有机合成工艺小试到中试放 大之关键
如何做好中试放大、对小试研究的指导
4、中试阶段的研究内容
4.1、确定放大方法: •经验放大法: 主要是凭借经验通过逐级放大(小试装臵-中间装臵-中 型装臵-大型装臵)来摸索反应器的特征。 •相似放大法: 主要是应用相似原理进行放大。此法有一定局限性,只 适用于物理过程放大。而不适用于化学过程的放大 •数学模拟放大法: 是应用计算机技术的放大法,它是今后发展的方向。
5、新技术/设备的应用给中试放大赋予新的内涵 5.3反应液的在线测试—在线反应红外分析系统 采用傅立叶变换红外(FTIR)技术,将FTIR探头浸入反 应物中直接测量红外区域的吸收 •无需样品处理直接从反应液中在线监测化学组成的实时 情况 •实时跟踪反应物、中间产物和产物的瞬时变化,提供反 应过程和化学组成的实况 •跟踪反应物结构和官能团的变化,提供反应趋势、终点 和各相关反应时段的转化率 •将获得分析结果的时间滞后减到最少
搅拌器类型及搅拌速度的选择与确定
按反应的均相、非均相等反应物料的性质和反应特点及 小试工艺考察中对反应液混合要求的认知,初步选择 搅拌的类型和转速,并通过中试考察搅拌对反应影响 的规律确定搅拌的类型及转速(推进式、涡轮式、桨 式、锚式、框式、螺式)对结晶影响非常大。例如: 166#析晶
4.4、精制、结晶、分离、干燥等单元操作设备的选 择与确定
指导原则(第二稿)对化学原料药的中试放大提出了八 项主要任务
1、考核实验室提供的工艺路线在工艺设备、条件、原材料等 方面在中试放大时是否有特殊的要求,是否适合工业化生 产; 2、确定所用起始原料、试剂或有机溶媒的规格或标准 3、验证小试工艺是否成熟合理,主要经济指标是否接近生产 要求; 4、进一步考核和完善工艺条件,对每一步反应和单元操作均 应取得基本稳定的数据; 5、根据中试研究资料制订或修订中间体和成品的质量标准、 分析方法; 6、根据原材料、动力消耗和工时等进行初步的技术经济指标 核算; 7、提出“三废”的处理方案; 8、提出整个合成路线的工艺流程,各个单元操作的工艺规程。 一般来说,中试所采用的原料、试剂的规格应与工业化生 产时一致。
实验室过渡至工厂放大关键问题梳理
实验室过渡至工厂放大关键问题梳理从实验室研究到工厂放大是每一个工艺必须经历的过程,是每一个工艺研究员必须考虑和经历的,实验室研究的最终目的就是为了生产铺路,由实验室到工厂生产,工艺放大反应起一个承上启下的作用,工艺放大反应有两个重要的目的:分析和解决实验室中遇到的工艺问题和进行放大生产。
然而,由于放大过程中存在风险,所以参与项目的每一个研发人员都应该下面几个原则来准备和进行工艺放大:A:参与项目的每一个研发人员要完全彻底的掌握工艺过程;B:参与项目的每一个研发人员要确保工艺放大的安全;C:研发人员要与进行工艺放大的研发人员讨论放大过程中可能出现的问题,其中包括工艺过程的控制点与延长时间、混合以及工艺外可能出现的问题;D:研发人员和进行工艺放大的研发人员要保证原料的质量和数量可以合成出合格数量的产品;E:工厂可用的设备要保证能满足工艺生产的要求;F:在实验室研发的基础上编写生产工艺,并严格按照工艺放大并严格监控工艺过程;G:通过在线观察反应的临界状态,尤其是在第一次做的时候尤为重要,观察放大与实验室反应现象的区别;专业人员和良好的设备是实验室解决放大问题的关键。
小试时解决反应中的问题要比放大时再去解决压力要小得多。
从实验室到工艺放大综合考虑多方面因素,尽量避免是由于技术原因而导致实验失败。
放大反应中往往需要延长工艺操作的时间,这与小试的操作时间有关系,转移大量的溶剂和固体原料需要更多的时间。
热传递的速率与反应釜的(表面积/体积)成正比。
所以越大的反应釜需要越多的时间来达到反应的温度。
大多数反应釜是圆柱形的,其表面积与半径成正比,而体积与半径的平方成反比。
这最终会导致放大操作时间延长。
若反应的收率低或反应的速率慢,延长反应时间往往会使副产物增加。
例如:在酯化反应中,酯化反应靠羧酸的催化,而通过共沸去水可以加速反应的进行,因为酸浓度的增加会有利于反应速率的进行。
延长反应时间,产品可能会被高浓度的杂质所污染,从而导致结晶速度比预期的要慢,当操作时间过量的延长,也有可能导致热力稳定的非预料异构体产生。
有机合成从小试到中试全流程剖析
有机合成从小试到中试全流程剖析工艺研发感悟1----工艺意识首先从事工艺需要的三点意识:1、平行反应。
这点适合在工艺研发初期使用。
因为最初阶段,主要是对反应条件的优化,其中包括试剂当量,温度,浓度,反应时间等等变量,基于每次只改变一次变量的原则,所需反应数将是庞大的,尤其是在所要考察的变量较多的情况下。
此时平行反应的概念就显得尤为重要,它可以大大提高条件优化的效率,使你在短时间内得到最优条件。
2、stress test。
也就是破坏性试验。
这是在工艺初步完成优化之后,对工艺适用范围的一次检验。
因为在实验室和在工厂中每一个单位操作所需时间都是有差异的,所以在去工厂放大之前,要在实验室中模拟工厂的放大条件。
找到一个稳定工艺的范围而不是一个点。
这样才能安全的去工厂生产。
3、spiking experiment。
也就是强化实验。
这是在上述两项都完成之后,对工艺性能的验证,例如spec设定是否合理,杂质是否能够除去等等。
在具备了这三点意识之后,就是微观的具体工艺如何优化的问题了。
工艺研发的不同阶段,决定了工艺研发的目标不同。
从研发早期到研发晚期,目标依次为:1、提高反应效率2、提高产品收率和质量3、减少成本4、提高规模化生产力5、减少废物排放在工艺研发之前,一定要明白自己研发工艺的目标,从而让自己的所有和工艺研发相关的活动紧紧围绕研发目标而设计,提高自己的工作效率。
