初中数学七年级上册《展开与折叠》知识点解读
展开与折叠北师大版七年级数学上册精品课件PPT
•
3、在生命的每一个阶段,阿甘的心中 只有一 个目标 在指引 着他, 他也只 为此而 踏实地 、不懈 地、坚 定地奋 斗,直 到这一 目标的 完成, 又或是 新的目 标的出 现。
•
4、让学生有个整体感知的过程。虽然 这节课 只教学 做好事 的部分 ,但是 在研读 之前我 让学生 找出风 娃娃做 的事情 ,进行 板书, 区分好 事和坏 事,这 样让学 生能了 解课文 大概的 资料。
第一章 生活中的立体图形
第2课 展开与折叠
新课学习
知识点1 正方体的表面展开图 四方成线两相卫,六种图形巧组合;跃马失蹄四分开; 两两错开一阶梯. 对面相隔不相连,识图巧排“7”“凹”“田”.
1. (例1)如图1是一个正方体,图2的阴影部分是这个 正方体展开图的一部分,请你在图2中再涂黑两个 正方形后成图1的表面展开图,请涂3种不同的情况.
谢谢!
第1章第2课 展开与折叠-2020秋北师大版七年级 数学上 册课件
•
1、在困境中时刻把握好的机遇的才能 。我在 想,假 如这个 打算是 我往履 行那结 果必定 失败, 由于我 在作决 策以前 会把患 上失的 因素斟 酌患上 太多。
•
2、人物作为支撑影片的基本骨架,在 影片中 发挥着 不可替 代的作 用,也 是影片 的灵魂 ,阿甘 是影片 中的主 人公, 是支撑 起整个 故事的 重要人 物,也 是给人 最大启 示的人 物。
4. 如图所示的平面图形经过折叠可以围成棱柱的有 ( C) A. ①②④ B. ①②③④ C. ④⑤ D. ②④
第1章第2课 展开与折叠-2020秋北师大版七年级 数学上 册课件
第1章第2课 展开与折叠-2020秋北师大版七年级 数学上 册课件
知识点3 圆柱与圆锥的表面展开图 5. 圆锥的侧面展开图可能是下列图中的( D )
七年级数学展开与折叠
在机械制造中,经常需要将零件展开成平面图形进行加工和制造。这样可以提高加工精度 和效率,也可以减少材料浪费和降低成本。同时,在机械装配过程中,也需要将零件按照 一定规律进行折叠和组装。
02
平面图形展开与折叠
正方形和长方形展开
正方形展开
正方形可以沿着对角线或者中垂线展开成一个直线 段或者两个相等的直角三角形。
物理理论的数学化
许多物理理论最终需要转化为数学 模型以便进行更深入的分析和研究, 如量子力学和广义相对论等。
数学在化学中的应用
化学计量学
数学在化学计量学中有着广泛应 用,如化学方程式的配平、摩尔
质量的计算等。
化学反应动力学
数学方法可以帮助研究化学反应 的速率和机理,如反应速率常数
的确定、反应机理的推导等。
圆形和扇形展开后,其各边长度和角 度关系可能会发生变化。同时,圆形 和扇形的面积和周长也会发生变化。
扇形展开
扇形是圆的一部分,可以沿着半径或者圆弧 展开,得到一个平面图形。根据展开方式的 不同,可以得到不同的形状,如三角形、梯 形等。
03
立体图形展开与折叠
正方体和长方体展开
正方体展开
正方体有6个面,12条棱,8个顶 点,可以展开成6个相连的正方形 。展开后,相对的面不相邻。
实现变废为宝
利用废旧纸张、布料等材 料进行展开与折叠的手工 制作,可以实现资源的再 利用,具有环保意义。
05
拓展内容:数学在其他领域的应用
数学在物理中的应用
描述物理现象
数学语言可以精确描述物理现象, 例如牛顿第二定律 F=ma 就用数 学表达式阐明了力和加速度之间
的关系。
解决物理问题
数学方法如微积分、常微分方程等 被广泛应用于解决物理问题,如求 解运动方程、分析电磁场等。
展开与折叠讲义北师大版七年级数学上册
第一章丰富多彩的世界2 展开与折叠知识回顾知识点一正方体的展开与折叠正方体的表面展开图形式:正方体沿着棱展开,可以得到11中平面图形。
(1)1-4-1型(2)1-3-2型(3)2-2-2型(4)3-3型正方体展开图的对立面A和B为相对的两个面正方体展开图的规律:(1)一线不过四,田凹应弃之。
(2)间二、拐角邻面知;(3)间一、“Z”端是对面。
知识点二常见的柱体、锥体的展开图名称说明展开图圆锥圆锥的侧面是一个曲的面,展开是一个扇形圆柱圆柱的侧面是一个曲的面,展开是一个长方形棱锥棱锥有一个面是多边形,其余各面都是三角形或棱柱棱柱有两个相同的多边形底面,其余各面都是长方形【考点一正方体的展开与折叠】BAB A例1.如所示四个图形中,不能作为正方体的展开图的是()A.B..D.变式1 如果按图中虚线对折可以做成一个上底面为无盖的盒子,那么该盒子的下底面的字母是()A.D B.C C.B D.A变式2 如图,某正方体三组相对的两个面的颜色相同,分别为红,黄,蓝三色,其展开图不可能是()A.B.C.D.变式3 如图是一正方体展开图,则有、志、者三面的对面分别是()A.事竟成B.事成竟C.成竟事D.竟成事【考点二常见的柱体、锥体的展开图】例2.下列四个图形是多面体的表面展开图,其中是四棱锥的表面展开图的是().A. B. C. D.素质提升训练1.小明用如图所示的纸板折成了一个正方体的盒子,里面装了一瓶墨水,与其他三个空盒子混放在一起,观察四个选项,可知墨水瓶所在的盒子是()A.B.C.D.2.如图,将平面展开图折叠成正方体后,如果相对面上两个数之和都为0,那么x=()A.2-B.3-C.4-D.5-3.将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的()A.面CDHE B.面BCEF C.面ABFG D.面ADHG4.如图是一张铁皮.(1)计算该铁皮的面积.(2)该铁皮能否做成一个长方体盒子(底面固定,如图)?若能,计算它的体积;若不能,请说明理由.5.如图是一个用硬纸板制作的长方体包装盒展开图,已知它的底面形状是正方形,高为12cm.(1)制作这样的包装盒需要多少平方厘米的硬纸板?(2)若1平方米硬纸板价格为5元,则制作10个这的包装盒需花费多少钱?(不考虑边角损耗)6..下图是一个圆柱体水杯包装盒的展开图(单位厘米)。
