《多变量最优化》PPT课件

合集下载

最优化理论与算法完整版课件 PPT

最优化理论与算法完整版课件 PPT

Bazaraa, J. J. Jarvis, John Wiley & Sons, Inc.,
1977.
组合最优化算法和复杂性
Combinatorial
Optimization 蔡茂诚、刘振宏
Algorithms and Complexity
清华大学出版社,1988 I运nc筹.,学19基82础/1手99册8
最优化首先是一种理念, 运筹学的“三个代表”
其次才是一种方法.
• 模型
• 理论
2021/4/9
• 算法
5
绪论---运筹学(Operations Research -
运筹学O方R)法
最优化/数学规划方法
连续优化:线性规划、 非线性规划、非光滑优 化、全局优化、变分法、 二次规划、分式规划等
离散优化:组合优化、 网络优化、整数规划等
2021/4/9
11
1. 食谱问题
我每天要求一定量的两种维生素,Vc和Vb。 假设这些维生素可以分别从牛奶和鸡蛋中得到。
维生素
Vc(mg) Vb(mg) 单价(US$)
奶中含量
2 3 3
蛋中含量
4 2 2.5
每日需求 40 50
需要确定每天喝奶和吃蛋的量, 目标以便以最低可能的花费购买这些食物, 而满足最低限度的维生素需求量。
最优化理论与算法
2021/4/9
1
提纲
使用教材:
最优化理论与算法 陈宝林
参考书 :
数学规划 黄红选, 韩继业 清华大学出版社
1. 线性规划 对偶定理
2. 非线性规划 K-K-T 定理
3. 组合最优化 算法设计技巧
2021/4/9
2
其他参考书目

《非线性最优化模型》课件

《非线性最优化模型》课件

无约束优化模型
定义
无约束优化模型是指在没有任何约束条件限制下,寻找目标函数的最大值或最 小值。
求解方法
无约束优化模型的求解方法主要包括梯度法、牛顿法、拟牛顿法、共轭梯度法 等。这些方法通过迭代的方式逐步逼近最优解,利用目标函数的梯度信息或海 森矩阵进行搜索。
混合整数优化模型
特点
混合整数优化模型是指目标函数 和约束条件中同时包含连续变量 和整数变量,整数变量的取值只 能是整数。
《非线性最优化模型》ppt课 件
Байду номын сангаас
CONTENTS
• 非线性最优化模型概述 • 非线性最优化模型的分类 • 非线性最优化模型的求解方法 • 非线性最优化模型的实际应用
案例 • 非线性最优化模型的未来发展
与挑战
01
非线性最优化模型概述
定义与特点
总结词
非线性最优化模型是一种数学方法,用于解决具有非线性约束和目标的优化问题。
优点
收敛速度快,精度高。
缺点
对Hessian矩阵敏感,计算量大,可能面临数值稳定问题。
拟牛顿法
总结词
改进的牛顿法 01
详细描述
02 通过迭代更新Hessian矩阵近似值 ,构造拟牛顿矩阵,以实现牛顿 法的数值稳定性和收敛速度。
优点
数值稳定性好,收敛速度快。
03
缺点
04 需要存储和计算Hessian矩阵或其 近似值。
客户需求。
运输优化
非线性最优化模型可用于 优化运输路线和运输方式 ,降低运输成本并提高运
输效率。
采购优化
通过非线性最优化模型, 可以确定最佳供应商和采 购策略,以降低采购成本
并确保产品质量。