而为了明晰自己的研发目标,则需要对现有工艺有一个深刻的理解和判断,这些理解和判断由提问开始:1、工艺开发的阶段是什么?早期以交货为主,晚期以工艺研发为主。
2、时间有多少?根据时间的长短,来安排工艺研发活动的优先级。
3、现有工艺有哪些缺陷?路线是否合适?收率怎样?是否涉及到毒性试剂或者毒性物质?后处理是否方便?成本怎样?等等。
主要是找出工艺中主要存在的问题,根据优先级,逐条列出来。
在理解了上面这些问题之后,自己就有了一个清晰明确的目标,对原工艺也有了一个深刻的认识,接下来就是根据具体问题来设计具体的实验来解决这些问题。
小试,中试到放大生产的常见问题及解决
小试,中试到放大生产的常见问题及解决把处方筛选和工艺参数筛选工作做充足,在生产出现问题时能够准确的判断解决问题的方向。
(例如关键辅料的加入量从少到多对制剂的影响;关键工艺参数(温度,时间等)的可行性范围,超出范围下限会怎样影响制剂,超出上限会怎样影响制剂等。
)充分了解和掌握原辅料的性质,熟悉小试和生产的设备(小试和生产设备原理最好一致)。
1.原料药待收集2.中药提取待收集3. 片剂片剂的制备方法主要有湿法制粒压片法、干法制粒压片法、粉末直接压片法这三种,最常用的是湿法制颗粒压片法。
主要工艺步骤有粉碎、混合制粒、干燥、整粒、混合、压片和包衣。
粉碎:一般不会出现问题粘合剂:粘合剂溶液的加入量,从小试到放大,比例是更大还是更小?例如,小试粘合剂溶液用量是粉末量的10%,放大10倍后,一般是12%,还是8%?因为制粒系统或参数不一致,所以达到相应润湿度,需要溶液不一样,一般放大后需量略小。
如果是粉末添加,建议10%不要改变,根据制粒情况适量变动润湿剂的用量。
否则处方变动,对后续影响较大。
混合制粒:这是比较关键的步骤,也经常出现问题,首先要测试能够混合均匀的时间,混合不均匀,含量会不合格;其次,粘合剂润湿剂的加入量,和小试不是单纯的加倍关系,要摸索,加少了可能会造成细粉多,不成粒,流动性不好,加多了制备的颗粒太硬影响压片,或者物料结块影响收率;机器的搅拌和剪切速度以及时间要摸索,小试中得不到这些参数,这些参数也影响所制备颗粒的质量。
对于制粒完过筛,我遇到过特别腻筛的,因为物料本身原因。
粘合剂是水,比例是物料重的45%(经比例摸索得出较好的),制粒后过筛在中试放大特别堵(正常的24目),解决方式为,先过10目筛把物料颗粒整碎一点,烘干(水分3%以下)后再用24目整粒,效果良好。
目前做的缓控释制剂,由于本身API有液体,加入乙基纤维素后比较黏,用做粘合剂。
小试处方以筛完,放大中试怕粘合剂损失过多,还未找到稳妥的办法。
小试至中试——经验分享
小试至中试——经验分享作者:碧野香飘作者简介:碧野香飘,男,工程师,从事医药合成原料药研发和中试车间管理。
现就职于浙江某比较牛叉的医药上市企业。
联系方式:QQ:*********一个项目从理论到车间产品,这个过程就是项目研发的过程,包括小试到中试放大全过程。
哥们搞合成搞了有些年头了,从合成的角度聊聊药品合成项目开发,小试到中试全过程,可以跟本行业前辈们共同探讨,提高我本人的业务水平。
也对刚接触这个行业或者是准备进入这个行业的同志们也许有些帮助。
(温馨提示:此文篇幅较长,达十一页之多,各位观众请提前做好心理准备;欢迎选择A、Give up and Delete it B、Continue to read it)。
刚接触时觉得这个过程那叫一复杂啊,根本摸不着头脑,只好跟着别人做,纯粹的实验室操作工。
时间长了做着做着就习惯了。
不过个人觉得新手上路还是先虚心的做好实验室操作工,扎实的基础和过硬的动手能力是所有搞研发人必备的技能,这个没有,那只能被人撵走了。
做多了慢慢的就从中摸出了门道,什么是研发,怎么才能做好研发项目,这之间是有蹊跷滴。
看到这里大家尤其是众多新手肯定会骂了,说就说,哪那么多废话嘛。
呵呵,我就喜欢罗嗦,不过如果大家耐不住的话,下面的东西就不用看了。
先吊吊大家的耐心,毕竟跟咱们的行业相关哈。
在开始之前,有个个人观点先与大家讨论一下:个人觉得,女同志大学毕业后不适合搞有机合成类的实验室工作,无论是企业的研究部门还是事业型的科研单位。
仪器分析也是如此。
原因如下:1、毒。
众所周知,化工合成行业以毒闻名,凡是实验室日常用到的试剂都有毒,其他不常用的也不见优势,女性的生理条件与男性相比较是不占优势,而且女性还承担着民族繁衍这么大的事情,自己搞搞就算了,总不能把宝宝也搭上吧,那代价也太大了吧。
我老婆以前就是搞气相的,接触时间不长,很快就让她换其他工作了。
女孩子搞这个,不适合。
2、累。
做有机合成其实是一件苦差事,很多反应不是一下两下就能完成的,动辄反应咯几小时十几小时,有些还需要中途不断的加个料取样点个板升个温降个温什么的,做好这个就需要不间断盯着,累。
关于中试放大的方法
关于中试放大的方法中试是产品从孕育走向成年的必经之路,是产品生命的纽带.中间实验阶段是进一步研究在一定规模的装置中各步化学反应条件的变化规律,并解决实验室中所不能解决或发现的问题。
虽然化学反应的本质不会因实验生产的不同而改变,但各步化学反应的最佳反应工艺条件,则可能随实验规模和设备等外部条件的不同而改变。
因此,中试放大很重要。
实验进行到什么阶段才进行中试呢?至少要具备下列的条件:1,小试收率稳定,产品质量可靠。
2,造作条件已经确定,产品、中间体和原理的分析检验方法已确定。
3,某些设备,管道材质的耐腐蚀实验已经进行,并有所需的一般设备。
4,进行了物料衡算。
三废问题已有初步的处理方法。
5,已提出原材料的规格和单耗数量。
6,已提出安全生产的要求。
中试放大的方法有:经验放大:主要是凭借经验通过逐级放大(小试装置-中间装置-中型装置-大型装置)来摸索反应器的特征。
