2018北京市海淀区初三年级数学期中试题及答案解析

合集下载

2018北京市海淀区初三(上)期中数学

2018北京市海淀区初三(上)期中数学

18.(1)问题发现:如图 1,如果△ACB 和△CDE 均为等边三角形,点 A、D、E 在同一直线上,连接 BE.则 AD 与 BE
的数量关系为
;∠AEB 的度数为
度.
(2)拓展探究:如图 2,如果△ACB 和△CDE 均为等腰三角形,∠ACB=∠DCE=90°,点 A、D、E 在同一直线上,连
接 BE,判断线段 AE 与 BE 的位置关系,并说明理由.
∴S= BQ·BP=
=-t2+3t(0≤t≤3),
观察只有 C 选项符合, 故选 C. 【点睛】本题考查了二次函数的应用,动点问题的函数图象,熟练掌握二次函数的图象及性质是解题的关键. 二.填空题(共 8 小题,满分 24 分,每小题 3 分) 9. 【答案】(﹣1,2). 【解析】 试题分析:根据“平面直角坐标系中任意一点 P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点, 横纵坐标都变成相反数”解答. 解:根据关于原点对称的点的坐标的特点, ∴点(1,﹣2)关于原点过对称的点的坐标是(﹣1,2). 故答案为:(﹣1,2). 考点:关于原点对称的点的坐标. 10. 【答案】y=﹣x2+4.
= (x2﹣12x)+21
= [(x﹣6)2﹣36]+21
= (x﹣6)2+3,
故 y= (x﹣6)2+3,向左平移 2 个单位后,
得到新抛物线的解析式为:y= (x﹣4)2+3. 故选 D. 【点睛】本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关 键. 3. 【答案】D 【解析】
3 / 23
22.已知关于 x 的方程 x2﹣2x+m=0 有两个不相等的实数根 x1、x2 (1)求实数 m 的取值范围; (2)若 x1﹣x2=2,求实数 m 的值. 23.解方程:x2+6x﹣2=0. 24.在平面直角坐标系中,平行四边形 ABOC 如图放置,点 A、C 的坐标分别是(0,4),(﹣1,0),将此平行四边形 绕点 O 顺时针旋转 90°,得到平行四边形 A′B′C′D′. (1)若抛物线经过点 C、A、A′,求此抛物线的解析式; (2)点 M 是第一象限内抛物线上的一动点,为点 M 在何处时,△AMA′的面积最大?最大面积是多少?并求出此到 点 M 的坐标.

北京市海淀区2018届中考一模数学试题含答案

北京市海淀区2018届中考一模数学试题含答案

1 AB BD . 2
∴ ABC DCB .………………2 分
∵ DC∥EF , ∴ CBF DCB .………………3 分 ∴ CBF ABC . ∴ BC 平分 ABF .………………5 分
20.解:(1)∵ m 是方程的一个实数根,
∴ m 2m 3m m 1 0 .………………1 分
A O C
F
E M B D
DOF 90 .
F
D 90 2 .………………2 分
(2)图形如图所示.连接 OM . ∵ AB 为 O 的直径, ∴ O 为 AB 中点, AEB 90 . ∵ M 为 BE 的中点,
∴ OM ∥AE , OM =
1 AE .………………3 分 2
1 3r .………………5 分 2
∴ OM =
∵ FM = 7 , ∴(
1 3r ) 2 +r 2 ( 7) 2 . 2 解得 r =2 . (舍去负根)
∴ O 的半径为 2.………………6 分
24.C………………1 分 80 x 85 85 x 90 8 10 ………………2 分 (2)去年的体质健康测试成绩比今年好. (答案不唯一,合理即可)………………3 分 去年较今年低分更少,高分更多,平均分更大. (答案不唯一,合理即可) ………………4 分 (3)70.………………6 分
m 2 , 解不等式组 得 0 m 4 .………………3 分 2 2 2 m
m y , 2 满足 当点 Q 1, ( m >0)时, x y x m
解不等式组
2 m, 得 m 3 .………………4 分 2 1 m
2 2
ቤተ መጻሕፍቲ ባይዱ

2017-2018学年北京市海淀区九年级上期中数学试题含答案

2017-2018学年北京市海淀区九年级上期中数学试题含答案

第 1 页 共 14 页初三第一学期期中学业水平调研数学2017.11学校班级___________姓名成绩 一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项前的字母填在表格中相应的位置.1.一元二次方程3610x x --=的二次项系数、一次项系数、常数项分别是 A .3,6,1B .3,6,1-C .3,6-,1D .3,6-,1-2.把抛物线2y x =向上平移1个单位长度得到的抛物线的表达式为 A .21y x =+ B .21y x =- C .21y x =-+D .21y x =--3.如图,A ,B ,C 是⊙O 上的三个点. 若∠C =35°,则∠AOB 的 大小为 A .35° B .55° C .65° D .70° 4.下列手机手势解锁图案中,是中心对称图形的是A B C D 5.用配方法解方程2420x x -+=,配方正确的是 A .()222x -= B.()222x +=C .()222x -=-D .()226x -=6.风力发电机可以在风力作用下发电.如图的转子叶片图案绕中心旋转n °后能与原来的图案重合,那么n 的值可能是A .45B .60C .90D .120第 1 页 共 14 页7.二次函数21y ax bx c =++与一次函数2y mx n =+2ax bx c mx n ++>+的x 的取值范围是A .30x -<<B .3x <-或0x >C .3x <-或1x >D .03x <<8.如图1,动点P 从格点A 出发,在网格平面内运动,设点P 走过的路程为s ,点P 到直线l 的距离为d . 已知d 与s 的关系如图2所示.下列选项中,可能是点P 的运动路线的是A B C D二、填空题(本题共24分,每小题3分)9.点P (1-,2)关于原点的对称点的坐标为________. 10.写出一个图象开口向上,过点(0,0)的二次函数的表达式:________.11.如图,四边形ABCD 内接于⊙O ,E 为CD 的延长线上一点. 若∠B =110°,则∠ADE 的大小为________. 12.抛物线21y x x =--与x 轴的公共点的个数是________. 13.如图,在平面直角坐标系xOy 中,点A ,点B 的坐标分别 为(0,2),(1-,0),将线段AB 绕点O 顺时针旋转,若点A 的对应点A '的坐标为(2,0),则点B 的对应点B '的 坐标为________.14.已知抛物线22y x x =+经过点1(4)y -,,2(1)y ,,则1y ________2y (填“>”,“=”,或“<”).15.如图,⊙O 的半径OA 与弦BC 交于点D ,若OD =3,AD =2, BD =CD ,则BC 的长为________.lllll。

2018年北京海淀区中考数学一模试题有答案及评分标准精品

2018年北京海淀区中考数学一模试题有答案及评分标准精品

A
D
B
所以直线 AD 即为所求.
C
l
老师说:“小云的作法正确. ” 请回答:小云的作图依据是 ________________________________________ .
三、解答题(本题共 72 分,第 17~26 题,每小题 5 分,第 27 题 7 分,第 28 题 7 分,第 29 题 8 分)
亿元票房夺冠, 《熊出没 2》比 2018 年第一部的票房又增长了 20%,《十万个冷笑话》 以 1. 2 亿元票房成绩勉强破亿. 另外 5 部来自海外动画电影, 其中美国两部全球热映的
动画电影《超能陆战队》 和《小黄人大眼萌》 在中国内地只拿下 5. 26 亿元和 4. 36 亿元 票房,而同样来自美国的《精灵旅社 2》收获 1. 2 亿元票房,日本的《哆啦 A 梦之伴我
3.一个不透明的口袋中装有 3 个红球和 12 个黄球,这些球除了颜色 外,无其他差别,从中随机摸出一个球,恰好是红球的概率为
A. 1B. 3 44
C. 1 5
D. 4 5
4.下列图形中,是轴对称图形但不是中心对称图形的是
A . B. C. D. 5.如图,在 ABCD 中, AB= 3, BC=5 ,∠ ABC 的平分线
海淀区九年级第二学期期中练习
数学
学校班级 ___________姓名成绩
2018.5
考 1.本试卷共 8 页,共三道大题, 29 道小题,满分 120 分,考试时间 120 分钟。 生 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。 须
14.在下列函数①
y
2x 1;② y
x2
2x ;③ y

2017年-2018北京市海淀区初三年级第一学期期中数学试题(附答案解析)

2017年-2018北京市海淀区初三年级第一学期期中数学试题(附答案解析)

2017年-2018北京市海淀区初三年级第⼀学期期中数学试题(附答案解析)AOA '海淀区九年级第⼀学期期中练习数学 2016.11学校姓名学号⼀、选择题(本题共30分,每⼩题3分)下⾯各题均有四个选项,其中只有⼀个..是符合题意的.请将正确选项前的字母填在表格中相应的位置.题号 1 2 3 4 5 6 7 8 9 10 答案1.⼀元⼆次⽅程2320x x --=的⼆次项系数、⼀次项系数、常数项分别是 A .3,1-,2- B .3,1,2- C .3,1-,2 D .3,1,22.⾥约奥运会后,受到奥运健⼉的感召,群众参与体育运动的热度不减,全民健⾝再次成为了⼀种时尚,球场上也出现了更多年轻⼈的⾝影.请问下⾯四幅球类的平⾯图案中,是中⼼对称图形的是A B C D3.⽤配⽅法解⽅程2620x x ++=,配⽅正确的是A .()239x += B .()239x -= C .()236x += D .()237x +=4.如图,⼩林坐在秋千上,秋千旋转了80°,⼩林的位置也从 A 点运动到了A '点,则'OAA ∠的度数为 A .40° B .50° C .70° D .80°5.将抛物线22y x =平移后得到抛物线221y x =+,则平移⽅式为 A .向左平移1个单位B .向右平移1个单位C .向上平移1个单位D .向下平移1个单位6.在△ABC 中,90C ?∠=,以点B 为圆⼼,以BC 长为半径作圆,点A 与该圆的位置关系为 A .点A 在圆外 B .点A 在圆内C .点A 在圆上 D .⽆法确定 7.若扇形的圆⼼⾓为60°,半径为6,则该扇形的弧长为C .3πD .4π 8.已知2是关于x 的⽅程230x ax a +-=的根,则a 的值为A .4-B .4C .2D .459.给出⼀种运算:对于函数nx y =,规定1-='n nx y .例如:若函数41y x =,则有314y x '=.函数32y x =,则⽅程212y '=的解是A .14x =,24x =-B .123x =,223x =-C .0==x xD .2x =,2x =-10.太阳影⼦定位技术是通过分析视频中物体的太阳影⼦变化,确定视频拍摄地点的⼀种⽅法.为了确定视频拍摄地的经度,我们需要对⽐视频中影⼦最短的时刻与同⼀天东经120度影⼦最短的时刻.在⼀定条件下,直杆的太阳影⼦长度l (单位:⽶)与时刻t (单位:时)的关系满⾜函数关系2l at bt c =++(a ,b ,c 是常数),如图记录了三个时刻的数据,根据上述函数模型和记录的数据,则该地影⼦最短时,最接近的时刻t 是A .12.75B .13C .13.33D .13.5⼆、填空题(本题共18分,每⼩题3分) 11.⽅程02=-x x 的解为.12.请写出⼀个对称轴为3x =的抛物线的解析式.13.如图,⽤直⾓曲尺检查半圆形的⼯件,其中合格的是图(填“甲”、“⼄”或“丙”),你的根据是_____________________________________________________________________________________________.14.若关于x 的⽅程220x x k --=有两个相等的实数根,则k 的值是.15.如图,△ABC 内接于⊙O ,∠C =45°,半径OB 的长为3,则AB 的长为.丙1413120.350.40.6Ol (⽶)t (时)CBAOyxO –1–2–3123–1–2–312316.CPI 指居民消费价格指数,反映居民家庭购买消费商品及服务的价格⽔平的变动情况.CPI 的涨跌率在⼀定程度受到季节性因素和天⽓因素的影响.根据北京市2015年与2016年CPI 涨跌率的统计图中的信息,请判断2015年1~8⽉份与2016年1~8⽉份,同⽉份⽐较CPI 涨跌率下降最多的⽉份是⽉;请根据图中提供的信息,预估北京市2016年第四季度CPI 涨跌率变化趋势是,你的预估理由是.三、解答题(本题共72分,第17~26题,每⼩题5分,第27题7分,第28题7分,第29题8分) 17.解⽅程:246x x +=.18.求抛物线22y x x =-的对称轴和顶点坐标,并画出图象.19.如图,A ,D 是半圆上的两点,O 为圆⼼,BC 是直径,∠D =35°,求∠OAC 的度数.D B O C A图220.已知:2230m m +-=.求证:关于x 的⽅程2220x mx m --=有两个不相等的实数根.21.如图,在等边△ABC 中,点D 是 AB 边上⼀点,连接CD ,将线段CD 绕点C 按顺时针⽅向旋转60°后得到CE ,连接AE .求证:AE ∥BC .22.如图1,在线段AB 上找⼀点C ,C 把AB 分为AC 和CB 两段,其中BC 是较⼩的⼀段,如果2BC AB AC ?=,那么称线段AB 被点C 黄⾦分割.⾦分割,已知太和殿到内⾦⽔桥的距离约为100丈,求太和门到太和殿之间的距离(5的近似值取2.2).A C B图1B CDA EDOMB EC FA23.如图1是某公园⼀块草坪上的⾃动旋转喷⽔装置,这种旋转喷⽔装置的旋转⾓度为240°,它的喷灌区是⼀个扇形.⼩涛同学想了解这种装置能够喷灌的草坪⾯积,他测量出了相关数据,并画出了⽰意图.如图2,A ,B 两点的距离为18⽶,求这种装置能够喷灌的草坪⾯积.24.下表是⼆次函数2y ax bx c =++的部分x ,y 的对应值:x… 1-12-12 132 252 3 … y…m141-74- 2-74- 1-142…(1)⼆次函数图象的开⼝向,顶点坐标是,m 的值为;(2)当0x >时,y 的取值范围是;(3)当抛物线2y ax bx c =++的顶点在直线y x n =+的下⽅时,n 的取值范围是.25.如图,在△ABC 中,AB =BC ,以AB 为直径的⊙O 分别交AC ,BC 于点D ,E ,过点A 作⊙O 的切线交BC的延长线于点F ,连接AE .(1)求证:∠ABC =2∠CAF ;(2)过点C 作CM ⊥AF 于M 点,若CM = 4,BE = 6,求AE 的长.图1OA B240°图2xy–1–2–3–4–512345–1–2–3–4–512345O 26.⼩华在研究函数1y x =与22y x =图象关系时发现:如图所⽰,当1x =时,11y =,22y =;当2x =时,12y =,24y =;…;当x a =时,1y a =,22y a =.他得出如果将函数1y x =图象上各点的横坐标不变,纵坐标变为原来的2倍,就可以得到函数22y x =的图象.类⽐⼩华的研究⽅法,解决下列问题:(1)如果函数3y x =图象上各点横坐标不变,纵坐标变为原来的3倍,得到的函数图象的表达式为;(2)①将函数2y x =图象上各点的横坐标不变,纵坐标变为原来的倍,得到函数24y x =的图象;②将函数2y x =图象上各点的纵坐标不变,横坐标变为原来的2倍,得到图象的函数表达式为.(2)若抛物线与y 轴正半轴交于点A ,其对称轴与x 轴交于点B ,当△OAB 是等腰直⾓三⾓形时,求n 的值;(3)点C 的坐标为(3,0),若该抛物线与线段OC 有且只有⼀个交点,求n 的取值范围. xyy 2=2xOy 1=x–1–2–31234567–11234528.在菱形ABCD 中,∠BAD =α,E 为对⾓线AC 上的⼀点(不与A ,C 重合),将射线EB 绕点E 顺时针旋转β⾓之后,所得射线与直线AD 交于F 点.试探究线段EB 与EF 的数量关系.⼩宇发现点E 的位置,α和β的⼤⼩都不确定,于是他从特殊情况开始进⾏探究.(1)如图1,当α=β=90°时,菱形ABCD 是正⽅形.⼩宇发现,在正⽅形中,AC 平分∠BAD ,作EM ⊥AD 于M ,EN ⊥AB 于N .由⾓平分线的性质可知EM =EN ,进⽽可得EMF ENB △≌△,并由全等三⾓形的性质得到EB 与EF 的数量关系为.(2)如图2,当α=60°,β=120°时,①依题意补②请帮⼩宇继续探究(1)的结论是否成⽴.若成⽴,请给出证明;若不成⽴,请举出反例说明;(3)⼩宇在利⽤特殊图形得到了⼀些结论之后,在此基础上对⼀般的图形进⾏了探究,设∠ABE =γ,若旋转后所得的线段EF 与EB 的数量关系满⾜(1)中的结论,请直接写出⾓α,β,γ满⾜的关系:.FD CA BEM CD A N B E图1 图2长度为点P 到AOB ∠的距离,记为()d P AOB ∠,.特别的,当点P 在AOB ∠的边上时,()0d P AOB ∠=,.在平⾯直⾓坐标系xOy 中,A ()40,.(1)如图1,若M (0,2),N (1-,0),则()d M AOB ∠=,,()d N AOB ∠=,;(2)在正⽅形OABC 中,点B (4,4).①如图2,若点P 在直线34y x =+上,且()22d P AOB ∠=,,求点P 的坐标;②如图3,若点P 在抛物线24y x =-上,满⾜()22d P AOB ∠=,的点P 有个,请你画出⽰意图,并标出点P .图2xyy=3x+4CBA–1–2–3123456–1–2–3123456O21y xBAO 60°-12图3xyOCBA–1–2–3–4–512345–1–2–3–4–5123456789数学答案 2016.11⼀、选择题(本题共30分,每⼩题3分)题号 1 2 3 4 5 6 7 8 9 10 答案ACDBCA⼆、填空题(本题共18分,每⼩题3分)11.1201x x ==,; 12.()23y x =-(答案不唯⼀);13.⼄,90°的圆周⾓所对的弦是直径; 14.1-; 15.32;16.8,第⼆空填“上涨”、“下降”、“先减后增”等,第三空要能⽀持第⼆空的合理性即可.三、解答题(本题共72分,第17~26题,每⼩题5分,第27题7分,第28题7分,第29题8分) 17.解法⼀:解:24410x x ++=, ----------------------------------------------------------------------------------1分 ()2210x +=, -------------------------------------------------------------------------------------3分210x =-±,1210x =-+,2210x =--. -------------------------------------------------------------5分解法⼆:解:2460x x +-=, ----------------------------------------------------------------------------------1分()2244416-4221b ac b x a-±-??-±-==, ----------------------------------------------------3分210x =-±,1210x =-+,2210x =--. -------------------------------------------------------------5分18.解:()211y x =--, -----------------------------------------------------------------------------------1分顶点为()11-,. ----------------------------------------------------------------------------------3分yxO –1–2–31223----------------------------------------------------------------------------5分19.解法⼀:解:∵35D ∠=°,∴35B D ∠=∠=°. ---------------------------------------------1分∵BC 是直径,∴90BAC ∠=°.∴90ACB ∠=°55ABC -∠=°. -------------------------------3分∵OA OC =,∴55OAC OCA ∠=∠=°. --------------------------------------5分解法⼆:解:∵35D ∠=°,∴270AOC D ∠=∠=°. ---------------------------------------------------------------------1分∵OA OC =,∴OAC OCA ∠=∠, ----------------------------------------------------------------------------3分∵180OAC OCA AOC ∠+∠+∠=°,∴55OAC ∠=°. ---------------------------------------------------------------------------------5分20.解:∵2230m m +-=,∴223m m +=. ---------------------------------------------------------------------------------1分∴248m m ?=+ -----------------------------------------------------------------------------------2分 ()242120m m =+=>, ------------------------------------------------------------------4分∴原⽅程有两个不相等的实数根. -------------------------------------------------------------5分21.解:∵等边ABC △,∴AC BC =,60B ACB ∠=∠=°.DB O CAA E∵线段CD 绕点C 顺时针旋转60°得到CE ,∴CD CE =,60DCE ∠=°.∴DCE ACB ∠=∠.------------------------------------------------1分即1223∠+∠=∠+∠.∴13∠=∠. -----------------------------------------------------------------------------------------2分在BCD △与ACE △中,13BC AC CD CE =??∠=∠??=?,∴EAC ACB ∠=∠.--------------------------------------------------------------------------------4分∴AE BC ∥. --------------------------------------------------------------------------------------5分22.解:设太和门到太和殿的距离为x 丈, -----------------------------------------------------------1分由题意可得,()2100100x x =-. ----------------------------------------------------------------------------3分150505x =-+,250505x =--(舍). --------------------------------------------4分 5050 2.260x ≈-+?=.答:太和门到太和殿的距离为60丈. ------------------------------------------------------------5分 23.解:过点O 作OC AB ⊥于C 点.∵OC AB ⊥,18AB =,∴192AC AB ==. ---------------------------------------1分∵OA OB =,360AOB ∠=°240-°120=°,∴1602AOC AOB ∠=∠=°. ---------------------------2分在Rt OAC △中,222OA OC AC =+,⼜∵12OC OA =,∴63r OA ==. -----------------------------------------4分∴240360S =πr 2=72π(m 2).----------------------------------5分24.(1)上;()12-,;2;(说明:每空1分) ------------------------------------------------------3分 240°A C BO(3)3n >-. -------------------------------------------------------------------------------------------5分 25.(1)连接BD ,∵AB 是直径,∴90ADB ∠=°. --------------------------1分∵AF 是⊙O 的切线,∴90BAF ∠=°.∴1290BAC BAC ∠+∠=∠+∠=°.∴12∠=∠. ∵AB=BC ,∴2122ABC ∠=∠=∠. ---------------------------------------------------------------------2分(2)∵12334∠=∠=∠∠=∠,,∴24∠=∠.∵AB 是直径,∴CE ⊥AE .--------------------------------------------------------------------------------------------3分∵CM ⊥AF ,CM =4,∴CE =CM =4. --------------------------------------------------------------------------------------4分∵BE =6,∴AB =BC =BE +EC =10.在Rt △ABE 中,22221068AE AB BE =-=-=. ----------------------------------------------------5分26.(1)9y x =; -------------------------------------------------------------------------------------------1分(2)①4; ----------------------------------------------------------------------------------------------3分②214y x =. --------------------------------------------------------------------------------------5分27.(1)4-. ----------------------------------------------------------------------------------------------1分(2)241y x x n =-+-,4321AB EC FMOD()01A n -,,()20B , , ------------------------------------------------------------------2分 12n -=,3n =. --------------------------------------------------------------------------------------------3分(3)如图1,当抛物线顶点在x 轴上时,5n =,------------------------------------------------4分如图2,当抛物线过点C (3,0)时,4n =,--------------------------------------------------5分如图3,当抛物线过原点时,1n =, ---------------------------------------------------------6分结合图象可得,14n ≤<或5n =.------------------------------------------------------------7分–1–2–3123–1–2–3123O xyC –1–2–3123–1–2–3123y xO C –1–212345–1–2–3–412O xy C 28.(1)EB=EF ; ------------------------------------------------------------------------------------------1分(2)①;A BCDEF ---------------------------------------------------------------------2分②结论依然成⽴EB =EF . -----------------------------------3分证法1:过点E 作EM ⊥AF 于M ,EN ⊥AB 于N .∵四边形ABCD 为菱形,∴12∠=∠.∵EM ⊥AF ,EN ⊥AB .∴=90FME N ∠=∠°,EM=EN . -------------------4分∵60BAD ∠=°,120BEF ∠=°,∴3360F ∠+∠=°180BAD BEF -∠-∠=°.∵3180EBN ∠+∠=°,∴F EBN ∠=∠.------------------------------------------------------------------------------5分在△EFM 与△EBN 中,F EBN FME N EM EN ∠=∠??∠=∠??=?,,,∴△EFM ≌△EBN .321NM F EDC图2 图3证法2:连接ED∵四边形ABCD 是菱形,∴AD =AB ,∠DAC =∠BAE .⼜∵AE =AE , ∴△ADE ≌△ABE .∴ED =EB ,∠ADE =∠ABE . ------------------------4分⼜∵∠DAB =60°,∠BEF =120°.∴∠F +∠ABE =180°.⼜∵∠ADE +∠FDE =180°, --------------------------5分∴∠F =∠FDE .∴EF =ED .∴EF =EB . -------------------------------------------------------------------------------------6分(3)+=180αβ°或++=18022αβγ°. ------------------------------------------------------7分29.(1)1;1.(说明:每空1分) --------------------------------------------------------------------2分(2)①如图,点P 在EF 上时,OP =22,设P (x ,3x +4),()22348x x ++=,12225x x =-=-,(舍),P ()22--,, --------------------------------4分点P 在射线FG 上时,P 到射线OB 的距离为22,点P 与点C 重合,P ()04,, -------------------------------------5分∴P ()22--,,()04,.②4. -------------------------------------------------------------------------------------------------6分F E D CB A y xGFE–1–2–312345–1–2–3–4–51BCxy CBAO –1–2–312345–1–2–3–4–512345P 4P 2P 1P 3-------------------------------------------------------------8分(说明:每标对两个点得1分)1、发⽣以下情形,本协议即终⽌:(1)、公司因客观原因未能设⽴;(2)、公司营业执照被依法吊销;(3)、公司被依法宣告破产;(4)、甲⼄丙三⽅⼀致同意解除本协议。

