中,不断重复,共摸球400次,
其中88次摸到黑球,估计盒中大约有白球( A )
二、典例讲授 解:(1)画树状图如下:
共有12种可能出现的方程. (2)∵方程有两个不相等的实数根 ∴Δ>0,即 a2-4b>0 ∴a2>4b
5 P(方程中有两个不相等实根)= 12
二、典例讲授
13.某商场为了吸引顾客,开展有奖促销活动,设立了 一个可以自由转动的转盘,转盘被分成4个面积相等的 扇形,四个扇形区域里分别标有“10元”“20 元”“30元”“40元”的字样(如图). 规定:同一日内,顾客在本商场每消费满100元就可以 转动转盘一次,商场根据转盘指针指向区域所标金额 返还相应数额的购物券,某顾客当天消费240元,转了 两次转盘. (1)该顾客最少可得__2_0__元购物券,最多可得__8_0_ 元购物券;
北师大版本九年级上册第三章概率的进一步认识知识点解析含习题练习
第01讲_概率的进一步认识知识图谱概率的计算知识精讲一.用列表法和树状图法求事件的概率1.列表法:当试验中存在两个元素且出现的所有可能的结果较多时,为了不重不漏地列举出所有可能的结果,我们采用列表法来求出某事件的概率.2.树状图法:当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图法来求出某事件的概率.树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,象树的树丫形式,最末端的树丫个数就是总的可能的结果.二.用频率估计概率实际上,从长期实践中,人们观察到,对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个时间出现的频率,总在一个固定的数附近摆动,显示出一定的稳定性.因此,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.三点剖析一.考点:概率的计算二.重难点:用列表法和树状图法求事件概率三.易错点:(1)两步以及两步以上的简单事件求概率的方法:利用树状或者列表表示各种等可能的情况与事件的可能性的比值;(2)复杂事件求概率的方法运用频率估算概率。
判断是否公平的方法运用概率是否相等,关注频率与概率的整合。
求简单事件的概率例题1、在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A.1 3B.23C.16D.34【答案】B【解析】分母含有字母的式子是分式,整式a+1,a+2,2中,抽到a+1,a+2做分母时组成的都是分式,共有3×2=6种情况,其中a+1,a+2为分母的情况有4种,所以能组成分式的概率=46=23.北师大版本九年级上册第三章概率的进一步认识例题2、围棋盒子中有x颗白色棋子和y颗黑色棋子,从盒子中随机取出一颗棋子,取得白色棋子的概率是2 3.如果在原有的棋子中再放进4颗黑色棋子,此时从盒子中随机取出一颗棋子为白色棋子的概率是12,则原来盒子中有白色棋子()A.4颗B.6颗C.8颗D.12颗【答案】C【解析】由题意得14223xx yxx y⎧=⎪++⎪⎨⎪=⎪+⎩;解得48yx=⎧⎨=⎩,由此可得,原来盒子中有白色棋子8颗例题3、某厂为新型号电视机上市举办促销活动,顾客购买一台该型号电视机,可获得一次抽奖机会,该厂拟按10%设大奖,其余90%为小奖.厂家设计的抽奖方案是:在一个不透明的盒子中,放入10个黄球和90个白球,这些球除颜色外都相同,搅匀后从中任意摸出两个球,摸到都是黄球的顾客获得大奖,摸到不全是黄球的顾客获得小奖.(1)厂家请教了一位数学老师,他设计的抽奖方案是:在一个不透明的盒子中,放入2个黄球和3个白球,这些球除颜色外都相同,搅匀后从中任意摸出一个球,摸到黄球的顾客获得大奖,摸到白球的顾客获得小奖.该抽奖方案符合厂家的设奖要求吗?请说明理由;(2)下图是一个可以自由转动的转盘,请你讲转盘分为2个扇形区域,分别涂上黄、白两种颜色,并设计抽奖方案,使其符合厂家的设奖要求.(友情提醒:转盘上用文字注明颜色和扇形的圆心角的度数,结合转盘简述获奖方式,不需要说明理由).【答案】见解析【解析】(1)符合,一共出现20种可能性,并且每种可能性都相同,所有的结果中,满足摸到的2个球都是黄球(记为事件A)的结果有2种,即(黄1,黄2)或(黄2,黄1),所以P(两黄球)212010==,即顾客获得大奖的概率为10%,获得小奖的概率为90%;(2)本题答案不唯一,下列解法供参考.如图,将转盘中圆心角为36︒的扇形区域涂上黄色,其余的区域涂上白色,顾客每购买一台该型号电视机,可获得一次转动转盘的机会,任意转动这个转盘,当转盘停止时,指针指向黄色区域获得大奖,指向白色区域获得小奖.随练1、如图,随机闭合开关S1、S2、S3中的两个,则能让灯泡⊗发光的概率是()A.B.C. D.【答案】C【解析】列表如下:共有6种情况,必须闭合开关S 3灯泡才亮,即能让灯泡发光的概率是=.故选C .随练2、在围棋盒中有x 颗白色棋子和y 颗黑色棋子,它们除颜色外全部相同,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A.1颗B.2颗C.3颗D.4颗【答案】B【解析】解:由题意得:25134x x y x x y ⎧=⎪+⎪⎨⎪=⎪++⎩,解得23x y =⎧⎨=⎩故选:B .随练3、有一盒子中装有3个白色乒乓球,2个黄色乒乓球,1个红色乒乓球,6个乒乓球除颜色外形状和大小完全一样,李明同学从盒子中任意摸出一乒乓球.(1)你认为李明同学摸出的球,最有可能是______颜色;(2)请你计算摸到每种颜色球的概率;(3)李明和王涛同学一起做游戏,李明或王涛从上述盒子中任意摸一球,如果摸到白球,李明获胜,否则王涛获胜.这个游戏对双方公平吗?为什么?【答案】(1)白(2)16(3)公平【解析】(1)因为白色的乒乓球数量最多,所以最有可能是白色(2)摸出一球总共有6种可能,它们的可能性相等,摸到白球有3种、黄球有2种、红球有1种.所以P (摸到白球)=3162=,P (摸到黄球)=2163=,P (摸到红球)=16;(3)答:公平.因为P (摸到白球)=12,P (摸到其他球)=21162+=,所以公平.列表法和树状图法求概率例题1、如图所示是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止),两个指针所指区域的数字和为偶数的概率是__________.