阵列信号处理的基本知识分析共36页

合集下载

阵列信号处理的基本知识分析

阵列信号处理的基本知识分析
l m m
加性噪声。
将整个阵列的输出信号写成矩阵形式为:
x(t ) As(t ) n(t )
A [a( ),, a( )] 为阵列流行矩阵、空间信 号方向矢量、阵列响应矩阵。
1 P
a( ) [1 e
1 P
j 2 d sin /
,, e
j 2 ( M 1 ) d sin /
式中L为阵列最大口径,F和 为信号中心频率 和该频率对应的波长。 远场假设 即辐射源到阵列的距离远大于阵列的最大口 径,从而入射到阵列的信号波前可近似为平 面波前(d ).
L2


入射信号统计特性 空间入射信号平稳且各态历经,可以用时 间平均代替集合平均。一般还假定各入射 信号统计独立。 E{s(t ) s (t )} diag{ ,, } 噪声统计特性 空时白高斯噪声;色噪声环境下需要稳健 的算法。 E{n(t )n (t )} I

阵元之间的互藕 有关因素:阵元之间的间距大小,系统工作 频段,采用的传感器类型等。 设所有阵元之间的藕合系数矩阵为C,则考 虑到阵元间互藕的阵列输出信号模型为:
x(t ) CAs (t ) n(t )

阵元位置 阵元测向的关键信息是空间信号入射到各阵 元的相对延迟相位,而这一相位依赖于阵元 之间的空间位置,阵元位置误差直接导致延 迟相位估计误差,从而影响信号参数估计。 阵列模糊 阵元间距大于 / 2 时,影响空间信号到达角 的可辨识性和确定性,需要解决阵列模糊问 题。
H 2 2 s1 sP
H 2

信号数目 属于信号检测问题(AIC,MDL,etc),一般 假定先验已知。
二、阵列信号处理的主要内容

信号参数估计(DOA,频率,极化参数,距离, 时延等): 谱估计方法(子空间方法,波束形成 方法),参数化方法(最大似然,基于子空间逼 近方法)。

课件2:阵列信号处理数学基础

课件2:阵列信号处理数学基础

谱定理,也就是矩阵A的特征值分解定理,其中Λ diag( , , , ), E
1
2
n
[e ,e , ,e ]是由特征向量构成的酉矩阵。
1
2
n
•9
一、代数基础
Kronecker积
定义:p q矩阵A和m n矩阵B的Kronecker积记作A B,它是一个 pm qn矩阵,定义为
a B
11
x
(t)
s (t)e K
jwom ( i )
n
(t)
m
i1 i
m
s (t)为入射到阵列的第i个源信号 i
( )为第m个阵元相对参考点的时延
m
i
n (t)为第m个阵元的加性噪声 m
X (t) [x (t), x (t),, x (t)]T
1
2
M
矩阵表示接收信号 N (t) [n (t), n (t),, n (t)]T
f
f
Khatri Rao积具有如下一些性质:
A⊙(B⊙C) (A⊙B)⊙C
(A B)⊙C A⊙C B⊙C
A⊙B B⊙ A
•12
一、代数基础
Hadamard积
矩阵A 和B IJ IJ的Hadamard积定义为
向量化
a b 11 11
A B a b21 21
a bI1 I1
ab 12 12
1
2
t1 ,t2
E{n(t )nT (t )} 0
1
2
Outline
一、矩阵代数相关知识 二、信源和噪声模型 三、阵列天线统计模型 四、阵列响应矢量/矩阵 五、阵列协方差矩阵的特征值分解 六、信源数估计方法
•19