2018-2019学年北京市海淀区九年级(上)期中数学试卷含答案解析

2018-2019学年北京市海淀区九年级(上)期中数学试卷含答案解析

2018-2019学年北京市海淀区九年级(上)期中数学试卷一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个是符合题意的.请将正确选项前的字母填在表格中相应的位置.1.(2分)(2019•武汉模拟)抛物线y=x2+1的对称轴是()A.直线x=﹣1B.直线x=1C.直线x=0D.直线y=1 2.(2分)(2018秋•门头沟区期末)点P(2,﹣1)关于原点对称的点P′的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(1,﹣2)3.(2分)(2018秋•海淀区期中)下列App图标中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.4.(2分)(2018秋•海淀区期中)用配方法解方程x2﹣2x﹣4=0,配方正确的是()A.(x﹣1)2=3B.(x﹣1)2=4C.(x﹣1)2=5D.(x+1)2=3 5.(2分)(2018秋•上杭县期末)如图,以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点.若大圆半径为2,小圆半径为1,则AB的长为()A.2B.2C.D.26.(2分)(2018秋•克东县期末)将抛物线y=(x+1)2﹣2向上平移a个单位后得到的抛物线恰好与x轴有一个交点,则a的值为()A.﹣1B.1C.﹣2D.27.(2分)(2018秋•槐荫区期末)如图是几种汽车轮毂的图案,图案绕中心旋转90°后能与原来的图案重合的是()A.B.C.D.8.(2分)(2018秋•海淀区期中)已知一个二次函数图象经过P1(﹣3,y1),P2(﹣1,y2),P3(1,y3),P4(3,y4)四点,若y3<y2<y4,则y1,y2,y3,y4的最值情况是()A.y3最小,y1最大B.y3最小,y4最大C.y1最小,y4最大D.无法确定二、填空题(本题共16分,每小题2分)9.(2分)(2018秋•海淀区期中)写出一个以0和2为根的一元二次方程:.10.(2分)(2001•济南)若二次函数y=ax2+bx+c的图象如图所示,则ac0(填“>”或“=”或“<”).11.(2分)(2018秋•海淀区期中)若关于x的方程x2﹣4x+k﹣1=0有两个不相等的实数根,则k的取值范围是.12.(2分)(2018秋•海淀区期中)如图,四边形ABCD内接于⊙O,E为直径CD延长线上一点,且AB∥CD,若∠C=70°,则∠ADE的大小为.13.(2分)(2018秋•海淀区期中)已知O为△ABC的外接圆圆心,若O在△ABC外,则△ABC是(填“锐角三角形”或“直角三角形”或“钝角三角形”).14.(2分)(2018秋•海淀区期中)在十三届全国人大一次会议记者会上,中国科技部部长表示,2017年我国新能源汽车保有量已居于世界前列.2015年和2017年我国新能源汽车保有量如图所示.设我国2015至2017年新能源汽车保有量年平均增长率为x,依题意,可列方程为.15.(2分)(2018秋•冷水江市期末)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c 与x轴交于(1,0),(3,0)两点,请写出一个满足y<0的x的值.16.(2分)(2018秋•海淀区期中)如图,⊙O的动弦AB,CD相交于点E,且AB=CD,∠BED=α(0°<α<90°).在①∠BOD=α,②∠OAB=90°﹣α,③∠ABCα中,一定成立的是(填序号).三、解答题(本题共68分,第17~22题,每小题5分;第23~26小题,每小题5分;第27~28小题,每小题5分)17.(5分)(2018秋•海淀区期中)解方程:x(x+2)=3x+6.18.(5分)(2018秋•海淀区期中)如图,将△ABC绕点B旋转得到△DBE,且A,D,C 三点在同一条直线上.求证:DB平分∠ADE.19.(5分)(2018秋•上杭县期末)下面是小董设计的“作已知圆的内接正三角形”的尺规作图过程.已知:⊙O.求作:⊙O的内接正三角形.作法:如图,①作直径AB;②以B为圆心,OB为半径作弧,与⊙O交于C,D两点;③连接AC,AD,CD.所以△ACD就是所求的三角形.根据小董设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明:证明:在⊙O中,连接OC,OD,BC,BD,∵OC=OB=BC,∴△OBC为等边三角形()(填推理的依据).∴∠BOC=60°.∴∠AOC=180°﹣∠BOC=120°.同理∠AOD=120°,∴∠COD=∠AOC=∠AOD=120°.∴AC=CD=AD()(填推理的依据).∴△ACD是等边三角形.20.(5分)(2018秋•海淀区期中)已知﹣1是方程x2+ax﹣b=0的一个根,求a2﹣b2+2b的值.21.(5分)(2018秋•海淀区期中)生活中看似平常的隧道设计也很精巧.如图是一张盾构隧道断面结构图,隧道内部为以O为圆心AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为0.8a,顶棚到路面的距离是3.2a,点B到路面的距离为2a.请你求出路面的宽度l.(用含a的式子表示)22.(5分)(2018秋•海淀区期中)如图,在平面直角坐标系xOy中,抛物线y=x2+ax+b 经过点A(﹣2,0),B(﹣1,3).(1)求抛物线的解析式;(2)设抛物线的顶点为C,直接写出点C的坐标和∠BOC的度数.23.(6分)(2016秋•东丽区期末)如图,用长为6m的铝合金条制成“日”字形窗框,若窗框的宽为x m,窗户的透光面积为y m2(铝合金条的宽度不计).(1)求出y与x的函数关系式;(2)如何安排窗框的长和宽,才能使得窗户的透光面积最大?并求出此时的最大面积.24.(6分)(2018秋•海淀区期中)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,过点D作AC的垂线交AC于点E,交AB的延长线于点F.(1)求证:DE与⊙O相切;(2)若CD=BF,AE=3,求DF的长.25.(6分)(2018秋•海淀区期中)有这样一个问题:探究函数y的图象与性质.小东根据学习函数的经验,对函数y的图象与性质进行了探究.下面是小东的探究过程,请补充完成:(1)化简函数解析式,当x≥3时,y=,当x<3时y=;(2)根据(1)中的结果,请在所给坐标系中画出函数y的图象;(3)结合画出的函数图象,解决问题:若关于x的方程ax+1只有一个实数根,直接写出实数a的取值范围:.26.(6分)(2018秋•海淀区期中)在平面直角坐标系xOy中,抛物线y=ax2﹣2x(a≠0)与x轴交于点A,B(点A在点B的左侧).(1)当a=﹣1时,求A,B两点的坐标;(2)过点P(3,0)作垂直于x轴的直线l,交抛物线于点C.①当a=2时,求PB+PC的值;②若点B在直线l左侧,且PB+PC≥14,结合函数的图象,直接写出a的取值范围.27.(7分)(2018秋•海淀区期中)已知∠MON=α,P为射线OM上的点,OP=1.(1)如图1,α=60°,A,B均为射线ON上的点,OA=1,OB>OA,△PBC为等边三角形,且O,C两点位于直线PB的异侧,连接AC.①依题意将图1补全;②判断直线AC与OM的位置关系并加以证明;(2)若α=45°,Q为射线ON上一动点(Q与O不重合),以PQ为斜边作等腰直角△PQR,使O,R两点位于直线PQ的异侧,连接OR.根据(1)的解答经验,直接写出△POR的面积.28.(7分)(2018秋•海淀区期中)在平面直角坐标系xOy中,点A是x轴外的一点,若平面内的点B满足:线段AB的长度与点A到x轴的距离相等,则称点B是点A的“等距点”.(1)若点A的坐标为(0,2),点P1(2,2),P2(1,﹣4),P3(,1)中,点A 的“等距点”是;(2)若点M(1,2)和点N(1,8)是点A的两个“等距点”,求点A的坐标;(3)记函数y x(x>0)的图象为L,⊙T的半径为2,圆心坐标为T(0,t).若在L上存在点M,⊙T上存在点N,满足点N是点M的“等距点”,直接写出t的取值范围.2018-2019学年北京市海淀区九年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个是符合题意的.请将正确选项前的字母填在表格中相应的位置.1.(2分)(2019•武汉模拟)抛物线y=x2+1的对称轴是()A.直线x=﹣1B.直线x=1C.直线x=0D.直线y=1【解答】解:∵抛物线y=x2+1,∴抛物线对称轴为直线x=0,即y轴,故选:C.2.(2分)(2018秋•门头沟区期末)点P(2,﹣1)关于原点对称的点P′的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,2)D.(1,﹣2)【解答】解:点P(2,﹣1)关于原点对称的点P′的坐标是(﹣2,1),故选:A.3.(2分)(2018秋•海淀区期中)下列App图标中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.【解答】解:A.此图案是轴对称图形,不符合题意;B.此图案既不是中心对称图形也不是轴对称图形,符合题意;C.此图案是轴对称图形,不符合题意;D.此图案是中心对称图形,不符合题意;故选:B.4.(2分)(2018秋•海淀区期中)用配方法解方程x2﹣2x﹣4=0,配方正确的是()A.(x﹣1)2=3B.(x﹣1)2=4C.(x﹣1)2=5D.(x+1)2=3【解答】解:∵x2﹣2x﹣4=0∴x2﹣2x=4∴x2﹣2x+1=4+1∴(x﹣1)2=5故选:C.5.(2分)(2018秋•上杭县期末)如图,以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点.若大圆半径为2,小圆半径为1,则AB的长为()A.2B.2C.D.2【解答】解:如图:连接OP,AO∵AB是⊙O切线∴OP⊥AB,∴AP=PB AB在Rt△APO中,AP∴AB=2故选:A.6.(2分)(2018秋•克东县期末)将抛物线y=(x+1)2﹣2向上平移a个单位后得到的抛物线恰好与x轴有一个交点,则a的值为()A.﹣1B.1C.﹣2D.2【解答】解:新抛物线的解析式为:y=(x+1)2﹣2+a=x2+2x﹣1+a,∵新抛物线恰好与x轴有一个交点,∴△=4﹣4(﹣1+a)=0,解得a=2.故选:D.7.(2分)(2018秋•槐荫区期末)如图是几种汽车轮毂的图案,图案绕中心旋转90°后能与原来的图案重合的是()A.B.C.D.【解答】解:A.此图案绕中心旋转36°或36°的整数倍能与原来的图案重合,此选项不符合题意;B.此图案绕中心旋转45°或45°的整数倍能与原来的图案重合,此选项符合题意;C.此图案绕中心旋转60°或60°的整数倍能与原来的图案重合,此选项不符合题意;D.此图案绕中心旋转72°或72°的整数倍能与原来的图案重合,此选项不符合题意;故选:B.8.(2分)(2018秋•海淀区期中)已知一个二次函数图象经过P1(﹣3,y1),P2(﹣1,y2),P3(1,y3),P4(3,y4)四点,若y3<y2<y4,则y1,y2,y3,y4的最值情况是()A.y3最小,y1最大B.y3最小,y4最大C.y1最小,y4最大D.无法确定【解答】解:∵二次函数图象经过P1(﹣3,y1),P2(﹣1,y2),P3(1,y3),P4(3,y4)四点,且y3<y2<y4,∴抛物线开口向上,对称轴在0和1之间,∴P1(﹣3,y1)离对称轴的距离最大,P3(1,y3)离对称轴距离最小,∴y3最小,y1最大,故选:A.二、填空题(本题共16分,每小题2分)9.(2分)(2018秋•海淀区期中)写出一个以0和2为根的一元二次方程:x2﹣2x=0.【解答】解:∵0+2=2,0×2=0,所以以0和2为根的一元二次方程为x2﹣2x=0,故答案为:x2﹣2x=0.10.(2分)(2001•济南)若二次函数y=ax2+bx+c的图象如图所示,则ac<0(填“>”或“=”或“<”).【解答】解:∵抛物线的开口向下,∴a<0,∵与y轴的交点为在y轴的正半轴上,∴c>0,∴ac<0.故答案为<.11.(2分)(2018秋•海淀区期中)若关于x的方程x2﹣4x+k﹣1=0有两个不相等的实数根,则k的取值范围是k<5.【解答】解:根据题意得△=(﹣4)2﹣4(k﹣1)>0,解得k<5.故答案为k<5.12.(2分)(2018秋•海淀区期中)如图,四边形ABCD内接于⊙O,E为直径CD延长线上一点,且AB∥CD,若∠C=70°,则∠ADE的大小为110°.【解答】解:∵∠C=70°,AB∥CD,∴∠B=110°∴∠ADE=110°.故答案为:110°.13.(2分)(2018秋•海淀区期中)已知O为△ABC的外接圆圆心,若O在△ABC外,则△ABC是钝角三角形(填“锐角三角形”或“直角三角形”或“钝角三角形”).【解答】解:∵锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.又∵O为△ABC的外接圆圆心,若O在△ABC外,∴△ABC是钝角三角形,故答案为钝角三角形.14.(2分)(2018秋•海淀区期中)在十三届全国人大一次会议记者会上,中国科技部部长表示,2017年我国新能源汽车保有量已居于世界前列.2015年和2017年我国新能源汽车保有量如图所示.设我国2015至2017年新能源汽车保有量年平均增长率为x,依题意,可列方程为45.1(1+x)2=172.9.【解答】解:设我国2015至2017年新能源汽车保有量年平均增长率为x,根据题意得:45.1(1+x)2=172.9.故答案为:45.1(1+x)2=172.9.15.(2分)(2018秋•冷水江市期末)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c 与x轴交于(1,0),(3,0)两点,请写出一个满足y<0的x的值2(答案不唯一).【解答】解:∵在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴交于(1,0),(3,0)两点,∴当y<0的x的取值范围是:1<x<3,∴x的值可以是2.故答案是:2(答案不唯一).16.(2分)(2018秋•海淀区期中)如图,⊙O的动弦AB,CD相交于点E,且AB=CD,∠BED=α(0°<α<90°).在①∠BOD=α,②∠OAB=90°﹣α,③∠ABCα中,一定成立的是①③(填序号).【解答】解:如图,连接OC,设OB交CD于K.∵AB=CD,OD=OC=OB=OA,∴△AOB≌△COD(SSS),∴∠CDO=∠OBA,∵∠DKO=∠BKE,∴∠DOK=∠BEK=α,即∠BOD=α,故①正确,不妨设,∠OAB=90°﹣α,∵OA=OB,∴∠OAB=∠OBA,∴∠OBE+∠BEK=90°,∴∠BKE=90°,∴OB⊥CD,显然不可能成立,故②错误,∵CD=AB,∴,∴,∴∠ABC∠DOBα,故③正确.故答案为①③.三、解答题(本题共68分,第17~22题,每小题5分;第23~26小题,每小题5分;第27~28小题,每小题5分)17.(5分)(2018秋•海淀区期中)解方程:x(x+2)=3x+6.【解答】解:x(x+2)﹣3(x+2)=0,(x+2)(x﹣3)=0,x+2=0或x﹣3=0,所以x1=﹣2,x2=3.18.(5分)(2018秋•海淀区期中)如图,将△ABC绕点B旋转得到△DBE,且A,D,C 三点在同一条直线上.求证:DB平分∠ADE.【解答】证明:∵将△ABC绕点B旋转得到△DBE,∴△ABC≌△DBE∴BA=BD.∴∠A=∠ADB.∵∠A=∠BDE,∴∠ADB=∠BDE.∴DB平分∠ADE.19.(5分)(2018秋•上杭县期末)下面是小董设计的“作已知圆的内接正三角形”的尺规作图过程.已知:⊙O.求作:⊙O的内接正三角形.作法:如图,①作直径AB;②以B为圆心,OB为半径作弧,与⊙O交于C,D两点;③连接AC,AD,CD.所以△ACD就是所求的三角形.根据小董设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明:证明:在⊙O中,连接OC,OD,BC,BD,∵OC=OB=BC,∴△OBC为等边三角形(三条边都相等的三角形是等边三角形)(填推理的依据).∴∠BOC=60°.∴∠AOC=180°﹣∠BOC=120°.同理∠AOD=120°,∴∠COD=∠AOC=∠AOD=120°.∴AC=CD=AD(在同圆或等圆中,相等的圆心角所对的弦相等)(填推理的依据).∴△ACD是等边三角形.【解答】(1)解:如图,△ACD为所作;(2)证明:在⊙O中,连接OC,OD,BC,BD,∵OC=OB=BC,∴△OBC为等边三角形(三条边都相等的三角形是等边三角形).∴∠BOC=60°.∴∠AOC=180°﹣∠BOC=120°.同理∠AOD=120°,∴∠COD=∠AOC=∠AOD=120°.∴AC=CD=AD(在同圆或等圆中,相等的圆心角所对的弦相等),∴△ACD是等边三角形.故答案为三条边都相等的三角形是等边三角形;在同圆或等圆中,相等的圆心角所对的弦相等.20.(5分)(2018秋•海淀区期中)已知﹣1是方程x2+ax﹣b=0的一个根,求a2﹣b2+2b的值.【解答】解:∵﹣1是方程x2+ax﹣b=0的一个根,∴1﹣a﹣b=0,∴a+b=1,∴a2﹣b2+2b=(a+b)(a﹣b)+2b=a﹣b+2b=a+b=1.21.(5分)(2018秋•海淀区期中)生活中看似平常的隧道设计也很精巧.如图是一张盾构隧道断面结构图,隧道内部为以O为圆心AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为0.8a,顶棚到路面的距离是3.2a,点B到路面的距离为2a.请你求出路面的宽度l.(用含a的式子表示)【解答】解:如图,连接OC,AB交CD于E,由题意知:AB=0.8a+3.2a+2a=6a,所以OC=OB=3a,OE=OB﹣BE=3a﹣2a=a,由题意可知:AB⊥CD,∵AB过O,∴CD=2CE,在Rt△OCE中,由勾股定理得:CE2a,∴CD=2CE=4a,所以路面的宽度l为4a.22.(5分)(2018秋•海淀区期中)如图,在平面直角坐标系xOy中,抛物线y=x2+ax+b 经过点A(﹣2,0),B(﹣1,3).(1)求抛物线的解析式;(2)设抛物线的顶点为C,直接写出点C的坐标和∠BOC的度数.【解答】解:(1)∵抛物线y=x2+ax+b经过点A(﹣2,0),B(﹣1,3),∴,解得,∴y=x2+6x+8.(2)∵y=x2+6x+8=(x+3)2﹣1,∴顶点C坐标为(﹣3,﹣1),∵B(﹣1,3).∴OB2=12+32=10,OC2=32+12=10,BC2=[(﹣3)﹣(﹣1)]2+(﹣1﹣3)2=20,∴OB2+OC2=BC2,则△OBC是以BC为斜边的直角三角形,∴∠BOC=90°.23.(6分)(2016秋•东丽区期末)如图,用长为6m的铝合金条制成“日”字形窗框,若窗框的宽为x m,窗户的透光面积为y m2(铝合金条的宽度不计).(1)求出y与x的函数关系式;(2)如何安排窗框的长和宽,才能使得窗户的透光面积最大?并求出此时的最大面积.【解答】解:(1)∵大长方形的周长为6m,宽为xm,∴长为m,∴y=x•(0<x<2),(2)由(1)可知:y和x是二次函数关系,a<0,∴函数有最大值,当x时,y最大m2.答:窗框的长和宽分别为1.5m和1m时才能使得窗户的透光面积最大,此时的最大面积为1.5m2.24.(6分)(2018秋•海淀区期中)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,过点D作AC的垂线交AC于点E,交AB的延长线于点F.(1)求证:DE与⊙O相切;(2)若CD=BF,AE=3,求DF的长.【解答】(1)证明:连接OD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,又∵AB=AC,∴∠1=∠2,∵OA=OD,∴∠2=∠ADO,∴∠1=∠ADO,∴OD∥AC,∵DE⊥AC,∴∠ODF=∠AED=90°,∴OD⊥ED,∵OD过0,∴DE与⊙O相切;(2)解:∵AB=AC,AD⊥BC,∴∠1=∠2,CD=BD,∵CD=BF,∴BF=BD,∴∠3=∠F,∴∠4=∠3+∠F=2∠3,∵OB=OD,∴∠ODB=∠4=2∠3,∵∠ODF=90°,∴∠3=∠F=30°,∠4=∠ODB=60°,∵∠ADB=90°,∴∠2=∠1=30°,∴∠2=∠F,∴DF=AD,∵∠1=30°,∠AED=90°,∴AD=2ED,∵AE2+DE2=AD2,AE=3,∴AD=2,∴DF=2.25.(6分)(2018秋•海淀区期中)有这样一个问题:探究函数y的图象与性质.小东根据学习函数的经验,对函数y的图象与性质进行了探究.下面是小东的探究过程,请补充完成:(1)化简函数解析式,当x≥3时,y=x,当x<3时y=3;(2)根据(1)中的结果,请在所给坐标系中画出函数y的图象;(3)结合画出的函数图象,解决问题:若关于x的方程ax+1只有一个实数根,直接写出实数a的取值范围:a<0或a≥1或a.【解答】解:(1)当x≥3时,y x;当x<3时,y3;故答案为x,3;(2)根据(1)中的结果,画出函数y的图象如下:(3)根据画出的函数图象,当a<0时,直线y=ax+1与函数y只有一个交点;当a≥1时,直线y=ax+1与函数y=3(x<3)的图象有一个交点,与函数y=x(x ≥3)无交点;当a时,直线y x+1经过点(3,3).故若关于x的方程ax+1只有一个实数根,实数a的取值范围:a<0或a≥1或a,故答案为a<0或a≥1或a.26.(6分)(2018秋•海淀区期中)在平面直角坐标系xOy中,抛物线y=ax2﹣2x(a≠0)与x轴交于点A,B(点A在点B的左侧).(1)当a=﹣1时,求A,B两点的坐标;(2)过点P(3,0)作垂直于x轴的直线l,交抛物线于点C.①当a=2时,求PB+PC的值;②若点B在直线l左侧,且PB+PC≥14,结合函数的图象,直接写出a的取值范围.【解答】解:(1)当a=﹣1时,有y=﹣x2﹣2x.令y=0,得:﹣x2﹣2x=0.解得x1=0,x2=﹣2.∵点A在点B的左侧,∴A(﹣2,0),B(0,0).(2)①当a=2时,有y=2x2﹣2x.令y=0,得2x2﹣2x=0.解得x1=0,x2=1.∵点A在点B的左侧,∴A(0,0),B(1,0).∴PB=2.当x=3时,y C=2×9﹣2×3=12.∴PC=12.∴PB+PC=14.②点B在直线l左侧,∵PB+PC≥14,∴3﹣x+ax2﹣2x≥14,可得:a或a≥2,由题意得A(0,0),B(,0)又A在B的左侧,所以a只可能大于0结合图象和①的结论,可得:a>0时,a≥2,27.(7分)(2018秋•海淀区期中)已知∠MON=α,P为射线OM上的点,OP=1.(1)如图1,α=60°,A,B均为射线ON上的点,OA=1,OB>OA,△PBC为等边三角形,且O,C两点位于直线PB的异侧,连接AC.①依题意将图1补全;②判断直线AC与OM的位置关系并加以证明;(2)若α=45°,Q为射线ON上一动点(Q与O不重合),以PQ为斜边作等腰直角△PQR,使O,R两点位于直线PQ的异侧,连接OR.根据(1)的解答经验,直接写出△POR的面积.【解答】解:(1)①如图所示:②结论:AC∥OM..理由:连接AP∵OA=OP=1,∠POA=60°,∴△OAP是等边三角形.∴OP=P A,∠OP A=∠OAP=60°,∵△PBC是等边三角形,∴PB=PC,∠BPC=60°,∴∠OP A+∠APB=∠BPC+∠APB,即∠OPB=∠APC,∴△OBP≌△ACP(SAS).∴∠P AC=∠O=60°,∴∠OP A=∠P AC,∴AC∥OM.(2)作PH⊥OQ于H,取PQ的中点K,连接HK,RK.∵∠PHQ=∠PRQ=90°,PK=KQ,∴HK=PK=KQ=RK,∴P,R,Q,H四点共圆,∴∠RHQ=∠RPQ=45°,∴∠RHQ=∠POQ=45°,∴RH∥OP,∴S△POR=S△POH.28.(7分)(2018秋•海淀区期中)在平面直角坐标系xOy中,点A是x轴外的一点,若平面内的点B满足:线段AB的长度与点A到x轴的距离相等,则称点B是点A的“等距点”.(1)若点A的坐标为(0,2),点P1(2,2),P2(1,﹣4),P3(,1)中,点A 的“等距点”是P1,P3;(2)若点M(1,2)和点N(1,8)是点A的两个“等距点”,求点A的坐标;(3)记函数y x(x>0)的图象为L,⊙T的半径为2,圆心坐标为T(0,t).若在L上存在点M,⊙T上存在点N,满足点N是点M的“等距点”,直接写出t的取值范围.【解答】解:(1)∵AP1=2﹣0=2,AP2,AP32,∴点A的“等距点”是P1,P3.故答案为:P1,P3.(2)∵点M(1,2)和点N(1,8)是点A的两个“等距点”,∴AM=AN,∴点A在线段MN的垂直平分线上.设MN与其垂直平分线交于点C,点A的坐标为(m,n),如图1所示.∵点M(1,2),点N(1,8),∴点C的坐标为(1,5),AM=AN=n=5,∴CM=3,AC4,∴m=1﹣4=﹣3或m=1+4=5,∴点A的坐标为(﹣3,5)或(5,5).(3)依照题意画出图象,如图2所示.①当⊙T1过点O时,⊙T1与L没有交点,∵⊙T1的半径为2,∴此时点T1的坐标为(0,﹣2);②当⊙T2上只有一个点M的“等距点”时,过点T2作T2M⊥图象L于点M,交⊙T2于点N,过点M作MD⊥x轴于点D,∵图象L的解析式为y x(x>0),∴∠MOT=60°,∠OT2M=30°.∵点T2的坐标为(0,t),∴OM t,DM OM t,T2M t.由“等距点”的定义可知:MN=T2M﹣T2N=DM,即t﹣2t,解得:t.综上所述:t的取值范围为﹣2<t.。