【答案】715【解析】列表得(1,8)(1,7)(1,6)(1,5)(1,4);(2,8)(2,7)(2,6)(2,5)(2,4);(3,8)(3,7)(3,6)(3,5)(3,4);其中为偶数的有7种,故数字和为偶数的概率是715例题2、一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,1-,2-,3-四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为__________.【答案】38【解析】画树状图,得因为共有16种可能的结果,两次摸出的小球上两个数字乘积是负数的有6种情况所以两次摸出的小球上两个数字乘积是负数的概率63168==.例题3、有十张正面分别标有数字3-,2-,1-,0,1,2,3,4,5,6的不透明卡片,他们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,将该卡片上的数字加1记为b .则数字a ,b 使得关于x 的方程210ax bx +-=有解的概率为___________.【答案】710【解析】列表得:一共有(3,2)--、(2,1)--、(1,0)-、(0,1)、(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7);数字a ,b 使得关于x 的方程210ax bx +-=有解的情况有:(0,1)、(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7)七种,则710P =.例题4、在平面直角坐标系中给定以下五个点A (2-,0)、B (1,0)、C (4,0)、D (2-,92)、E (0,6-),在五个形状、颜色、质量完全相同的乒乓球上标上A 、B 、C 、D 、E 代表以上五个点.玩桌球游戏,每次摸三个球,摸一次,三球代表的点恰好能确定一条抛物线(对称轴平行于y 轴)的概率是()A.12B.35C.710D.45【答案】B【解析】所有的摸球情况有:ABC 、ABD 、ABE 、ACD 、ACD 、ACE 、ADE 、BCD 、BCE 、BCE 、BDE 、CDE 共有10种情况;其中,ABC 时,三点都在x 轴上,共线,不能确定一条抛物线;而ABD 、ACD 、ADE 时,A 、D 的横坐标都是2-,不复合函数的定义;所以能确定一条抛物线的情况有:10136--=,所以35P =.随练1、把一个转盘平均分成三等份,依次标上数字1、2、3.自由转动转盘两次,把第一次转动停止后指针指向的数字记作x ,把第二次转动停止后指针指向的数字的2倍记作y ,以长度分别为x 、y 、5的三条线段能构成三角形的概率为__________.【答案】49【解析】列表可得因此,点(),A x y 的个数共有9个;则x 、y 、5的三条线段能构成三角形的有4组,可得49P =.随练2、在不透明的口袋中,有五个形状、大小、质地完全相同的小球,五个小球分别标有数字2-、1-、0、2、3,现从口袋中任取一个小球,并将该小球上的数字作为点C 的横坐标,然后放回摇匀,再从口袋中人去一个小球,并将该小球上的数字作为点C 的纵坐标,则点C 恰好与点A (2-,2)、B (3,2)构成直角三角形的概率是_________.【答案】25【解析】画树状图如下:共有25种情况,当点C的坐标为(2-,2-)、(2-,1-)、(2-,0)、(2-,3)、(1-,0)、(2,0)、(3,2-)、(3,1-)、(3,0)、(3,3)共10种情况时,构成直角三角形,P(直角三角形)102 255 ==.用频率估计概率例题1、在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率【答案】D【解析】本题考查了利用频率估计概率的知识,大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率.根据大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答.∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴D选项说法正确.故选:D.例题2、某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:40075015003500700090003696621335320363358073根据表中数据,估计这种幼树移植活率的概率为__________(精确到0.1).【答案】0.9【解析】(0.9230.8830.8900.9150.9050.8970.902)70.9x=++++++÷≈例题3、在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球模拟.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据摸球次数(n)100150200500摸到白球次数(m)5896116295摸到白球的频率(0.580.640.580.59(1)请你估计,当n很大时,摸到白球的频率将会接近_________(精确到0.1).(2)假如你去摸一次,你摸到白球的概率是_________,摸到黑球的概率是_________.(3)试估算口袋中黑、白两种颜色的球有多少只.【答案】(1)0.6;(2)35;25;(3)黑球8个,白球12个.【解析】(1)根据题意可得当n很大时,摸到白球的概率将会接近0.6.(2)由(1)可得,摸到白球的概率是35,摸到黑球的概率是25;(3)由(2)可得,口袋中白球的个数320125=⨯=个;黑球的个数22085=⨯=个.随练1、如表记录了一名球员在罚球线上投篮的结果.那么,这名球员投篮一次,投中的概率约为(精确到0.1).【答案】0.5【解析】由题意得,这名球员投篮的次数为1550次,投中的次数为796,故这名球员投篮一次,投中的概率约为:7961550≈0.5.随练2、某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据:(1)计算并完成表格:的次数n 100150200500800”的次数m 68111136345564的频率m(2)请估计,当n 很大时,频率将会接近多少?(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少?