《数学建模》PPT课件

《数学建模》PPT课件

( x2
x1)
f
f (x2 ) (x2 ) f
2 1 ( x1) 22
1
f
( x1 )
f
(x2 )
3
f
( x1 ) x1
f (x2 ) x2
2 (12 f (x1)f (x2 ))1/2
如函数的导数容易求得,一般首先考虑使用三次插值
法,因为它具有较高效率。对于只需要计算函数值的方
法中,二次插值法是一个很好的方法,它的收敛速度较
优化模型
(2)多项式近似法 该法用于目标函数比较复杂的情 况。此时寻找一个与它近似的函数代替目标函数,并用 近似函数的极小点作为原函数极小点的近似。常用的近 似函数为二次和三次多项式。
二次内插涉及到形如下式的二次函数数据拟合问题:
mq() a2 b c
其中步长极值为:
b
2a
完整版课件ppt
求解单变量最优化问题的方法有很多种,根据目标函 数是否需要求导,可以分为两类,即直接法和间接法。 直接法不需要对目标函数进行求导,而间接法则需要用 到目标函数的导数。
完整版课件ppt
4
优化模型
1、直接法 常用的一维直接法主要有消去法和近似法两种: (1)消去法 该法利用单峰函数具有的消去性质进行
反复迭代,逐渐消去不包含极小点的区间,缩小搜索区 间,直到搜索区间缩小到给定允许精度为止。一种典型 的消去法为黄金分割法(Golden Section Search)。黄金 分割法的基本思想是在单峰区间内适当插入两点,将区 间分为三段,然后通过比较这两点函数值的大小来确定 是删去最左段还是最右段,或同时删去左右两段保留中 间段。重复该过程使区间无限缩小。插入点的位置放在 区间的黄金分割点及其对称点上,所以该法称为黄金分 割法。该法的优点是完整算版课法件p简pt 单,效率较高,稳定性好5 。

多目标优化方法及实例解析ppt课件

多目标优化方法及实例解析ppt课件
mZ a x(X ) (1)
s.t. (X )G(2)
是与各目标函数相关的效用函数的和函数。
在用效用函数作为规划目标时,需要确定一组权值 i
来反映原问题中各目标函数在总体目标中的权重,即:
k
maxii
i1
i ( x 1 , x 2 , x n ) g i ( i 1 , 2 , , m )
1(X)
g1
s .t.
( X)
2(X)
G
g2
m(X)
gm
式中: X [x 1 ,x 2 , ,x n ] T为决策变量向量。
缩写形式:
max(Zm Fi(n X)) (1) s.t. (X )G (2)
有n个决策变量,k个目标函数, m个约束方程, 则:
Z=F(X) 是k维函数向量, (X)是m维函数向量; G是m维常数向量;
在图1中,max(f1, f2) .就 方案①和②来说,①的 f2 目标值比②大,但其目 标值 f1 比②小,因此无 法确定这两个方案的优 与劣。
在各个方案之间, 显然:④比①好,⑤比 ④好, ⑥比②好, ⑦比 ③好……。
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
8
二 多目标规划求解技术简介
为了求得多目标规划问题的非劣解,常常需要将 多目标规划问题转化为单目标规划问题去处理。实现 这种转化,有如下几种建模方法。
✓ 效用最优化模型 ✓ 罚款模型 ✓ 约束模型 ✓ 目标达到法 ✓ 目标规划模型
方法一 效用最优化模型(线性加权法)
思想:规划问题的各个目标函数可以通过一定的方式 进行求和运算。这种方法将一系列的目标函数与效用 函数建立相关关系,各目标之间通过效用函数协调, 使多目标规划问题转化为传统的单目标规划问题:

最优化方法课件 (1)

最优化方法课件 (1)
的研究,把几何、算术、天文、音乐称为“四艺”,在其中追求 宇宙的和谐规律性。 – 17世纪出现了笛卡尔、牛顿、莱布尼兹等数学家,奠定了微积分 的基础,其研究的对象包括行星运动、流体运动、机械运动、植 物生长等均属于数学建模的范畴; – 19世纪后期,数学成为了研究数与形、运动与变化的学问; – 可以说,数学是模式的科学,其目的是要揭示人们从自然界和数 学本身的抽象世界中所观察到的结构和对称性。
令h()= f()–g(), 则h(0)>0和h(/2)<0.
由 f, g的连续性知 h为连续函数, 据连续函数的基本性
质, 必存在0 , 使h(0)=0, 即f(0) = g(0) . 因为f() • g()=0, 所以f(0) = g(0) = 0.
评注和思考 建模的关键 ~ 和 f(), g()的确定
10
2 数学建摸的基本概念与分类
1. 数学模型与数学建模 2. 数学模型的分类 3. 数学模型的应用领域 4. 数学建模举例 5. 数学建模的过程
11
数学建模与数学模型
• 模型概念
– 把对象实体通过适当的过滤,用适当的表现规则描绘出的简 洁的模仿品.通过这个模仿品,人们可以了解到所研究实体的 本质,而且在形式上便于人们对实体进行分析和处理。
3
Introduction to Mathematic Modeling and Optimization
4
数学家名人录
5
Introduction: Concept, History, Progress and Class of Mathematic Modeling and Optimization
6
Contents
1. 引言:数学建模与最优化的背景