它也是目前药物合成中采用的主要方法。
相似放大:主要是应用相似原理进行放大。
此法有一定局限性,只适用于物理过程放大。
而不适用于化学过程的放大。
数学模拟放大:是应用计算机技术的放大,它是今后发展的方向。
此外,微型中间装置的发展也很迅速,即采用微型中间装置替代大型中间装置,为工业化装置提供精确的设计数据。
其优点是费用低廉,建设快。
中试放大阶段的任务主要有以下十点,实践中可以根据不同情况,分清主次,有计划有组织地进行。
1,工艺路线和单元反应操作方法的最终确定。
特别当原来选定的路线和单元反应方法在中试放大阶段暴露出难以解决的重大问题时,应重新选择其他路线,再按新路线进行中试放大。
2,设备材质和型号的选择。
对于接触腐蚀性物料的设备材质的选择问题尤应注意。
3,搅拌器型式和搅拌速度的考察。
反应很多是非均相的,且反应热效应较大。
在小试时由于物料体积小,搅拌效果好,传热传质问题不明显,但在中试放大时必须根据物料性质和反应特点,注意搅拌型式和搅拌速度对反应的影响规律,以便选择合乎要求的搅拌器和确定适用的搅拌速度。
中试放大要考虑的实际问题及经验总结建议
中试放大要考虑的实际问题及经验总结建议一、实验室研发到工厂放大要考虑的实际问题1、明确放大目标和安全因素准备工艺放大的第一步是要有明确的目标,知道所需产品的质量和数量以及哪个更重要,该工艺是否满足放大的要求。
为了确保实验室研发和放大的安全性,必须全面评估该工艺过程中化学反应的危险性,并不是所有的反应都需要进行彻底的分析。
例如:脂类的水解反应,在比较的碱性溶液中是不会发生危险,按照测试可以对反应放热多少热以及放大是否会产生危险做出评估。
而还原反应是放热反应,实验室小试没有明显的放热反应,而在放大反应的时候,往往是剧烈的放热反应,若控制不好温度,反应过程中放出的热量会使溶剂剧烈沸腾,甚至由于反应放出的热量不能够及时的传递出去而导致爆炸的危险。
另外,操作工人的安全也是要考虑的一个重要因素,尤其要考虑投料和分离最终产品时操作人员的安全。
比如工业上提取植物碱(例如金雀花碱)用到的醇类往往使用乙醇而不是用甲醇,是因为甲醇对人体的伤害要远远大于乙醇。
2、确定关键工艺步骤在编写工艺规程前,应该与参与工艺研发的研发人员一起讨论。
工艺规程应该考虑工艺过程中的每一个方面。
如果加料的速度很重要,那如何控制加料速度;试剂应该加载反应液的上方还是下方;试剂加到低温的反应中是否会凝固成固体;反应温度、水分应控制在什么范围;反应终点怎么控制,是观察反应现象;TLC监控还是开发终控的HPLC方法;是否可以重结晶对中间体进行严格的控制,建立较为严格合理的质量标准;是否需要分离和干燥最终产品的专用设备等问题都要考虑到并讨论。
3、限定设备的使用范围工厂里大部分用于放大的设备都是多用途的,很少选用专用设备。
事实上,工厂里用于放大的设备都限定了使用范围。
例如,我们在做某个项目中有一步要无水无氧低温操作,而且使用到了正丁基锂,所以我们选用的设备首先要耐低温并耐强碱的腐蚀,所以要用到专用的反应设备,注意:要确保转移正丁基锂溶液的管子,密封塞、探测器能够满足生产的需要;再比如氢化反应往往要用到高压氢化反应釜,强酸体系不能用金属材质的反应釜作反应,否则容易腐蚀。
原料药小试工艺的中试放大
回收副产物并综合利用以及防治三废提供数据
对无分析方法的化学成分要进行分析方法的研究。
对3-5批稳定性试验的数据,每批按每个单元 反应或每个设备体系进行物料衡算,对物料衡 算中出现的不平衡去向作出合理的说明。 物料衡算结果的正确与否将直接关系到整 个工艺设计的可靠程度。
甲苯磺化过程的物料平衡表 物料名称 原料甲苯 输入 浓硫酸 1100 质量/Kg 1000 质量组成/% 纯品量/Kg
中试放大也为政府部门对产品的投产进行审批和验收提
供了有关消防、环保、职业病防治的数据与文件。
小试工艺成熟后,必须完成工艺报告。中试不单是小试 的简单的放大,中试搅拌、传热、浓缩、过滤、干燥的 过程均与小试不同,小试时尽量摸拟中试的条件去做,
另外,切记每一步须做破坏性试验。弄清中试的设备,
物料的物化特性。安全第一。中试前小试跟踪、过程跟 踪,有时候放大过程中会出现莫名其妙的问题,你怎么 都凭空想象不出来的,所以要仔细认真的跟踪过程中的 每个细节,尤其是异常情况不要放过,否则非常麻烦。
工艺路线和单元反应操作方法的最终确定
设备材质和型号的选择。
搅拌器型式和搅拌速度的考察。 反应条件的进一步研究。 工艺流程和操作方法的确定。 进行物料衡算。
原材料,中间体的物理性质和化工常数的测定。
原材料、中间体质量标准的制订。 消耗定额,原材料成本,操作工时与生产周期等的确定。
① ②
验证小试提供的合成工艺路线,是否成熟、合理。 进一步考核和完善工艺路线,对每一反应步骤和单元操作,均应取 得基本稳定的数据。
甲苯
水 硫酸 水 对甲苯磺酸 邻甲苯磺酸 间甲苯磺酸 甲苯 硫酸 水
99.9
0.1 98.0 2.0 78.70 8.83 8.45 1.05 1.85 1.12 100
有机放大