(精确到1)【答案】(1)见解析;(2)0.7;(3)0.7;(4)252 【解析】(1)的次数n 100150200500800”的次数68111136345564的频(2)当n 很大时,频率将会接近681111363455647010.71001502005008001000+++++=+++++(3)获得铅笔的概率约是0.7(4)扇形的圆心角约是0.7360252⨯=拓展1、一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是()A.4 9B.13C.16D.19【答案】D【解析】列表得:黑白白黑(黑,黑)(黑,白)(黑,白)白(黑,白)(白,白)(白,白)白(黑,白)(白,白)(白,白)∵共9种等可能的结果,两次都是黑色的情况有1种,∴两次摸出的球都是黑球的概率为1 9.2、在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?【答案】(1)嘉嘉抽取一张卡片上的数是勾股数的概率P1=3 4(2)淇淇与嘉嘉抽到勾股数的可能性不一样【解析】(1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=3 4;(2)列表法:由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两张卡片上的数都是勾股数的有6种,∴P2=612=12,∵P1=34,P2=12,P1≠P2∴淇淇与嘉嘉抽到勾股数的可能性不一样.3、从﹣4、3、5这三个数中,随机抽取一个数,记为a,那么,使关于x的方程x2+4x+a=0有解,且使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形面积恰好为4的概率____.【答案】13【解析】由关于x 的一次函数y=2x+a 的图象与x 轴、y 轴围成的三角形面积恰好为4,可求得a 的值,由关于x 的方程x 2+4x+a=0有解,可求得a 的取值范围,继而求得答案.∵一次函数y=2x+a 与x 轴、y 轴的交点分别为:(﹣2a,0),(0,a ),∴|﹣2a|×|a|×12=4,解得:a=±4,∵当△=16﹣4a ≥0,即a ≤4时,关于x 的方程x 2+4x+a=0有解,∴使关于x 的方程x 2+4x+a=0有解,且使关于x 的一次函数y=2x+a 的图象与x 轴、y 轴围成的三角形面积恰好为4的概率为:13.故答案为:134、王红和刘芳两人在玩转盘游戏,如图,把转盘甲、乙分别分成3等份,并在每一份内标上数字,游戏规则是:转动两个转盘停止后,指针所指的两个数字之和为7时,王红胜;数字之和为8时,刘芳胜.那么这二人中获胜可能性较大的是__________.【答案】王红【解析】共9种情况,和为7的情况数有3种,王红获胜的概率为39;和为8的情况数有2种,刘芳获胜的概率为29; 王红获胜的可能性较大.5、在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球模拟.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据摸球次数(n )100150200500摸到白球次数(m )5896116295摸到白球的频率(0.580.640.580.59(1)请你估计,当n 很大时,摸到白球的频率将会接近_________(精确到0.1).(2)假如你去摸一次,你摸到白球的概率是_________,摸到黑球的概率是_________.(3)试估算口袋中黑、白两种颜色的球有多少只.【答案】(1)0.6;(2)35;25;(3)黑球8个,白球12个.【解析】(1)根据题意可得当\(n\)很大时,摸到白球的概率将会接近\(0.6\).(2)由(1)可得,摸到白球的概率是\(\frac{3}{5}\),摸到黑球的概率是\(\frac{2}{5}\);(3)由(2)可得,口袋中白球的个数\(=20\times \frac{3}{5}=12\)个;黑球的个数\(=20\times \frac{2}{5}=8\)个.6、在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2,;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣x+1的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.【答案】(1)见解析;(2);(3).【解析】(1)画树状图:共有9种等可能的结果数,它们是:(0,﹣1),(0,﹣2),(0,0),(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0);(2)在直线y=﹣x+1的图象上的点有:(1,0),(2,﹣1),所以点M(x,y)在函数y=﹣x+1的图象上的概率=;(3)在⊙O上的点有(0,﹣2),(2,0),在⊙O外的点有(1,﹣2),(2,﹣1),(2,﹣2),所以过点M(x,y)能作⊙O的切线的点有5个,所以过点M(x,y)能作⊙O的切线的概率=.。
北师大版初中数学九年级上册第三章知识点
九年级第三章
概率的进一步认识
一、用树状图或表格求概率
知识点1:用列表法求概率
1.列表法:用表格的形式反映事件发生的各种结果出现的次数和方式,以及某一事件发生的可能出现的次数和方式,并求出概率。
2.适当条件:当一次试验涉及两个因素,并且可能出现的等可能结果的数目较多时为了不重不漏地列出所有可能的结果,常采用列表法
3.具体步骤:
(1)列表;
(2)计数;确定所有等可能的结果数n和符合要求的结果数m
m
(3)求值利用概率公式P(A)=
n
知识点2:用画树状图法求概率
1.画树状图法:用树状图的形式反映事件发生的各种结果出现的次数和方式,以及某一事件发生的可能出现的次数和方式,并求出概率。
2.适当条件:当一次试验涉及两个或者更多因素时,为了不重不漏地列出可能的结果,通常采用画树状图法。
知识点3:游戏的公平性
1.游戏是否公平,即判断双方的概率是否相等
2.把不公平的游戏变公平的方法
改变游戏规则,使双方获胜的概率相等
若游戏中涉及得分情况,先计算出概率后,再根据游戏规则,改变游戏得分,使双方平均每次游戏所得分数相等。
二、用频率估计概率
1.一般地,大量重复试验中,如果事件A 发生频率
n m 稳定于某个常数p ,那么事件A 发生的概率为p 2.P(A)=n
m (当试验的结果有无限多个,或者可能出现的结果发生的可能性不相同时,我们一般通过频率来估计概率)。
六年级概率复习知识点
六年级概率复习知识点概率是数学中的一个重要概念,它描述了在一定条件下,某一事件发生的可能性大小。
对于六年级的学生来说,理解概率的基本概念和计算方法是非常重要的。