2018-2019学度海淀区初三年中统考数学试题与解析.doc

2018-2019学度海淀区初三年中统考数学试题与解析.doc

2018-2019学度海淀区初三年中统考数学试题与解析数学试卷〔分数:120分时间:120分钟〕2018、11学校姓名准考证号【一】选择题〔此题共30分,每题3分〕下面各题均有四个选项,其中只有一个..是符合题意的、请将正确选项前的字母填在表格中相应的位置、1、一元二次方程230x x --=的二次项系数、一次项系数、常数项分别是A 、2,1,3B 、2,1,3-C 、2,1,3-D 、2,1,3-- 2、以下图形是中心对称图形的是A 、B 、C 、D 、3、二次函数2(+1)2y x =--的最大值是A 、2-B 、1-C 、1D 、24、⊙O 的半径是4,OP 的长为3,那么点P 与⊙O 的位置关系是 A 、点P 在圆内 B 、点P 在圆上 C 、点P 在圆外D 、不能确定5、将抛物线2y x =沿y 轴向下平移2个单位,得到的抛物线的解析式为A 、22y x =+B 、22y x =-C 、()22y x =+D 、()22y x =-6、扇形的半径为6,圆心角为60︒,那么这个扇形的面积为 A 、9πB 、6πC 、3πD 、π7、用配方法解方程243x x +=,以下配方正确的选项是A 、()221x -=B 、()227x -=C 、()227x +=D 、()221x +=8、二次函数c bx ax y ++=2的图象如下图,那么以下选 项中不.正确的选....项是..A 、0a <B 、0c >C 、0<12ba-<D 、0a b c ++<9、如图,△ABC 内接于⊙O ,BD 是⊙O 的直径、假设 33=∠DBC ,那么A ∠等于A 、33B 、57C 、67D 、6610、小明乘坐摩天轮转一圈,他离地面的高度y 〔米〕与旋转时间x 〔分〕之间的关系可以近似地用二次函数来刻画、经测试得出部分数据如下表:以下选项中,最接近摩天轮转一圈的时间的是 A 、7分B 、6、5分C 、6分D 、5、5分 【二】填空题〔此题共18分,每题3分〕11、方程240x -=的解为_______________、12、请写出一个开口向上且经过〔0,1〕的抛物线的解析式_________、13、假设二次函数225y x =-的图象上有两个点(2,)A a 、(3,)B b , 那么a____b 〔填“<”或“=”或“>”〕、14、如图,A 、B 、C 三点在⊙O 上,∠AOC =100°,那么∠ABC =______°、 15、用一块直径为4米的圆桌布平铺在对角线长为4米的正方形桌面上〔如示意图〕,假设四周下垂的最大长度相等,那么这个最大长度x 为_______取1、4〕、16、如图,O 是边长为1的等边△ABC 的中心,将AB 、BC 、CA 分别绕点A 、点B 、点C 顺时针旋转α〔0180α︒<<︒〕,得到'AB 、'BC 、'CA ,连接''A B 、''B C 、''A C 、'OA 、'OB 、 〔1〕''A OB ∠=_______〬;〔2〕当α= 〬时,△'''A B C 的周长最大、【三】解答题〔此题共72分,第17~26题,每题5分,第27题7分,第28题7分,第29题8分〕17、解方程:232x x =-、18.假设抛物线23y x x a =++与x 轴只有一个交点,求实数a 的值、 19.点〔3,0〕在抛物线k x k x y -++-=)3(32上,求此抛物线的对称轴、20.如图,AC 是⊙O 的直径,PA ,PB 是⊙O 的切线,A ,B 为切点, 25=∠BAC 、求∠P 的度数、21.x =1是方程2250x ax a -+=的一个根,求代数式23157a a --的值、22、一圆柱形排水管的截面如下图,排水管的半径为1m ,水面宽AB 为1、6m 、由于天气干燥,水管水面下降,此时排水管水面宽变为1、2m ,求水面下降的高度、 23、关于x 的方程)0(0)3(32>=---a a x a x 、 〔1〕求证:方程总有两个不相等的实数根;〔2〕假设方程有一个根大于2,求a 的取值范围、24、在设计人体雕像时,假设使雕像的上部〔腰以上〕与下部〔腰以下〕的高度的比等于下部与全部〔全身〕的高度比,那么可以增加视觉美感、按此比例,如果雕像的高为2m ,那取2、2〕、25、AB 是⊙O 的直径,AC 、AD 是⊙O 的弦,AB =2,AC AD =1,求∠CAD 的度数、 26、抛物线21y x bx c =++与直线22y x m =-+相交于A (2,)n -、B (2,3)-两点、〔1〕求这条抛物线的解析式;〔2〕假设14≤≤-x ,那么21y y -的最小值为________、 27、如图,AB 为⊙O 的直径,C 为⊙O 上一点,CD ⊥AB 于点D 、P 为AB 延长线上一点,2PCD BAC ∠=∠、 〔1〕求证:CP 为⊙O 的切线;〔2〕BP =1,CP =、①求⊙O 的半径;②假设M 为AC 上一动点,那么OM +DM 的最小值为、 28、探究活动:利用函数(1)(2)y x x =--的图象〔如图1〕和性质,探究函数y =象与性质、下面是小东的探究过程,请补充完整:〔1〕函数y =x 的取值范围是___________;〔2〕如图2,他列表描点画出了函数y =象;图1图2 解决问题:104x b -=的两根为1x 、2x ,且12x x <,方程21324x x x b -+=+的两根为3x 、4x ,且34x x <、假设1b <<1x 、2x 、3x 、4x 的大小关系为〔用“<”连接〕、29、在平面直角坐标系xOy 中,半径为1的⊙O 与x 轴负半轴交于点A ,点M 在⊙O 上,将点M 绕点A 顺时针旋转60︒得到点Q 、点N 为x 轴上一动点〔N 不与A 重合〕,将点M 绕点N 顺时针旋转60︒得到点P 、PQ 与x 轴所夹锐角为α、 (1) 如图1,假设点M 的横坐标为21,点N 与点O 重合,那么α=________︒; (2) 假设点M 、点Q 的位置如图2所示,请在x 轴上任取一点N ,画出直线PQ ,并求α的度数; (3) 当直线PQ 与⊙O 相切时,点M 的坐标为_________、图1图2备用图海淀区九年级第一学期期中测评数学试卷参考答案【一】选择题〔此题共30分,每题3分〕【三】解答题〔此题共72分,第17~26题,每题5分,第27题7分,第28题7分,第29题8分〕17、解:2320.x x -+=……………………………………………1分0)2)(1(=--x x 、……………………………………………3分∴01=-x 或02=-x 、∴2,121==x x 、………………………………………………………5分 18、解:∵抛物线a x x y ++=32与x 轴只有一个交点,∴0∆=,………………………………………2分即940a -=、……………………………………………4分 ∴49=a 、……………………………………………5分 19、解:∵点〔3,0〕在抛物线k x k x y -++-=)3(32上,∴k k -++⨯-=)3(33302、………………………………………2分 ∴9=k 、……………………………………………3分 ∴抛物线的解析式为91232-+-=x x y 、∴对称轴为2=x 、……………………………………………5分20、解:∵PA ,PB 是⊙O 的切线,∴PA =PB 、………………………………………1分∴PBA PAB ∠=∠、………………………………………2分 ∵AC 为⊙O 的直径, ∴CA ⊥PA 、∴90=∠PAC º、………………………………………3分 ∵25=∠BAC º,∴65=∠PAB º、………………………………………4分∴502180=∠-=∠PAB P º、………………………………………5分 21、解:∵1=x 是方程0522=+-a ax x 的一个根,∴0512=+-a a 、………………………………………2分∴152-=-a a 、…………………………………………3分 ∴原式7)5(32--=a a ………………………………………4分10-=、………………………………………5分22、解:如图,下降后的水面宽CD 为1、2m ,连接OA ,OC ,过点O作ON ⊥CD 于N ,交AB 于M 、…………………………1分∴90ONC ∠=º、∵AB ∥CD ,∴90OMA ONC ∠=∠=º、 ∵ 1.6AB =, 1.2CD =, ∴10.82AM AB ==,10.62CN CD ==、…………………………2分 在Rt △OAM 中, ∵1OA =,∴0.6OM ==、………………………………3分 同理可得0.8ON =、………………………………4分∴0.2.MN ON OM =-=答:水面下降了0、2米、…………………………5分23、〔1〕证明:22)3()(34)3(+=-⨯⨯--=∆a a a 、……………………………1分∵0>a , ∴2(3)0a +>、即0>∆、∴方程总有两个不相等的实数根、……………………………………………2分 〔2〕解方程,得3,121ax x =-=、……………………………………………4分 ∵方程有一个根大于2,∴23>a、 ∴6>a 、……………………………………………5分24、解:如图,雕像上部高度AC 与下部高度BC 应有2::BC BC AC =,即AC BC 22=、设BC 为x m 、…………………………………1分依题意,得)2(22x x -=、、………………………………………3分 解得,511+-=x 512--=x 〔不符合题意,舍去〕、……4分1 1.2≈、答:雕像的下部应设计为1、2m 、…………………………5分25、解:如图1,当点D 、C 在AB 的异侧时,连接OD 、BC 、………1分∵AB 是⊙O 的直径,∴90ACB ∠=º、 在Rt △ACB 中,∵2=AB ,AC =∴BC =、∴45BAC ∠=º、………………2分 ∵1OA OD AD ===,∴60BAD ∠=º、………………3分∴105CAD BAD BAC ∠=∠+∠=º、………………4分当点D 、C 在AB 的同侧时,如图2,同理可得45BAC ∠=︒,60BAD ∠=︒、∴15CAD BAD BAC ∠=∠-∠=º、∴CAD ∠为15º或105º、…………………5分26、解:〔1〕∵直线m x y +-=22经过点B 〔2,-3〕,∴m +⨯-=-223、∴1=m 、……………………………………………1分 ∵直线22y x m =-+经过点A 〔-2,n 〕,∴5n =、……………………………………………2分 ∵抛物线21y x bx c =++过点A 和点B ,∴⎩⎨⎧++=-+-=.243,245c b c b∴⎩⎨⎧-=-=.3,2c b∴3221--=x x y 、……………………………………………4分 〔2〕12-、……………………………………………5分 27、〔1〕证明:连接OC 、……………………………1分∵∠PCD =2∠BAC ,∠POC =2∠BAC ,∴∠POC =∠PCD 、……………………………2分 ∵CD ⊥AB 于点D ,∴∠ODC =90︒、∴∠POC+∠OCD =90º、 ∴∠PCD+∠OCD =90º、 ∴∠OCP =90º、 ∴半径OC ⊥CP 、∴CP 为⊙O 的切线、……………………………………………3分〔2〕解:①设⊙O 的半径为r 、 在Rt △OCP 中,222OC CP OP +=、∵1,BP CP ==∴222(1)r r +=+、………………………4分解得2r =、∴⊙O 的半径为2、……………………………………………5分②3、……………………………………………7分 28、解:〔1〕1x ≤或2x ≥;……………………………………………2分 〔2〕如下图:……………………………………5分1342x x x x <<<、、……………………………………………7分29、解:〔1〕60、……………………………………………2分〔2〕、……………………………………………3分连接,MQ MP 、记,MQ PQ 分别交x 轴于,E F 、∵将点M 绕点A 顺时针旋转60︒得到点Q ,将点M 绕点N 顺时针旋转60︒得到点P , ∴△MAQ 和△MNP 均为等边三角形、………………4分∴MA MQ =,MN MP =,60AMQ NMP ∠=∠=︒、 ∴AMN QMP ∠=∠、∴△MAN ≌△MQP 、、………………………………5分 ∴MAN MQP ∠=∠、 ∵AEM QEF ∠=∠,∴60QFE AMQ ∠=∠=︒、∴60α=︒、、 (6)〔3〕〔2,12〕或〔2-12-〕、………………………8分。