阵列信号处理 ARRAYppt课件

阵列信号处理 ARRAYppt课件

其中: SNRomni——接收机入口处的信噪比
CBlo(g 1SNR ) C——信道容量:bps B——接收机2 带宽:Hz
Omni
;.
25
波束成形天线示意图 天线阵的各个单元间距小于/2
发送波束成形
接收波束成形
;.
26
多天线系统的信道容量(2)
波束成形天线系统:将发射功率相等的分配到M个全向发射天线上,M个 全向收、发天线采用相位波束成形技术,则信道容量为:
;.
为什么要进行阵列信号处场的有用特征,获取信号源的属性等信息。 改善蜂窝和个人通信服务系统质量、覆盖范围和容量的强有力的工具。
研究兴趣:将接收天线阵列用于反向连接(客户到基站)
;.
;.
来看两个阵列在天线方面的应用
智能天线阵 分布多天线阵
智能天线阵 ;.
;.
29
多天线系统的信道容量比较
;.
30
传输环境对天线系统的影响
MIMO与波束成形天线的频谱效率 ([4,6],SNR=10dB,中断率 10% )
15
d
频谱效率 b/s/Hz
CBe a m sBlo2g(1M2SNORm)n i SN足 R 够B大 {2lo2g(M.SNORm}ni
;.
27
MIMO天线系统示意图
独立信道
天线阵
天线阵2
;.
28
多天线系统的信道容量(3)
如果发射功率分散到M个独立的信道中,并且各个信道具有相同的路径 损耗,则信道容量为:
CMIMOMlBo2g(1SNORm)ni S N足 R 够M 大{Blo2(gSNORm}n i
;.
平面波与阵列 天线应具有方向性——定向发射和接收 采用阵列天线——易于控制波束 阵列处理的对象——空间信号

现代数字信号处理课件:阵列信号处理

现代数字信号处理课件:阵列信号处理

阵列信号处理
2. 阵列信号协方差矩阵分解 阵列信号协方差矩阵R=E[XXH]可以写作
R
E[ x1 x1 ] E[x2 x1]
E[ x1 x2 ] E[x2 x2]
E[ x1 xM E[x2 xM
] ]
E[
xM
x1
]
E[xM x2]
E[
xM
xM
]
(7.1.11)
这是一个Hermitian方阵,则其特征分解为
di l c
1 c
( xi
sin
cosj
yi
cos
cosj
zi
sinj )
(7.1.4)
通常情况下,考虑空间有N个独立远场窄带信号入射到
M个阵元的阵列上,且有零均值高斯白噪声n(t),可以得到
阵列的输出为
x1(t) exp( j2πf011)
x2 (t
)
exp(
j2πf0
21 )
UHRU=Σ
(7.1.13)
将R=ARSAH+σ2I代入上式,可得
UH(ARSAH+σ2I)U=Σ 而酉矩阵U满足UHU=I,因此
(7.1.14)
UHARSAHU=Σ-σ2I
(7.1.15)
由上面的分析可知,Σ可分为两部分: 一是与信号对应
的大特征值,由ARSAH和RN提供;二是与噪声对应的小特征 值σ2,由RN提供。即
则各阵元第k次快拍的采样值的矩阵形式为
X(k)=AS(k)+N(k)
(7.1.7)
由于S(k)随k变化,且其初相通常为均匀分布,一阶统
计量(均值)为零,所以不能直接采用一阶统计量来提取方向
信息。而二阶统计量可以消除信号S(k)的随机初相,可以用

阵列信号处理全.ppt

阵列信号处理全.ppt

▪平面阵
图1.5
▪立体阵
图1.6
b. 参数化数据模型
假设N元阵分布于二维平面上,阵 元位置为:
rl xl , yl ,l 1,2, , N
一平面波与阵面共面,传播方向矢
量为: 1 cos ,sin T
c
y
r
x 图1.7:二维阵列
几何结构
阵元
l 接收信号为:xl
t s rl,t
滤波:增强信噪比 获取信号特征:信号源数目 传输方向(定位)及波形 分辨多个信号源
定义:
➢传感器——能感应空间传播信号并且能以某 种形式传输的功能装置
➢传感器阵列(sensors array)——由一组传感 器分布于空间不同的位置构成
由于空间传播波携带信号是空间位置和时
间的四维函数,所以:
连续:面天线
波动方程的任意解可以分解为无穷多个“单频”
解的迭加(传播方向和频率分量均任意)。
波动方程的单频解可以写成单变量的函数:
sr,t Aexp[ j(t kT r) Aexp[ j t T r ]
式中 k ,其大小等于传播速度的倒数,其方向与 传播方向相同,常称为慢速矢量(slowness vector)。
2. G.Strang,"Linear Algerbra and Its Applications", Academic Press,New York ,1976.(有中译本, 侯自新译,南开大学出版社,1990)
§2.1线性空间和希尔伯特空间
一、符号及定义
1. 符号
以后我们常用字母加低杆表示矢量和矩阵,
实际阵列
空间采样方式 虚拟阵列(合成阵列如SAR)
空时采样示意图如下:

第四章 阵列信号处理

第四章 阵列信号处理
si (t ) = s (t − 1 riT α ) exp[ j (ωt − riT k )] c
通常信号的频带B比载波 ω 小很多,即s(t)变化 相对 ω 缓慢,则延时
1 c
r α <<
T
1 B
则可以认为 s (t − r α ) ≈ s (t ) 即信号包络 在各阵元上差异可忽略——窄带信号。
4.2 等距线阵与均匀圆阵
一、等距线阵 M个阵元等距排成一直线,阵元间距为d,到达波 的方向角定义为与阵列法线的夹角 θ ,称为波 达方向(DOA)。 在三维空间中还可以 θ θ 确定信源方位角 ψ
d
5
4
y
ψ
2
1
x
等距线阵(ULA)的方向向量
aULA (θ ) = [1, e = [1, e
−j 2π − j k d sin θ −j
,L, e

− j k ( M −1) d sin θ T
]
λ
d sin θ
,L, e
λ
( M −1) d sin θ
]T
若有多个信源(p个),波达方向分别为 θ i (i − 1, L, p) 方向矩阵为
A = [a(θ1 ), a(θ 2 ),L, a(θ p )] = 1 ⎡ ⎢ e − j 2λπ d sin θ1 =⎢ ⎢ L ⎢ − j 2λπ ( M −1) d sin θ1 ⎣e ⎤ π − j 2λ d sin θ p ⎥ L e ⎥ ⎥ L L π − j 2λ ( M −1) d sin θ p ⎥ L e ⎦ L 1
θ
d sin θ
Vandermonde矩阵
阵列结构不允许其方向向量和空间角之间模糊, 等距线阵阵元间距不能大于 λ ,则可以保证 2 方向矩阵中各个列向量线性独立。 二、等距线阵的阵列响应与方向图 在单个信源情况下,阵列输出为各阵元信号的加 权和(不考虑噪声),

阵列信号处理(知识点)

阵列信号处理(知识点)

信号子空间:设N 元阵接收p 个信源,则其信号模型为:()()()()1piiii x t s t a N t θ==+∑在无噪声条件下,()()()()()12,,,P x t span a a a θθθ∈L称()()()()12,,,P span a a a θθθL 为信号子空间,是N 维线性空间中的P 维子空间,记为P N S 。

P N S 的正交补空间称为噪声子空间,记为N P N N -。

正交投影设子空间m S R ∈,如果线性变换P 满足,()1),,,2),,,0m mx R Px S x S Px x x R y S x Px y ∀∈∈∀∈=∀∈∀∈-=且则称线性变换P 为正交投影。

导向矢量、阵列流形设N 元阵接收p 个信源,则其信号模型为:()()()()1piiii x t s t a N t θ==+∑,其中矢量()i ia θ称为导向矢量,当改变空间角θ,使其在空间扫描,所形成的矩阵称为阵列流形,用符号A 表示,即(){|(0,2)}a A θθπ=∈波束形成波束形成(空域滤波)技术与时间滤波相类似,是对采样数据作加权求和,以增强特定方向信号的功率,即()()()()HHy t W X t s t W a θ==,通过加权系数W 实现对θ的选择。

最大似然已知一组服从某概率模型()f X θ的样本集12,,,N X X X K ,其中θ为参数集合,使条件概率()12,,,N f X X X θK 最大的参数θ估计称为最大似然估计。