以下是一些概率复习的知识点:1. 概率的定义:- 概率是一个介于0和1之间的数,用来表示某个事件发生的可能性。
如果一个事件几乎不可能发生,它的概率接近0;如果一个事件几乎一定会发生,它的概率接近1。
2. 基本概率公式:- 事件A的概率P(A) = 事件A发生的次数 / 所有可能事件的总数。
3. 等可能事件的概率:- 当所有事件发生的可能性相等时,事件A的概率P(A) = 事件A的有利结果数 / 所有可能结果的总数。
4. 互斥事件:- 互斥事件是指两个事件不能同时发生。
如果事件A和事件B是互斥的,那么它们同时发生的概率为0。
5. 互斥事件的概率计算:- 如果事件A和事件B是互斥的,那么它们中至少有一个发生的概率P(A或B) = P(A) + P(B)。
6. 独立事件:- 独立事件是指一个事件的发生不影响另一个事件的发生。
如果事件A和事件B是独立的,那么它们同时发生的概率P(A和B) = P(A) *P(B)。
7. 条件概率:- 条件概率是指在某个事件发生的条件下,另一个事件发生的概率。
如果已知事件A发生,事件B在A发生的条件下发生的概率是P(B|A) = P(A和B) / P(A)。
8. 概率的加法原理:- 当两个事件不能同时发生时,它们中至少有一个发生的概率等于各自发生的概率之和。
9. 概率的乘法原理:- 当需要同时考虑两个独立事件的发生时,这两个事件同时发生的概率等于它们各自发生概率的乘积。
10. 概率的实验和模拟:- 通过实验或模拟来估计概率,例如抛硬币、掷骰子等。
11. 概率的应用:- 概率在日常生活中有很多应用,比如天气预报、保险计算、医学试验等。
通过这些知识点的复习,六年级的学生应该能够更好地理解概率的概念,并能够解决一些基本的概率问题。
九上概率的进一步认识知识点复习.doc
第三章概率的进一步认识一、本章知识结构图树状图或表格求概率专题一用树状图和列表法计算事件发生的概率1.一个不透明的口袋中有4个除标号外完全相同的小球,这4个小球分别标号为1,2,3,4.(1)随机摸取一个小球,求恰好摸到标号为2的小球的概率;(2)随机摸取一个小球记下标号然后放回,再随机摸取一个小球,求两次摸取的小球的标号的和为3的概率.2.甲、乙两个盒子中装有质地、大小相同的小球,甲盒中有2个白球,1个黄球和1 个蓝球;乙盒中有1个白球,2个黄球和若干个蓝球.从乙盒中任意摸取一球为蓝球的概率是从甲盒中任意摸取一球为蓝球的概率的2倍.(1)求乙盒中蓝球的个数;(2)从甲、乙两盒中分别任意摸取一球,求这两球均为蓝球的概率.专题二概率的应用3.(2009 -重庆)有一个可以自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4 (如图所示),另有一个不透明的口袋装有分别标有数0、1、3的三个小球(除数不同外,其余都相同).小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球, 小球上的数是小红的吉祥数,然后计算这两个数的积.(1)请你用画树状图或列表的方法,求这两个数的积为。
的概率;(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.4.小婷和小英做游戏,她们在一个盒子里装了标号为1、2、3、4的四个乒乓球,现在小婷从盒子里随机摸出一个乒乓球后,小英再从盒子里剩下的三个乒乓球中随机摸出第二个乒乓球,如果摸出的乒乓球上的数字和为4或5,则小婷获胜,否则小英获胜,你认为这个游戏对她们公平吗?请说理由.【知识要点】用树状图和列表法计算涉及两步实验的随机事件发生的概率.【方法技巧】列表法或画树状图法可以不重笈不遗漏的列出所有可能的结果,适合于两步完成的事件,概率问题要注意分清放回与不放回,结果是完全不一样的.石石琨靛<^教E区域50次仞次300次石子落在。
概率的进一步认识知识点中
概率的进一步认识知识点中
一、什么是概率
概率是一个变量,表示件事情发生的机率大小。
概率是数学中一种量度,也是一个抽象的概念,包含了多个事件的发生机率。
如果在一系列实验中,一个事件发生的次数越多,那么这种事件发生的可能性就越大,它具有一定的发生概率。
二、概率的定义
概率可以定义为一种事件发生的可能性,它可以通过实验测定和理论计算,可以量化描述一个事件的发生机率,用于计算任何事件是否发生。
常见的概率有绝对概率和相对概率。
绝对概率可以通过实验测定,就是一次实验中其中一种事件出现的频率与实验次数的比值,可用来测定当前实验中发生的概率。
而相对概率,是一种统计和概率比较的方法,它通过比较和计算两个事件发生概率的大小,来测定其中一个事件发生的概率。
三、概率的意义
概率是实际生活中一种重要的概念,它可以用来帮助我们确定事件发生的可能性,指导我们预测未来的情况,以及帮助我们分析从一些随机事件中受益。
此外,它对风险评估和经济分析也很有帮助。
四、概率的应用
概率可以应用于社会科学,金融学,数学,工程学,数据科学,生物学,医学等领域,常用于人们分析不确定的环境,了解系统变换,估计风险。
北师大版数学九年级上册第三章《概率的进一步认识》单元复习课件
果3枚鸟卵全部成功孵化,则3只雏鸟都为雄鸟的概
1
率为____8___.
课后作业
1.(2023·禅城区校级月考)将分别标有“最”“美”“中 ”“国”四个汉字的小球装在一个不透明的口袋中,
这些小球除汉字以外其他完全相同,每次摸球前先搅
匀,随机摸出一球,不放回,再随机摸出一球,两次
1
是乡村公路A的概率为____2___;
(2)用列表或画树状图的方法,求小华两段路程都选 省级公路的概率.
解:(2)画树状图如图:
共有6种等可能的结果,其中小华两段路程都选省级 公路的结果有1种,
∴小华两段路程都选省级公路的概率为
1 6
.
9. 甲、乙、丙三位好朋友随机站成一排拍合影,甲没有
2
站在中间的概率为____3___.
发展历程和文化价值.
1
(1)小明选择“B.雨花石彩绘”项目的概率是___4__;
(2)用画树状图或列表的方法,求小明和小刚恰好选
择同一项目采访的概率. 解:(2)依题意,列表如下:
共有16种等可能的结果,其中小明和小刚恰好选择同
一项目采访的结果有4种, ∴小明和小刚恰好选择同一项目采访的概率为
4 =1 16 4
摸出的球上的汉字组成“中国”的概率是
()
A
A. 1 B.1
6
8
C.1 4
D.5 16
2.(2023·电白区期中)学校组织学生外出集体劳动时,
为九年级学生安排了三辆车,九年级的小明与小亮都
可以从这三辆车中任选一辆搭乘,则他俩搭乘同一辆
车的概率为
A.
1 3
B.