有机合成放大注意有机合成放大注意事项合成出来的产品最终需要生产都要考虑的问题.1.实验室和放大实验温度梯度,浓度梯度不同小实验温度和浓度都是比较好控制的,但放大实验就不同了,首先看温度由于体积增大,要达到一定的温度的时间比较长,温度的不均匀,导致反应的不均匀,有时要是强放热反应,还容易导致局部温度过高,加速副反应.滴加的料也不容易均匀.有措施减少这种情况的发生:对于加热反应(且低温副反应严重的)可以先把物料单独加热到需要的温度,再加入.为了控制局部浓度过大,可以把加液点设在搅拌的最大线速度附近,或改滴加为喷雾加2.换热面积和反应时间不一样,由于体积的增大,这是显而易见的.3.温度指示的偏差实验室温度计可以直接插入反应液中,及时快速反映反应温度,而放大实验由于不可能这样,温度要经过很长一个传导过程才到温度计,反映实际的温度会滞后,波动也会变小.对于简单反应,均相反应,以上影响不大,放大效应主要是针对复杂反应的,放热反应.非均相反应一般为扩散控制:要激烈搅拌,使分散相小,加速反应,对放热反应也有降低界面温度和减小温度梯度的功效.局部温度和浓度梯度是最关键的,直接关系放大的失败和成功,解决上面说到.吸热反应的控制唯一手段就是控制夹套的加热介质.放热反应的温度控制有以下几点:1.良好的搅拌,使浓度温度均匀分布2.将液流导到搅拌线速最大处3.减小液滴,实现好的分布,如喷入4.减低液滴温度减小局部过热5.反应温度实行低限控制我补充一下版主,放大成产中您提到的第一个问题主要是传热的问题。
首先我们用到的反应釜,常常采用的加热方式以夹套内传热加热为主,夹套内的热传导介质来控制温度。
由于实验室内的4口瓶体积相对非常小,外部的油浴冷井很容易使反应处于一个相对容易控制的范围,所以小试时会非常容易控制。
当我们放大后用于热控的时间明显加长,传热时间相对也要加长很多,控制反应放热减少副反应是一个放大难以避免的难题。
解决这个问题特别是强放热反应,往往采取控制加料法来控制副反应,但是也出现了相关的问题譬如:操作步骤增多,对操作工的要求也相对较高,能采取控制加料法进行加料。
小试与放大实验和中试生产三者之间的区别和联系
小试与放大实验和中试生产三者之间的区别和联系小试,放大实验和中试生产三者是相互联系非常密切的三个部分。
三者的反应都是同一个反应,也就是说它们的反应原理是一致的。
但是在细微操作上,三者总是有着或多或少的区别。
很多反应稍微一经放大就容易出现这样那样的问题。
其实并非它们反应的过程出现了什么问题,而是在反应的处理上两者应该有着细微的差别。
很多老师或者工程师在放大的时候从200ml的反应瓶放大到500ml的反应瓶中的时候,总是出现反应收率下降或者反应的温度区间跟原来的区间稍微有些差别。
其实这些差别也算不得是什么差别,只是在不同的空间内,该反应的传质传热空间不同而已。
由于空间有了细微的差别,导致在细致的操作中,相同的操作实际上也就有了细微的差别,而这个差别就导致了我们常见的收率下降和温度区间的变化问题。
只要我们能够将这个问题仔细的分析清楚,这个问题也就不是问题了。
放大实验和中试生产稍微有些不同,因为两者的基础是都是小试的放大,不过由于放大的倍数和区间不同,导致两者表现出来的东西也就不同。
这也就是相同的积分元在不同的积分区间积分出来的不同结果而已。
我们只要明了这个积分元在不同积分区间的不同特性就能够得出积分的变化趋势,从而调整各个因素使积分向我们需要的方向转化。
总之,三者的联系就是同一个积分元在不同积分区间积分的结果。
贯穿三者的同一主线就是主反应过程。
当反应被放大时,由于空间的增大,导致物料的传输空间增大,也就是反应物分子的活动空间变大了,导致在反应一旦开始进行后,参加反应的分子碰撞的几率就开始变小,这是个概率学问题,因而放大反应在与实验室相同的时间内是反应不到相同的转化率的,因此我们需要延长反应时间来使反应进行的更加彻底,但是当反应受动力学控制时,我们很容易遇到即使反应很长时间也不能使得反应更进一步的进行,因此我们需要采取一些手段来使得我们的物料浓度变得更大一些,以使反应更进一步进行,如回流或蒸出部分溶剂等操作。
小试、放大试验与中试的联系与区分解读
小试、放大试验与中试的联系与区分一、小试与中试分别要解决的问题小试与中试的区分不仅仅在于投料量的多少、以及所用设备的大小之上,两者是要完成不同时段的不同任务。
小试主要从事探索、开发性的工作,化学小试解决了所定课题的反应、分离过程和所涉及物料的分析认定,拿出合格试样,且收率等经济技术指标达到预期要求,就可告一段落,转入中试阶段。
中试过程要解决的问题是:如何釆用工业手段、装备,完成小试的全流程,并基本达到小试的各项经济技术指标,当然规模也扩大了。
该过程也不乏创新、发明的內容。
如:小试中将一种物料从一个容器定量的移入另一器皿, 往往是举手之劳,但在中试中就要解决选用何种类型、何种规格、何种材质的泵,采用何种计量方式,以及所涉及的安全、环保、防腐等一系列问题,这就不是简单的放大了,有时要解决此类问题也颇令人伤脑筋,甚至很难达到满意的结果,中试就是要解决诸如此类的釆用工业装置与手段过程中所碰到的问题;不仅保含小试中非常注意的物料衡算,也包括小试中不大在意的热量、动量的衡算问题……为进一步扩大规模,实现真正工业意义的经济规模的大生产提供可靠的流程手段及数据基础。
二、进入中试阶段要具备要具备的条件1. 小试收率稳定,产品质量可靠。
2. 造作条件已经确定,产品,中间体和原理的分析检验方法已确定。
3. 某些设备,管道材质的耐腐蚀实验已经进行,并有所需的一般设备。
4. 进行了物料衡算。
三废问题已有初步的处理方法。
5. 已提出原材料的规格和单耗数量。
6. 已提出安全生产的要求。
三、中试放大的方法1. 经验放大法:主要是凭借经验通过逐级放大 (小试装置-中间装置-中型装置-大型装置来摸索反应器的特征。
它也是目前药物合成中采用的主要方法。
2. 相似放大法:主要是应用相似原理进行放大。
此法有一定局限性,只适用于物理过程放大。
而不适用于化学过程的放大。
3. 数学模拟放大法:是应用计算机技术的放大法,它是今后发展的方向。
4. 此外,微型中间装置的发展也很迅速,即采用微型中间装置替代大型中间装置,为工业化装置提供精确的设计数据。
有机合成工艺小试到中试放大之关键知识分享
有机合成工艺小试到中试放大之关键有机合成工艺小试到中试放大之关键在生产过程中凡直接关系到化学合成反应或生物合成途径的次序,条件(包括物料配比、温度、反应时间、搅拌方式、后处理方法及精制方法等)通称为工艺条件。