最优化方法第一次PPT课件

最优化方法第一次PPT课件
12
本课程对学生的具体要求为: ①理解最优化的基本概念、算法原理和 算法结构; ②熟悉几种常用的经典优化算法,知晓 其优缺点及适用范围; ③了解模拟退火算法和遗传算法的基本 原理; ④能较为熟练地运用Lingo软件求解各种 优化问题。
13
3. 编程要求 基于下列理由,本门课要求学生对2~3个
基本优化算法(如一维搜索、梯度法、变尺 度法、模拟退火、基本遗传算法)编制出通 用 程 序 , 编 程 工 具 建 议 采 用 C++ 、 Matlab 或 Maple。
前面提到的算法是最优化的基本方法, 它们简单易行,对于性态优良的一般函数, 优化效果较好。但这些经典的方法是以传统 微积分为基础的,不可避免地带有某种局限
5
局限性,主要表现为:①大多数传统优化方 法仅能计算目标函数的局部最优点,不能保 证找到全局最优解。对于多峰值函数,这些 方法往往由于过分追求“下降”而陷于局部 最优解;②许多传统优化方法对目标函数的 光滑性、凹凸性等有较高的要求,对于离散 型函数、随机型函数基本上无能为力。
15
③Lingo、Matlab优化工具箱等优化软件 功能的确强大,但它们也不是万能的。首先, 对于某些优化问题,这些工具软件有都求不 出最优解。其次不能保证对任何优化问题都 有现成的工具软件,实际上,许多现代优化 方法都不可能编制成通用软件;
④熟练使用相关科技软件、具有一定的 编程水平是工科研究生所必须具有的素养, 从某种程度上讲,后者更能反映出个人的能
7
二、《最优化方法》课程主要内容 本门课程的主要内容为常用经典优化方
法、现代优化方法中的模拟退火算法和遗传 算法以及运筹优化软件Lingo简介。
经典优化方法包括: 1.常用的一维搜索方法——黄金分割法、 Fibonacci法和解析法; 2. 最速下降法、共轭梯度法; 3. 牛顿法;

最优化第二章解析PPT课件

最优化第二章解析PPT课件

例2.6 考虑例2.5中的线性规划关于 B0 [a4,a2] 的
G-J方程组
x1 2x3 x4 1
x1 x2 x3 4 试把 a1 [1,1]T 和 a3 [2,1]T分别引入基,求新的基本
容许解。
ⅱ)下降性条件
新解 x x x N B b 1 , ,b k 1 ,0 ,b k 1 , ,b m ,0 , ,0 ,b k ,0 , ,0 T 。x N
那么,B 是容许基,且关- 于 B 的基本容许解的 7
目标函数值小于关于 B 的基本容许解的目标函数值。 定理2.12 在标准线性规划(2.21)中,假设: ⅰ)B[a1,a2, ,am ]是容许基;
ⅱ)非基本变量 x l 的判别数 l 0 ;
ⅲ)al B1al 0。 那么线性规划(2.21)存在可以使目标函数值任意减小的 容许解。
-
13
3. 初始基本容许解的产生
对于标准线性规划
m in c T x
s .t. A x b
(2.54)
x
0
,
引入 m 个人工变量 u1,u2, ,um,求解辅助线性规划——
一个典范线性规划
其中 e1,1,
m in e T u
s.t. Iu A x b
u
0,
x
0
,
,1T。
(2.55)
a1lxl
a1nxn b1
a2m1xm1 a2lxl a2nxn b2 (2.29)
xmamm1xm1 a- mlxl amnxn bm.
2
(2.29)称为关于基 B 的Gauss-Jordan方程组(G-J方程组)
典范线性规划的主约束即是一个G-J方程组。
G-J方程组的性质:

多目标优化方法讲义(PPT64张)

多目标优化方法讲义(PPT64张)

决策空间 可行域
目标空间 可行域
示例2
m i n( F X ) f ( Xf ) ,2 ( X ) 1
T
3 6 4 1 1 L 3 f ( X ) x ( ) 2 1 4 4 4 4 4 4 3 E Dx Dx Dx 2 2 61 2 1 2 9.78 10 x1 s.t. g1 ( X ) 180 0 7 4 4.096 10 x2
4
2 1 2
2 2
1
2 1
2 2