2 3
概率复习知识点总结
概率复习知识点总结1. 随机事件和概率随机事件是指在一定条件下,可能发生也可能不发生的事件。
概率是描述随机事件出现可能性的一种数学工具,通常用P(A)来表示事件A发生的概率。
概率的取值范围是0≤P(A)≤1,其中P(A)=0表示事件A不可能发生,P(A)=1表示事件A必然发生。
2. 概率的性质(1)互斥事件的概率如果事件A和事件B是互斥事件(即事件A和事件B不可能同时发生),则有P(A∪B)=P(A)+P(B)。
(2)对立事件的概率如果事件A和事件B是对立事件(即事件A和事件B不能同时发生,且二者的并集为全集),则有P(A)+P(B)=1。
3. 条件概率条件概率是指在已知事件B发生的条件下,事件A发生的概率,通常用P(A|B)表示。
条件概率的计算公式为P(A|B)=P(A∩B)/P(B)。
4. 事件的独立性如果事件A和事件B的发生不会相互影响,即P(A|B)=P(A),P(B|A)=P(B),则称事件A 和事件B是相互独立的。
独立事件的概率计算公式为P(A∩B)=P(A)×P(B)。
5. 随机变量和概率分布随机变量是对随机事件结果的数值描述,分为离散随机变量和连续随机变量两种。
概率分布是描述随机变量概率规律的函数,可以分为离散概率分布和连续概率分布。
6. 期望和方差随机变量的期望是对随机变量取值的加权平均,通常用E(X)表示。
随机变量的方差是对随机变量取值与其期望的离差的平方和的平均值,通常用Var(X)表示。
7. 大数定律和中心极限定理大数定律指的是随着样本数量的增加,样本均值会趋向于总体均值。
中心极限定理是指当样本容量足够大时,样本均值的分布将近似服从正态分布。
8. 总结概率学是一门重要的数学学科,具有广泛的应用价值。
通过掌握概率论的基本理论和方法,可以帮助我们更好地理解和应用概率学知识,解决实际问题。
希望大家通过本文的介绍,加深对概率学知识点的理解,为今后的学习和工作打下坚实的基础。
上册 第3章 第5课时 《概率的进一步认识》单元复习
返回
数学 解:(1)搅匀后从中摸出1个盒子有3种等可能结果,所以摸出 的盒子中是A型矩形纸片的概率为பைடு நூலகம்3. (2)画树状图如下:
数,将这枚骰子掷两次,其点数之和是7的概率为 6 . 10.从1,2,-3三个数中,随机抽取两个数相乘,积是正数
1 的概率是 3 .
返回
数学 11.(2018常州)将图中的A型、B型、C型矩形纸片分别放在3 个盒子中,盒子的形状、大小、质地都相同,再将这3个盒 子装入一只不透明的袋子中.
返回
数学
第三章 概率的进一步认识
第5课时 《概率的进一步认识》单元复习
目录导航
01 精 典 范 例 02 变 式 练 习 03 巩 固 训 练
数学
精典范例
【例1】一个不透明盒子内装有大小、形状相同的四个球,
其中红球1个、绿球1个、白球2个,小明摸出一个球不放 1
回,再摸出一个球,则两次都摸到白球的概率是 6 .
返回
数学
由树状图知共有6种等可能结果,其中2次摸出的盒子的纸片 能拼成一个新矩形的有4种结果,所以2次摸出的盒子的纸片 能拼成一个新矩形的概率为46=23.
返回
数学 12.(2018江西)今年某市为创评“全国文明城市”称号,周 末团市委组织志愿者进行宣传活动.班主任梁老师决定从4 名女班干部(小悦、小惠、小艳和小倩)中通过抽签方式确定2 名女生去参加.抽签规则:将4名女班干部姓名分别写在4张 完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌 面上,梁老师先从中随机抽取一张卡片,记下姓名,再从剩 余的3张卡片中随机抽取第二张,记下姓名.
11.概率的进一步认识--知识讲解
概率的进一步认识--知识讲解【学习目标】1.进一步认识频率与概率的关系,加深对概率的理解;2.会用列表和画树状图等方法计算简单事件发生的概率;3.能利用重复试验的频率估计随机事件的概率;4.学会运用概率知识解决简单的实际问题. 【要点梳理】要点一、用树状图或表格求概率1.树状图当一次试验要涉及3个或更多个因素时,为了不重不漏地列出所有可能的结果,通常采用树形图,也称树形图、树图.树形图是用树状图形的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法. 要点诠释:(1)树形图法适用于各种情况出现的总次数不是很大时,求概率的问题;(2)在用树形图法求可能事件的概率时,应注意各种情况出现的可能性务必相同. 2.列表法当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.列表法是用表格的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法. 要点诠释:(1)列表法适用于各种情况出现的总次数不是很大时,求概率的问题; (2)列表法适用于涉及两步试验的随机事件发生的概率. 3.用列举法求概率的一般步骤(1)列举(列表、画树状图)事件所有可能出现的结果,并判断每个结果发生的可能性是否都相等; (2)如果都相等,再确定所有可能出现的结果的个数n 和其中出现所求事件A 的结果个数m ; (3)用公式计算所求事件A 的概率.即P (A )=nm. 【典型例题】类型一、用树状图或表格求概率1.同时抛掷两枚均匀硬币,正面都同时向上的概率是( ) A .13B .14C .12D .34【答案】B.【解析】可能性有(正,正),(正,反),(反,正),(反,反)4种,正面都同时向上的占1种,所以概率为14. 【总结升华】利用树状图法列出所有的可能,看符合题意的占多少. 举一反三:【变式1】袋中装有一个红球和一个黄球,它们除了颜色外其余均相同,随机从中摸出一球,记录下颜色放回袋中,充分摇匀后,再随机从中摸出一球,两次都摸到黄球的概率是( ) A .13B .12C .14D .34【答案】C.【变式2】随机地掷两次骰子,两次掷得的点数相同的概率是( ). A .13B .14C .112D .16【答案】D.2.一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,则摸到黄球的概率是( ) A.B.C.D.【答案】C.【解析】从袋中随机摸出一个球的所有可能情况有8种,每种情况可能性相同,其中是黄球的情况有3种,故摸到黄球的概率是.【总结升华】每个球被摸到的可能性相同很关键.举一反三:【变式1】从分别标有1到9数字的9张卡片中任意抽取一张,抽到所标数字是3的倍数的概率为( )A .19 B .18 C .29D .13 【答案】D.【变式2】如图是地板格的一部分,一只蟋蟀在该地板格上跳来跳去,如果它随意停留在某一个地方,则它停留在阴影部分的概率是_____.【答案】P (停在阴影部分)=23.要点二、用频率估计概率1.频率与概率的定义频率:在相同条件下重复n 次试验,事件A 发生的次数m 与试验总次数n 的比值.概率:事件A 的频率nm接近与某个常数,这时就把这个常数叫做事件A 的概率,记作P (A ). 2.频率与概率的关系事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近.可见,概率是频率的稳定值,而频率是概率的近似值.要点诠释:(1)频率本身是随机的,在试验前不能确定,无法从根本上来刻画事件发生的可能性的大小,在大量重复试验的条件下可以近似地作为这个事件的概率;(2)频率和概率在试验中可以非常接近,但不一定相等;(3)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同,两者存在一定的偏差是正常的,也是经常的.