2017-2018学年北京市海淀区九年级上期中数学试题含答案

2017-2018学年北京市海淀区九年级上期中数学试题含答案

初三第一学期期中学业水平调研数学2017.11学校班级___________姓名成绩一、选择题(本题共 24 分,每小题 3 分)下面各题均有四个选项,其中只有一个是符合题意的.请将正确选项前的字母填在表格中相应 的位置.题号 答案12 3 4 5 6 7 81.一元二次方程 3x 2 6 x 1 0的二次项系数、一次项系数、常数项分别是A .3,6,1B .3,6,1C .3, 6,1D .3, 6,12.把抛物线 y x 向上平移 1 个单位长度得到的抛物线的表达式为A . y x 1C . yx 1B . y x 1D . yx 13.如图,A ,B ,C 是⊙O 上的三个点. 若∠C =35°,则∠AOB 的C大小为 A .35° B .55° C .65° D .70° 4.下列手机手势解锁图案中,是中心对称图形的是OA BAB C D5.用配方法解方程 x 2 4 x 2 0 ,配方正确的是A .x 222B .x 222C .x 22D .x 266.风力发电机可以在风力作用下发电.如图的转子叶片图案绕中心旋转n °后能与原来的图案重 合,那么 n 的值可能是A .45B .60C .90D .1207.二次函数yax 2 bx c与一次函数y mx n的图象如图所示,则满足.. 2 222 2 22ax2bx c mx n的x的取值范围是A.3x 0C.x 3或x 1 8.如图1,动点P从格点AB.x 3或x 0D.0x 3出发,在网格平面内运动,设点P走过的路程为s,点P到直线l的距离为d.已知d与s的关系如图2所示.下列选项中,可能是点P的运动路线的是l d43A21 l l l lO图1A A A AA B C D二、填空题(本题共24分,每小题3分)9.点P(1,2)关于原点的对称点的坐标为________.12345图2s10.写出一个图象开口向上,过点(0,0)的二次函数的表达式:________.A B11.如图,四边形ABCD内接于⊙O,E为CD的延长线上一点.若∠B=110°,则∠ADE的大小为________.OE D C12.抛物线y x2x 1与x轴的公共点的个数是________.13.如图,在平面直角坐标系xOy中,点A,点B的坐标分别为(0,2),(1,0),将线段AB绕点O顺时针旋转,若y A点A的对应点A的坐标为(2,0),则点B的对应点B 的坐标为________.BO A'x14.已知抛物线y x22x经过点(4,y ),(1,y )12,则y 1________y(填“>”,“=”,或“<”).215.如图,⊙O的半径OA与弦BC交于点D,若OD=3,AD=2,BD=CD,则BC的长为________.OB DAC16.下面是“作已知三角形的高”的尺规作图过程.已知△:ABC.AB C 求作:BC边上的高AD.作法:如图,1(1)分别以点A和点C为圆心,大于AC的2长为半径作弧,两弧相交于P,Q两点;A POD Q B C(2)作直线PQ,交AC于点O;(3)以O为圆心,OA为半径作⊙O,与CB的延长线交于点D,连接AD.线段AD即为所作的高.请回答:该尺规作图的依据是_______________________________________________.三、解答题(本题共72分,第17题4分,第18~23题,每小题5分,第24~25题,每小题7分,第26~ 28题,每小题8分)17.解方程:x24x 30.18.如图,等边三角形ABC的边长为3,点D是线段BC上的点,CD=2,以AD 为边作等边三角形ADE,连接CE.求CE的长.AEB D C19.已知m 是方程x23x 10的一个根,求m 32m 2m 2的值.20.如图,在⊙O中,AB CD.求证:∠B=∠C.BO C A D21.如图,ABCD是一块边长为4米的正方形苗圃,园林部门拟将其改造为矩形A EFG的形状,其中点E在AB边上,点G在AD的延长线上,DG=2BE.设BE的长为x米,改造后苗圃A EFG的面积为y平方米.(1)y与x之间的函数关系式为_____________________(不需写自变量的取值范围);(2)根据改造方案,改造后的矩形苗圃AEFG的面积与原正方形苗圃ABCD的面积相等,请问此时BE的长为多少米?A D GEH FB C22.关于x的一元二次方程x22m 1x m210有两个不相等的实数根x,x12.(1)求实数m的取值范围;(2)是否存在实数m,使得x x 012由.成立?如果存在,求出m的值;如果不存在,请说明理23.古代丝绸之路上的花剌子模地区曾经诞生过一位伟大的数学家——“代数学之父”阿尔·花拉子米.在研究一元二次方程解法的过程中,他觉得“有必要用几何学方式来证明曾用数字解释过的问题的正确性”.»»以x210x 39为例,花拉子米的几何解法如下:如图,在边长为x的正方形的两个相邻边上作边长分别为x和x55的矩形,再补上一个边长为5的小正方形,最终把图形补成一个大正方形.通过不同的方式来表示大正方形的面积,可以将原方程化为x xx55x ____239____,从而得到此方程的正根是________.524.如图,在平面直角坐标系xOy中,点A的坐标为(1,0),点P 的横坐标为2,将点A绕点P旋转,使它的对应点B恰好落在x轴上(不与A点重合);再B绕点O逆时针旋转90°得到点C.(1)直接写出点B和点C的坐标;(2)求经过A,B,C三点的抛物线的表达式.yPO A x将点25.如图,AB为⊙O的直径,点C在⊙O上,过点O作OD⊥BC交BC于点E,交⊙O于点D,CD∥AB.(1)求证:E为OD的中点;(2)若CB=6,求四边形CAOD的面积.C DEA O B26.在平面直角坐标系xOy中,已知抛物线C:y x24x 4和直线l:y kx 2k(k 0).(1)抛物线C的顶点D的坐标为________;(2)请判断点D是否在直线l上,并说明理由;x 2 4x 4,x 2,(3)记函数ykx 2k,x 2的图象为G,点M(0,t),过点M垂直于y轴的直线与图象G交于点P(x,y )11,Q(x,y)22.当1t 3时,若存在t使得x x124成立,结合图象,求k的取值范围.y6543x27.对于平面直角坐标系xOy中的点P,给出如下定义:记点P到x轴的距离为d,到y轴的距1离为d2,若d d12,则称d1为点P的“引力值”;若d d12,则称d2为点P的“引力值”.特别地,若点P在坐标轴上,则点P的“引力值”为0.例如,点P(2力值”为2.,3)到x 轴的距离为3,到y轴的距离为2,因为23,所以点P的“引(1)①点A(1,4)的“引力值”为________;②若点B(a,3)的“引力值”为2,则a的值为________;(2)若点C在直线y 2x 4y8765432上,且点C的“引力值”为2,求点C的坐标;1–4 –3–2–1O–1–2–3–412345678xy8765(3)已知点M是以D(3,4)为圆心,半径为2上的一个动点,那么点M的“引力值”d 4321的圆的取值范围是.–4 –3–2–1O–112345678x–2–3–428.在△R t ABC中,斜边AC的中点M关于BC的对称点为点O,△将ABC绕点O 顺时针旋转至△DCE,连接BD,BE,如图所示.(1)在①∠BOE,②∠ACD,③∠COE中,等于旋转角的是________(填出满足条件的的角的序号);(2)若∠A=α,求∠BEC 的大小(用含 α 的式子表示);(3)点 N 是 BD 的中点,连接 MN ,用等式表示线段 MN 与 BE 之间的数量关系,并证明.ADMNBCEO初三第一学期期中学业水平调研数学参考答案一、选择题(本题共 24 分,每小题 3 分)2017.11题号答案1D 2A 3D 4B 5A 6D 7A 8D二、填空题(本题共 24 分,每小题 3 分)9.(1,2 )10.答案不唯一,例如yx211.110°12.213.(0,1)14.>15.816.①到线段两端点距离相等的点在线段的垂直平分线上;②直径所对的圆周角是直角;③两点 确定一条直线.(注:写出前两个即可给 3 分,写出前两个中的一个得 2 分,其余正确的理由得 1 分)三、解答题(本题共 72 分)17.解法一:解: x2 4 x 4 1,x 221,………………2 分x 21,x11,x3 2.………………4 分解法二:解:x 1x 3,………………2 分x 10或 x 3 0,18.解:∵△ABC是等边三角形,∴AB =BC =AC ,∠BAC =60°. ∴∠1+∠3=60°.………………1 分 ∵△ADE 是等边三角形,A1 3 2∴AD =AE ,∠DAE =60°.∴∠2+∠3=60°.………………2 分E∴∠1=∠2.在△ABD 与△ACE 中AB AC12 ,BDCAD AE ∴△ABD ≌△ACE (SAS ). ∴CE =BD .………………4 分 ∵BC =3,CD =2, ∴BD =BC -CD =1.∴CE =1.………………5 分 19.解:∵m 是方程 x 3 x 1 0的一个根,∴ m 23m 1 0.………………2 分∴ m 2 3m1 .∴原式m 2 6m 9 m 2m 23m 53 .………………5 分24………………4 分20.方法 1:AB CD ,证明:∵在⊙O 中,∴∠AOB =∠COD .………………2 分 ∵OA =OB ,OC =OD , 1∴在△AOB 中, B 90 AOB , 21在△COD 中, C 90COD .………………4 分 2BOCAD∴∠B =∠C .………………5 分方法 2:证明:∵在⊙O 中, AB CD,∴AB =CD .………………2 分 ∵OA =OB ,OC =OD ,∴△AOB ≌△COD (SSS ).………………4 分 ∴∠B =∠C .………………5 分2» »» »)………………3分21.解:(1)y 2x24x 16(或y4x 42x(2)由题意,原正方形苗圃的面积为16平方米,得2x24x 1616.解得:x 2,x 0(不合题意,舍去).………………5分12答:此时BE的长为2米.有两个不相等的实数根,22.解:(1)∵方程x22m 1x m 210∴4,m 124m 218m 80∴m 1.………………2分0.(2)存在实数m使得x x12x x 0,即是说0是原方程的一个根,则m210.………………3分12解得:m 1或m 1.………………4分当m 1时,方程为x20,有两个相等的实数根,与题意不符,舍去.∴m.………………5分123.通过不同的方式来表示大正方形的面积,可以将原方程化为x 5………………1分23925………………3分从而得到此方程的正根是3.………………5分24.(1)点B的坐标为(3,0),点C 的坐标为(0,3);………………2分(2)方法1:设抛物线的解析式为y ax2bx c. 因为它经过A(1,0),B(3,0),C(0,3),a b c 0,则9a 3b c 0,………………4分c 3.a 1,解得b 4,………………6分c 3.方法2:抛物线经过点A(1,0),B(3,0),故可设其表达式为………………4分因为点C(0,3)在抛物线上,a 01033,得a1.………………6分所以y a(x 1)(x 3)(a 0).∴经过A,B,C三点的抛物线的表达式为y x24x 3.………………7分方法3:抛物线经过点A(1,0),B(3,0),则其对称轴为x 2.设抛物线的表达式为y a x 22k.………………4分将A(1,0),C(0,3)代入,得a k 0, 4a k 3.解得a 1,k 1.………………6分∴经过A,B,C三点的抛物线的表达式为y x24x 3.………………7分25.(1)证明:∵在⊙O中,OD⊥BC于E,∴CE=BE.………………1分∵CD∥AB,∴∠DCE=∠B.………………2分AC DEO B在△DCE与△OBE 中DCE B,CE BE,CED BEO.∴△DCE≌△OBE(ASA).∴DE=OE.∴E为OD 的中点.………………4分(2)解:连接OC.∵AB 是⊙O 的直径,∴∠ACB=90°.∵OD⊥BC,∴∠CED=90°=∠ACB.∴AC∥OD.………………5分AC DEO B∵CD∥AB,∴四边形CAOD 是平行四边形.∵E是OD 的中点,CE⊥OD,∴OC=CD.∵OC=OD,∴OC=OD=CD.∴△OCD是等边三角形.∴∠D=60°.………………6分∴∠DCE=90°-∠D=30°. ∴在△R t CDE中,CD=2DE.∵BC=6,∴CE=BE=3.∵C E2DE2CD24D E2,∴DE 3,C D 23.∴O D CD 23.∴S四边形C AODOD CE 63.………………7分26.(1)(2,0);………………2分(2)点D 在直线l上,理由如下:直线l 的表达式为y kx 2k(k 0),∵当x 2时,y 2k 2k 0,………………3分∴点D(2,0)在直线l 上.………………4分注:如果只有结论正确,给1分.(3)如图,不妨设点P在点Q左侧.由题意知:要使得x x 4成立,即是要求点P 与12y 6 5点Q 关于直线x 2对称.又因为函数y x24x 4的图象关于直线x 2对称,所以当1t 3时,若存在t使得x x 4 成立,即要求点Q12在y x24x 4(x 2,1y 3)的图象–2–14321OBP QA123456x上.………………6分根据图象,临界位置为射线y kx 2k(k 0,x 2)过–1–2y x24x 4(x 2)与y 1的交点A(3,1)处,以及射线y kx 2k(k 0,x 2)过y x24x 4(x 2)与y 3的交点B(23,3)处.此时k 1以及k 3,故k的取值范围是1k 3.………………8分27.(1)①1,②2;………………2分注:错一个得1分.(2)解:设点C的坐标为(x,y).由于点C 的“引力值”为2,则x 2或y 2,即x 2,或y 2.当x 2时,y 2x 40,此时点C的“引力值”为0,舍去;当x2时,y 2x 48,此时C 点坐标为(-2,8);当y 2时,2x 42,解得x 1,此时点C 的“引力值”为1,舍去;当y 2时,2x 42,x 3,此时C 点坐标为(3,-2);综上所述,点C的坐标为(2,8)或(3,2).………………5分注:得出一个正确答案得2 分.(3)1d 772.………………8分注:答对一边给2分;两端数值正确,少等号给2分;一端数值正确且少等号给1分.28.(1)③;………………1分(2)连接BM,OB,OC,OE.∵△R t ABC中,∠ABC=90°,M为AC的中点,1∴MA=MB=MC=AC.………………2分2∴∠A=∠ABM.∵∠A=α,∴∠BMC=∠A+∠ABM=2α.∵点M 和点O关于直线BC对称,AMNB CD∴∠BOC=∠BMC=2α.………………3分E ∵OC=OB=OE,∴点C,B,E 在以O 为圆心,OB为半径的圆上.O1∴BEC BOC2.………………4分(3)MN 12BE,证明如下:连接BM并延长到点F,使BM=MF,连接FD.∵∠A=α,∠ABC=90°,∴∠ACB=90°-∠A=90°-α.∴∠DEC=∠ACB=90°-α.A F∵∠BEC=α,D∴∠BED=∠BEC+∠DEC=90°.∵BC=CE,∴∠CBE=∠CEB=α.MN∵MB=MC,B C∴∠MBC=∠ACB=90°-α.∴∠MBE=∠MBC+∠CBE=90°.E ∴∠MBE+∠BED=180°.∴BF∥DE.………………6分∵BF=2BM,AC=2BM,∴BF=AC.∵AC=DE,∴BF=DE.∴四边形BFDE是平行四边形.………………7分∴DF=BE.∵BM=MF,BN=ND,1∴MN=DF.21∴MN=BE.………………8分2O注:如果只有结论正确,给1分.解答题解法不唯一,如有其它解法相应给分.。