一、研发到生产的三个阶段1、小试阶段:开发和优化方法2、中试阶段:验证和使用方法3、工艺验证/商业化生产阶段:使用方法,并根据变更情况以绝对是否验证注:批量的讨论:中试批量应不小于大生产批量的十分之一二、小试阶段对实验室原有的合成路线和方法进行全面的、系统的改革。
在改革的基础上通过实验室批量合成,积累数据,提出一条基本适合于中试生产的合成工艺路线。
小试阶段的研究重点应紧紧绕影响工业生产的关键性问题。
如缩短合成路线,提高产率,简化操作,降低成本和安全生产等。
1、研究确定一条最佳的合成工艺路线:一条比较成熟的合成工艺路线应该是:合成步骤短,总产率高,设备技术条件和工艺流程简单,原材料来源充裕而且便宜。
2、用工业级原料代替化学试剂:实验室小量合成时,常用试剂规格的原料和溶剂,不仅价格昂贵,也不可能有大量供应。
大规模生产应尽量采用化工原料和工业级溶剂。
小试阶段应探明,用工业级原料和溶剂对反应有无干扰,对产品的产率和质量有无影响。
通过小试研究找出适合于用工业级原料生产的最佳反应条件和处理方法,达到价廉、优质和高产。
3、原料和溶剂的回收套用:合成反应一般要用大量溶剂,多数情况下反应前后溶剂没有明显变化,可直接回收套用。
有时溶剂中可能含有反应副产物,反应不完全的剩余原料,挥发性杂质,或溶剂的浓度改变,应通过小试研究找出回收处理的办法,并以数据说明,用回收的原料和溶剂不影响产品的质量。
原料和溶剂的回收套用,不仅能降低成本,而且有利于三废处理和环境卫生。
4、安全生产和环境卫生:安全对工业生产至关重要,应通过小试研究尽量去掉有毒物质和有害气体参加的合成反应;避免采用易燃、易爆的危险操作,实属必要,一时又不能解决,应找出相应的防护措施。
有机合成邻氯苯基环戊酮小试,中试,放大及工艺路线优化
有机合成,先要在实验室进行全部合成试验,一步步打通合成路线,用小量的反应物进行试验,确定合成的反应控制条件。
确定反应物和生成物的关系量。
对中间体和反应物进行检测定性定量;中试是在小试成功的基础上,增加合成反应物质的量,由实验室合成向工业化合成规模前进行的试验,进一步掌握有机合成的反应条件,合成发生的可能变化和反应控制条件变化,进一步摸清全部合成路线的相关情况和控制数据,合成反应与设施设备及控制仪器仪表的适应情况,各中间体和反应物的流程处理,安全处置等;放大是将完全清楚的全部合成路线,在掌握所有合成控制数据的基础上,按照工业化生产的要求,在符合安全要求的中试生产线上,将合成路线的全部反应按工业化生产的要求,将有机合成的投料量与反应物的生成量达到工业化生产的规模和水平;工艺优化是将完全放大合格的有机合成路线,从产出物与投入物比例最大化,合成路线可控,安全,副反应物少,产出物纯度高、合成过程控制简单,合成能耗小等方面进行改进和更新的过程。
目前,生产邻氯苯基环戊酮的基本方法有十多种,原料易获得的制造方法相对麻烦一些。
比如以邻氯苯甲酸,邻氯苯甲酰氯,溴代环戊烷,环戊醇,环戊烷,环戊酮等等都可以作为主要原料,但其中最简单的,也是目前比较常见的有两种方法的主要原料就是邻氯苯甲酰氯,溴代环戊烷。
技术含量并不高,原料很容易找到,化学合成只需要在实验室就能完成,方便易行、易分散、易隐蔽,成本低廉而售价较高。
利润丰厚。
“具有初中化学水平的人,如果拥有制毒配方,在家就能够生产毒品。
”对于文化程度不高的高中文化,初中文化,小学文化人员来说,这些技术也是容易学会的。
生产出来的产品成色也挺好好,量也大。
但现在盐酸羟亚胺,邻酮管控严格,不容易买到。
因此就要得我们自己生产了。
从生产角度来讲,氯胺酮技术相对简单,从盐酸羟亚胺到氯胺酮只需要重排既可以,反应加结晶一天就可以出来。
从邻酮做也不算太难。
氯胺酮的整个技术路线:包括需要的设备,原料、配料比、反应时间、反应温度、操作要点细节、注意事项等,内容具体详细通俗易懂。
小试实验设计、中试放大关键点
小试实验设计、中试放大关键点小试,放大实验和中试生产三者是相互联系非常密切的三个部分。
三者的反应都是同一个反应,也就是说它们的反应原理是一致的。
但是在细微操作上,三者总是有着或多或少的区别。
很多反应稍微一经放大就容易出现这样那样的问题。
其实并非它们反应的过程出现了什么问题,而是在反应的处理上两者应该有着细微的差别。
很多老师或者工程师在放大的时候从200ml的反应瓶放大到500ml的反应瓶中的时候,总是出现反应收率下降或者反应的温度区间跟原来的区间稍微有些差别。
其实这些差别也算不得是什么差别,只是在不同的空间内,该反应的传质传热空间不同而已。
由于空间有了细微的差别,导致在细致的操作中,相同的操作实际上也就有了细微的差别,而这个差别就导致了我们常见的收率下降和温度区间的变化问题。
只要我们能够将这个问题仔细的分析清楚,这个问题也就不是问题了。
放大实验和中试生产稍微有些不同,因为两者的基础是都是小试的放大,不过由于放大的倍数和区间不同,导致两者表现出来的东西也就不同。
这也就是相同的积分元在不同的积分区间积分出来的不同结果而已。
我们只要明了这个积分元在不同积分区间的不同特性就能够得出积分的变化趋势,从而调整各个因素使积分向我们需要的方向转化。
总之,三者的联系就是同一个积分元在不同积分区间积分的结果。
贯穿三者的同一主线就是主反应过程。
当反应被放大时,由于空间的增大,导致物料的传输空间增大,也就是反应物分子的活动空间变大了,导致在反应一旦开始进行后,参加反应的分子碰撞的几率就开始变小,这是个概率学问题,因而放大反应在与实验室相同的时间内是反应不到相同的转化率的,因此我们需要延长反应时间来使反应进行的更加彻底,但是当反应受动力学控制时,我们很容易遇到即使反应很长时间也不能使得反应更进一步的进行,因此我们需要采取一些手段来使得我们的物料浓度变得更大一些,以使反应更进一步进行,如回流或蒸出部分溶剂等操作。