3 6 4 1 1 L 3 f ( X ) x (4 4 4 4 ) 4 4 2 1 3 E Dx Dx Dx 2 2 1 2 1 2
9.78 106 x1 s.t. g1 ( X ) 180 0 7 4 4.096 10 x2 g2 ( X ) 75.2 x2 0 g3 ( X ) x2 40 0 g4 ( X ) x1 0
(1) (1) (1)
(1)
( 2)
, fm ( X )
(1) (2)
T
F(X
(2)
) f1 ( X
(2)
), f2 ( X
(2)
),
, fm ( X ) , m) X (2)
T
若对于每一个分量,都有 fl ( X (1) ) fl ( X (1) ) (l 1, 2, 则显然,X (1)优于X (2),记为X (1)
向量不等式的含义为
p p f ( X ) f ( X ) j 1 , 2 , , m , 但 至 少 有 一 个 f ( X ) f ( X ) j j l l
决策空间 非劣解集

最优化方法全部ppt课件

最优化方法全部ppt课件
解法:Lagrange乘子法
1.2 实例
数据拟合问题 原料切割问题 运输问题 营养配餐问题 分配问题
1.3 基本概念
1. 最优化问题的向量表示法
设 xvx1,x2,L,xnT 则
m i n fx 1 ,x 2 ,L ,x n m i n fx v (1)
以向量为变量的实值函数 定义向量间的序关系(定义1.1):
②取 c0,1,4,9,L并画出相应的曲线(称之为等值线).
③确定极值点位置,并用以往所学方法求之。
易知本题的极小值点 xv* 2,1T。
再复杂点的情形见P13上的例1.7。 虽然三维及以上的问题不便于在平面上画图,图解 法失效,但仍有相应的等值面的概念,且等值面具有以 下性质:
①有不同函数值的等值面互不相交(因目标函数是单值 函数的缘故);
其中
g1 xv0
x1
g2 xv0
x1
L
gv
xv0
g1 xv0
x2
g2 xv0
x2
L
M
g1 xv0
xn
M
g2 xv0
xn
称为向量值函数 gv xv 在点
L
xv 0
g
m xv0
x1
g
m
xv0
x2
g
M
m xv0
xn
处的导数,
而gv xv0 T 称为向量值函数 gv xv 在点 xv 0 处的Jacobi矩阵。
称为最优化方法。最优化方法是在第二次世界大战前后,
在军事领域中对导弹、雷达控制的研究中逐渐发展起来 的。
最优化方法解决问题一般步骤: (1)提出需要进行最优化的问题,开始收集有关资 料和数据; (2)建立求解最优化问题的有关数学模型,确定变 量,列出目标函数和有关约束条件; (3)分析模型,选择合适的最优化方法; (4)求解方程。一般通过编制程序在电子计算机上 求得最优解; (5)最优解的验证和实施。 随着系统科学的发展和各个领域的需求,最优化方 法不断地应用于经济、自然、军事和社会研究的各个领 域。

多变量最优化

多变量最优化

1.提出问题-变量
问题1中的全部变量包括:
s=19英寸彩电的售出数量(台); t=21英寸彩电的售出数量(台); p=19英寸彩电的平均销售价格(美元/台); q=21英寸彩电的平均销售价格(美元/台); C=生产彩电的成本(美元); R=彩电销售的收入(美元); P=彩电销售的利润(美元)。
1.提出问题-常量
给出:若 在Sf 的某个点内 (x1,L达,x到n)极大值或极小
值,设 在这点f 可微,则在这个点上
。f也就0 是说
,在极值点有
f x1
(x1,
L
,
xn)
0
f xn
(x1,
L
,
xn)
0
(2-1)
据此我们可以在求极大或极小点时,不考虑那些在S内
部使 f 的某一个偏导数不为0的点。因此,要求极大或
极小点,我们就要求解方程组(2-1)给出的n个未知数、
图2.1 彩电问题的利润y关于19英寸彩电的生产量s和 21英寸彩电的生产量t的3维图象
图2.2 彩电问题中关于19英寸彩电的生产量x1和 21英寸彩电的生产量x2的利润函数有的水平集图
5.回答第一步中提出的问题
简单来说,这家公司今年可以通过生产4735台19 英寸彩电和7043台21英寸彩电来获得最大利润,每年 获得的净利润为553641美元。
利用计算机代数系统求解问题有几项优点:它 可以提高效率,结果更准确。
4.利用第二步确定的标准过程求解
图2.2给出了函数P的3维图象,图象显示,y在内部达到 最大值;图2.3给出了P的水平集图,从中我们可以估计出y的 最大值出现在x1=5000,x2=7000附近。函数y是一个抛物面, 其最高点为方程组的唯一解。