北师大版数学七年级上册 1.2 展开与折叠
2展开与折叠第1课时正方体的展开与折叠1.进一步认识立体图形与平面图形的关系,了解立体图形可由平面图形围成,立体图形可展开为平面图形.2.经历展开与折叠、模型制作等活动发展空间观念,积累数学活动经验,形成较为规范的语言.3.在操作活动中揭发学生自主学习的热情和积极思考的习惯,体验学习数学的乐趣。
【教学重点】在操作活动中,发展空间观念、积累数学活动经验.【教学难点】根据几何体的展开图判断能折叠成什么样的几何体.一、情境导入,初步认识在生活中,我们经常见到正方体形状的盒子.为了设计和制作这样的盒子,我们需要了解这种盒子展开后的平面图形.1.正方体有多少个面?多少条棱?多少个顶点?2.请同学们将自己准备的纸盒剪开,看看展开后的形状是怎样的?【教学说明】学生很容易得出正方体有6个面、12条棱、8个顶点,让学生自己动手操作有利于学生直观地了解正方体的展开图.二、思考探究,获取新知1.正方体的展开图问题 1 将小正方形纸盒沿某些棱任意剪开,你能得到哪些形状的平面图形?能否将得到的平面图形分类?【教学说明】学生进行裁剪,教师巡视.把学生剪好的平面图形贴在黑板上(重复的不再贴),再让学生讨论怎样分类.【归纳结论】将正方体沿不同的棱展开可得到不同的表面展开图,共有如下11种情形,可分为四类.141型(共6种)231型(共3种)33型(1种)222型(1种)问:一个正方体要将其展开成一个平面图形,必须沿几条棱剪开?学生分组进行讨论,得出结论.【归纳结论】由于正方体有12条棱,6个面,将其表面展成一个平面图形,面与面之间相连的棱有5条(即未剪开的棱),因此需要剪开7条棱.2.平面图形的折叠问题2下图中的图形经过折叠能否围成一个正方体?【教学说明】学生动手实际操作,激发学生的积极性和主动性,有助于学生得出正确的结论,发展学生的几何直观性.【归纳结论】若是正方体11种展开图的平面图形就能折叠成一个正方体,否则不能折叠成一个正方体.三、运用新知,深化理解1.(四川巴中中考)如图是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是()A.大B.伟C.国D.的2.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“您”相对的面上的字是________.【答案】1.D 2.年四、师生互动,课堂小结1.正方体的展开图.2.通过这节课的学习,学到了哪些新知识?【教学说明】教师引导学生回顾本节课所学知识,加深对新知识的理解.【板书设计】1.布置作业:从教材“习题1.3”中选取.2.完成练习册中本课时的相应作业.本节课通过学生自己动手操作,感受正方体的展开与折叠.第2课时棱柱、圆柱、圆锥的展开与折叠1.了解棱柱、圆柱、圆锥的侧面展开图.2.经历展开与折叠、模型制作等活动发展空间观念,在动手实践制作过程中学会与他人合作.3.通过识图想物,看物想图,画图制作等活动,培养学生学数学,做数学,爱数学的情感,体会生活中的数学美.【教学重点】掌握和识别棱柱、圆柱、圆锥等几何体的展开图.【教学难点】能根据展开图判断和制作简单立体模型.一、情境导入,初步认识同学们,在我们日常生活中,随处可见各种五花八门的图形,说出几种你常见到的图形名称并说出它们由哪些平面图形构成?1.牛奶盒拆开后会展成什么样的平面图形?2.谷堆可由什么样的平面图形组成?【教学说明】利用学生感兴趣的生活中常见的实物,激发学生的求知欲.二、思考探究,获取新知1.正棱柱的展开图问题1将下面的几何体沿某些棱剪开,展开成一个平面图形,能得到哪些形状的平面图形?【教学说明】强化学生的空间想象力,通过棱柱展开图加深对知识的理解.2.圆柱、圆锥的侧面展开问题2 教材第10页“做一做”的内容【教学说明】学生动手实际操作,能直观地得出结论.【归纳结论】圆柱的侧面展开图是长方形,圆锥的侧面展开图是扇形. 三、运用新知,深化理解1.上图中经过折叠能围成棱柱的是________(填序号).2.画出下面棱柱的一种展开图.【教学说明】学生自主完成,加深对新学知识的掌握和理解.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.(2)(4)2.四、师生互动,课堂小结1.正方体的展开图,圆柱、圆锥的侧面展开图.2.通过这节课的学习,学到了哪些新知识?【教学说明】鼓励学生积极动手探索,体验棱柱、圆锥、圆柱展开变化的过程.【板书设计】1.布置作业:从教材“习题1.4”中选取.2.完成练习册中本课时的相应作业.了解圆柱、圆锥、棱柱的侧面展开图,了解几何体与它展开的平面图形的对应关系.根据给出的展开图准确还原几何体,提高学生的空间想象能力.。
北师大版七年级数学上册展开与折叠PPT课件
-
29
小壁虎的难题:
如图:一只圆桶的下方有一只壁虎, 上方有一只蚊子,壁虎要想尽快吃到 蚊子,应该走哪条路径?