不同几何形态的阵列的阵列流形矢量计算问题假设有P 个信源,N 元阵列,则先建立阵列的几何模型求第i 个信源的导向矢量()i i a θ 选择阵元中的一个作为第一阵元,其导向矢量()1[1]i a θ=然后根据阵列的几何模型求得其他各阵元与第一阵元之间的波程差n ∆,则确定其导向矢量()2jn i a eπλθ∆=最后形成N 元阵的阵列流形矢量()11221N j j N Pe A e πλπλθ-∆∆⨯⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦M 例如各向同性的NxM 元矩形阵,阵元间隔为半个波长,当信源与阵列共面时:首先建立阵列几何模型:对于第m 行、第n 列的阵元,其与第1行、第1列阵元之间的波程差为(1)sin()(1)cos()mn i i n d m d θθ∆=---故:()1122(sin()cos())22((1)sin()(1)cos())11N j j d j j d N M NM P NM Pe e A e e ππθθλλππθθλλθ-∆-∆---⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦M M而当信源与阵列不共面时: 首先将信源投影到阵列平面然后建立阵列模型对于第m 行、第n 列的阵元,其与第1行、第1列阵元之间的波程差为[(1)sin()(1)cos()]sin()mn i i i n d m d θθϕ∆=-+-故:()1122(sin()cos())cos()22((1)sin()(1)cos())cos()11N j j d j j d N M NM P NM Pe e A e e ππθθϕλλππθθϕλλθ-∆-∆---⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦M M线性约束最小方差准则(LCMV )的自适应波束形成算法: 对于信号模型:()()()0X t s t a J N θ=++, 波束形成输出:()()()()0()H H H yt W X t s t W a W J N θ==++LCMV 准则实际上是使()0HW a θ为一个固定值的条件下,求取使得()HWJ N +方差最小的W 作为最有权值,即:()0min .H X W HW R Ws t W a Fθ⎧⎪⎨⎪=⎩,其中F 为常数利用拉格朗日乘子法可解得:()10X opt W R a μθ-=当取1F =时,则()()11H X a R a μθθ-=,μ的取值不影响SNR 和方向图。

阵列信号处理(知识点)(word文档物超所值)

阵列信号处理(知识点)(word文档物超所值)

信号子空间:设N 元阵接收p 个信源,则其信号模型为:()()()()1piii x t s t a N t θ==+∑在无噪声条件下,()()()()()12,,,P x t span a a a θθθ∈L 称为信号子空间,是N 维线性空间中的P 维子空间,记为()()()()12,,,P span a a a θθθL 。

的正交补空间称为噪声子空间,记为。

P NS P N S N P N N -正交投影设子空间,如果线性变换满足,mS R ∈P ()1),,,2),,,0m m x R Px S x S Px x x R y S x Px y ∀∈∈∀∈=∀∈∀∈-=且则称线性变换为正交投影。

P 导向矢量、阵列流形设N 元阵接收p 个信源,则其信号模型为:,其中矢量()()()()1piii x t s t a N t θ==+∑称为导向矢量,当改变空间角,使其在空间扫描,所形成的矩阵称为阵列流形,()i i a θθ用符号表示,即A (){|(0,2)}a A θθπ=∈波束形成波束形成(空域滤波)技术与时间滤波相类似,是对采样数据作加权求和,以增强特定方向信号的功率,即,通过加权系数实现对的()()()()H H y t W X t s t W a θ==W θ选择。