同时,由于空间的增大,导致热量的传输开始变慢,因为在实验室时,物料量比较少,而与外界的加热设施接触比较紧凑,因而热量的传输比较快,只要控制得当,基本不会出现物料温度暴涨或者暴跌的情况,从而出现影响产品质量甚至于产品收率都要受很大影响的状况。
小试到中试的方法
一、实验进行中试至少要具备的条件:1、小试收率稳定,产品质量可靠。
2、造作条件已经确定,产品,中间体和原理的分析检验方法已确定。
3、某些设备,管道材质的耐腐蚀实验已经进行,并有所需的一般设备。
4、进行了物料衡算。
三废问题已有初步的处理方法。
5、已提出原材料的规格和单耗数量。
6、已提出安全生产的要求。
二、中试放大的方法有:1、经验放大:主要是凭借经验通过逐级放大(小试装置-中间装置-中型装置-大型装置)来摸索反应器的特征。
它也是目前药物合成中采用的主要方法。
2、相似放大:主要是应用相似原理进行放大。
此法有一定局限性,只适用于物理过程放大。
而不适用于化学过程的放大。
3、数学模拟放大:是应用计算机技术的放大,它是今后发展的方向。
此外,微型中间装置的发展也很迅速,即采用微型中间装置替代大型中间装置,为工业化装置提供精确的设计数据。
其优点是费用低廉,建设快。
三、中试放大阶段的任务:主要有以下十点,实践中可以根据不同情况,分清主次,有计划有组织地进行。
1、工艺路线和单元反应操作方法的最终确定。
特别当原来选定的路线和单元反应方法在中试放大阶段暴露出难以解决的重大问题时,应重新选择其他路线,再按新路线进行中试放大。
2、设备材质和型号的选择。
对于接触腐蚀性物料的设备材质的选择问题尤应注意。
3、搅拌器型式和搅拌速度的考察。
反应很多是非均相的,且反应热效应较大。
在小试时由于物料体积小,搅拌效果好,传热传质问题不明显,但在中试放大时必须根据物料性质和反应特点,注意搅拌型式和搅拌速度对反应的影响规律,以便选择合乎要求的搅拌器和确定适用的搅拌速度。
4、反应条件的进一步研究。
试验室阶段获得的最佳反应条件不一定完全符合中试放大的要求,为此,应就其中主要的影响因素,如加料速度,搅拌效果,反应器的传热面积与传热系数以及制冷剂等因素,进行深入研究,以便掌握其在中间装置中的变化规律。
得到更适用的反应条件。
5、工艺流程和操作方法的确定。
药品工艺研发小试、中试、放大详解【最新版】
药品工艺研发小试、中试、放大详解什么是工艺过程工艺过程的概念:在生产过程中凡直接关系到化学合成反应或生物合成途径的次序,条件(包括配料比,温度,反应时间,搅拌方式,后处理方法和精制条件等)通称为工艺条件。
制药通行惯例是:1、小试阶段--开发和优化方法2、中试阶段--验证和使用方法3、工艺验证/商业化生产阶段--使用方法,并根据变更情况以决定是否验证4、批量的讨论备注:中试批量应该不小于大生产批量的十分之一(√)大生产批量不得大于中试批量的十倍(×)小量试制阶段对实验室原有的合成路线和方法进行全面的、系统的改革。
在改革的基础上通过实验室批量合成,积累数据,提出一条基本适合于中试生产的合成工艺路线。
小试阶段的研究重点应紧紧绕影响工业生产的关键性问题。
如缩短合成路线,提高产率,简化操作,降低成本和安全生产等。
小试阶段的主要任务:1.工艺:反应参数,工艺过程后处理方式2.物料: 物料属性, 物料控制3.结构确证小量试制阶段的任务:1、研究确定一条最佳的合成工艺路线:一条比较成熟的合成工艺路线应该是:合成步骤短,总产率高,设备技术条件和工艺流程简单,原材料来源充裕而且便宜。
2. 用工业级原料代替化学试剂:实验室小量合成时,常用试剂规格的原料和溶剂,不仅价格昂贵,也不可能有大量供应。
大规模生产应尽量采用化工原料和工业级溶剂。
小试阶段应探明,用工业级原料和溶剂对反应有无干扰,对产品的产率和质量有无影响。
通过小试研究找出适合于用工业级原料生产的最佳反应条件和处理方法,达到价廉、优质和高产。
3. 原料和溶剂的回收套用:合成反应一般要用大量溶剂,多数情况下反应前后溶剂没有明显变化,可直接回收套用。
有时溶剂中可能含有反应副产物,反应不完全的剩余原料,挥发性杂质,或溶剂的浓度改变,应通过小试研究找出回收处理的办法,并以数据说明,用回收的原料和溶剂不影响产品的质量。
原料和溶剂的回收套用,不仅能降低成本,而且有利于三废处理和环境卫生。
药物合成中试放大中的注意事项
药物合成中试放大中的注意事项1.1简介在工艺放大过程中遇到的很多“意外”,都是可以预测的,如果小试时能多注意一些细节,做一些简单的实验,收集一些数据,对以后的工艺放大会有很大帮助。
试验采用的玻璃烧瓶,一般不会有腐蚀问题(玻璃不耐氢氟酸和可能分解产生氟的化合物、热的浓碱)。
但生产中物料和材质的相容性是必须考虑的,这也是GMP对设备选型的要求。
如果小试时能考虑做一下材质的腐蚀试验(在反应体系中加入不锈钢或其它材质试片)就会节省以后设备选型时的时间。
简单测量一下滤饼的堆密度,有利于今后生产中对于产品滤饼体积的估算和设备选型,过滤的速度和过滤面积、滤饼的厚度都有一定关系。
1.2 典型的放大问题工艺放大中最常见的问题是反应选择性改变,这会影响到产品的产率和纯度,这主要是小试的混合效果和生产不一致。
如果在小试已经评估过转速的影响,在出现问题时,就会快速找到原因,中试车间的反应釜都配有变频调速,可以进行适当的调整以确定合适的转速。
在放大中出现新的晶型也是常见的。
放大中,产品的分离也会出现问题,生产中对于滤饼的洗涤效果达不到小试的水平,杂质不能完全洗去。
带搅拌的过滤洗涤干燥三合一设备,在某些工艺条件下可以代替离心机,使用三合一设备可以过滤后直接加入溶剂洗涤和打浆,洗涤效果要比离心机好。