你有何高招 ?
● 蚊子
壁虎 ●
-
30
● 蚊子 壁虎 ●
蚊子
●
●
壁虎
-
31
作业评讲:知识技能:
1、一个六棱柱模型如图所示。它的底
面边长都是5厘米,侧棱长4厘米。观
察这个模型,回答下列问题:
×× × ×
-
41
相间、“Z”端是对面
AB
B A
A和B为相对的两个面
-
42
间二、拐角邻面知
CD
C D
C和D为相邻的两个面
-
பைடு நூலகம்
43
第一类,中间四连方,两侧各一个, 共六种。 (1,4, 1型)
-
44
第二类,中间三连方,两侧各有一、 二个,共三种。( 2,3,1型)
-
45
第三类
-
46
将一个正方体的表面沿某些棱剪开, 能展开成下列平面图形吗?
解:面C会在上面
-
60
练习.下面是一多面体的展开图,平面图形内都标 注了字母,请根据要求回答问题: (3)如果从右面看是面C,面D在后面,那么哪一面 会在上面?
解:面F会在上面
-
61
考考你
1、下面图形中,哪些是正方体的平面展开
图? 1
祝
23 45 6
前你 似程
锦
ABC DE F
-
62
-
圆锥
26
下列图形是某些多面体的平面展开图, 请说出这些多面体的名称。
(4)
(5)
七年级展开与折叠的知识点
七年级展开与折叠的知识点随着时代的发展,人们对于空间方面的需求也越来越大。
但在现实中造型丰富、结构复杂的物体并不是一件容易的事情。
因此,属于七年级内容范畴的展开与折叠知识点就成了一种较好地触及这方面问题的教育资源。
1. 折痕的类型折痕类型取决于所折纸张的边角。
分别有直边、锐角、钝角、对折线这四种情况。
直边折痕的意义是把直线向两侧折叠;相似地,锐角和钝角折痕分别为了折叠一个角度非直的边角和边角度数超过实际需求一次以上的边角。
至于对折线折痕,它需要折成一个对称形状,因此很多时候可以被理解为特殊的类型。
值得注意的是,锐角和直边折痕被使用得较为普遍。
2. 折痕精度的重要性在实现某些空间模型时,折痕的精度决定了这个构造是否正常工作。
因此,在保证折痕样式正确的前提下,精度范围是十分重要的。
在七年级展开和折痕教材中,我们常常会使用约为1或2毫米的折矩,精度范围则在这个基础上进行微调。
精度受到材料特性、技术难度等因素影响。
3. 裁切的重要性除了折痕制作以外,正确的裁切同样对构造和展开有很重要的意义。
对于有对称多边形的展开图,相同的边长和角度是建立这种复制结构的关键。
当然,在设计的时候需要考虑实际可行性与定制性的问题。
4. 展开方法的种类不同的形状由于其自身特点的不同,需要不同的展开方法。
在七年级展开折痕教程中,常见的方法包括普通组合、对称展开、切角、切线、扣卡等等。
针对不同的形状,采用合适的方法是制作非常重要的步骤。
当然,方法灵活运用也是一个制作好展品的重要手段。
综上所述,学习展开与折叠的知识点是现代教育体系下的重要组成部分,也是我们切实提高空间建模能力所必须掌握的技术。
通过了解不同类型、精度、策略和展开方法的知识点,我们可以更好地完成具体的空间建模任务,并在实际应用场景中获得一定的好处。
七年级展开与折叠知识点
七年级展开与折叠知识点在我们的生活中,展开与折叠是极其常见的动作,无论是纸张、衣物、草稿、家具等等,而这些物品的展开与折叠都有其固定的规律和方法。
在七年级学生的数学课程中,也有许多展开与折叠的知识点,下面我们一一来了解。
1. 立体图形的展开立体图形的展开即是将一个三维的立体图形展开成一个平面图形,在展开的过程中,需要知道每个面之间的连接方式以及正确的摆放位置。
这一知识点在计算表面积和体积时尤为重要。
以正方体为例,正方体由六个正方形构成,我们可以将它们一一展开拼接起来,得到一个十字形的平面图形,这就是正方体的展开图形。
同样的,我们也可以将任意一个立体图形按照其构成面的组合关系展开成一个平面图形。
2. 折纸构图折纸构图是以折纸为工具,通过折叠和展开的方式构造图形。
这一知识点不仅能锻炼学生的空间想象能力,还能培养学生的耐心和动手能力。
以折纸构造长方形为例,将一张正方形的纸沿着对角线对折,再将其中一条边向内折叠即可得到一个长方形。
又如,若想构造一个正五边形,则需要将一张正方形的纸折成四个等分,再进行特定的折叠,最终得到正五边形。
3. 平面图形的折叠平面图形的折叠一般是指将一个平面图形折叠成另一个平面图形的过程,在折叠的过程中,也需要根据平面图形之间的连接方式进行正确的折叠。
这一知识点在计算平面几何问题时很有用,例如对称图形的判定等问题。
以正方形为例,我们可以将它沿着中心折成两个半正方形,再将其中一个半正方形沿着中心对称折叠,就能构造出一个正方形的对称图形。
综上所述,展开与折叠作为一种重要的数学思维工具,应在教育中得到重视。
熟练掌握这些知识点,不仅可以提高学生的计算能力,还可以培养学生的空间想象能力和动手能力,为今后的学习和生活打下坚实的基础。
数学:1.2《展开与折叠》课件2(北师大版七年级上)
黑 红兰
甲
白 黄红
乙
绿 兰黄 丙
根据正多面体填写下表
名称 各面形状 面数f
正四面体 正三角形 4 正六面体 正方形 6 正八面体 正三角形 8 正12面体 正五边形 12 正20面体 正三角形 20
棱数 顶点数
e
v
6
4
12
8
12
6
30
20
30 12
f+v-e
2 2 2 2 2
结论:面数f +顶点数v -棱数e = 2
展开与折叠
(2)
棱柱的特征:
1、棱柱的上、下两底面 平行且形状相同,大小
一样;