最大似然已知一组服从某概率模型的样本集,其中为参数集合,使条件()f X θ12,,,N X X X K θ概率最大的参数估计称为最大似然估计。

()12,,,Nf X X X θK θ不同几何形态的阵列的阵列流形矢量计算问题假设有P 个信源,N 元阵列,则先建立阵列的几何模型求第i 个信源的导向矢量()i a θ选择阵元中的一个作为第一阵元,其导向矢量()1[1]i a θ=然后根据阵列的几何模型求得其他各阵元与第一阵元之间的波程差,则确定其导向矢n ∆量()2jni a eπλθ∆=最后形成N 元阵的阵列流形矢量()11221N j j N Pe A e πλπλθ-∆⨯⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦M 例如各向同性的NxM 元矩形阵,阵元间隔为半个波长,当信源与阵列共面时:首先建立阵列几何模型:对于第m 行、第n 列的阵元,其与第1行、第1列阵元之间的波程差为(1)sin()(1)cos()mn i i n d m d θθ∆=---故:()1122(sin()cos())22((1)sin()(1)cos())11N j j d j j d N M NM P NM Pe e A e e ππθθλλππθθλλθ--∆---⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦M M 而当信源与阵列不共面时:首先将信源投影到阵列平面然后建立阵列模型对于第m 行、第n 列的阵元,其与第1行、第1列阵元之间的波程差为[(1)sin()(1)cos()]sin()mn i i i n d m d θθϕ∆=-+-故:()1122(sin()cos())cos()22((1)sin()(1)cos())cos()11N j j d j j d N M NM P NM Pe e A e e ππθθϕλλππθθϕλλθ--∆---⨯⨯⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦M M 线性约束最小方差准则(LCMV )的自适应波束形成算法:对于信号模型:,()()()0X t s t a J N θ=++波束形成输出:()()()()0()H H H yt W X t s t W a W J N θ==++LCMV 准则实际上是使为一个固定值的条件下,求取使得方差最()0HW a θ()HWJ N +小的作为最有权值,即:,其中F 为常数W ()0min .H X W HW R Ws t W a Fθ⎧⎪⎨⎪=⎩利用拉格朗日乘子法可解得:()10X W R a μθ-=当取时,则,的取值不影响SNR 和方向图。

阵列信号处理技术(pdf 66页)

阵列信号处理技术(pdf 66页)

用这样的权和输入信号相乘,所得到的输入信号中,保 留和参考信号相关的成份,去除了干扰和噪声。
③ 所需信号已知:
一般的雷达回波信号中,包含雷达本身发射的信号,通常 的通信信号也是确定性信号,它的波形、频率和带宽是已知的。
④ 接收信号的描述:
设有一个接收阵,由N个传感器组成,所接收的波形对应
N个输出:用矢量表示为:
高分辨空间谱估计方法对信号方向的分辨能力远高于 传统的谱估计方法
(a)
0.1
0.08
0.06
0.04
0.02
0
-100 -80 -60 -40 -20
0
20 40 60 80 100
(b)
30
25
20
15
10
-100 -80 -60 -40 -20
0
20 40 60 80 100
图1.3 谱估计方法分辨能力比较 (a) Capon spectrum estimation; (b) MUSIC spectrum estimation
① 单阵元天线的故障和失效会使整个系统瘫痪。
② 常规非自适应阵如果有一个传感器单元失效,使其边波 束(傍瓣电平)增大,阵列灵敏度方向图的边波束(傍瓣) 结构要明显地变坏,导致性能变差。
③ 自适应的阵列则不然,阵内其余正在工作的传感器的响 应可以自动调整直到阵列边波束减小到一个可以接受的 电平上。
④ 自适应阵列天线不易受周围环境的影响。
图1.1 立体波束图
Capon Beamforming
图1.2 自适应波束图 (a) 线性坐标 (b)对数坐标 目标信号方向0度;干扰信号方向-30度
2、高分辨空间谱估计技术(Estimation of Spatial Spectrum) 目的: 估计空间信号的到达方向。