数学建模~最优化模型(课件ppt)

数学建模~最优化模型(课件ppt)

用MATLAB解无约束优化问题 解无约束优化问题
1. 一元函数无约束优化问题 一元函数无约束优化问题: min f ( x )
x1 ≤ x ≤ x 2
常用格式如下: 常用格式如下: (1)x= fminbnd (fun,x1,x2) ) (2)x= fminbnd (fun,x1,x2 ,options) ) (3)[x,fval]= fminbnd(…) ) , ( (4)[x,fval,exitflag]= fminbnd(…) ) , , ( (5)[x,fval,exitflag,output]= fminbnd(…) ) , , , ( 其中等式( )、( )、(5)的右边可选用( ) )、(4)、( 其中等式(3)、( )、( )的右边可选用(1)或(2) ) 的等式右边. 的等式右边 函数fminbnd的算法基于黄金分割法和二次插值法,它要求 函数 的算法基于黄金分割法和二次插值法, 的算法基于黄金分割法和二次插值法 目标函数必须是连续函数,并可能只给出局部最优解. 目标函数必须是连续函数,并可能只给出局部最优解
有约束最优化问题的数学建模
有约束最优化模型一般具有以下形式: 有约束最优化模型一般具有以下形式:
min
x
f (x)

max
x
f (x)
st. ...... .
st. ...... .
其中f(x)为目标函数,省略号表示约束式子,可以是 为目标函数,省略号表示约束式子, 其中 为目标函数 等式约束,也可以是不等式约束。 等式约束,也可以是不等式约束。
标准型为: 标准型为:min F ( X ) 命令格式为: 命令格式为 );或 (1)x= fminunc(fun,X0 );或x=fminsearch(fun,X0 ) ) ( ( (2)x= fminunc(fun,X0 ,options); ) ( ); 或x=fminsearch(fun,X0 ,options) ( ) (3)[x,fval]= fminunc(...); ) , ( ); 或[x,fval]= fminsearch(...) , ( ) (4)[x,fval,exitflag]= fminunc(...); ) , , ( ); 或[x,fval,exitflag]= fminsearch , , (5)[x,fval,exitflag,output]= fminunc(...); ) , , , ( ); 或[x,fval,exitflag,output]= fminsearch(...) , , , ( )

《最优化设计》PPT课件

《最优化设计》PPT课件
经过十次迭代,得到最优解:
x* = [0 0]T f(x* ) =0
---
(3)
5
§4-2 最速下降法
(4)
图4-3表示例4-1的搜索路径,目标函数等值线为椭圆。 若进行代换
y1 = x1 y2 = 5x2
则 f(x1, x2) 变为(y1, y2),等值线为一族同心圆。因为圆上
任一点的负梯度方向都指向圆心,因此沿负梯度方向经过 一次一维搜索即可找到最优点。
无约束优化方法可分为两大类:1)不求导数的直接法, 主要有随机方法和直接搜索方法;2)求导数的间接法,按 所求导数的最高阶数又可分为一阶方法和二阶方法。二阶 方法很少采用。
图4-1为无约束极小化算法的粗框图。在§1-4 中已给 出了优化算法的一般搜索迭代公式
xk+1= xk+xk (1-15)
xk+1= xk+kdk (1-16)
2 0
f x 0
1
2T
2
0
0 1
4
100T
50
2T
1 2
4 0100
0
4
1 50
T
100
0T
对照梯度法和牛顿法迭代公式,可以看出只相差一项 海赛矩阵的逆矩阵。因此,牛顿法是对梯度法的进一步修 正。事实上,梯度法是对目标函数f(x)在点xk的一阶(线性) 近似,而牛顿法是对f(x)在点xk 的二阶(二次)近似。
---
9
§4-4 共轭方向及共轭方向法
(1)
共轭方向的概念
二次正定函数的一般形式为:
fx1xTG xbTxc
2
式中,G为 nn 阶对称正定矩阵,b=[b1, b2, ,bn]T 为常矢