(精品试卷)北京市海淀区2018-2019年初三上期中学业水平调研数学试题有答案

(精品试卷)北京市海淀区2018-2019年初三上期中学业水平调研数学试题有答案

北京市海淀区初三第一学期期中学业水平调研数 学2018.11学校___________________ 姓名________________ 准考证号__________________一、选择题 (本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项前的字母填在表格中相应的位置. 1.抛物线21y x =+的对称轴是 A .直线1x =- B .直线1x = C .直线0x =D .直线1y =2.点(21)P -,关于原点对称的点P '的坐标是A .(21)-,B .(21)--,C .(12)-,D .(12)-, 3.下列App 图标中,既不是中心对称图形也不是轴对称图形的是A B C D 4.用配方法解方程2240x x --=,配方正确的是 A .()213x -=B .()214x -=C .()215x -=D .()213x +=5.如图,以O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,点P 为切点. 若大圆半径为2,小圆半径为1,则AB 的长为 A . B . CD .26.将抛物线2(1)2y x =+-向上平移a 个单位后得到的抛物线恰好与x 轴有一个交点,则a 的值为 A .1- B .1 C .2-D .27.下图是几种汽车轮毂的图案,图案绕中心旋转90°后能与原来的图案重合的是A B C D8.已知一个二次函数图象经过11(3)P y -,,22(1)P y -,,33(1)P y ,,44(3)P y ,四点,若324y y y <<,则1234y y y y ,,,的最值情况是A .3y 最小,1y 最大B .3y 最小,4y 最大C .1y 最小,4y 最大D .无法确定 二、填空题(本题共16分,每小题2分)9.写出一个以0和2为根的一元二次方程:________. 10.函数2y ax bx c =++的图象如图所示,则ac 0.(填“>”,“=”,或“<”)11.若关于x 的方程2410x x k -+-=有两个不相等的实数根,则k 的取值范围是 . 12.如图,四边形ABCD 内接于⊙O ,E 为直径CD 延长线上一点,且AB ∥CD ,若∠C =70°,则∠ADE 的大小为________.13.已知O 为△ABC 的外接圆圆心,若O 在△ABC 外,则△ABC 是________(填“锐角三角形”或“直角三角形”或“钝角三角形”).14.在十三届全国人大一次会议记者会上,中国科技部部长表示,2017年我国新能源汽车保有量已居于世界前列.2015年和2017年我国新能源汽车保有量如图所示.设我国2015至2017年新能源汽车保有量年平均增长率为x ,依题意,可列方程为 .2015年和2017年我国新能源汽车保有量统计图保有量/15.如图,在平面直角坐标系xOy 中,抛物线2y ax bx c =++与x 轴交于(1,0),(3,0)两点,请写出一个满足0y <的x 的值 .16.如图,⊙O 的动弦AB ,CD 相交于点E ,且AB CD =,BED α∠=(090)α︒<<︒.在①BOD α∠=, ②90OAB α∠=︒-,③12ABC α∠=中,一定成立的是 (填序号).三、解答题(本题共68分,第17~22题,每小题5分;第23~26小题,每小题6分;第27~28小题,每小题7分) 17.解方程:()236x x x +=+.18.如图,将ABC △绕点B 旋转得到DBE △,且A ,D ,C三点在同一条x31OE EDCBA直线上.求证:DB 平分ADE ∠.19.下面是小董设计的“作已知圆的内接正三角形”的尺规作图过程.已知:⊙O .求作:⊙O 的内接正三角形作法:如图,① 作直径AB ;② 以B 为圆心,OB 为半径作弧,与⊙O 交于C ,D 两点; ③ 连接AC ,AD ,CD . 所以△ACD 就是所求的三角形.根据小董设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹) (2)完成下面的证明:证明:在⊙O 中,连接OC ,OD ,BC ,BD ,∵ OC =OB =BC ,∴ △OBC 为等边三角形(___________)(填推理的依据). ∴ ∠BOC =60°.∴ ∠AOC =180°-∠BOC =120°. 同理 ∠AOD =120°,∴ ∠COD =∠AOC =∠AOD =120°.∴ AC =CD =AD (___________)(填推理的依据). ∴ △ACD 是等边三角形.20.已知1-是方程20x ax b +-=的一个根,求222a b b -+的值.21.生活中看似平常的隧道设计也很精巧.如图是一张盾构隧道断面结构图,隧道内部为以O为圆心AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为0.8a,顶棚到路面的距离是3.2a,点B到路面的距离为2a.请你求出路面的宽度l.(用含a的式子表示)22.如图,在平面直角坐标系xOy中,抛物线2y x a=++经过点()20A-,,()13B-,.(1)求抛物线的解析式;(2)设抛物线的顶点为C,直接写出点C的坐标和BOC∠的度数.23.用长为6米的铝合金条制成如图所示的窗框,若窗框的高为x米,窗户的透光面积为y平方米(铝合金条的宽度不计).x米(1)y与x之间的函数关系式为(不要求写自变量的取值范围);(2)如何安排窗框的高和宽,才能使窗户的透光面积最大?并求出此时的最大面积.24.如图,在△ABC 中,AB AC =,以AB 为直径作⊙O 交BC 于点D ,过点D 作AC 的垂线交AC 于点E ,交AB 的延长线于点F . (1)求证:DE 与⊙O 相切;(2)若CD BF =,3AE =,求DF 的长.25.有这样一个问题:探究函数332x x y -++=的图象与性质.小东根据学习函数的经验,对函数332x x y -++=的图象与性质进行了探究.下面是小东的探究过程,请补充完成:(1)化简函数解析式,当3x ≥时,y =___________,当3x <时y =____________;(2)根据(1)中的结果,请在所给坐标系中画出函数332x x y -++=的图象;备用图 (3)结合画出的函数图象,解决问题:若关于x 的方程3312x x ax -+++=只有一个实数根,直接写出实数a 的取值范围:___________________________.26.在平面直角坐标系xOy 中,抛物线22(0)y ax x a =-≠与x 轴交于点A ,B (点A 在点B 的左侧). (1)当1a =-时,求A ,B 两点的坐标; (2)过点(30)P ,作垂直于x 轴的直线l ,交抛物线于点C . ①当2a =时,求PB PC +的值;②若点B 在直线l 左侧,且14PB PC +≥,结合函数的图象,直接写出a 的取值范围.27. 已知∠MON =α,P 为射线OM 上的点,OP =1.(1)如图1,︒=60α,A ,B 均为射线ON 上的点,OA =1,OB >OA ,△PBC 为等边三角形,且O ,C两点位于直线PB 的异侧,连接AC . ①依题意将图1补全;②判断直线AC 与OM 的位置关系并加以证明;(2)若︒=45α,Q 为射线ON 上一动点(Q 与O 不重合),以PQ 为斜边作等腰直角△PQR ,使O ,R两点位于直线PQ 的异侧,连接OR . 根据(1)的解答经验,直接写出△POR 的面积.图1 备用图28.在平面直角坐标系xOy 中,点A 是x 轴外的一点,若平面内的点B 满足:线段AB 的长度与点A到x 轴的距离相等,则称点B 是点A 的“等距点”.(1)若点A 的坐标为(0,2),点1P (2,2),2P (1,4-),3P (1)中,点A 的“等距点”是_______________;(2)若点M (1,2)和点N (1,8)是点A 的两个“等距点”,求点A 的坐标;(3)记函数3y x =(0x >)的图象为L ,T 的半径为2,圆心坐标为(0,)T t .若在L 上存在点M ,T 上存在点N ,满足点N 是点M 的“等距点”,直接写出t 的取值范围.初三第一学期期中学业水平调研数 学 参 考 答 案 2018.11一、选择题(本题共16分,每小题2分)二、 9.220-=x x (答案不唯一) 10.< 11.5<k 12.110°13.钝角三角形 14.245.1(1)172.9+=x 15.2 (答案不唯一)16.①③(注:每写对一个得1分) 三、解答题(本题共68分) 17.解法一:解:(2)3(2)x x x +=+,(2)3(2)0+-+=x x x ,(2)(3)0+-=x x , 20x +=或30x -=,12=-x ,23x =.解法二:解:方程化为 260x x --=. 2425b ac ∆=-=.152x ±==, 12=-x ,23x =.18.证明:∵ 将△ABC 绕点B 旋转得到△DBE ,∴△ABC ≌△DBE∴BA=BD .∴∠A =∠ADB . ∵∠A =∠BDE ,∴ ∠ADB =∠BDE . ∴ DB 平分∠ADE .19. 解:(1)EDCBA(2)三条边都相等的三角形是等边三角形.在同圆或等圆中,相等的圆心角所对的弦相等.20.解:∵1-是方程20+-=x ax b 的一个根, ∴ 10--=a b . ∴1+=a b . ∴222a b b -+()()2a b a b b =+-+2a b b =-+a b =+ 1= .21.解:如图,连接OC .由题意知0.8 3.226=++=AB a a a a . 3OC OB a ∴==. ∴=-=OE OB BE a . 由题意可知AB CD ⊥于E , ∴2CD CE =.在Rt OCE △中,===CE .CD ∴=.22.解:(1)∵抛物线2y x ax b =++经过点(20)(A B --,,∴4201 3.a b a b -+=⎧⎨-+=⎩,解得68.a b =⎧⎨=⎩,∴268y x x =++.(2)(3,1)C --,90BOC ∠=︒.23.(1)2332=-+y x x ; 注:没有化简不扣分.(2)当31322()2b x a =-=-=⨯-时,y 有最大值24933424()2ac b a --==⨯-. 答:当窗框的高为1米,宽为32米时,窗户的透光面积最大,最大面积为32平方米.24.(1)证明:连接OD .∵AB 是⊙O 的直径, ∴90ADB ∠=°. ∴AD BC ⊥. 又∵AB AC =, ∴12∠=∠. ∵OA OD =, ∴2ADO ∠=∠.∴1ADO ∠=∠. ∴OD ∥AC . ∵DE AC ⊥于点E , ∴=90ODF AED =︒∠∠. ∴OD ⊥ED . ∴DE 与⊙O 相切. (2)∵AB AC =,AD BC ⊥,∴12∠=∠,CD BD =. ∵CD BF =, ∴=BF BD . ∴3F =∠∠.∴4323F =∠+∠=∠∠. ∵OB OD =, ∴5=423=∠∠∠. ∵90ODF =︒∠,∴330F ==︒∠∠,4560=∠=︒∠. ∵90ADB =︒∠, ∴2130∠=∠=︒. ∴2F =∠∠. ∴ DF AD =.∵130=︒∠,90AED =︒∠, ∴2AD ED =.∵222AE DEAD +=,3AE =,∴AD = ∴DF =25.(1)化简函数解析式,当3x ≥时,y =x ,当3x <时y = 3 ; (2)根据(1)中的结果,画出函数332x x y -++=的图象如下:(3)0<a 或1≥a 或23=a . (注:每得出一个正确范围得1分)26.(1)当1=-a 时,有22y x x =--.令0y =,得220x x --=. 解得120,2x x ==-. ∵点A 在点B 的左侧, ∴(20)A -,,(00)B ,.(2)①当2=a 时,有222y x x =-.令0y =,得2220x x -=. 解得1201x x ==,. ∵点A 在点B 的左侧, ∴(00)A ,,(10)B ,. ∴2PB =.当3=x 时,292312=⨯-⨯=c y . ∴12PC =. ∴14PB PC +=. ②59≤-a 或2≥a . 27.(1)①依题意,将图1补全;NCMPB A O②AC OM ∥.证明:连接AP∵1OA OP ==,︒=60α ,∴△OAP 是等边三角形. ∴=60OP PA OPA OAP ==︒,∠∠. ∵△PBC 是等边三角形, ∴=60PB PC BPC =︒,∠.∴OPA APB BPC APB +=+∠∠∠∠.即OPB APC =∠∠. ∴△OBP ≌△ACP . ∴60PAC O ==︒∠∠. ∴OPA PAC =∠∠. ∴AC OM ∥.(2)14POR S =△. OABPMCN28.(1)1P ,3P ;(2)∵点()12M ,和点()18N ,是点A 的两个“等距点” ,∴AM AN =.∴点A 在线段MN 的垂直平分线上.设MN 与其垂直平分线交于点C ,()A A A x y ,, ∴(15)C ,,==5A AM AN y =.∴=3CM .∴4AC ==.∴点A 的坐标为(35)-,或(55),.(3)24t -<≤.。