产生放大问题的另一原因是生产操作时间的影响,小试有必要进行时间延长对产品影响的实验。
在实际生产中,由于蒸馏时间的延长,导致产物分解,发生副反应的情况出现多次。
放大问题产生的原因,对于反应机理不理解,结晶和混合是最常见的三种原因。
在下文中我们可以看到虽然有很多问题是和混合和传热有关,但根本在于对于化学的理解,除了主反应,还会有什么副反应发生?什么条件下会促进副反应的发生?放大中什么会改变?这些改变对反应选择性会有什么影响?在生产实际中,目前反应釜的传热条件基本无法改变(可以通过控制加热、冷却介质和釜内体系的温差,加热/冷却的速度来减少局部过冷/热),混合可以通过转速和桨型的选择加以改善。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有机合成工艺小试到中试放大之关键在生产过程中凡直接关系到化学合成反应或生物合成途径的次序,条件(包括物料配比、温度、反应时间、搅拌方式、后处理方法及精制方法等)通称为工艺条件。
一、研发到生产的三个阶段1、小试阶段:开发和优化方法2、中试阶段:验证和使用方法3、工艺验证/商业化生产阶段:使用方法,并根据变更情况以绝对是否验证注:批量的讨论:中试批量应不小于大生产批量的十分之一二、小试阶段对实验室原有的合成路线和方法进行全面的、系统的改革。
在改革的基础上通过实验室批量合成,积累数据,提出一条基本适合于中试生产的合成工艺路线。
小试阶段的研究重点应紧紧绕影响工业生产的关键性问题。
如缩短合成路线,提高产率,简化操作,降低成本和安全生产等。
1、研究确定一条最佳的合成工艺路线:一条比较成熟的合成工艺路线应该是:合成步骤短,总产率高,设备技术条件和工艺流程简单,原材料来源充裕而且便宜。
2、用工业级原料代替化学试剂:实验室小量合成时,常用试剂规格的原料和溶剂,不仅价格昂贵,也不可能有大量供应。
大规模生产应尽量采用化工原料和工业级溶剂。
小试阶段应探明,用工业级原料和溶剂对反应有无干扰,对产品的产率和质量有无影响。
通过小试研究找出适合于用工业级原料生产的最佳反应条件和处理方法,达到价廉、优质和高产。
3、原料和溶剂的回收套用:合成反应一般要用大量溶剂,多数情况下反应前后溶剂没有明显变化,可直接回收套用。
有时溶剂中可能含有反应副产物,反应不完全的剩余原料,挥发性杂质,或溶剂的浓度改变,应通过小试研究找出回收处理的办法,并以数据说明,用回收的原料和溶剂不影响产品的质量。
原料和溶剂的回收套用,不仅能降低成本,而且有利于三废处理和环境卫生。
4、安全生产和环境卫生:安全对工业生产至关重要,应通过小试研究尽量去掉有毒物质和有害气体参加的合成反应;避免采用易燃、易爆的危险操作,实属必要,一时又不能解决,应找出相应的防护措施。
尽量不用毒性大的有机溶剂,寻找性质相似而毒性小的溶剂代替。
药物生产的特点之一是原材料品种多,用量大,化学反应复杂,常产生大量的废气、废渣和废物,处理不好,将严重影响环境保护,造成公害。
三废问题在选择工艺路线时就要考虑,并提出处理的建议。
三、中试阶段1、中试与小试的区别小试与中试的区分不仅仅在于投料量的多少、以及所用设备的大小之上,两者是要完成不同时段的不同任务。
小试主要从事探索、开发性的工作,化学小试解决了所定课题的反应、分离过程和所涉及物料的分析认定,拿出合格试样,且收率等经济技术指标达到预期要求,就可告一段落,转入中试阶段。
中试过程要解决的问题是:如何釆用工业手段、装备,完成小试的全流程,并基本达到小试的各项经济技术指标,当然规模也扩大了。
2、为何要中试(1)规模不同(2)原料来源不同(3)搅拌方式不同(4)热量的传递方式不同(5)反应器的材质不同3、中试放大的目的中试是从小试实验到工业化生产必经的过渡环节;在生产设备上基本完成由小试向生产操作过程地过渡,确保按操作规程能始终生产出预定质量标准的产品;是利用在小型的生产设备进行生产的过程,其设备的设计要求,选择及工作原理与大生产基本一致;在小试成熟后,进行中试,研究工业化可行工艺,设备选型,为工业化设计提供依据。
所以,中试放大的目的是验证,复审和完善实验室工艺所研究确定的合成工艺路线,是否成熟、合理,主要经济技术指标是否接近生产要求;研究选定的工业化生产设备结构,材质,安装和车间布置等,为正式生产提供数据和最佳物料量和物料消耗。
4、中试放大的重要性中试就是小型生产模拟试验。
中试试是根据小试实验研究工业化可行的方案,它进一步研究在一定规模的装置中各步化学反应条件的变化规律,并解决实验室中所不能解决或发现的问题,为工业化生产提供设计依据。
虽然化学反应的本质不会因实验生产的不同二改变,但各步化学反应的最佳反应工艺条件,则可能随实验规模和设备等外部条件的不同而改变。
一般来说,中试放大是快速,高水平到工业化生产的重要过渡阶段,其水平代表工业化水平。
中试放大是研发到生产的必由之路,也是降低产业化风险的有效措施。
5、中试放大阶段的任务(1)考核实验室提供的工艺路线在工艺设备、条件、原材料等方面在中试放大时是否有特殊的要求,是否适合工业化生产。
(2)验证小试工艺是否成熟合理,主要经济指标是否接近生产要求。
(3)进一步考核和完善工艺条件,对每一步反应和单元操作均应取得基本稳定的数据;进行物料衡算。
(4)设备材质和型号的选择。
(5)确定各步反应对传热和传质的要求。
放热反应中的加料方式,加料速度对反应的影响。
(6)搅拌器型式和搅拌速度的考察。
(7)加热/冷却载体的类型及要求(蒸汽、热水、冷盐水)(8)提出“三废”的处理方案(9)原材料、中间体的物理性质和化工常数的测(10)根据中试研究资料制订或修订中间体和成品的质量标准、分析方法(11)确定所用起始原料、试剂或有机溶媒的规格或标准;一般来说,中试所采用的原料、试剂的规格应与工业化生产时一致。