2、棱柱的侧面形状都 侧面 是长方形;
底面 侧棱
3、棱柱侧面的个数与 底面的边数相同Leabharlann 4、棱柱的侧棱的长度 都相等。
5、棱柱的侧面展开图 6、底面的周长与侧
是:长方形
面展开图的长相等。
棱柱的顶点、棱、侧棱、侧面数量之间的关系
顶点 棱 面(个) 侧棱 侧面
(个) (条)
(条) (个)
三棱柱 6
953 3
四棱柱 8
12 6 4
4
五棱柱 10 15 7 5
5
六棱柱 12 18 8
6
6
……
n棱柱 2n 3n n+2 n n
圆柱侧面展开图
圆锥的侧面 展开图
它们的侧面展开图会是什么图形呢? 那么它们的表面展开图又是什么图形呢 ?
圆柱的表面展开图 圆锥的表面展开图
也可入药。bulǎ)。负责组织计算机的工作流程, 【叉】chá〈方〉动挡住; 【壁虎】bìhǔ名爬行动物。②比喻政治上发生根本变化,是上下乘客或 装卸货物的场所。这个鬼不敢离开老虎, 挥发性比润滑油高,生长在热带和亚热带地区。 头小而尖,叶子长椭圆形,皮粗糙,②泛指团以上的部队:主
新北师大版七上数学 第一章 几何体的展开与折叠知识点系统归纳总结
第一章几何体的展开与折叠一、知识点睛1、几何体可分为四类:_______、_______、_______、_______.棱柱与圆柱的异同:相同点:____________________________________________.不同点:①________________________;②_________________________.棱柱与棱锥的区别:①________________ ___;②__________ ________.2、n棱柱有_______个面________个顶点_______条棱.n棱锥有_______个面________个顶点_______条棱.3、图形是由_______、_______、_______构成的,面与面相交得到_______,线与线相交得到_______.点动成_______,线动成_______,面动成_______.4、正方体的表面展开图,分成四大类共11种.5、一个正方体截面可能是______________________________ _________;一个三棱柱的截面可能是;一个n棱柱的截面最多可能是边形,至少是边形;一个n棱锥的截面可以是用一个平面去截一个圆柱截面可能是用一个平面去截一个圆锥截面可能是用一个平面去截一个球截面可能是6、n边形的内角和为________________.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成____________个三角形.7、物体的三视图:主视图,左视图,俯视图(通过图形画物体的三视图,通过三视图求图形的个数)二、习题精练:1.圆锥是由_____个面围成,其中_____个平面,_____个曲面.2.六棱柱有______个顶点,_____个面;七棱锥有_____个顶点,_____个面.3.______棱锥有20条棱;______棱柱有48条棱;______棱柱有8个面;______棱锥有10个面.4.流星划过天空,形成了一道美丽的弧线,这说明了_______________;汽车的雨刷刷过玻璃时,形成了一个扇形,这说明了______________;薄薄的硬币在桌面上转动时,看上去像球,这说明了___________________.5.把一块学生用的三角板以一条直角边为轴旋转一周形成的几何体是______.6.如图,上排的平面图形绕轴旋转一周,可以得到下排的几何体,那么与甲、乙、丙、丁各平面图形顺序对应的几何体的编号应为()甲丁丙乙①②③④A.③④①②B.①②③④C.③②④①D.④③②①7.指出下列平面图形是什么几何体的表面展开图:①______________;②_____________;③_____________;④______________;⑤_____________.8.下列图形是正方体的表面展开图的是()A. B.C.D.9.下列各图经过折叠后不能围成正方体的是()A.B.C.D.10.从如图的纸板上11个无阴影的正方形中选1个(将其余10个都剪去),与图中5个有阴影的正方形折成一个正方体,不同的选法有()A.3种B.4种C.5种D.6种123x y享众41211.图中表面展开图折叠成正方体后,相对面上两个数之和为6,则x=____________,y=____________.12.图中表面展开图折叠成正方体后,相对面上两个数之和相同,则“众”代表的数字是______,“享”代表的数字是______.13.小丽制作了一个如下图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的表面展开图可能是()A.B.C.D.14.下面四个图形中,经过折叠能围成如图只有三个面上印有图案的正方体纸盒的是()A.B.C.D.15.将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是()A.B.C.D.16.一个小立方块的六个面分别标有字母A,B,C,D,E,F,如图是从三个不同方向看到的情形,请说出A,B,E对面分别是_____,_____,______.ADECEBBAF17.如果正方体的六个面上分别标有:团、结、就、是、力、量.从三个不同的方向看到的情形如下,则团、结、力对面的字分别是()A.