(解析版)北京海淀区2018-2019学度初三上年中数学试卷.doc

(解析版)北京海淀区2018-2019学度初三上年中数学试卷.doc

(解析版)北京海淀区2018-2019学度初三上年中数学试卷【一】选择题〔此题共32分,每题4分〕下面各题均有四个选项,其中只有一个是符合题意的、1、如图图形是中心对称图形的是〔〕A、B、C、D、2、将抛物线Y=X2向上平移1个单位,得到的抛物线的解析式为〔〕A、Y=X2+1B、Y=X2﹣1C、Y=〔X+1〕2+1D、Y=〔X﹣1〕2+13、袋子中装有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别、在看不到球的情况下,随机从袋子中摸出1个球、下面说法正确的选项是〔〕A、这个球一定是黑球B、这个球一定是白球C、“摸出黑球”的可能性大D、“摸出黑球”和“摸出白球”的可能性一样大4、用配方法解方程X2﹣2X﹣3=0时,配方后得到的方程为〔〕A、〔X﹣1〕2=4B、〔X﹣1〕2=﹣4C、〔X+1〕2=4D、〔X+1〕2=﹣45、如图,⊙O为正五边形ABCDE的外接圆,⊙O的半径为2,那么的长为〔〕A、B、C、D、6、如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,那么∠C等于〔〕A、29°B、31°C、59°D、62°7、二次函数Y=X2﹣4X+M〔M为常数〕的图象与X轴的一个交点为〔1,0〕,那么关于X的一元二次方程X2﹣4X+M=0的两个实数根是〔〕A、X1=1,X2=﹣1B、X1=﹣1,X2=2C、X1=﹣1,X2=0D、X1=1,X2=38、如图,C是半圆O的直径AB上的一个动点〔不与A,B重合〕,过C作AB的垂线交半圆于点D,以点D,C,O为顶点作矩形DCOE、假设AB=10,设AC=X,矩形DCOE 的面积为Y,那么以下图象中能表示Y与X的函数关系的图象大致是〔〕A、B、C、D、【二】填空题〔此题共16分,每题4分〕9、如图,PA,PB分别与⊙O相切于点A,B,连接AB、∠APB=60°,AB=5,那么PA的长是、10、假设关于X的一元二次方程X2﹣4X+K=0有两个相等的实数根,那么K的值为、11、在平面直角坐标系XOY中,函数Y=X2的图象经过点M〔X1,Y1〕,N〔X2,Y2〕两点,假设﹣4《X1《﹣2,0《X2《2,那么Y1Y2、〔用“《”,“=”或“》”号连接〕12、如图,正方形ABCD中,点G为对角线AC上一点,AG=AB、∠CAE=15°且AE =AC,连接GE、将线段AE绕点A逆时针旋转得到线段AF,使DF=GE,那么∠CAF的度数为、【三】解答题〔此题共30分,每题5分〕13、解方程:X2+3X﹣1=0、14、如图,∠DAB=∠EAC,AB=AD,AC=AE、求证:BC=DE、15、二次函数的图象经过点〔0,1〕,且顶点坐标为〔2,5〕,求此二次函数的解析式、16、如图,四边形ABCD内接于⊙O,∠ABC=130°,求∠OAC的度数、17、假设X=1是关于X的一元二次方程X2﹣4MX+2M2=0的根,求代数式2〔M﹣1〕2+3的值、18、某厂工业废气年排放量为450万立方米,为改善城市的大气环境质量,决定分二期投入治理,使废气的年排放量减少到288万立方米,如果每期治理中废气减少的百分率相同,求每期减少的百分率是多少?【四】解答题〔此题共20分,每题5分〕19、如图是某市某月1日至15日的空气质量指数趋势图,空气质量指数不大于100表示空气质量优良,空气质量指数大于200表示空气重度污染、〔1〕由图可知,该月1日至15日中空气重度污染的有天;〔2〕小丁随机选择该月1日至15日中的某一天到达该市,求小丁到达该市当天空气质量优良的概率、20、关于X的方程AX2+〔A﹣3〕X﹣3=0〔A≠0〕、〔1〕求证:方程总有两个实数根;〔2〕假设方程有两个不相等的负整数根,求整数A的值、21、如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,点G在直径DF的延长线上,∠D=∠G=30、〔1〕求证:CG是⊙O的切线;〔2〕假设CD=6,求GF的长、22、阅读下面材料:小丁在研究数学问题时遇到一个定义:对于排好顺序的三个数:X1,X2,X3,称为数列X1,X2,X3、计算|X1|,,,将这三个数的最小值称为数列X1,X2,X3的价值、例如,对于数列2,﹣1,3,因为|2|=2,=,=,所以数列2,﹣1,3的价值为、小丁进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的价值、如数列﹣1,2,3的价值为;数列3,﹣1,2的价值为1;…、经过研究,小丁发现,对于“2,﹣1,2”这三个数,按照不同的排列顺序得到的不同数列中,价值的最小值为、根据以上材料,回答以下问题:〔1〕数列﹣4,﹣3,2的价值为;〔2〕将“﹣4,﹣3,2”这三个数按照不同的顺序排列,可得到假设干个数列,这些数列的价值的最小值为,取得价值最小值的数列为〔写出一个即可〕;〔3〕将2,﹣9,A〔A》1〕这三个数按照不同的顺序排列,可得到假设干个数列、假设这些数列的价值的最小值为1,那么A的值为、【五】解答题〔此题共22分,第23题7分,第24题7分,第25题8分〕23、在平面直角坐标系XOY中,抛物线Y=X2﹣〔M﹣1〕X﹣M〔M》0〕与X轴交于A,B两点〔点A在点B的左侧〕,与Y轴交于点C、〔1〕求点A的坐标;〔2〕当S△ABC=15时,求该抛物线的表达式;〔3〕在〔2〕的条件下,经过点C的直线L:Y=KX+B〔K《0〕与抛物线的另一个交点为D、该抛物线在直线L上方的部分与线段CD组成一个新函数的图象、请结合图象回答:假设新函数的最小值大于﹣8,求K的取值范围、24、将线段AB绕点A逆时针旋转60°得到线段AC,继续旋转α〔0°《α《120°〕得到线段AD,连接CD、〔1〕连接BD,①如图1,假设α=80°,那么∠BDC的度数为;②在第二次旋转过程中,请探究∠BDC的大小是否改变、假设不变,求出∠BDC的度数;假设改变,请说明理由、〔2〕如图2,以AB为斜边作直角三角形ABE,使得∠B=∠ACD,连接CE,DE、假设∠CED=90°,求α的值、25、如图,在平面直角坐标系XOY中,点P〔A,B〕在第一象限、以P为圆心的圆经过原点,与Y轴的另一个交点为A、点Q是线段OA上的点〔不与O,A重合〕,过点Q 作PQ的垂线交⊙P于点B〔M,N〕,其中M≥0、〔1〕假设B=5,那么点A坐标是;〔2〕在〔1〕的条件下,假设OQ=8,求线段BQ的长;〔3〕假设点P在函数Y=X2〔X》0〕的图象上,且△BQP是等腰三角形、①直接写出实数A的取值范围:;②在,,这三个数中,线段PQ的长度可以为,并求出此时点B的坐标、2018-2018学年北京市海淀区九年级〔上〕期中数学试卷参考答案与试题解析【一】选择题〔此题共32分,每题4分〕下面各题均有四个选项,其中只有一个是符合题意的、1、如图图形是中心对称图形的是〔〕A、B、C、D、考点:中心对称图形、分析:根据中心对称图形的概念求解、解答:解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;应选B、点评:此题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合、2、将抛物线Y=X2向上平移1个单位,得到的抛物线的解析式为〔〕A、Y=X2+1B、Y=X2﹣1C、Y=〔X+1〕2+1D、Y=〔X﹣1〕2+1考点:二次函数图象与几何变换、分析:先得到抛物线Y=X2的顶点坐标为〔0,0〕,再利用点的平移规律得到点〔0,0〕向上平移1个单位得到的点的坐标为〔0,1〕,然后根据顶点式写出平移后的抛物线解析式、解答:解:抛物线Y=X2的顶点坐标为〔0,0〕,点〔0,0〕向上平移1个单位得到的点的坐标为〔0,1〕,所以所得到的抛物线的解析式为Y=X2+1、应选A、点评:此题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故A不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式、3、袋子中装有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别、在看不到球的情况下,随机从袋子中摸出1个球、下面说法正确的选项是〔〕A、这个球一定是黑球B、这个球一定是白球C、“摸出黑球”的可能性大D、“摸出黑球”和“摸出白球”的可能性一样大考点:可能性的大小、分析:根据概率公式先求出摸出黑球和白球的概率,再进行比较即可得出答案、解答:解:∵布袋中有除颜色外完全相同的6个球,其中4个黑球、2个白球,∴从布袋中随机摸出一个球是黑球的概率为=,摸出一个球是白球的概率为=,∴摸出黑球”的可能性大;应选C、点评:此题考查概率的求法:如果一个事件有N种可能,而且这些事件的可能性相同,其中事件A出现M种结果,那么事件A的概率P〔A〕=、4、用配方法解方程X2﹣2X﹣3=0时,配方后得到的方程为〔〕A、〔X﹣1〕2=4B、〔X﹣1〕2=﹣4C、〔X+1〕2=4D、〔X+1〕2=﹣4考点:解一元二次方程-配方法、分析:在此题中,把常数项﹣3移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方、解答:解:把方程X2﹣2X﹣3=0的常数项移到等号的右边,得到X2﹣2X=3,方程两边同时加上一次项系数一半的平方,得到X2﹣2X+1=4,配方得〔X﹣1〕2=4、应选:A、点评:此题考查了解一元二次方程﹣﹣配方法、配方法的一般步骤:〔1〕把常数项移到等号的右边;〔2〕把二次项的系数化为1;〔3〕等式两边同时加上一次项系数一半的平方、选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数、5、如图,⊙O为正五边形ABCDE的外接圆,⊙O的半径为2,那么的长为〔〕A、B、C、D、考点:弧长的计算、分析:利用正五边形的性质得出中心角度数,进而利用弧长公式求出即可、解答:解:如下图:∵⊙O为正五边形ABCDE的外接圆,⊙O的半径为2,∴∠AOB==72°,∴的长为:=π、应选:D、点评:此题主要考查了弧长公式应用,得出圆心角度数是解题关键、6、如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,那么∠C等于〔〕A、29°B、31°C、59°D、62°考点:圆周角定理、分析:由AB是⊙O的直径,根据直径所对的圆周角是直角,求得∠ADB=90°,继而求得∠A的度数,然后由圆周角定理,求得∠C的度数、解答:解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=59°,∴∠A=90°﹣∠ABD=31°,∴∠C=∠A=31°、应选B、点评:此题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半、推论:半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径、此题难度不大,注意掌握数形结合思想的应用、7、二次函数Y=X2﹣4X+M〔M为常数〕的图象与X轴的一个交点为〔1,0〕,那么关于X的一元二次方程X2﹣4X+M=0的两个实数根是〔〕A、X1=1,X2=﹣1B、X1=﹣1,X2=2C、X1=﹣1,X2=0D、X1=1,X2=3考点:抛物线与X轴的交点、分析:根据抛物线与X轴交点的性质和根与系数的关系进行解答、解答:解:∵二次函数Y=X2﹣4X+M〔M为常数〕的图象与X轴的一个交点为〔1,0〕,∴关于X的一元二次方程X2﹣4X+M=0的一个根是X=1、∴设关于X的一元二次方程X2﹣4X+M=0的另一根是T、∴1+T=4,解得T=3、即方程的另一根为3、应选:D、点评:此题考查了抛物线与X轴的交点、注意二次函数解析式与一元二次方程间的转化关系、8、如图,C是半圆O的直径AB上的一个动点〔不与A,B重合〕,过C作AB的垂线交半圆于点D,以点D,C,O为顶点作矩形DCOE、假设AB=10,设AC=X,矩形DCOE 的面积为Y,那么以下图象中能表示Y与X的函数关系的图象大致是〔〕A、B、C、D、考点:动点问题的函数图象、分析:按点C在半径OA或半径OB上两种情况分类讨论;首先运用射影定理求出DC 的长度,借助矩形的面积公式即可求得Y与X的函数关系、解答:解:根据题意结合图形,分情况讨论:如图,①当点C在半径OA上时,连接AD、BD;∵AB为半圆O的直径,∴∠ADB=90°,而DC⊥AB,∴DC2=AC•BC,而AC=X,BC=10﹣X,∴DC=,而OC=5﹣X,∴Y=〔5﹣X〕;②当点C在半径OB上,即点C′的位置时,同理可求:Y=〔X﹣5〕,综上所述,Y与X的函数关系式为:Y=、所以,Y与X之间的函数关系可以用两段二次函数图象表示,纵观各选项,只有C 选项图象符合、应选:C、点评:该题主要考查了圆周角定理及其推论、射影定理、矩形的面积公式等几何知识点及其应用问题;作辅助线,牢固掌握圆周角定理及其推论、射影定理等几何知识点是解题的关键、【二】填空题〔此题共16分,每题4分〕9、如图,PA,PB分别与⊙O相切于点A,B,连接AB、∠APB=60°,AB=5,那么PA的长是5、考点:切线的性质、分析:利用切线长定理得出PA=PB,再利用等边三角形的判定得出△PAB是等边三角形,即可得出答案、解答:解:∵PA,PB分别与⊙O相切于点A,B,∴PA=PB,∵∠APB=60°,∴△PAB是等边三角形,∴AB=PA=5,故答案为:5、点评:此题主要考查了切线长定理以及等边三角形的判定与性质,得出△PAB是等边三角形是解题关键、10、假设关于X的一元二次方程X2﹣4X+K=0有两个相等的实数根,那么K的值为4、考点:根的判别式、分析:根据判别式的意义得到△=〔﹣4〕2﹣4K=0,然后解一次方程即可、解答:解:根据题意得△=〔﹣4〕2﹣4K=0,解得K=4、故答案为4、点评:此题考查了一元二次方程AX2+BX+C=0〔A≠0〕的根的判别式△=B2﹣4AC:当△》0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△《0,方程没有实数根、11、在平面直角坐标系XOY中,函数Y=X2的图象经过点M〔X1,Y1〕,N〔X2,Y2〕两点,假设﹣4《X1《﹣2,0《X2《2,那么Y1》Y2、〔用“《”,“=”或“》”号连接〕考点:二次函数图象上点的坐标特征、分析:根据二次函数的性质即可求解、解答:解:由Y=X2可知,∵A=1》0,∴抛物线的开口向上,∵抛物线的对称轴为Y轴,∴当X》0时,Y随X的增大而增大,∵﹣4《X1《﹣2,0《X2《2,∴2《﹣X1《4,∴Y1》Y2、点评:此题考查了二次函数图象上的点的坐标特征及二次函数的性质、当A》0时,开口向上,在对称轴的左侧Y随X的增大而减小,在对称轴的右侧,Y随X的增大而增大;当A《0,开口向下,在对称轴的左侧Y随X的增大而增大,在对称轴的右侧,Y随X的增大而减小;12、如图,正方形ABCD中,点G为对角线AC上一点,AG=AB、∠CAE=15°且AE =AC,连接GE、将线段AE绕点A逆时针旋转得到线段AF,使DF=GE,那么∠CAF的度数为30°或60°、考点:旋转的性质、分析:根据旋转的性质可得AE=AF,然后利用“边边边”证明△AGE和△ADF全等,根据全等三角形对应角相等可得∠DAF=∠CAE,然后分点F在AD的下方和上方两种情况讨论求解、解答:解:∵线段AE绕点A逆时针旋转得到线段AF,∴AE=AF,∵四边形ABCD是正方形,∴AB=AD,∵AG=AB,∴AD=AG,在△AGE和△ADF中,,∴△AGE≌△ADF〔SSS〕,∴∠DAF=∠CAE=15°,∵AC为正方形ABCD的对角线,∴∠CAD=45°,点F在AD的下方时,∠CAF=∠CAD﹣∠DAF=45°﹣15°=30°,点F在AD的上方时,∠CAF=∠CAD+∠DAF=45°+15°=60°,综上所述,∠CAF的度数为30°或60°、故答案为:30°或60°、点评:此题考查了旋转的性质,正方形的性质,全等三角形的判定与性质,熟记性质并求出∠DAF的度数是解题的关键,作出图形更形象直观、【三】解答题〔此题共30分,每题5分〕13、解方程:X2+3X﹣1=0、考点:解一元二次方程-公式法、专题:计算题、分析:找出A,B,C的值,计算出根的判别式的值大于0,代入求根公式即可求出解、解答:解:这里A=1,B=3,C=﹣1,∵△=9+4=13,∴X=,那么X1=,X2=、点评:此题考查了解一元二次方程﹣公式法,熟练掌握求根公式是解此题的关键、14、如图,∠DAB=∠EAC,AB=AD,AC=AE、求证:BC=DE、考点:全等三角形的判定与性质、专题:证明题、分析:求出∠DAE=∠BAC,根据SAS推出△BAC≌△DAE,根据全等三角形的性质得出即可、解答:证明:∵∠DAB=∠EAC,∴∠DAB+∠BAE=∠EAC+∠BAE,∴∠DAE=∠BAC,在△BAC和△DAE中,∴△BAC≌△DAE,∴BC=DE、点评:此题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等、15、二次函数的图象经过点〔0,1〕,且顶点坐标为〔2,5〕,求此二次函数的解析式、考点:待定系数法求二次函数解析式、分析:根据抛物线的顶点坐标设出,抛物线的解析式为:Y=A〔X﹣2〕2+5,再把〔0,1〕代入,求出A的值,即可得出二次函数的解析式、解答:解:设抛物线的解析式为:Y=A〔X﹣2〕2+5,把〔0,1〕代入解析式得,1=A〔0﹣2〕2+5,解得A=﹣1,那么抛物线的解析式为:Y=﹣2X2+4X+1、点评:此题主要考查了用待定系数法求二次函数解析式,在抛物线顶点坐标的情况下,通常用顶点式设二次函数的解析式、16、如图,四边形ABCD内接于⊙O,∠ABC=130°,求∠OAC的度数、考点:圆内接四边形的性质;圆周角定理、分析:先根据圆内接四边形的性质推出∠ADC=50°,再根据圆周角定理推出∠AOC =100°,然后根据等腰三角形的性质及三角形内角和定理即可得出∠OAC的度数、解答:解:∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,∵∠ABC=130°,∴∠ADC=180°﹣∠ABC=50°,∴∠AOC=2∠ADC=100°、∵OA=OC,∴∠OAC=∠OCA,∴∠OAC=〔180°﹣∠AOC〕=40°、点评:此题主要考查圆内接四边形的性质、圆周角定理、等腰三角形的性质及三角形内角和定理,关键在于求出∠AOC的度数、17、假设X=1是关于X的一元二次方程X2﹣4MX+2M2=0的根,求代数式2〔M﹣1〕2+3的值、考点:一元二次方程的解、分析:把X=1代入方程可以求得2M2﹣4M=﹣1,然后将其代入整理后的所求代数式进行求值即可、解答:解:依题意,得1﹣4M+2M2=0,∴2M2﹣4M=﹣1,∴2〔M﹣1〕2+3=2〔M2﹣2M+1〕+3=2M2﹣4M+5=﹣1+5=4、即2〔M﹣1〕2+3=4、点评:此题考查了一元二次方程的解、能使一元二次方程左右两边相等的未知数的值是一元二次方程的解、又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根、18、某厂工业废气年排放量为450万立方米,为改善城市的大气环境质量,决定分二期投入治理,使废气的年排放量减少到288万立方米,如果每期治理中废气减少的百分率相同,求每期减少的百分率是多少?考点:一元二次方程的应用、专题:增长率问题、分析:等量关系为:450×〔1﹣减少的百分率〕2=288,把相关数值代入计算即可;解答:解:设每期减少的百分率为X,根据题意得:450×〔1﹣X〕2=288,解得:X1=1、8〔舍去〕,X2=0、2解得X=20%、答:每期减少的百分率是20%、点评:考查一元二次方程的应用;求平均变化率的方法为:假设设变化前的量为A,变化后的量为B,平均变化率为X,那么经过两次变化后的数量关系为A〔1±X〕2=B、【四】解答题〔此题共20分,每题5分〕19、如图是某市某月1日至15日的空气质量指数趋势图,空气质量指数不大于100表示空气质量优良,空气质量指数大于200表示空气重度污染、〔1〕由图可知,该月1日至15日中空气重度污染的有3天;〔2〕小丁随机选择该月1日至15日中的某一天到达该市,求小丁到达该市当天空气质量优良的概率、考点:条形统计图;概率公式、分析:〔1〕根据空气质量指数大于200表示空气重度污染,找出统计图中空气质量指数大于200的天数即可;〔2〕根据统计图求出空气质量优良的天数,再根据概率公式列式计算即可、解答:解:〔1〕根据统计图可得:空气质量指数大于200的有5日、8日、15日,共3天;故答案为:3、〔2〕小丁随机选择该月1日至15日中的某一天到达该市,那么到达该市的日期有15种不同的选择,在其中任意一天到达的可能性相等,由图可知,其中有9天空气质量优良,那么P〔到达当天空气质量优良〕==、点评:此题考查的是条形统计图和概率公式、读懂统计图,从统计图中得到必要的信息是解决问题的关键、条形统计图能清楚地表示出每个项目的数据、如果一个事件有N种可能,而且这些事件的可能性相同,其中事件A出现M种结果,那么事件A的概率P〔A〕=、20、〔5分〕〔2014秋•海淀区期中〕关于X的方程AX2+〔A﹣3〕X﹣3=0〔A≠0〕、〔1〕求证:方程总有两个实数根;〔2〕假设方程有两个不相等的负整数根,求整数A的值、考点:根的判别式;解一元二次方程-因式分解法、分析:〔1〕根据A≠0,得出原方程为一元二次方程,再根据△=〔A+3〕2即可得出方程总有两个实数根、〔2〕先求出原方程的解是X1=﹣1,X2=,再根据此方程有两个负整数根,且A为整数,得出A=﹣1或﹣3,最后根据X1=﹣1,X2=得出A≠﹣3即可、解答:解:〔1〕∵A≠0,∴原方程为一元二次方程、∴△=〔A﹣3〕2﹣4×A×〔﹣3〕=〔A+3〕2、∵〔A+3〕2≥0、∴此方程总有两个实数根、〔2〕解原方程,得X1=﹣1,X2=、∵此方程有两个负整数根,且A为整数,∴A=﹣1或﹣3、∵X1=﹣1,X2=、∴A≠﹣3、∴A=﹣1、点评:此题考查了一元二次方程AX2+BX+C=0〔A≠0〕的根的判别式△=B2﹣4AC:当△》0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△《0,方程没有实数根、21、如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,点G在直径DF的延长线上,∠D=∠G=30、〔1〕求证:CG是⊙O的切线;〔2〕假设CD=6,求GF的长、考点:切线的判定、分析:〔1〕连接OC,根据三角形内角和定理可得∠DCG=180°﹣∠D﹣∠G=120°,再计算出∠GCO的度数可得OC⊥CG,进而得到CG是⊙O的切线;〔2〕设EO=X,那么CO=2X,再利用勾股定理计算出EO的长,进而得到CO的长,然后再计算出FG的长即可、解答:〔1〕证明:连接OC、∵OC=OD,∠D=30°,∴∠OCD=∠D=30°、∵∠G=30°,∴∠DCG=180°﹣∠D﹣∠G=120°、∴∠GCO=∠DCG﹣∠OCD=90°、∴OC⊥CG、又∵OC是⊙O的半径、∴CG是⊙O的切线、〔2〕解:∵AB是⊙O的直径,CD⊥AB,∴CE=CD=3、∵在RT△OCE中,∠CEO=90°,∠OCE=30°,∴EO=CO,CO2=EO2+CE2、设EO=X,那么CO=2X、∴〔2X〕2=X2+32、解得X=〔舍负值〕、∴CO=2、∴FO=2、在△OCG中,∵∠OCG=90°,∠G=30°,∴GO=2CO=4、∴GF=GO﹣FO=2、点评:此题主要考查了切线的判定,关键是掌握切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线、22、阅读下面材料:小丁在研究数学问题时遇到一个定义:对于排好顺序的三个数:X1,X2,X3,称为数列X1,X2,X3、计算|X1|,,,将这三个数的最小值称为数列X1,X2,X3的价值、例如,对于数列2,﹣1,3,因为|2|=2,=,=,所以数列2,﹣1,3的价值为、小丁进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的价值、如数列﹣1,2,3的价值为;数列3,﹣1,2的价值为1;…、经过研究,小丁发现,对于“2,﹣1,2”这三个数,按照不同的排列顺序得到的不同数列中,价值的最小值为、根据以上材料,回答以下问题:〔1〕数列﹣4,﹣3,2的价值为;〔2〕将“﹣4,﹣3,2”这三个数按照不同的顺序排列,可得到假设干个数列,这些数列的价值的最小值为,取得价值最小值的数列为﹣3,2,﹣4;或2,﹣3,﹣4、〔写出一个即可〕;〔3〕将2,﹣9,A〔A》1〕这三个数按照不同的顺序排列,可得到假设干个数列、假设这些数列的价值的最小值为1,那么A的值为11或4、考点:规律型:数字的变化类、专题:阅读型、分析:〔1〕根据上述材料给出的方法计算其相应的价值即可;〔2〕按照三个数不同的顺序排列算出价值,由计算可以看出,要求得这些数列的价值的最小值;只有当前两个数的和的绝对值最小,最小只能为|﹣3+2|=1,由此得出答案即可;〔3〕分情况算出对应的数值,建立方程求得A的数值即可、解答:解:〔1〕因为|﹣4|=4,||=3、5,||=,所以数列﹣4,﹣3,2的价值为、〔2〕数列的价值的最小值为||=,数列可以为:﹣3,2,﹣4,;或2,﹣3,﹣4、〔3〕当||=1,那么A=0,不合题意;当||=1,那么A=11;当||=1,那么A=4、故答案为:;,﹣3,2,﹣4,;或2,﹣3,﹣4;11或4、点评:此题考查数字的变化规律,理解运算的方法是解决问题的关键、【五】解答题〔此题共22分,第23题7分,第24题7分,第25题8分〕23、在平面直角坐标系XOY中,抛物线Y=X2﹣〔M﹣1〕X﹣M〔M》0〕与X轴交于A,B两点〔点A在点B的左侧〕,与Y轴交于点C、〔1〕求点A的坐标;〔2〕当S△ABC=15时,求该抛物线的表达式;〔3〕在〔2〕的条件下,经过点C的直线L:Y=KX+B〔K《0〕与抛物线的另一个交点为D、该抛物线在直线L上方的部分与线段CD组成一个新函数的图象、请结合图象回答:假设新函数的最小值大于﹣8,求K的取值范围、考点:二次函数综合题、专题:综合题、分析:〔1〕对于抛物线解析式,令Y=0得到关于X的方程,求出方程的解,根据A 在B的左侧且M大于0,求A的坐标即可;〔2〕由〔1〕的结果表示出B的坐标,根据抛物线与Y轴交于点C,表示出C坐标,进而表示出AB与OC,由三角形ABC面积为15,利用三角形面积公式列出关于M的方程,求出方程的解得到M的值,即可确定出抛物线解析式;〔3〕由〔2〕中M的值确定出C坐标,设直线L解析式为Y=KX+B,把C坐标代入求出B的值,抛物线解析式配方后,经判断得到当点D在抛物线对称轴右侧时,新函数的最小值有可能大于﹣8,令Y=﹣8求出X的值,确定出抛物线经过点〔3,﹣8〕,把〔3,﹣8〕代入一次函数解析式求出K的值,由图象确定出满足题意K的范围即可、解答:解:〔1〕∵抛物线Y=X2﹣〔M﹣1〕X﹣M〔M》0〕与X轴交于A、B两点,∴令Y=0,即X2﹣〔M﹣1〕X﹣M=0,解得:X1=﹣1,X2=M,又∵点A在点B左侧,且M》0,∴点A的坐标为〔﹣1,0〕;〔2〕由〔1〕可知点B的坐标为〔M,0〕,∵抛物线与Y轴交于点C,∴点C的坐标为〔0,﹣M〕,∵M》0,∴AB=M+1,OC=M,∵S△ABC=15,∴M〔M+1〕=15,即M2+M﹣30=0,解得:M=﹣6或M=5,∵M》0,∴M=5;那么抛物线的表达式为Y=X2﹣4X﹣5;〔3〕由〔2〕可知点C的坐标为〔0,﹣5〕,∵直线L:Y=KX+B〔K《0〕经过点C,∴B=﹣5,∴直线L的解析式为Y=KX﹣5〔K《0〕,∵Y=X2﹣4X﹣5=〔X﹣2〕2﹣9,∴当点D在抛物线顶点处或对称轴左侧时,新函数的最小值为﹣9,不符合题意;当点D在抛物线对称轴右侧时,新函数的最小值有可能大于﹣8,令Y=﹣8,即X2﹣4X﹣5=﹣8,解得:X1=1〔不合题意,舍去〕,X2=3,∴抛物线经过点〔3,﹣8〕,当直线Y=KX﹣5〔K《0〕经过点〔3,﹣8〕时,可求得K=﹣1,由图象可知,当﹣1《K《0时新函数的最小值大于﹣8、点评:此题属于二次函数综合题,涉及的知识有:待定系数法确定函数解析式,坐标与图形性质,抛物线与X轴的交点,以及二次函数的图象与性质,熟练掌握二次函数的图象与性质是解此题的关键、24、将线段AB绕点A逆时针旋转60°得到线段AC,继续旋转α〔0°《α《120°〕得到线段AD,连接CD、〔1〕连接BD,①如图1,假设α=80°,那么∠BDC的度数为30°;②在第二次旋转过程中,请探究∠BDC的大小是否改变、假设不变,求出∠BDC的度数;假设改变,请说明理由、〔2〕如图2,以AB为斜边作直角三角形ABE,使得∠B=∠ACD,连接CE,DE、假设∠CED=90°,求α的值、考点:几何变换综合题、分析:〔1〕①根据图形旋转的性质可知AB=AC=AD,再由圆周角定理即可得出结论;②不变,证明过程同①;〔2〕过点AM⊥CD于点M,连接EM,先根据AAS定理得出△AEB≌△AMC,故可得出AE=AM,∠BAE=∠CAM,所以△AEM是等边三角形、根据AC=AD,AM⊥CD可知CM=DM、故可得出点A、C、D在以M为圆心,MC为半径的圆上、由圆周角定理可得出结论、解答:解:〔1〕①∵线段AC,AD由AB旋转而成,∴AB=AC=AD、∴点B、C、D在以A为圆心,AB为半径的圆上、∴∠BDC=∠BAC=30°、故答案为:30°、②不改变,∠BDC的度数为30°、方法一:由题意知,AB=AC=AD、∴点B、C、D在以A为圆心,AB为半径的圆上、∴∠BDC=∠BAC=30°、方法二:由题意知,AB=AC=AD、∵AC=AD,∠CAD=α,∴∠ADC=∠C==90°﹣α、∵AB=AD,∠BAD=60°+α,∴∠ADB=∠B===60°﹣α、∴∠BDC=∠ADC﹣∠ADB=〔90°﹣α〕﹣〔60°﹣α〕=30°、〔2〕过点AM⊥CD于点M,连接EM、∵∠AMD=90°,∴∠AMC=90°、在△AEB与△AMC中,,∴△AEB≌△AMC〔AAS〕、∴AE=AM,∠BAE=∠CAM、∴∠EAM=∠EAC+∠CAM=∠EAC+∠BAE=∠BAC=60°、∴△AEM是等边三角形、∴EM=AM=AE、∵AC=AD,AM⊥CD,∴CM=DM、又∵∠DEC=90°,∴EM=CM=DM、∴AM=CM=DM、∴点A、C、D在以M为圆心,MC为半径的圆上、∴α=∠CAD=90°、。