类型二、频率与概率3.关于频率和概率的关系,下列说法正确的是()A. 频率等于概率B. 当试验次数很大时,频率稳定在概率附近C. 当试验次数很大时,概率稳定在频率附近D. 试验得到的频率与概率不可能相等【思路点拨】对于某个确定的事件来说,其发生的概率是固定不变的,而频率是随着试验次数的变化而变化的.【答案】B.【解析】事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近.【总结升华】概率是频率的稳定值,而频率是概率的近似值.3.利用频率估计概率当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.要点诠释:用试验去估计随机事件发生的概率应尽可能多地增加试验次数,当试验次数很大时,结果将较为精确.类型三、利用频率估计概率4. 某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据: (1)计算并完成表格:转动转盘的次数n 100 150 200 500 800 1000落在“铅笔”的次数m 68 111 136 345 546 701落在“铅笔”的频率(2)请估计,当很大时,频率将会接近多少?(3)转动该转盘一次,获得铅笔的概率约是多少?(4)在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到 1°)【答案与解析】(1) 0.68、0.74、0.68、0.69、0.6825、0.701;(2) 0.69;(3) 由(1)的频率值可以得出P(获得铅笔)=0.69;(4) 0.69×360°≈248°.【总结升华】(1)试验的次数越多,所得的频率越能反映概率的大小;(2)频数分布表、扇形图、条形图、直方图都能较好地反映频数、频率的分布情况,我们可以利用它们所提供的信息估计概率.5.(2015春•泰兴市期末)在一个暗箱里放有a个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在20%.(1)试求出a的值;(2)从中任意摸出一个球,下列事件:①该球是红球;②该球是白球;③该球是蓝球.试估计这三个事件发生的可能性的大小,并将三个事件按发生的可能性从小到大的顺序排列(用序表示事件).【思路点拨】(1)根据频率估计概率,可得到摸到红球的概率为20%,然后利用概率公式计算a的值;(2)根据概率公式分别计算出摸出一个球是红球或白球或蓝球的概率,然后根据概率的大小判断这三个事件发生的可能性的大小.【答案与解析】解:(1)a=4÷20%=20;(2)在一个暗箱里放有20个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,蓝求有6个,所以从中任意摸出一个球,该球是红球的概率=20%;该球是白球的概率==50%;该球是蓝球的概率==30%,所以可能性从小到大排序为:①③②.【总结升华】用频率估计概率,强调“同样条件,大量试验”.举一反三:【变式1】为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼______________条.【答案】条 .【变式2】一只箱子里原有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中任意摸出两个球,用树状图或列表法列举出所有可能并求两次摸出球的都是白球的概率.(2)若从箱子中任意摸出一个球是红球的概率为53,则需要再加入几个红球? 【答案】类型四、概率的简单应用6. 把一副扑克牌中的3张黑桃牌(它们的正面牌面数字分别是3、4、5)洗匀后正面朝下放在桌面上.(1)如果从中随机抽取一张牌,那么牌面数字是的概率是多少?(2)小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽出一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽出一张牌,记下牌面数字.当张牌面数字相同时,小王胜;当张牌面数字不相同时,小李胜.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.【思路点拨】(1)问属于古典概型;(2)问可以采用列表法或树状图法列出所有的可能,计算小王和小李各自取胜的概率,再去做判断. 【答案与解析】(1)P (抽到牌面数字4)=;(2)游戏规则对双方不公平,理由如下:34 53 (3,3) (3,4) (3,5) 4(4,3)(4,4)(4,5)5 (5,3)(5,4)(5,5)一共有9种可能的结果,每种结果发生的可能性相等,∴P(牌面数字相同)=;P(牌面数字不相同)=23,∴小李胜的概率要大,游戏不公平.【总结升华】列表法可以不重不漏地列出所有可能的结果.举一反三:【变式】(2015•漳州)在一只不透明的袋中,装着标有数字3,4,5,7的质地、大小均相同的小球,小明和小东同时从袋中随机各摸出1个球,并计算这两个球上的数字之和,当和小于9时小明获胜,反之小东获胜.(1)请用树状图或列表的方法,求小明获胜的概率;(2)这个游戏公平吗?请说明理由.【答案】解:(1)根据题意画图如下:∵从表中可以看出所有可能结果共有12种,其中数字之和小于9的有4种,∴P(小明获胜)==;(2)∵P(小明获胜)=,∴P(小东获胜)=1﹣=,∴这个游戏不公平.【巩固练习】一、选择题1. 下列说法正确的是()①试验条件不会影响某事件出现的频率;②在相同的条件下实验次数越多,就越有可能得到较精确的估计值,但各人所得的值不一定相同;③如果一枚骰子的质量分布均匀,那么抛掷后每个点数出现的机会均等;④抛掷两枚质量分布均匀的相同的硬币,出现“两个正面”、“两个反面”、“一正一反”的机会相同.A.①②B.②③C.③④D.①③2. 小明和小亮做游戏,先是各自背着对方在纸上写一个正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏()A.对小明有利 B.对小亮有利C.游戏公平 D.无法确定对谁有利3. (2014•山西)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率4.在一个不透明的袋子中装有4个除颜色外其余完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( )A.B.C.D .5.从标有码1到100的100张卡片中,随意地抽出一张,其码是3的倍数的概率是()A.33100B.34100C.310D.不确定6.随机从三男一女四名学生的学中抽取两人的学,被抽中的两人性别不同的概率为()A.14B.13C.12D.34二. 填空题7. 用下面的两个圆盘进行“配紫色”游戏,则配得紫色的概率为______________.8. (2014春•海阳市期中)甲、乙两人玩游戏,把一个均匀的小正方体的每个面上分别标上数字1,2,3,4,5,6,任意掷出小正方体后,若朝上的数字比3大,则甲胜;若朝上的数字比3小,则乙胜,你认为这个游戏对甲、乙双方公平吗?.9. 从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100 400 800 1 000 2 000 5 000发芽种子粒数85 398 652 793 1 604 4 005发芽频率0.850.7450.8510.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率约为(精确到0.1).10.有大小、形状、颜色完全相同的5个乒乓球,每个球上分别标有数字1、2、3、4、5中的一个,将这5个球放入不透明的袋中搅匀,如果不放回的从中随机连续抽取两个,则这两个球上的数字之和为偶数的概率是___________.11.在一个不透明的盒子中装有2个白球,个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为13,则___________.12.为了估计新疆巴音布鲁克草原天鹅湖中天鹅的数量,先捕捉10只,分别作上记后放飞;待它们完全混合于天鹅群后,重新捕捉40只天鹅,发现其中有2只有标记,据此可估算出该地区大约有天鹅只。