量,就,是B.就,是,量C.量,是,就D.就,量,是力是团力就结结团量1.正方体的截面不可能是()A.四边形B.五边形C.六边形D.七边形2.从多边形的一个顶点出发,分别连接这个顶点与其余各个顶点,可以把五边形分割成3个三角形,把六边形分割成4个三角形,…,如果是十二边形,可以分割成_____个三角形.3.一个多边形的内角和为1800°,则它是_____________边形.4.从一个多边形的某个顶点出发,分别连接这个顶点和其余各顶点,可以把这个多边形分割成5个三角形,则这个多边形的边数为_________,这个多边形的内角和为___________.5.一个直立在水平面上的圆柱的主视图、俯视图、左视图分别是()A.长方形、圆、长方形B.长方形、长方形、圆C.圆、长方形、长方形D.正方形、长方形、圆6.下图是由7个完全相同的小立方块搭成的几何体,那么这个几何体的左视图是()A.B.C.D.7.如图,这是一个由小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数,请你画出它的主视图与左视图.421328.如图,这是一个由小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数,请你画出它的主视图与左视图.3112119.如图是由一些相同的小立方块构成的几何体的三视图,那么构成这个立体图形的小立方块有()A.4个B.5个C.6个D.7个左视图主视图10. 如图是由一些相同的小立方块构成的几何体的三视图,那么构成这个立体图形的小立方块有( )A .4个B .5个C .6个D .7个11. 用小立方块搭一几何体,使得它的主视图和俯视图如图所示,这样的几何体最多要_____个立方块,最少要_____个立方块.俯视图主视图12. 如图是一个由若干个相同的小立方块组成的几何体的主视图和俯视图,则能组成这个几何体的小立方块的个数最多是________个,最少是________个.俯视图主视图13. 用小立方块搭成的几何体,主视图和俯视图如下,问这样的几何体有多少可能?它最多需要多少个小立方块,最少需要多少个小立方块,请画出最多和最少时的左视图.俯视图主视图14. 用小立方块搭成的几何体,主视图和俯视图如下,问这样的几何体有多少可能?它最多需要多少个小立方块,最少需要多少个小立方块,请画出最多和最少时的左视图.俯视图主视图左视图主视图俯视图15. 如图是由大小相同的小立方块组成的简单几何体的主视图和左视图,那么组成这个几何体的小立方块最多为________个.左视图主视图16.17. 示,则组成这个几何体需要的小立方块的个数最多是________块.18. 已知下图为一几何体的三视图:(1)写出这个几何体的名称;(2)任意画出它的一种表面展开图; (3)若主视图的长为8 cm ,俯视图中圆的半径为3 cm ,求这个几何体的表面积和体积.俯视图:圆左视图:长方形主视图:长方形19.如果从一个多边形的一个顶点出发,分别连接这个顶点与其余各顶点,可将这个多边形分割成2 014个三角形,那么此多边形的边数为__________.。
七年级数学上册专题第1讲图形的展开与折叠重点、考点知识总结及练习
第1讲图形的展开与折叠⎧⎪⎨⎪⎩几何体的展开图展开与折叠展开图折叠成几何体相对的面知识点1:几何体的展开图常见的几何体的展开图有圆柱、圆锥、棱柱、正方体、棱锥。
特殊:球没有展开图 圆柱的表面展开图是两个圆(作底面)和一个长方形(作侧面)。
圆锥的表面展开图是一个圆(作底面)和一个扇形(作侧面)棱柱的表面展开图是两个完全相同的多边形(作底面)和几个长方形(作侧面)正方体的表面展开图一共有11种可能。
【典例】1.如图所示的正方体的展开图是( )A. B. C. D.【方法总结】1.判断特定正方体的展开图首先判断是否是正确的展开图模型,其次通过相邻面的位置、方向来确定正确的展开图.2.解决几何体的展开图的相关问题只需要记清楚不同立体图形的展开图的模型。
【随堂练习】1.(2018•武汉模拟)如图所示的正方体的展开图是()A. B. C. D.2.(2018•平谷区二模)如图所示是一个三棱柱纸盒.在下面四个图中,只有一个展开图是这个纸盒的展开图,那么这个展开图是()A.B.C.D.3.(2017秋•诸城市期末)如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.4.(2017秋•阜宁县期末)如果有一个正方体,它的展开图可能是下面四个展开图中的()A. B. C.D.知识点2 展开图折叠成几何体【典例】1.将下面的纸片沿虚线折叠,不能折成长方体盒子的是()A. B. C. D.【方法总结】展开图折叠成几何体是将几何体展开的对应的操作,解决这类型题首先能够找到正确的几何体展开图,其次找出相邻、相对的面。
【随堂练习】1.(2018•河北二模)如图1,观察一个正方体骰子,其中点数1与6相对,点数2与5相对,点数3与4相对,现在图2中①、②、③、④中的某一处画○,然后去掉其余3处后,能围成正方体骰子的是()A.①B.②C.③D.④2.(2017秋•西城区期末)某礼品包装商店提供了多种款式的包装纸片,将它们沿实线折叠(图案在包装纸片的外部,内部无图案),再用透明胶条粘合,就折成了正方体包装盒,小明用购买的纸片制作的包装盒如右图所示,在下列四种款式的纸片中,小明所选的款式的是()A.B.C.D.3.(2017秋•彭泽县期中)将如图所示的平面图形折成立方体后可能是()A.B.C.D.知识点3:正方体的相对两个面正方体展开图找相对面的方法:(1)中间隔“一”是对面:中间相隔一个正方形的两个正方形是相对面;(2)“Z”字两端是对面:呈“Z”字形排列的四个正方形首尾两个正方形是相对面;(3)间二、拐角邻面知:中间隔两个正方形的两个正方形是相邻面,呈拐角形状的三个小正方形,只有一个相邻正方形的两个正方形是相邻面。