最优化-第7章-多目标及离散变量优化方法PPT课件

最优化-第7章-多目标及离散变量优化方法PPT课件

0.7 满
意 区
0.3 间
较 满 意 区
可 接 受
0.7
满 意

0.3
可间



区 间
0 fi
fi(0) fi(1) fi(2) fi(3) fi

0

fi(3) fi(2) fi(1) fi(0)fiʹ(0)fiʹ(1) fiʹ(2) fiʹ(3)
fi
目标函数越大越好
目标函数越小越好
目标函数值在某个范围内最好
评价函数: Ufm 1iax q fiX
对该式求优化解就是进行如下形式的极小化
m X iD n U fX m X iD n m 1 a i x l fiX
.
12
f
max {f1(X), f2(X)}
f1(X)
f2(X)
x
.
13
3)理想点法 使各个目标尽可能接近各自的理想值
评价函数:
.
28
宽容分层序列法:
1)
m
in X
f1( X D
)
2)XminXf2(fX1()X)f1*1
3)Xm Xinfi(fX 3()X)fi*ii1,2 4) X m X infif(l(X X )) fi* ii 1 ,2 ,l1
.
29
设计人员原本的意图是优化结束后,f1的取值尽量靠近10,f2的取
值可以稍微劣一些,例如可在2000左右。
第k次迭代时, f1的取值为15, f2的取值为1800,则
F (X k ) 0 .8 1 5 0 .2 1 8 0 0 3 7 2
第k+1次迭代时,为了让整体评价函数F(X)取值更优,无论采用 哪种优化方法,优化程序会拼命的降低 f2的取值,升高 f1的取值

《最优化理论》课件

《最优化理论》课件
递归法
递归地求解子问题,并存 储子问题的解以避免重复
计算。
备忘录法
使用备忘录存储子问题的 解,以避免重复计算,同 时避免因重复计算而导致
的内存消耗。
迭代法
通过迭代的方式求解子问 题,并逐渐逼近最优解。
动态规划的应用
生产计划问题
在生产过程中,需要制定生产计 划以满足市场需求,同时最小化 生产成本。动态规划可以用于求 解此类问题。
线性规划问题具有形式化 的特征,包括决策变量、 目标函数和约束条件。
线性规划问题通常用于解 决资源分配、生产计划、 运输和分配等问题。
线性规划的解法
线性规划的解法有多种,包括 单纯形法、椭球法、分解算法
等。
单纯形法是最常用的线性规 划解法,它通过迭代过程寻 找最优解,每次迭代都使目
标函数值减小。
椭球法和分解算法也是常用的 解法,但它们在处理大规模问
谢谢您的聆听
THANKS
线性规划问题
在目标函数和约束条 件均为线性时,寻找 最优解的问题。
非线性规划问题
在目标函数或约束条 件为非线性时,寻找 最优解的问题。
整数规划问题
在变量取整数值且约 束条件为整数时,寻 找最优解的问题。
最优化问题的求解方法
牛顿法
通过构造一个二次函数近似目 标函数,并利用牛顿公式求解 最优解。
共轭梯度法
要点二
详细描述
在生产领域,整数规划可以用于生产计划、资源分配等问 题,如安排生产线的生产计划、分配原材料等资源。在管 理领域,整数规划可以用于物流调度、车辆路径等问题, 如优化物流配送路线、制定车辆行驶计划等。在经济领域 ,整数规划可以用于投资组合、风险管理等问题,如优化 投资组合以实现最大收益或最小风险。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
'-7/1000*x - 1/50*y + 174 = 0', 'x', 'y') >> subs(z, {x, y}, [s.x, s.y])
灵敏性分析 在向公司报告结论之前,应对我们关于彩电市场 和生产过程所做的假设进行灵敏性分析,以保证 结果具有稳健性。 我们主要关心的是决策变量x和y的值,因为公司 要据此来确定生产量。
求偏导数并令其为零,可解得
x 1662000 400000a 49
y 8700 581700 40000a 49
可画出x和y关于a的曲线图.
19英寸彩电的价格弹性系数a的提高,会导致 19英寸彩电的最优生产量x的下降,及21英寸 彩电的最优生产量y的提高。而且,图中显示 x比y对于a更敏感。
x, y 0
P=彩电销售的利润(美元/年)
目标:最大化利润函数P
选择建模方法 无约束多变量最优化问题
建立模型: P R C
(339 0.01x 0.003 y)x (399 0.004x 0.01 y) y (400000 195x 225 y) 144x 0.01x2 174 y 0.01 y2 0.007 xy 400000 求解模型: P 144 0.02x 0.007 y 0
x P 174 0.007 x 0.02 y 0 y 解得全局极大值点 x 4735, y 7043.
f 21592000 553641. 39
回答问题:
这家公司可以通过生成4735台19英寸彩电和 7043台21英寸彩电来获得最大利润,每年获得 的净利润为553641美元,每台19英寸彩电的平 均售价为270.52美元,每台21英寸彩电的平均 售价为309.63美元。生产的总支出为2908000 美元,相应的利润率为19%。因此建议这家公 司应该实行推出新产品的计划。
多变量最优化
例:竞争性产品生产中的利润最大化
一家彩电制造商计划推出两种新产品:一种19英寸液晶平板 电视机,制造商建议零售价为339美元;另一种21英寸液晶 平板电视机,零售价为399美元。公司付出的成本为19英寸 彩电每台195美元,21英寸彩电每台225美元,还要加上 400000美元的固定成本。
如果将19英寸彩电的价格弹性系数提高10%,则 我们应将19英寸彩电的生产量缩小11%,21英寸 彩电的生产量扩大2.7%.
考虑y对于a的灵敏性。 计算可得,在a=0.01时,有
dP P dx P dy P da x da y da a