概率的进一步认识(知识点汇总 北师9上)
第三章概率的进一步认识一、用树状图或表格求概率1.利用树状图或表格,我们可以不重复、不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.2.简单事件概率的计算方法:(1)对于一次完成的事件,直接用部分与总体的比例关系求概率;(2)对于两次完成的事件,可通过列表法或画树状图求概率;(3)对于三次或三次以上完成的事件,通过画树状图求概率.注意:用画树状图或列表的方法求概率:列表法可以不重复、不遗漏地列出所有可能性的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.解题时还要注意题目是放回事件还是不放回事件.二、用概率判断游戏的公平性1.若某游戏不计得分情况,当双方获胜的概率相同,则游戏公平;当双方获胜的概率不相同,则游戏不公平.2.判断游戏公平的方法有:在得分相同的情况下,判断游戏公平性看双方获胜的概率是否相等.在得分不同的情况下,要用各自获胜概率与得分乘积作为判断获胜的标准.注意:公平性问题是概率在日常生活中的一个重要应用,从概率的角度讲,所谓公平就是指有关各方面获胜的概率相等,解决这类问题的关键是准确地计算概率.3.利用转盘等工具求事件的概率时,各种结果的可能性相同,只需要面积相等,如果问题中各部分的面积不相等,需要利用相关的几何知识转换成等面积.注意:利用表格或画树状图的方法求具有两步试验的事件的概率,常与有理数的运算、函数、平面几何、数据的收集与整理等知识相结合,注意转化思想的运用.三、用频率估计概率1.当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.2.利用频率估计概率的数学依据是大数定律:当试验次数很大时,试验的频率渐趋稳定于其概率附近.注意:1.频率与概率的联系与区别:联系:概率是由一系列频率值估计得到的.区别:频率是波动不确定的,概率是稳定确定的.2.随机事件的概率是一个固定值,而事件发生的频率是随着试验的次数变化而波动,只有当大量重复试验时,事件的频率才逐步稳定在事件发生的概率附近.相关知识点链接:频数与频率频数:在数据统计中,每个对象出现的次数叫做频数,频率:每个对象出现的次数与总次数的比值为频率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 《概率的进一步认识》知识点复习姓名:_______知识点1:求“连续两次完成某事件”的概率1、有两辆车按1,2编号,舟舟和嘉嘉两人可任意选坐一辆车.则两个人同坐2号车的概率为________.2、抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不见的情况下随机摸出两只袜子,它们恰好同色的概率是________.3、盒子里放有三张分别写有整式a +1,a +2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是________.4、“服务社会,提升自我.”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队.若从该小分队任选两名同学进行交通秩序维护,则恰是一男一女的概率是________.5、一个袋中有2个红球,2个黄球,每个球除颜色外都相同,从中一次摸出2个球,2个球都是红球的可能性是( ) A.21 B. 31 C. 41 D. 61 6.若从长度是3,5,6,9的四条线段中任取三条,则能构成三角形的概率是( ) A.21 B.43 C.31 D.41 7.在x 2□4x □4的空格中,任意填上“+”或“-”,在所得到的整式中,恰好是完全平方式的概率是( )A .1 B.21 C.31 D.41 8.假定鸟蛋孵化后,雏鸟为雌与雄时概率相同,如果三枚蛋全部成功孵化,则三只雏鸟中恰有两只雄鸟的概率是( ) A.61 B.83 C.85 D.32 9.我市辖区内景点较多,李老师和刚高中毕业的儿子准备从A ,B ,C 列三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站,那么他们都选择B 景点的概率是_ _.10.从甲地到乙地有A 1,A 2两条路线,从乙地到丙地有B 1,B 2,B 3三条路线,从丙地到丁地有C 1,C 2两条路线,一个人任意选了一条从甲地经乙地、丙地到丁地的路线,求他选到B 2路线的概率.11.一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④,随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是( ) A.161 B.163 C.41 D.165 12.一枚质地均匀的正方体骰子,连续抛掷两次,两次点数相同的概率是( )A.21B.31C.41D.61 13.暑假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动.那么两人选到同一社区参加实践活动的概率是( ) A.21 B.31 C.61 D.91 14.现有四张完全相同的卡片,上面分别标有数字-1、-2、3、4,将卡片背面朝上洗匀,然后从中随机地抽取两张,则这两张卡片上数字之积为负数的概率是____.15.(2014·齐齐哈尔)从2、3、4这三个数中任取两个数字组成一个两位数,其中能被3整除的两位数的概率是____.16.在一个不透明的布袋里装有4个大小、质地都相同的乒乓球,球面上分别标有数字1,-2,3,-4,小明先从中随机摸出一个乒乓球(不放回),再从剩下的三个球中随机摸出第二个乒乓球.(1)共有____种可能的结果;(2)请求出两次摸出乒乓球数字之积为奇数的概率.17.(2014·武汉)袋中装有大小相同的2个红球和2个绿球.(请用“画树状图”或“列表”等方法写出分析过程)(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少请直接写出结果知识点2:“不放回”型概率题1、 (2014?玉林)一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( ) A.21 B. 41 C. 61 D. 121 2.(2014?武汉)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少补充例题.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄,若从中一次随机抽取两个,则这两个粽子都没有蛋黄的概率是___.