七年级数学《展开与折叠》知识点整合_知识点总结
七年级数学《展开与折叠》知识点整合_知识点总结
想要更好的学习数学首先要做的就是理解运用课本中的知识,因此为同学们整理了七年级数学展开与折叠知识点,希望大家可以更快更好的提高成绩。
知识点一:正方体的表面展开图
正方体是特殊的棱柱,它的六个面都是大小相同的正方形,将一个正方体的表面展开,可以得到11种不同的展开图,把它归为四类:一四一型,6种;二三一型,3种;三三型,1种;二二二型,一种。
正方体展开图口诀:
1、一线不过四;田凹应弃之。
2、找相对面:相间,“Z”端是对面。
3、找邻面:间二,拐角邻面知。
知识点二:棱柱的表面展开图
棱柱的表面展开图是由两个相同的多边形和一些长方形组成的。
知识点三:圆柱、圆锥的表面展开图
1、圆柱的表面展开图是由两个大小相同的圆(底面)和一个长方形(侧面)组成,其中侧面展开图长方形的一边的长是底面圆的周长,另一边的长是圆柱的高。
2、圆锥的表面展开图是由一个(侧面)和一个圆(底面)组成,其中扇形的半径长是圆锥母线(即圆锥底面圆周上任一点与顶点的连线)长,而扇形的弧长则是圆锥底面圆的周长
光有七年级数学展开与折叠知识点的整理是不够的,还要结合练习题的运用,总结之后来检测一下吧!。
七年级上册-第二课(展开与折叠)
第二讲展开与折叠一、正方体的展开与折叠下面图形中,都能围成一个正方体?a b c有些立体图形————→平面图形有些平面图形————→立体图形1.展开是将某些立体图形展成一个平面图形,同时这个平面图形可以折叠成相应的立体图形.展开和折叠是过程.2.正方体是一个特殊的四棱柱,它的所有棱长都相等,所有面都是正方形且大小相等,将正方体的表面沿某些棱剪开,展成一个平面图形,其展开图共有11种形式.一四一型二三一型二二二型三三型要点精析:(1)图形的展开与折叠是立体图形与平面图形之间的转化过程;(2)判断一个平面图形能否折叠成立体图形的方法:一看面数够不够;二看各面的位置是否合适,尤其是底面的位置;三看对边的长度是否相等.(3)为了更好地记忆展开图和展开图中相对的面,请同学们熟记口诀“一线不过四,凹、田应弃之,相间、‘Z’的两端是对面”.例1图中能折叠成正方体的是()练1.将一个无底无盖的正方体沿一条棱剪开得到的平面图形为()A.长方形B.正方形C.三角形D.五边形练2.如图,将4×3的网格图剪去5个小正方形后,图中还剩下7个小正方形,为了使余下的部分(小正方形之间至少要有一个边相连)恰好能折成一个正方体,需要再剪去1个小正方形,则应剪去的小正方形的编号是()A.7 B.6 C.5 D.4练 3.如图,它需再添一个小正方形,折叠后才能围成一个正方体,图中的灰色小正方形分别由四位同学补画,其中正确的是( )二、正方体与其表面展开图间的对应关系图中的图形可以折成一个正方体形的盒子.折好以后,与1相邻的数是什么?相对的数是什么?先想一想,再具体折一折,看看你的想法是否正确.例2把正方体的表面沿某些棱剪开展成一个平面图形(如图(1)),请根据各面上的图案判断这个正方体是图(2)中的()图1图2例3如图,一个立体图形的展开图中,用每个面内的大写字母表示该面,用小正方形边上所标注的小写字母表示该边.(1)说出这个立体图形的名称;(2)写出所有相对的面;练1.如图,有一个正方体纸巾盒,它的平面展开图是()练2.明明用纸(如图)折成了一个正方体的盒子,里面装了一瓶墨水,与其他空盒子混放在一起,只凭观察,选出墨水在哪个盒子中()练3.图①是一个小正方体的表面展开图,小正方体从图②所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是()A.梦B.水C.城D.美三、柱体的展开与折叠想一想(1)如图,哪些图形经过折叠可以围成一个棱柱?先想一想,再折一折.(2)将图中不能围成棱柱的图形作适当修改使所得图形能围成一个棱柱.1. 棱柱的表面展开图是由两个相同的和一些组成的.2. 棱柱的表面展开图不止一种,沿其不同的棱剪开,可得到不同的表面展开图.3. 圆柱的表面展开图是由两个大小相同的和组成的,其中侧面展开图的一边长是圆柱的,另一边长是底面圆的.例4如图所示的平面图形经过折叠可以围成棱柱的有()A.(1)(2)(4)B.(1)(2)(4)(5)C.(4)(5)D.(2)(4)例5 如图,圆柱的表面展开后得到的平面图形是图中的()练1如图是一个长方体包装盒,则它的平面展开图是( )四、锥体的展开与折叠圆锥的表面展开图是由一个和一个组成的,其中扇形的半径长是圆锥母线(即圆锥底面圆周上任一点与顶点的连线)长,而扇形的弧长则是圆锥底面圆的周长.例3如图所示的平面图形不可能围成圆锥的是()练1将图①的正四棱锥ABCDE沿着其中的四个边剪开后,形成的展开图为图②,判断下列哪一个选项中的四个边可为此四个边?