2018年北京市海淀区九年级中考一模数学试卷含答案

2018年北京市海淀区九年级中考一模数学试卷含答案

初三年级(数学)第1页(共20页)海淀区九年级第二学期期中练习数学2018.5学校姓名成绩考生须知1.本试卷共8页,共三道大题,28道小题,满分100分。

考试时间120分钟。

2.在试卷和答题卡上准确填写学校名称、班级和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个...1.用三角板作ABC △的边BC 上的高,下列三角板的摆放位置正确的是2.图1是数学家皮亚特·海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能...是下面哪个组件的视图初三年级(数学)第2页(共20页)3.若正多边形的一个外角是120°,则该正多边形的边数是A.6B.5C.4D.34.下列图形中,既是中心对称图形,也是轴对称图形的是5.如果1a b -=,那么代数式2222(1b a a a b-⋅+的值是A .2 B.2- C.1 D.1-6.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示.若0b d +=,则下列结论中正确的是A.0b c +>B.1c a>C.ad bc >D .a d>7.在线教育使学生足不出户也能连接全球优秀的教育资源.下面的统计图反映了我国在线教育用户规模的变化情况.(以上数据摘自《2017年中国在线少儿英语教育白皮书》)根据统计图提供的信息,下列推断一定不合理...的是初三年级(数学)第3页(共20页)A .2015年12月至2017年6月,我国在线教育用户规模逐渐上升B .2015年12月至2017年6月,我国手机在线教育课程用户规模占在线教育用户规模的比例持续上升C .2015年12月至2017年6月,我国手机在线教育课程用户规模的平均值超过7000万D .2017年6月,我国手机在线教育课程用户规模超过在线教育用户规模的70%8.如图1,矩形的一条边长为x ,周长的一半为y .定义(,)x y 为这个矩形的坐标.如图2,在平面直角坐标系中,直线1,3x y ==将第一象限划分成4个区域.已知矩形1的坐标的对应点A 落在如图所示的双曲线上,矩形2的坐标的对应点落在区域④中.则下面叙述中正确的是A.点A 的横坐标有可能大于3B.矩形1是正方形时,点A 位于区域②C.当点A 沿双曲线向上移动时,矩形1的面积减小D.当点A 位于区域①时,矩形1可能和矩形2全等二、填空题(本题共16分,每小题2分)9.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是.10.我国计划2023年建成全球低轨卫星星座——鸿雁星座系统,该系统将为手机网络用户提供无死角全覆盖的网络服务.2017年12月,我国手机网民规模已达753000000,将753000000用科学记数法表示为.11.如图,AB DE ∥,若4AC =,2BC =,1DC =,则EC =.12.写出一个解为1的分式方程:.初三年级(数学)第4页(共20页)13.京张高铁是2022年北京冬奥会的重要交通基础设施,考虑到不同路段的特殊情况,将根据不同的运行区间设置不同的时速.其中,北京北站到清河段全长11千米,分为地下清华园隧道和地上区间两部分,运行速度分别设计为80千米/小时和120千米/小时.按此运行速度,地下隧道运行时间比地上大约多2分钟..(130小时),求清华园隧道全长为多少千米.设清华园隧道全长为x 千米,依题意,可列方程为__________.14.如图,四边形ABCD 是平行四边形,⊙O 经过点A ,C ,D ,与BC 交于点E ,连接AE ,若∠D =72°,则∠BAE =°.15.定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦.阿基米德折弦定理:如图1,AB 和BC 组成圆的折弦,AB BC >,M 是弧ABC 的中点,MF AB ⊥于F ,则AF FB BC =+.如图2,△ABC 中,60ABC ∠=︒,8AB =,6BC =,D 是AB 上一点,1BD =,作DE AB ⊥交△ABC 的外接圆于E ,连接EA ,则EAC ∠=________°.16.下面是“过圆上一点作圆的切线”的尺规作图过程.于A,B两点;请回答:该尺规作图的依据是.三、解答题(本题共68分,第17~22题,每小题5分;第23~26小题,每小题6分;第27~28小题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:11()3tan302|3--+︒+.18.解不等式组:()5331,263.2x xx x+>-⎧⎪⎨-<-⎪⎩初三年级(数学)第5页(共20页)初三年级(数学)第6页(共20页)19.如图,△ABC 中,90ACB ∠=︒,D 为AB 的中点,连接CD ,过点B 作CD 的平行线EF ,求证:BC平分ABF ∠.20.关于x 的一元二次方程22(23)10x m x m --++=.(1)若m 是方程的一个实数根,求m 的值;(2)若m 为负数..,判断方程根的情况.21.如图,□ABCD 的对角线,AC BD 相交于点O ,且AE ∥BD ,BE ∥AC ,OE =CD .(1)求证:四边形ABCD 是菱形;(2)若AD =2,则当四边形ABCD 的形状是_______________时,四边形AOBE 的面积取得最大值是_________________.22.在平面直角坐标系xOy 中,已知点P (2,2),Q (-1,2),函数m y x =.(1)当函数m y x=的图象经过点P 时,求m 的值并画出直线y x m =+.(2)若P ,Q 两点中恰有一个点的坐标(x ,y )满足不等式组,m y x y x m⎧>⎪⎨⎪<+⎩初三年级(数学)第7页(共20页)(m >0),求m 的取值范围.23.如图,AB 是O 的直径,弦EF AB ⊥于点C ,过点F 作O 的切线交AB 的延长线于点D .(1)已知A α∠=,求D ∠的大小(用含α的式子表示);(2)取BE 的中点M ,连接MF ,请补全图形;若30A ∠=︒,MF =,求O 的半径.24.某校九年级八个班共有280名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,请将下面的过程补全.收集数据调查小组计划选取40名学生的体质健康测试成绩作为样本,下面的取样方法中,合理的是___________(填字母);A .抽取九年级1班、2班各20名学生的体质健康测试成绩组成样本初三年级(数学)第8页(共20页)B .抽取各班体育成绩较好的学生共40名学生的体质健康测试成绩组成样本C .从年级中按学号随机选取男女生各20名学生学生的体质健康测试成绩组成样本整理、描述数据抽样方法确定后,调查小组获得了40名学生的体质健康测试成绩如下:77838064869075928381858688626586979682738684898692735777878291818671537290766878整理数据,如下表所示:2018年九年级部分学生学生的体质健康测试成绩统计表5055x≤<5560x ≤<6065x ≤<6570x ≤<7075x ≤<7580x ≤<8085x ≤<8590x ≤<9095x ≤<95100x ≤<11224552分析数据、得出结论调查小组将统计后的数据与去年同期九年级的学生的体质健康测试成绩(直方图)进行了对比,初三年级(数学)第9页(共20页)你能从中得到的结论是_____________,你的理由是________________________________.体育老师计划根据2018年的统计数据安排75分以下的同学参加体质加强训练项目,则全年级约有________名同学参加此项目.25.在研究反比例函数1y x =的图象与性质时,我们对函数解析式进行了深入分析.首先,确定自变量x 的取值范围是全体非零实数,因此函数图象会被y 轴分成两部分;其次,分析解析式,得到y 随x 的变化趋势:当0x >时,随着x 值的增大,1x 的值减小,且逐渐接近于零,随着x 值的减小,1x的值会越来越大 ,由此,可以大致画出1y x=在0x >时的部分图象,如图1所示:利用同样的方法,我们可以研究函数y =的图象与性质.通过分析解析式画出部分函数图象如图2所示.(1)请沿此思路在图2中完善函数图象的草图并标出此函数图象上横坐标为0的点A ;(画出网格区域内的部分即可)(2)观察图象,写出该函数的一条性质:____________________(3)若关于x(1)a x =-有两个不相等的实数根,结合图象,直接写出实数a 的取值范围:___________________________.26.在平面直角坐标系xOy 中,已知抛物线22y x ax b =-+的顶点在x 轴上,1(,)P x m ,2(,)Q x m (12x x <)是此抛物线上的两点.(1)若1a =,①当m b =时,求1x ,2x 的值;②将抛物线沿y 轴平移,使得它与x 轴的两个交点间的距离为4,试描述出这一变化过程;初三年级(数学)第10页(共20页)(2)若存在实数c ,使得11x c ≤-,且27x c ≥+成立,则m 的取值范围是.27.如图,已知60AOB ∠=︒,点P 为射线OA 上的一个动点,过点P 作PE OB ⊥,交OB 于点E ,点D 在AOB ∠内,且满足DPA OPE ∠=∠,6DP PE +=.(1)当DP PE =时,求DE 的长;(2)在点P 的运动过程中,请判断是否存在一个定点M ,使得DM ME的值不变?并证明你的判断.28.在平面直角坐标系xOy 中,对于点P 和C ,给出如下定义:若C 上存在一点T 不与O 重合,使点P 关于直线OT 的对称点'P 在C 上,则称P 为C 的反射点.下图为C 的反射点P 的示意图.(1)已知点A 的坐标为(1,0),A 的半径为2,①在点(0,0)O ,(1,2)M ,(0,3)N -中,A 的反射点是____________;②点P 在直线y x =-上,若P 为A 的反射点,求点P 的横坐标的取值范围;初三年级(数学)第11页(共20页)(2)C 的圆心在x 轴上,半径为2,y 轴上存在点P 是C 的反射点,直接写出圆心C 的横坐标x 的取值范围.初三年级(数学)第12页(共20页)海淀区九年级第二学期期中练习数学参考答案及评分标准2018.5一、选择题(本题共16分,每小题2分)12345678ACDBADBD二、填空题(本题共16分,每小题2分)9.1510.87.5310⨯11.212.11x=(答案不唯一)13.1118012030x x --=14.3615.6016.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;经过半径的外端并且垂直于这条半径的直线是圆的切线;两点确定一条直线.三、解答题(本题共68分,第17~22题,每小题5分;第23~26小题,每小题6分;第27~28小题,每小题7分)17.解:原式=33323-++………………4分=5-………………5分18.解:() 5331, 263. 2x x x x +>-⎧⎪⎨-<-⎪⎩①②初三年级(数学)第13页(共20页)解不等式①,得3x >-.………………2分解不等式②,得2x <.………………4分所以原不等式组的解集为32x -<<.………………5分19.证明:∵90ACB ∠=︒,D 为AB 的中点,∴12CD AB BD ==.∴ABC DCB ∠=∠.………………2分∵DC EF ∥,∴CBF DCB ∠=∠.………………3分∴CBF ABC ∠=∠.∴BC 平分ABF ∠.………………5分20.解:(1)∵m 是方程的一个实数根,∴()222310m m m m --++=.………………1分∴13m =-.………………3分(2)24125b ac m ∆=-=-+.∵0m <,∴120m ->.∴1250m ∆=-+>.………………4分∴此方程有两个不相等的实数根.………………5分21.(1)证明:∵AE BD ∥,BE AC ∥,∴四边形AEBO 是平行四边形.………………1分初三年级(数学)第14页(共20页)∵四边形ABCD 是平行四边形,∴DC AB =.∵OE CD =,∴OE AB =.∴平行四边形AEBO 是矩形.………………2分∴90BOA ∠=︒.∴AC BD ⊥.∴平行四边形ABCD 是菱形.………………3分(2)正方形;………………4分2.………………5分22.解:(1)∵函数my x=的图象经过点()22P ,,∴2=2m,即4m =.………………1分图象如图所示.………………2分(2)当点()22P ,满足,m y xy x m⎧>⎪⎨⎪<+⎩(m >0)时,解不等式组2222m m⎧>⎪⎨⎪<+⎩得04m <<. (3)分初三年级(数学)第15页(共20页)当点()12Q -,满足,m y xy x m⎧>⎪⎨⎪<+⎩(m >0)时,解不等式组221m m >-⎧⎨<-+⎩,得3m >.………………4分∵P Q ,两点中恰有一个点的坐标满足,m y xy x m⎧>⎪⎨⎪<+⎩(m >0),∴m 的取值范围是:03m <≤,或4m ≥.………………5分23.解:(1)连接OE ,OF .∵EF AB ⊥,AB 是O 的直径,∴DOF DOE =∠∠.∵2DOE A =∠∠,A α=∠,∴2DOF α=∠.………………1分∵FD 为O 的切线,∴OF FD ⊥.∴90OFD ︒=∠.∴+90D DOF ︒=∠∠.902D α∴∠=︒-.………………2分(2)图形如图所示.连接OM .∵AB 为O 的直径,∴O 为AB 中点,90AEB ∠=︒.∵M 为BE的中点,初三年级(数学)第16页(共20页)∴OM AE ∥,1=2OM AE .………………3分∵30A ∠=︒,∴30MOB A ∠=∠=︒.∵260DOF A ∠=∠=︒,∴90MOF ∠=︒.………………4分∴222+OM OF MF =.设O 的半径为r .∵90AEB ∠=︒,30A ∠=︒,∴cos30AEAB ︒=⋅=.∴OM .………………5分∵FM∴222)+r =.解得=2r .(舍去负根)∴O 的半径为2.………………6分24.C ………………1分8085x ≤<8590x ≤<810………………2分(2)去年的体质健康测试成绩比今年好.(答案不唯一,合理即可)………………3分去年较今年低分更少,高分更多,平均分更大.(答案不唯一,合理即可)………………4分初三年级(数学)第17页(共20页)(3)70.………………6分25.(1)如图:………………2分(2)当1x >时,y 随着x 的增大而减小;(答案不唯一)………………4分(3)1a ≥.………………6分26.解: 抛物线22y x ax b =-+的顶点在x 轴上,24(2)04b a --∴=.2b a ∴=.………………1分(1)1a = ,1b ∴=.∴抛物线的解析式为221y x x =-+.11m b == ,2211x x ∴-+=,解得10x =,22x =.………………2分②依题意,设平移后的抛物线为2(1)y x k =-+.抛物线的对称轴是1x =,平移后与x 轴的两个交点之间的距离是4,∴(3,0)是平移后的抛物线与x 轴的一个交点.2(31)0k ∴-+=,即4k =-.初三年级(数学)第18页(共20页)∴变化过程是:将原抛物线向下平移4个单位.………………4分(2)16m ≥.………………6分27..解:(1)作PF ⊥DE 交DE 于F .∵PE ⊥BO ,60AOB ∠=,∴30OPE ∠=.∴30DPA OPE ∠=∠=.∴120EPD ∠=.………………1分∵DP PE =,6DP PE +=,∴30PDE ∠=,3PD PE ==.∴3cos3032DF PD =⋅︒=.∴233DE DF ==.………………3分(2)当M 点在射线OA 上且满足23OM =时,DMME的值不变,始终为1.理由如下:………………4分当点P 与点M 不重合时,延长EP 到K 使得PK PD =.∵,DPA OPE OPE KPA ∠=∠∠=∠,∴KPA DPA ∠=∠.初三年级(数学)第19页(共20页)∴KPM DPM ∠=∠.∵PK PD =,PM 是公共边,∴KPM △≌DPM △.∴MK MD =.………………5分作ML ⊥OE 于L ,MN ⊥EK 于N .∵23,60MO MOL =∠=,∴sin 603ML MO =⋅=.………………6分∵PE ⊥BO ,ML ⊥OE ,MN ⊥EK ,∴四边形MNEL 为矩形.∴3EN ML ==.∵6EK PE PK PE PD =+=+=,∴EN NK =.∵MN ⊥EK ,∴MK ME =.∴ME MK MD ==,即1DMME=.当点P 与点M 重合时,由上过程可知结论成立.………………7分28.解(1)①A 的反射点是M ,N .………………1分②设直线y x =-与以原点为圆心,半径为1和3的两个圆的交点从左至右依次为D ,E ,F ,G ,过点D 作⊥DH x 轴于点H ,如图.可求得点D 的横坐标为322-.同理可求得点E ,F ,G 的横坐标分别为22-,22,322.初三年级(数学)第20页(共20页)点P 是A 的反射点,则A 上存在一点T ,使点P 关于直线OT 的对称点'P 在A 上,则'OP OP =.∵1'3≤≤OP ,∴13≤≤OP .反之,若13≤≤OP ,A 上存在点Q ,使得OP OQ =,故线段PQ 的垂直平分线经过原点,且与A 相交.因此点P 是A 的反射点.∴点P 的横坐标x 的取值范围是32222≤x --,或23222≤x .………………4分(2)圆心C 的横坐标x 的取值范围是44≤≤x -.………………7分。

北京市海淀区2018-2019年初三上期中学业水平调研数学试题有答案[精品]

北京市海淀区2018-2019年初三上期中学业水平调研数学试题有答案[精品]