P a

x12
S(
y,
a)

计算可得,在a=0.01时,有
dx 66480000000 22160000000
da (40000a 49)2
41067
S( x, a) ( 22160000000)( 0.01 ) 400 1.1 41067 554000 / 117 351
S( y, a) 9695 0.27 36153
在竞争的销售市场中,每年售出的彩电数量会影响彩电的平 均售价。据估计,对每种类型的彩电,每多售出一台,平均 销售价格会下降1美分。而且19英寸彩电的销售会影响21英 寸彩电的销售,反之亦然。据估计,每售出一台21英寸彩电, 19英寸彩电的平均售价会下降0.3美分,而每售出一台19英 寸彩电,21英寸彩电的平均售价会下降0.4美分。
对19英寸彩电的价格弹性系数a的灵敏性进行分析.
P (339 ax 0.003 y)x (399 0.004x 0.01 y) y (400000 195x 225 y)
144x 0.01x2 174 y 0.01 y2 0.007 xy 400000


554000 117
2

0.01 (2159209英寸彩电的价格弹性系数提高10%, 会使利润下降4%.
>> syms a >> z = (339 - a*x - 0.003*y).*x + (399 - 0.004*x - 0.01*y).*y
- (400000 + 195*x + 225*y) >> dzdx = diff(z, x) >> dzdy = diff(z, y) >> s = solve('-2*a*x + 144 - 7/1000*y = 0',
'-7/1000*x - 1/50*y + 174 = 0', 'x', 'y') >> dxda = diff(s.x, a) >> sxa = dxda * a / s.x >> a = 0.01 >> eval(sxa)
问题是:每种彩电应该各生产多少台?
提出问题:
变量:
x=19英寸彩电的售出数量(每年) y=21英寸彩电的售出数量(每年) p=19英寸彩电的销售价格(美元) q=21英寸彩电的销售价格(美元) R=彩电销售的收入(美元/年) C=生产彩电的成本(美元)
假设:
p 339 0.01x 0.003 y q 399 0.004x 0.01y R px qy C 400000 195x 225 y P RC
>> syms x y >> z = (339 - 0.01*x - 0.003*y).*x + (399 - 0.004*x - 0.01*y).*y
- (400000 + 195*x + 225*y); >> dzdx = diff(z, x) >> dzdy = diff(z, y) >> s = solve(‘-1/50*x + 144 - 7/1000*y = 0',
计算机代数系统--matlab
>> [x, y] = meshgrid(0:400:10000, 0:400:10000); >> z = (339 - 0.01*x - 0.003*y).*x + (399 - 0.004*x - 0.01*y).*y
- (400000 + 195*x + 225*y); >> mesh(x, y, z)
相关文档
最新文档