()A.AC,AD,BC,DE B.AB,BE,DE,CDC.AC,BC,AE,DE D.AC,AD,AE,BC小结:正方体、棱锥、棱柱展开图的基本条件:一般地,如果某立体图形的表面展开图由6个正方形组合而成,那么立体图形是正方体;如果是由3个及3个以上的三角形与1个多边形组成的,那么立体图形为棱锥;如果是由3个及3个以上的长方形与两个形状、大小都相同的多边形组合而成的,那么立体图形为棱柱.五、当堂检测1.下列图形中,可以是正方体表面展开图的是()2.将一个无盖正方体形状盒子的表面沿某些棱剪开,展开后不能得到的平面图形是()3.如图,可以折叠成一个无盖正方体盒子的是()A.①B.①②C.②③D.①③4.图(1)和图(2)中所有的正方形大小都一样,将图(1)的正方形放在图(2)中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③ D.④5.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是() A.中B.考C.顺D.利6。
七年级上展开与折叠知识点
七年级上展开与折叠知识点在初中数学学习过程中,展开与折叠是一个比较基础的知识点,它们是我们学习面积和体积等相关知识的必备内容。
本文将分为三大部分,分别介绍展开与折叠的定义、应用以及相关练习题。
一、什么是展开与折叠?在数学上,我们把将一个三维物体沿着一些特定的线形状(比如直线、折线)剪开使其变成一个平面图形的过程称为“展开”。
相对的,我们把将一个平面图形按照特定模式叠折起来变成一个三维物体的过程称为“折叠”。
比如:一个盒子的展开图就是一个长方形,而将这个长方形沿着特定的线剪开并打平展开,就得到了这个盒子的展开图。
另一个例子,将一张矩形纸张按照特定模式叠折,可以得到一个立体的长方体。
二、展开与折叠的应用了解展开与折叠不仅有助于我们理解几何形体的各种性质,在日常生活中也有着广泛的应用。
比如说,公司生产各种纸盒产品时,需要对这些产品的展开图进行计算,以确定量身定制的原材料的数量。
在包装生产中,展开图成为了设计师的基础和生产成本的首要考量。
另外,展开与折叠也在其他领域有着广泛应用。
在制造复杂机器设备的过程中,设计师们也需要首先设计出设备的展开图,并在此基础上制造出完整的机器。
展开与折叠的理论在计算机图像学等领域中也扮演着重要的角色。
三、练习题1.对于一个侧棱长分别为3cm、4cm和5cm的直角三棱锥,它的侧壁是一个三角形,高度为5cm。
请画出这个三棱锥的展开图。
2.一个矩形房间的长度为6.5米,宽度为4.2米,屋顶是一个等腰直角三角形,两条直角边的长度为5米,请画出这个房间的展开图。
3.一个生产纸盒的公司,想要生产一个底面积为40平方厘米,高度为30厘米的长方体盒子。
请计算这个盒子需要的纸张面积。
总结:展开与折叠是初中数学必须要掌握的基础知识点,我们在学习面积、体积等相关知识时都需要用到这些知识点。
展开与折叠在日常生活中也有着广泛的应用,比如纸盒包装、机器制造、图形制作等领域都需要用到展开与折叠的理论知识。
初中数学知识点精讲精析 展开与折叠
1.2 展开与折叠学习目标1.体会从古至今数学始终伴随着人类的进步与发展,增进学习数学的兴趣。
2.通过具体实例体会数学的存在及数学的美,发展应用意识。
知识详解1.棱柱的表面展开图棱柱是由两个完全相同的多边形底面和一些长方形侧面围成的,沿棱柱表面不同的棱剪开就可以得到不同的表面展开图,如图是棱柱的一种展开图。
棱柱的表面展开图是两个完全相同的多边形(底面)和几个长方形(侧面)。
2.圆柱、圆锥的表面展开图(1)圆柱的表面展开图沿着圆柱的一条高把圆柱剪开,就得到圆柱的表面展开图.圆柱的表面展开图是两个圆(底面)和一个长方形(侧面),如图所示。
如果两个底面圆在长方形的同一侧(如图所示),折叠后上端没有底,下端有两个底,则它不能折叠成圆柱。
(2)圆锥的表面展开图如图所示,圆锥的表面展开图是一个圆(底面)和一个扇形(侧面)。
3.平面图形的折叠平面图形沿某些直线折叠可以围成一定形状的立体图形,与立体图形展开成平面图形是一个互逆过程。
我们已经见过很多平面图形了,但并不是所有的平面图形都能折成几何体。
根据平面展开图判断立体图形的方法:(1)能够折叠成棱柱的特征:①棱柱的底面边数=侧面的个数。
②棱柱的两个底面要分别在侧面展开图的两侧。
(2)圆柱的表面展开图一定是两个相同的圆形和一个长方形。
(3)圆锥的表面展开图一定是一个圆形和一个扇形。
(4)能够折叠成正方体的特征:①6个面都是完全相同的正方形。
②正方体展开图连在一起的(指在同一条直线上的)正方形最多只能为4个。
③以其中1个为底面,前、后、左、右、上面都有,且不重叠。
4.正方体展开图上的数字问题正方体是立体图形的展开与折叠的代表图形,与正方体的展开图有关的数字问题主要是相对面的找法,确定了三组相对面,数字问题便可迎刃而解。
正方体的平面展开图共有11种,可分为四类:(1)1-4-1型相对面的确定:①第一行与第三行的正方形是相对面;②中间一行的4个正方形中,相隔一个是相对面。
七年级数学上册 第一章 丰富的图形世界 2 展开与折叠课件 (新版)北师大版
图1-2-5
答案 A 由题图中几何体的特征知含有数字4、6、8的三个面两两相 邻,故折叠后三个面一定相交于一点.只有A选开图,若将其围成正方体,则与点P重合的两 点应该是 ( )
图1-2-6 A.S和Z B.T和Y C.U和Y D.T和V 答案 D 结合图形知,围成立体图形后Q与S重合,P与T重合,很显然P 又与V重合,故选D.(也可以动手操作一下)
解析 如图1-2-3所示.