阵列信号处理的基本知识分析

阵列信号处理的基本知识分析

diag{g ej1 ,, g e } jM
1
M
阵元之间的互藕 有关因素:阵元之间的间距大小,系统工作 频段,采用的传感器类型等。 设所有阵元之间的藕合系数矩阵为C,则考 虑到阵元间互藕的阵列输出信号模型为:
x(t) CAs(t) n(t)
阵元位置 阵元测向的关键信息是空间信号入射到各阵 元的相对延迟相位,而这一相位依赖于阵元 之间的空间位置,阵元位置误差直接导致延 迟相位估计误差,从而影响信号参数估计。
信号参数估计(DOA,频率,极化参数,距离, 时延等): 谱估计方法(子空间方法,波束形成 方法),参数化方法(最大似然,基于子空间逼 近方法)。
Ref[1] H.krim and M.Viberg, Two decdees of array processing research: the parametric approach, IEEE signal processing Magazine, Vol.13, Vol.4, 1996. Ref.[2] D.H.Johnson, D.E.Dudgeon, Array signal processing, Prentice-Hall,1993. Ref.[3] IEE Proc. 1991. Ref.[4] Vaccaro, R.J, The past, present, and the future of underwater acoustic signal processing, IEEE Signal Processing Magazine, Vol.15 , No.4 , 1998.
-25
-30
-35
-40
-45
-50
-80 -60 -40 -20
0
20

第七章 阵列信号处理

第七章  阵列信号处理
西安电子科技大学 雷达信号处理国防科技重点实验室
阵列信号处理在通信中应用

阵列处理是改善蜂窝和个人通信服务系统质量、 覆盖范围和容量的一种强有力的工具.

实际感兴趣的阵列处理是将接收天线阵列用于反 向连接(客户到基站)。多个接收天线能够收集更 多的信号能量,若天线在空间足够分离或极化各 异,则多个天线能够提供很好的分集接收,并抑 制多径传输引起的衰落。这些好处可以扩大基站 的覆盖范围,改善通信质量.
雷达信号处理国防科技重点实验室
阵列信号处理的最重要应用



信(号)源定位——确定阵列到信源的仰角和 方位角,甚至距离(若信源位于近场); 信源分离——确定各个信源发射的信号波 形.各个信源从不同方向到达阵列,这一 事实使得这些信号波形得以分离,即使它 们在时域和频域是叠加的; 信道估计——确定信源与阵列之间的传输 信道的参数(多径参数).
j 1 J
N个快拍的波束形成器输出的平均功率
1 P( w) N 1 | y ( t ) | N t 1
2 N N H 2 | w x ( t ) | t 1 J N
1 | w H a( d ) |2 N
1 2 | d ( t ) | [ t 1 j 1 N
1 2 H 2 | i ( t ) | | w a ( ) | || w ||2 j ij N t 1
1
与MMSE多用户检测器具有类似的形式
R s1 c1 T 1 s1 R s1
西安电子科技大学 雷达信号处理国防科技重点实验室
1
7.3
空间谱估计
R a( d ) H 1 a ( )R a( d )
1
最佳波束形成器设计
wopt

阵列信号处理的基本知识

阵列信号处理的基本知识

a
பைடு நூலகம்11
各通道同步采集假设
阵列接收信号需要进行采样和A/D变换 为数字信号后进入DSP处理器进行算法处 理。
Nyquist采样率
宽频段信号:采用欠采样率(空时欠采 样),需要解模糊算法。
a
12
对信号和噪声的假设
窄带假设
信号带宽远小于信号波前跨越阵列最大口径 所需要的时间的倒数,即有如下假设:
1
P
波传播的方向信息含于载波上,而不是复包络上, 即与波形无关(这与时域信号处理不同),空间信 息含于载波上,时域信息含于信号包络上。
a
7
对阵列及其通道的假设 阵元的方向性:
空间入射信号示意图
a ( ) [ f ( ) e , ,f( ) e] 1
j k • p 1
a
j k • p M T
B L 1
F
式中L为阵列最大口径,F和为信号中心频率 和该频率对应的波长。
远场假设
即辐射源到阵列的距离远大于阵列的最大口
径,从而入L2射到阵列的信号波前可近似为平
面波前(d ).
a
13
入射信号统计特性
空间入射信号平稳且各态历经,可以用时
间平均代替集合平均。一般还假定各入射
信号统计独立。
E { s ( t) s H ( t) } d{ i2 , a ,2 g }
6
将整个阵列的输出信号写成矩阵形式为:
x (t) A (t) sn (t)
A [a () ,,a ()]为阵列流行矩阵、空间信
1
P
号方向矢量、阵列响应矩阵。
a ( ) [ 1 e , ,e ] j2 d si /n
j2( M 1 ) d si /n T
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档