北京市海淀区初三第一学期期中学业水平调研数 学2018.11学校___________________ 姓名________________ 准考证号__________________一、选择题 (本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..是符合题意的.请将正确选项前的字母填在表格中相应的位置. 1.抛物线21y x =+的对称轴是 A .直线1x =-B .直线1x =C .直线0x =D .直线1y =2.点(21)P -,关于原点对称的点P '的坐标是 A .(21)-,B .(21)--,C .(12)-,D .(12)-, 3.下列App 图标中,既不是中心对称图形也不是轴对称图形的是A B C D 4.用配方法解方程2240x x --=,配方正确的是 A .()213x -=B .()214x -=C .()215x -=D .()213x +=5.如图,以O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,点P 为切点.若大圆半径为2,小圆半径为1,则AB 的长为 A . B . CD .26.将抛物线2(1)2y x =+-向上平移a 个单位后得到的抛物线恰好与x 轴有一个交点,则a 的值为A .1-B .1C .2-D .27.下图是几种汽车轮毂的图案,图案绕中心旋转90°后能与原的图案重合的是A B C D8.已知一个二次函数图象经过11(3)P y -,,22(1)P y -,,33(1)P y ,,44(3)P y ,四点,若324y y y <<,则1234y y y y ,,,的最值情况是 A .3y 最小,1y 最大 B .3y 最小,4y 最大 C .1y 最小,4y 最大D .无法确定二、填空题(本题共16分,每小题2分)9.写出一个以0和2为根的一元二次方程:________.10.函数2y ax bx c =++的图象如图所示,则ac 0.(填“>”,“=”,或“<”)11.若关于x 的方程2410x x k -+-=有两个不相等的实数根,则k的取值范围是 .12.如图,四边形ABCD 内接于⊙O ,E 为直径CD 延长线上一点,且AB ∥CD ,若∠C =70°,则∠ADE 的大小为________.13.已知O 为△ABC 的外接圆圆心,若O 在△ABC 外,则△ABC 是________(填“锐角三角形”或“直角三角形”或“钝角三角形”).14.在十三届全国人大一次会议记者会上,中国科技部部长表示,2017年我国新能汽车保有量已居于世界前列.2015年和2017年我国新能汽车保有量如图所示.设我国2015至2017年新能汽车保有量年平均增长率为,依题意,可列方程为 .EC2015年和2017年我国新能源汽车保有量统计图保有量/15.如图,在平面直角坐标系xOy 中,抛物线2y ax bx c =++与x 轴交于(1,0),(3,0)两点,请写出一个满足0y <的x 的值 .16.如图,⊙O 的动弦AB ,CD 相交于点E ,且AB CD =,BED α∠=(090)α︒<<︒.在①BOD α∠=,②90OAB α∠=︒-,③12ABC α∠=中,一定成立的 是 (填序号).三、解答题(本题共68分,第17~22题,每小题5分;第23~26小题,每小题6分;第27~28小题,每小题7分)17.解方程:()236x x x +=+.18.如图,将ABC △绕点B 旋转得到DBE △,且A ,D ,C三点在同一条直线上. 求证:DB 平分ADE ∠.EDCBA19.下面是小董设计的“作已知圆的内接正三角形”的尺规作图过程.已知:⊙O.求作:⊙O的内接正三角形作法:如图,①作直径AB;②以B为圆心,OB为半径作弧,与⊙O交于C,D两点;③连接AC,AD,CD.所以△ACD就是所求的三角形.根据小董设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明:证明:在⊙O中,连接OC,OD,BC,BD,∵OC=OB=BC,∴△OBC为等边三角形(___________)(填推理的依据).∴∠BOC=60°.∴∠AOC=180°-∠BOC=120°.同理∠AOD=120°,∴∠COD=∠AOC=∠AOD=120°.∴AC=CD=AD(___________)(填推理的依据).∴△ACD是等边三角形.20.已知1-是方程20+-=的一个根,求222x ax b-+的值.a b b21.生活中看似平常的隧道设计也很精巧.如图是一张盾构隧道断面结构图,隧道内部为以O为圆心AB 为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为0.8a,顶棚到路面的距离是3.2a,点B到路面的距离为2a.请你求出路面的宽度l.(用含a的式子表示)22.如图,在平面直角坐标系xOy 中,抛物线2y x ax b =++经过点()20A -,,()13B -,. (1)求抛物线的解析式;(2)设抛物线的顶点为C ,直接写出点C 的坐标和BOC ∠的度数.23.用长为6米的铝合金条制成如图所示的窗框,若窗框的高为x 米,窗户的透光面积为y 平方米(铝合金条的宽度不计).x 米(1)y 与x 之间的函数关系式为 (不要求写自变量的取值范围); (2)如何安排窗框的高和宽,才能使窗户的透光面积最大?并求出此时的最大面积.24.如图,在△ABC 中,AB AC =,以AB 为直径作⊙O 交BC 于点D ,过点D 作AC 的垂线交AC 于点E ,交AB 的延长线于点F .(1)求证:DE 与⊙O 相切;(2)若CD BF =,3AE =,求DF 的长.25.有这样一个问题:探究函数332x x y -++=的图象与性质.小东根据学习函数的经验,对函数332x x y -++=的图象与性质进行了探究.下面是小东的探究过程,请补充完成:(1)化简函数解析式,当3x ≥时,y =___________,当3x <时y =____________; (2)根据(1)中的结果,请在所给坐标系中画出函数332x x y -++=的图象;备用图 (3)结合画出的函数图象,解决问题:若关于x 的方程3312x x ax -+++=只有一个实数根,直接写出实数a 的取值范围:___________________________.26.在平面直角坐标系xOy 中,抛物线22(0)y ax x a =-≠与x 轴交于点A ,B (点A 在点B 的左侧).(1)当1a =-时,求A ,B 两点的坐标;(2)过点(30)P ,作垂直于x 轴的直线l ,交抛物线于点C . ①当2a =时,求PB PC +的值;②若点B 在直线l 左侧,且14PB PC +≥,结合函数的图象,直接写出a 的取值范围.27. 已知∠MON =α,P 为射线OM 上的点,OP =1.(1)如图1,︒=60α,A ,B 均为射线ON 上的点,OA =1,OB >OA ,△PBC 为等边三角形,且O ,C 两点位于直线PB 的异侧,连接AC .①依题意将图1补全;②判断直线AC 与OM 的位置关系并加以证明;(2)若︒=45α,Q 为射线ON 上一动点(Q 与O 不重合),以PQ 为斜边作等腰直角△PQR ,使O ,R 两点位于直线PQ 的异侧,连接OR . 根据(1)的解答经验,直接写出△POR 的面积.图1 备用图28.在平面直角坐标系Oy 中,点A 是轴外的一点,若平面内的点B 满足:线段AB 的长度与点A到轴的距离相等,则称点B 是点A 的“等距点”.(1)若点A 的坐标为(0,2),点1P (2,2),2P (1,4-),3P (1)中,点A 的“等距点”是_______________;(2)若点M (1,2)和点N (1,8)是点A 的两个“等距点”,求点A 的坐标;(3)记函数3y x =(0x >)的图象为L ,T 的半径为2,圆心坐标为(0,)T t .若在L 上存在点M ,T 上存在点N ,满足点N 是点M 的“等距点”,直接写出t 的取值范围.初三第一学期期中学业水平调研数 学 参 考 答 案 2018.11一、选择题(本题共16分,每小题2分)二、 9.220-=x x (答案不唯一) 10.< 11.5<k 12.110°13.钝角三角形 14.245.1(1)172.9+=x 15.2 (答案不唯一)16.①③(注:每写对一个得1分) 三、解答题(本题共68分) 17.解法一:解:(2)3(2)x x x +=+,(2)3(2)0+-+=x x x ,(2)(3)0+-=x x , 20x +=或30x -=,12=-x ,23x =.解法二:解:方程化为 260x x --=. 2425b ac ∆=-=.152x ±==, 12=-x ,23x =.18.证明:∵ 将△ABC 绕点B 旋转得到△DBE , ∴△ABC ≌△DBE∴BA=BD .∴∠A =∠ADB . ∵∠A =∠BDE , ∴ ∠ADB =∠BDE . ∴ DB 平分∠ADE .19. 解:(1)(2)三条边都相等的三角形是等边三角形.在同圆或等圆中,相等的圆心角所对的弦相等.20.解:∵1-是方程20+-=x ax b 的一个根, ∴ 10--=a b . ∴1+=a b . ∴222a b b -+()()2a b a b b =+-+2a b b =-+EDCBAa b =+1= .21.解:如图,连接OC .由题意知0.8 3.226=++=AB a a a a .3OC OB a ∴==. ∴=-=OE OB BE a .由题意可知AB CD ⊥于E ,∴2CD CE =.在Rt OCE △中,===CE .CD ∴=.22.解:(1)∵抛物线2y x ax b =++经过点(20)(13)A B --,,,, ∴4201 3.a b a b -+=⎧⎨-+=⎩,解得68.a b =⎧⎨=⎩,∴268y x x =++.(2)(3,1)C --,90BOC ∠=︒.23.(1)2332=-+y x x ; 注:没有化简不扣分.(2)当31322()2b x a =-=-=⨯-时,y 有最大值24933424()2ac b a --==⨯-. 答:当窗框的高为1米,宽为32米时,窗户的透光面积最大,最大面积为32平方米. 24.(1)证明:连接OD .∵AB 是⊙O 的直径, ∴90ADB ∠=°. ∴AD BC ⊥. 又∵AB AC =, ∴12∠=∠.∵OA OD =, ∴2ADO ∠=∠. ∴1ADO ∠=∠. ∴OD ∥AC . ∵DE AC ⊥于点E , ∴=90ODF AED =︒∠∠. ∴OD ⊥ED . ∴DE 与⊙O 相切. (2)∵AB AC =,AD BC ⊥,∴12∠=∠,CD BD =. ∵CD BF =, ∴=BF BD . ∴3F =∠∠.∴4323F =∠+∠=∠∠. ∵OB OD =, ∴5=423=∠∠∠. ∵90ODF =︒∠,∴330F ==︒∠∠,4560=∠=︒∠. ∵90ADB =︒∠, ∴2130∠=∠=︒. ∴2F =∠∠. ∴ DF AD =.∵130=︒∠,90AED =︒∠, ∴2AD ED =.∵222AE DEAD +=,3AE =,∴AD = ∴DF =25.(1)化简函数解析式,当3x ≥时,y =,当3x <时y = 3 ; (2)根据(1)中的结果,画出函数332x x y -++=的图象如下:(3)0<a 或1≥a 或23=a . (注:每得出一个正确范围得1分) 26.(1)当1=-a 时,有22y x x =--.令0y =,得220x x --=. 解得120,2x x ==-. ∵点A 在点B 的左侧, ∴(20)A -,,(00)B ,.(2)①当2=a 时,有222y x x =-.令0y =,得2220x x -=. 解得1201x x ==,. ∵点A 在点B 的左侧, ∴(00)A ,,(10)B ,. ∴2PB =.当3=x 时,292312=⨯-⨯=c y . ∴12PC =. ∴14PB PC +=. ②59≤-a 或2≥a . 27.(1)①依题意,将图1补全;NCMPB A O②AC OM ∥.证明:连接AP∵1OA OP ==,︒=60α ,∴△OAP 是等边三角形. ∴=60OP PA OPA OAP ==︒,∠∠. ∵△PBC 是等边三角形, ∴=60PB PC BPC =︒,∠.∴OPA APB BPC APB +=+∠∠∠∠.即OPB APC =∠∠. ∴△OBP ≌△ACP . ∴60PAC O ==︒∠∠. ∴OPA PAC =∠∠. ∴AC OM ∥.(2)14POR S =△. 28.(1)1P ,3P ;(2)∵点()12M ,和点()18N ,是点A 的两个“等距点” , ∴AM AN =.∴点A 在线段MN 的垂直平分线上.设MN 与其垂直平分线交于点C ,()A A A x y ,,∴(15)C ,,==5A AM AN y =. ∴=3CM .∴4AC ==.∴点A 的坐标为(35)-,或(55),. (3)24t -<≤.OABPMCN。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年11月北京市海淀区初三数学期中试卷一、 选择题(本题共24分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.一元二次方程23610x x --=的二次项系数、一次项系数、常数项分别是 A .3,6,1B .3,6,-1C .3,-6,1D .3,-6,-1 2.把抛物线2y x =向上平移1个单位长度得到的抛物线的表达式为A .21y x =+B . 21y x =-C .21y x =-+D .21y x =--3.如图,A ,B ,C 是⊙O 上的三个点,若∠C =35°,则∠AOB 的大小为 A .35° B .55° C .65°D .70°4.下列手机手势解锁图案中,是中心对称图形的是A .B .C .D .5.用配方法解方程2420x x -+=,配方正确的是 A .2(2=2x -)B .2(+2=2x )C .2(-2=-2x )D .2(-2=6x )6.风力发电机可以在风力作用下发电.如图的转子叶片图案绕中心旋转n °后能与原来的图案重合,那么n 的值可能是 A .45 B .60 C .90D .1207.二次函数21y ax bx c =++与一次函数2y mx n =+的图象如图所示,则满足2ax bx c mx n ++>+的x 的取值范围是A .-3<x <0B .x <-3或x >0C .x <-3或x >1D .0<x <38.如图1.动点P从格点A出发,在网格平面内运动.设点P走过的路程为s,点P到直线l的距离为d.已知d与s的关系如图2所示.下列选项中,可能是点P的运动路线的是A.B.C.D.二、填空题(本题共24分,每小题3分)9.点P(-1,2)关于原点的对称点的坐标为.10.写出一个图象开口向上,过点(0,0)的二次函数的表达式:.11.如图3,四边形ABCD内接于⊙O,E为CD的延长线上一点,若∠B=110°,则∠ADE的大小为.12.抛物线y=x2-x-1与x轴的公共点的个数是.13.如图4,在平面直角坐标系xOy中,点A、点B的坐标分别为(0,2),(-1,0),将线段AB绕点O顺时针旋转,若点A的对应点A´的坐标为(2,0),则点B的对应点B´的坐标为.14.已知抛物线y=x2+2x经过点(-4,y1),(1,y2),则y1y2(填“>”,“=”或“<”)15.如图5,⊙O的半径OA与弦BC交于点D,若OD=3,AD=2,BD=CD,则BC的长为.16.下面是“作已知三角形的高”的尺规作图过程. 请回答:该尺规作图的依据是 .三、解答题(本题共72分,第17题4分,第18—23题,每小题5分,第24—25题,每小题7分,第26—28题,每小题8分) 17.解方程:x 2-4x +3=0.已知:△ABC求作:BC 边上的高AD 作法:如图,(1)分别以点A 和点C 为圆心,大于12AC 的长为半径作弧,两弧相交于P 、Q 两点; (2)作直线PQ ,交AC 于点O ;(3)以O 为圆心,OA 为半径作⊙O ,与CB 的延长线交于点D ,连接AD ,线段AD 即为所作的高.18.如图,等边三角形ABC 的边长为3,点D 是线段BC 上的点,CD =2,以AD 为边作等边三角形ADE ,连接CE ,求CE 的长.19.已知m 是方程x 2−3x +1=0的一个根,(x −3)2+(x +2)(x −2)的值.20.如图,在⊙O 中,xx̂=xx ̂. 求证:∠B =∠C .21.如图,ABCD 是一块边长为4米的正方形苗圃.园林部门拟将其改造为矩形AEFG 的形状.其中点E 在AB 边上,点G 在AD 的延长线上,DG =2BE .设BE 的长为x 米,改造后苗圃AEFG 的面积为y 平方米(1)y 与x 之间的函数关系式为________________(不需写自变量的取值范围); (2)根据改造方案,改造后的矩形苗圃AEFG 的面积与原正方形苗圃ABCD 的面积相等,请问此时BE 的长为多少米?22. 关于x 的一元二次方程011222=-+-+m x m x )(有两个不相等的实数根1x ,2x . (1)求实数m 的取值范围;(2)是否存在实数m ,使得1x 2x =0成立?如果存在,求出m 的值;如果不存在,请说明理由.23.古代丝绸之路上的花剌子模地区曾经诞生过一位伟大的数学家——“代数学之父”阿尔▪花拉子米.在研究一元二次方程解法的过程中,他觉得“有必要用几何学方式来证明曾用数字解释过的问题的正确性”.以21039x x +=为例,花拉子米的几何解法如下:如图,在边长为x 的正方形的两个相邻边上作边长分别为x 和5的矩形,再补上一个边长为5的小正方形,最终把图形补成一个大正方形.通过不同的方式来表示大正方形的面积,可以将原方程化为2__)(+x =39+_______,从而得到此方程的正根是___________.24.如图,在平面直角坐标系xOy中,点A的坐标为(1,0),点P的横坐标为2,将点A 绕点.P.旋转,使它的对应点B恰好落在x轴上(不与A点重合);再将点B绕点.O.逆时针旋转90°得到点C.(1)直接写出点B和点C的坐标;(2)求经过A、B、C三点的抛物线的表达式.25.如图,AB为⊙O直径,点C在⊙O上,过点O作OD⊥BC交BC于点E,交⊙O于点D,CD ∥AB.(1)求证:E为OD的中点;(2)若CB=6,求四边形CAOD的面积.26.在平面直角坐标系xOy 中,已知抛物线C : y =x 2-4x +4和直线l :y =kx -2k (k >0). (1)抛物线C 的顶点D 的坐标为____________; (2)请判断点D 是否在直线l 上,并说明理由;(3)记函数244222x x x y kx k x ⎧-+≤=⎨->⎩,,的图象为G ,点M (0,t ),过点M 垂直于y 轴的直线与图象G 交于点11P x y (,),22x y Q(,).当1<t <3时,若存在t 使得124x x +=成立,结合图象,求k 的取值范围.27.对于平面直角坐标系xOy 中的点P ,给出如下定义:记点P 到x 轴的距离为1d ,到y 轴的距离为2d ,若12d d ≤,则称1d 为点P 的“引力值”;若12d d >,则称2d 为点P 的“引力值”.特别地,若点P 在坐标轴上,则点P 的“引力值”为0.例如,点P (-2,3)到x 轴的距离为3,到y 轴的距离为2,因为2< 3,所以点P 的“引力值”为2.(1)①点A (1,-4)的“引力值”为 ;②若点B (a ,3)的“引力值”为2,则a 的值为 ;(2)若点C 在直线24y x =-+上,且点C 的“引力值”为2.求点C 的坐标;(3)已知点M是以D(3,4)为圆心,半径为2的圆上的一个动点,那么点M的“引力值”d 的取值范围是.28.在Rt△ABC中,斜边AC的中点M关于BC的对称点为点O,将△ABC绕点O顺时针旋转至△DCE,连接BD,BE,如图所示(1)在①∠BOE,②∠ACD,③∠COE中,等于旋转角的是(填出满足条件的角的序号);(2)若∠A=α,求∠BEC的大小(用含α的式子表示);(3)点N是BD的中点,连接MN,用等式表示线段MN与BE之间的数量关系,并证明.数学参考答案一、选择题(本题共24分,每小题3分)二、填空题(本题共24分,每小题3分)9.(1,2-) 10.答案不唯一,例如2y x = 11.110° 12.2 13.(0,1) 14.> 15.816.①到线段两端点距离相等的点在线段的垂直平分线上;②直径所对的圆周角是直角;③两点确定一条直线. (注:写出前两个即可给3分,写出前两个中的一个得2分,其余正确的理由得1分) 三、解答题(本题共72分) 17.解法一:解:2441x x -+=,()221x -=, ………………2分21x -=±,11x =,23x =. ………………4分解法二:解:()()130x x --=, ………………2分 10x -=或30x -=,11x =,23x =. ………………4分 18.解:∵ △ABC 是等边三角形, ∴ AB =BC =AC ,∠BAC =60°.∴ ∠1+∠3=60°. ………………1分 ∵ △ADE 是等边三角形, ∴ AD =AE ,∠DAE =60°.∴ ∠2+∠3=60°. ………………2分 ∴ ∠1=∠2. 在△ABD 与△ACE 中12AB ACAD AE =⎧⎪∠=∠⎨⎪=⎩, ∴ △ABD ≌ △ACE (SAS ).∴ CE =BD . …4分∵ BC =3,CD =2,∴ BD =BC -CD =1 .∴ CE =1. …5分19.解:∵ m 是方程2310x x -+=的一个根,∴ 2310m m -+=. ………………2分∴ 231m m -=-.321EDCBA∴ 原式22694m m m =-++- ………………4分 ()2235m m =-+3=. ………………5分20.方法1:证明:∵ 在⊙O 中,AB CD =,∴ ∠AOB =∠COD . ………………2分 ∵ OA =OB ,OC =OD ,∴ 在△AOB 中,1902B AOB ∠=︒-∠,在△COD 中,1902C COD ∠=︒-∠. ………………4分∴ ∠B =∠C . ………………5分21.解:(1)22416y x x =-++(或()()442y x x =-+) …3分(2)由题意,原正方形苗圃的面积为16平方米,得2241616x x -++=. 解得:12x =,20x =(不合题意,舍去). ……5分 答:此时BE 的长为2米. 22.解:(1)∵ 方程()222110xm x m +-+-=有两个不相等的实数根,∴ ()()224141880m m m ∆=---=-+>,∴ 1m <.(2)存在实数m 使得120x x =.120x x =,即是说0是原方程的一个根,则210m -=.解得:1m =- 或 1m =.当1m =时,方程为20x =,有两个相等的实数根,与题意不符,舍去. ∴ 1m =-.23.通过不同的方式来表示大正方形的面积,可以将原方程化为()25 x + 39 25 =+从而得到此方程的正根是 3 .24.(1)点B 的坐标为(3,0),点C 的坐标为(0,3); (2)方法1:设抛物线的解析式为2y ax bx c =++. 因为 它经过A (1,0),B (3,0),C (0,3),则0,930,3.a b c a b c c ++=⎧⎪++=⎨⎪=⎩解得 1,4,3.a b c =⎧⎪=-⎨⎪=⎩∴ 经过,,A B C 三点的抛物线的表达式为243y x x =-+. 方法2:抛物线经过点A (1,0),B (3,0),故可设其表达式为(1)(3)(0)y a x x a =--≠. 因为 点C (0,3)在抛物线上,所以 ()()01033a --=,得1a =. ∴经过,,A B C 三点的抛物线的表达式为243y x x =-+. 方法3:抛物线经过点A (1,0),B (3,0),则其对称轴为2x =. 设抛物线的表达式为()22y a x k =-+. 将A (1,0),C (0,3)代入,得 0,4 3.a k a k +=⎧⎨+=⎩解得 1,1.a k =⎧⎨=-⎩∴经过,,A B C 三点的抛物线的表达式为243y x x =-+.25.(1)证明:∵ 在⊙O 中,OD ⊥BC 于E ,∴ CE =BE . ………………1分 ∵ CD ∥AB ,∴ ∠DCE =∠B . ………………2分 在△DCE 与△OBE 中,,.DCE B CE BE CED BEO ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ △DCE ≌ △OBE (ASA ). ∴ DE =OE .∴ E 为OD 的中点. ………………4分(2)解: 连接OC .∵ AB 是⊙O 的直径, ∴ ∠ACB =90°. ∵ OD ⊥BC ,∴ ∠CED =90°=∠ACB .∴ AC ∥OD . ………………5分 ∵ CD ∥AB ,∴ 四边形CAOD 是平行四边形. ∵ E 是OD 的中点,CE ⊥OD , ∴ OC =CD . ∵ OC =OD , ∴ OC =OD =CD .∴ △OCD 是等边三角形.∴ ∠D =60°. ………………6分 ∴ ∠DCE =90°-∠D =30°. ∴ 在Rt △CDE 中,CD =2DE . ∵ BC =6, ∴ CE =BE =3.∵ 22224CE DE CD DE +==, ∴DE =CD =. ∴OD CD == ∴CAOD S OD CE =⋅=四边形………………7分AAB26.(1)(2,0); ………………2分 (2)点D 在直线l 上,理由如下: 直线l 的表达式为2(0)y kx k k =->,∵ 当2x =时,220y k k =-=, ………………3分 ∴ 点D (2,0)在直线l 上. ………………4分 注:如果只有结论正确,给1分.(3)如图,不妨设点P 在点Q 左侧.由题意知:要使得124x x =+成立,即是要求点P 与点Q 关于直线2x =对称.又因为 函数244y x x =-+的图象关于直线2x =对称,所以 当13t <<时,若存在t 使得124x x =+成立,即要求点Q 在244(2,13)y x x x y =-+><<的图象上根据图象,临界位置为射线2(0,2)y kx k k x =->>过244(2)y x x x =-+>与1y =的交点(3,1)A 处,以及射线2(0,2)y kx k k x =->>过244(2)y x x x =-+>与3y =的交点(2B +处. 此时1k =以及k =k 的取值范围是1k <<27.(1)① 1,② 2±; 注:错一个得1分.(2)解:设点C 的坐标为(x ,y ).由于点C 的“引力值”为2,则2x =或2y =,即2x =±,或2y =±. 当2x =时,240y x =-+=,此时点C 的“引力值”为0,舍去; 当2x =-时,248y x =-+=,此时C 点坐标为(-2,8);当2y =时,242x -+=,解得1x =,此时点C 的“引力值”为1,舍去; 当2y =-时,242x -+=-,3x =,此时C 点坐标为(3,-2); 综上所述,点C 的坐标为(2-,8)或(3,2-). 注:得出一个正确答案得2分. (3)712d +≤≤. 注:答对一边给2分;两端数值正确,少等号给2分;一端数值正确且少等号给1分.28.(1)③;………………1分(2)连接BM,OB,OC,OE.∵ Rt△ABC中,∠ABC=90°,M为AC的中点,∴MA=MB=MC=12AC. ………………2分∴∠A=∠ABM.∵∠A=α,∴∠BMC=∠A+∠ABM=2α.∵点M和点O关于直线BC对称,∴∠BOC=∠BMC=2α. ………………3分∵OC=OB=OE,∴点C,B,E在以O为圆心,OB为半径的圆上.∴12BEC BOCα∠=∠=. ………………4分(3)12MN BE=,证明如下:连接BM并延长到点F,使BM=MF,连接FD.∵∠A=α,∠ABC=90°,∴∠ACB=90°-∠A=90°-α.∴∠DEC=∠ACB=90°-α.∵∠BEC=α,∴∠BED=∠BEC+∠DEC=90°.∵BC=CE,∴∠CBE=∠CEB=α.∵MB=MC,∴∠MBC=∠ACB=90°-α.∴∠MBE=∠MBC+∠CBE=90°.∴∠MBE+∠BED=180°.∴BF∥DE. ………………6分∵BF=2BM,AC=2BM,∴BF=AC.∵AC=DE,∴BF=DE.∴四边形BFDE是平行四边形. ………………7分∴DF=BE.∵BM=MF,BN=ND,∴MN=12 DF.∴MN =12BE. ………………8分OMNABDCEBD。

相关文档
最新文档