(请用“画树状图”或“列表”等方法写出分析过程)知识点3:判断游戏的公平性1.甲、乙两人用两个骰子做游戏,将两个骰子同时抛出,如果出现两个5点,那么甲赢;如果出现一个4点和一个6点,那么乙赢;如果出现其他情况,那么重新抛掷.你对这个游戏公平性的评价是_________.(填“公平”“对甲有利”或“对乙有利”)2.甲、乙两人玩抽扑克牌游戏,游戏规则是:从牌面数字分别为5,6,7的三张扑克牌中,随机抽取一张,放回后,再随机抽取一张.若所抽的两张牌面数字的积为奇数,则甲获胜;若所抽的两张牌面数字的积为偶数,则乙胜.这个游戏________.(填“公平”或不公平) 3.抛掷一枚质地均匀的硬币,如果每掷一次出现正面与反面的可能性相同,那么连掷三次硬币,出现三次正面朝上的概率为( )4.小球从A点入口往下落,在每个交叉口都有向左向右的可能,且可能性相等,则小球最终从E点落出的概率为( )5.某校安排三辆车组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为( )6.某校九年级(1)班举行演讲比赛,共有甲、乙、丙三位选手,班主任让三位选手抽签决定演讲的先后顺序,从先到后恰好是甲、乙、丙的概率是( )7.(2014·咸宁)小亮与小明一起玩“石头、剪刀、布”的游戏,两同学同时出“剪刀”的概率是________.8.(2014·汕尾)一个口袋中有3个大小相同的小球,球面上分别写有数字1,2,3,从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.(1)请用树状图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率.9.(2014·云南)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗请说明理由10.(2014·南京)从甲、乙、丙3名同学中随机抽取环保志愿者,求下列事件的概率;(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.11.(2014·徐州)某学习小组由3名男生和1名女生组成,在一次合作学习后,开始进行成果展示.(1)如果随机抽取1名同学单独展示,那么女生展示的概率为_____;(2)如果随机抽取2名同学共同展示,求同为男生的概率.12、甲布袋中有三个红球,分别标有数字1,2,3;乙布袋中有三个白球,分别标有数字2,3,4.这些球除颜色和数字外完全相同.小亮从甲袋中随机摸出一个红球,小刚从乙袋中随机摸出一个白球.(1)用画树状图或列表的方法,求摸出的两个球上的数字之和为6的概率;(2)小亮和小刚做游戏,规则是:若摸出的两个球上的数字之和为奇数,小亮胜;否则,小刚胜.你认为这个游戏公平吗为什么知识点4:用树状图或列表的方法求“配紫色”的概率1.用如图的两个转盘(均匀分成五等份)进行“配紫色”游戏,配成紫色(也就是两个转盘分别转出的一个是红,一个是蓝)的概率是( ) A.2513 B.256 C.2536 D.56 2.如右图,是一个可以自由转动的转盘,它被分成三个面积相等的扇形,任意转动转盘两次,当转盘停止后,指针所指颜色相同的概率为( )A. 31B.32C. 91D. 61 3.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过 该十字路口全部继续直行的概率为( )A.31B.32C.91D.21 4.(2014·襄阳)从长度分别为2,4,6,7的四条线段中随机抽取三条,能构成三角形的概率是______.5.如图是两个可以自由转动的转盘,每个转盘被分成了三个相等的扇形,小明和小亮用它们做配紫色(红色与蓝色能配成紫色)游戏,你认为配成紫色与配不成紫色的概率相同吗6.(2014·扬州)商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率是________;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图或列表法求出他恰好买到雪碧和奶汁的概率.7.小英和小丽用两个转盘玩“配紫色”的游戏,配成紫色小英赢,否则小丽赢,这个游戏对双方公平吗请说明理由.(注:红色+蓝色=紫色)知识点5:频率、概率的概念1.(2014·山西)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是( )A .频率就是概率B .频率与试验次数无关C .频率是随机的,与概率无关D .随着试验次数的增加,频率一般会越来越接近概率2.两人各抛一枚硬币,则下面说法正确的是( )A .每次抛出后出现正面或反面是一样的B .抛掷同样的次数,则出现正、反面的频数一样多C .在相同条件下,即使抛掷的次数很多,出现正、反面的频数也不一定相同D .当抛掷次数很多时,出现正、反面的次数就相同了知识点6:利用频率估计概率1.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别.摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球( )A .12个B .16个C .20个D .30个2.做重复试验:抛掷同一枚啤酒瓶盖1 000次.经过统计得“凸面向上”的频率约为,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为( )A .B .C .D .3.在一个不透明的盒子中装有n 个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于,那么可以推算出n 大约是____.4.一只不透明的口袋中放有若干只红球和白球,这两种球除了颜色以外没有任何其他区别,将袋中的球摇均匀.每次 从口袋中取出一只球记录颜色后放回再摇均匀,经过大量的试验,得到取出红球的频率是41,求: (1)取出白球的概率是多少(2)如果袋中的白球有18个,那么袋中的红球有多少个5.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( )A .3个B .不足3个C .4个D .5个或5个以上6.下列试验中,概率最大的是( )A .抛掷一枚质地均匀的硬币,出现正面的概率B .抛掷一枚质地均匀的正方体骰子(六个面分别刻有数字1到6),掷出的点数为奇数的概率C .在一副洗匀的扑克(背面朝上)中任取一张,恰好为方块的概率D .三张同样的纸片,分别写有数字2、3、4,洗匀后背面向上,任取一张恰好为偶数的概率7.一个口袋中装有大小完全一样的红、黄、绿三种颜色的玻璃球108个,小明通过多次摸球试验后,发现摸到红球的频率为25%,摸到黄球的频率为45%,摸到绿球的频率为30%,则可估计口袋中有红球____个,有黄球___个,有绿球____个.8.在一个不透明的口袋中装有仅颜色不同的红、白两种小球,其中红球3只,白球n 只,若从袋中任取一个球,摸出 白球的概率是43,则n =___. 9.儿童节期间,某公园游戏场举行一场活动.有一种游戏的规则是:在一个装有8个红球和若干白球(每个球除颜色外,其他都相同)的袋中,随机摸一个球,摸到一个红球就得到一个海宝玩具.已知参加这种游戏的儿童有40 000人,公园游戏场发放海宝玩具8 000个.(1)求参加此次活动得到海宝玩具的频率(2)请你估计袋中白球的数量接近多少个。