(12)消耗定额,原材料成本,操作工时与生产周期等的确定。
(13)提出整个合成路线的工艺流程,各个单元操作的工艺规程。
小试工艺成熟后,必须完成工艺报告。
中试不单是小试的简单的放大,中试搅拌、传热、浓缩、过滤、干燥的过程均与小试不同,小试时尽量摸拟中试的条件去做,另外,切记每一步须做破坏性试验。
弄清中试的设备,物料的物化特性。
安全第一。
中试前小试跟踪、过程跟踪,有时候放大过程中会出现莫名其妙的问题,你怎么都凭空想象不出来的,所以要仔细认真的跟踪过程中的每个细节,尤其是异常情况不要放过,否则非常麻烦。
修订并确定在中试设备条件下各步反应最佳工艺参数的适用范围,必要时修正或调整相关的工艺过程,严密观察在中试情况下(局部过热、反应介质的不均匀性)各操作单元中副反应及有关物质的变化情况。
6、中试放大的方法(1)经验放大:主要是凭借经验通过逐级放大(小试装置-中间装置-中型装置-大型装置)来摸索反应器的特征。
它也是目前药物合成中采用的主要方法。
(2)相似放大:主要是应用相似原理进行放大。
此法有一定局限性,只适用于物理过程放大。
而不适用于化学过程的放大。
(3)数学模拟放大:是应用计算机技术的放大,它是今后发展的方向。
7、进行中试要具备的条件(1)小试收率稳定,产品质量可靠。
(2)各步反应的工艺过程及工艺参数已确定(如加料方式、反应时间、反应温度、压力、终点控制,提取、分离、结晶、过滤、干燥等)。
(3)对成品的精制、结晶、分离、干燥的方法及要求已确定(晶型、溶残)。
(4)小试的3~5批稳定性试验说明该小试工艺可行、稳定。
(5)必要的材质腐蚀性试验已经完成。
(6)已建立原料、中间体和产品的质量控制方法/质量标准。
(7)进行了物料衡算。
三废问题已有初步的处理方法。
(8)已提出原材料的规格和单耗数量。
(9)已提出安全生产的要求。
8、中试要实现的目标(1)通过中试制订产品的生产工艺规程(草案)(含每个单元反应与单元操作的岗位操作法及过程控制细则、产品的流程图、物料衡算及产品的原材料单耗)。
(2)证明各个化学单元反应的工艺条件及操作过程,在使用规定原辅料的条件下在模型的生产设备上能生产出预定质量标准要求的产品,且具有良好的重现性和可靠性。
(3)产品的原材料单耗等技术经济指标能为市场所接受。
(4)三废处理的方案及措施能为环保部门所接受。
(5)安全、防火、防爆等措施能为公安、消防部门所接受。
(6)提供的劳动安全防护措施能为卫生职业病防治部门所接受。
9、设备的选择和工艺管路的改造(1)根据小试的结果,在多功能、中试车间,对设备进行选择,首先应考虑设备容量是否适宜,设备材质、管路材质与工艺介质的适应性,是否耐腐蚀,加热、冷却和搅拌速度是否符合要求。
(2)物料输送的方法(投料、出料、各步之间的流转),如何防止跑料、凝固和堵塞等。
(3)离心、抽滤、压滤、提取、过柱、蒸馏、精馏等分离条件是否满足。
(4)根据以上情况和其他工艺要求,对设备,管路进行适应性改造。
(5)反应有无气体生成?会否冲料?如有必要,应加气液分离器,安装回流管。
(6)真空度的要求?尾气及有毒气体的吸收?10、搅拌器型式和搅拌速度的考察在实验室中由于物料体积较小,搅拌效率好,传热、传质的问题表现不明显,但是在中试放大时,由于搅拌效率的影响,传热,传质的问题就突出地暴露出来。
因此,中试放大时必须根据物料性质和反应特点注意研究搅拌器的型式,考察搅拌速度对反应规律的影响,特别是在固-液非均相反应时,要选择合乎反应要求的搅拌器型式和适宜的搅拌速度。
按反应的均相、非均相等反应物料的性质和反应特点及小试工艺考察中对反应液混合要求的认知,初步选择搅拌的类型和转速,并通过中试考察搅拌对反应影响的规律确定搅拌的类型及转速(推进式、涡轮式、桨式、锚式、框式、螺式)11、反应条件进一步研究(1)试验室阶段获得的最佳反应条件不一定完全符合中试放大的要求,为此,应就其中主要的影响因素,如加料速度,搅拌效果,反应器的传热面积与传热系数以及制冷剂等因素,进行深入研究,以便掌握其在中间装置中的变化规律。
得到更适用的反应条件。
(2)对热敏反应或对升温、降温时间要求苛刻的反应按中试实际情况,如反应釜釜体传热面积不能满足工艺要求时,则需用反应釜内置排管或蛇管或外接冷却设备的方式来调整传热面,使其尽可能满足相关工艺的要求。
(3)要考虑使反应和后处理操作方法适用工业生产的要求。
特别注意缩短工序、简化操作、注重安全、提高劳动生产率。
从而最终确定生产工艺流程和操作方法。
12、精制、晶型、分离、干燥等单元操作设备的选择与确定(1)设备选择和确定的原则是该设备能满足实施工艺要求,得到的中间体/产品能符合相应的质量标准。
这一部分设备的选型将在收率、晶型、有机溶媒残留等方面对质量产生较多的影响。
(2)按FDA相关指导原则的要求下述的任何变动都要向FDA备案原料药制备过程中自最后一个中间体以后制造过程的任何变化,可能对原料中的杂质或其物理、化学或生理学性质有影响的任何变化。
(3)凡在质量标准中对晶型有要求的产品,对中试时产品精制结晶工序的搅拌型号、温控方式、结晶速率,乃至结晶釜的底部的几何形状等都应进行研究与验证,以确保中试产品的晶型与质量标准相一致。
确保小试样品—临床样品/中试样品在晶型上的一致性。
(4)凡含结晶水或结晶溶媒的化学原料药,对中试时产品的干燥方式及与干燥相关的工艺参数进行研究与验证,以确保中试产品所含的结晶水/结晶溶媒与质量标准相一致。
确保小试样品—临床样品/中试样品所含结晶水或结晶溶媒的一致性。
该类原料药在小试验时应对干燥时所采用的工艺参数进行考察,并提出所含的结晶水或结晶溶媒会发生变化的相关工艺参数。