图1-2-3
题型一 观察猜想题 例1 在下列四个正方体中,只有一个是用图1-2-4所示的纸片折叠而成 的,那么这个正方体是 ( )
解析 选项A、B的正方体展开后,黑点所在的面分别在小三角形所在 面的上面和右边,与所给纸片不符,所以可排除A和B;对于C,小圆圈的上 面和右边是空白的,同样与所给纸片不符,也可排除.故选D. 答案 D 点拨 根据展开后的平面图形确定立体图形,需分清有标记的面与其他 面之间的位置关系.
1.(2013浙江宁波中考)下列四张正方形硬纸片,剪去阴影部分后,如果沿 虚线折叠,可以围成一个封闭的长方体包装盒的是 ( )
答案 C A剪去阴影部分后,可围成无盖的正方体,故此选项不合题意; B剪去阴影部分后,无法围成长方体,故此选项不合题意;C剪去阴影部分 后,能围成长方体,故此选项正确;D剪去阴影部分后,显然不能围成长方 体,故此选项不合题意.故选C.
知识点一 正方体的展开与折叠 1.图1-2-1是一个正方体,它的表面展开图可以是 ( )
图1-2-1
答案 B B选项是“一四一”型,故选B.
2.(2015山东济宁中考)一个正方体的每个面都有一个汉字,其平面展开 图如图1-2-2所示,那么在该正方体中和“值”字相对的字是 ( )
图1-2-2 A.记 B.观 C.心 D.间 答案 A 可以自己动手折一下.
七年级上学期数学5.3《展开与折叠课件》
了解数学概念展开与折叠及其实用价值,并通过实例演示和练习,掌握计算 展开和折叠的变化,解决展开和折叠问题。
课程目标
1 认识展开与折叠的概念
了解展开和折叠的含义及其区别,理解展开与折叠的关系。
2 实际应用能力
学习展开与折叠的应用,掌握计算展开和折叠的变化,解决展开和折叠问题。
展开的含义
通过将几何体在平面上展开,从而便于计算几 何体的表面积、便于做图,提高计算准确率。
展开与折叠的关系
折叠是展开的逆运算。同一几何体的展开方式 不唯一,并不是所有折叠都能转化为展开。
折叠的含义
通过将平面上的图形或几何体模型折叠,尤其 是能形成新的几何形体的折叠方式,可以用来 解决现实生活中的实际问题。
练习计算
完成练习册上的展开与折叠计算题目,锻炼计算能 力及逻辑思维。
,提醒学生 掌握重要知识点与方法。
2 学生问题解答
解答学生关于课程内容的 提问,强化对展开与折叠 的理解和运用。
3 课程反馈
给出课程反馈表,帮助学 生更好地理解展开与折叠 的概念和方法。
3 提高数学思维
锻炼逻辑思维和空间想象能力,提高数学思维水平。
重要概念
折叠
将平面图形或图形模型按照一定 的方式对折,使其形成新的几何 形体。
展开
展折关系
将一个几何体模型在平面上展开, 使其不失原有界面的形体。
折叠是从展开得来的,展开也可 以转化为折叠。展开与折叠是一 对互逆运算。
展开与折叠的含义与方法
展开与折叠的方法
可以通过在平面上画展开图或者在图形上找出 对称轴、中轴等方式找到展开和折叠的方法。
展开与折叠实例演示
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学七年级上册
《展开与折叠》知识点解读
知识点1正方体的展开与折叠
正方体的平面展开的11种情况:
“一四一”型
“二三一”型:
“三三”型:
“二二二”型:
①数:小正方形的个数(6个)
②看:小正方形的排列方式(一四一式二三一式三三式二二二式)
③想一想:在心里折一折,发展学生的空间观念。
例1骰子是一种特别的数字立方体(如图所示),它符合规则:相对两面的点数之和总是7.下面四幅图中可以折成符合规则的骰子的是()
分析:正方体相对两面需间隔一个面,因此只有C符合条件。
解:C
知识点2棱柱、圆柱和圆锥的展开与折叠(重点)
1、棱柱的表面展开图
棱柱的表面展开图是由两个相同的多边形和一些长方形组成,沿棱柱表面不同的棱剪开,可得到不同组合方式的平面展开图。
2、圆柱的表面展开图
圆柱的表面展开图是由两个相同的圆形和一个长方形组成的。
3、圆锥的表面展开图
圆锥的表面展开图是由一个圆形和一个扇形组成的。
例2如图所示,甲图经过折叠后能否形成乙图的棱柱?如果不能形成,简要说明理由;如果能形成,回答下列问题:
(1)这个棱柱有几个侧面?侧面个数与底面边数有什么关系?
(2)哪些面的形状与大小一定完全相同?
分析:
解:只需将甲图中上、下两个六边形折叠到所在长方形的后方,然后将长方形向后一一折去,就会围成乙图中的六棱柱。
(1)六棱柱有6个侧面,其个数与底面六边形的边数相同。
(2)六棱柱的上、下两个底面的形状与大小一定完全相同,其侧面都是长方形,但不一定完全相同。
(3)
(4)
(5)。