线段的垂直平分线经典习题及答知识分享
线段的垂直平分线经典习题及答(精.选)

线段的垂直平分线一、选择题(共8小题)1、如图,在△ABC 中,分别以点A 和点B 为圆心,大于的21AB 的长为半径画孤,两弧相交于点M ,N ,作直线MN , 交BC 于点D ,连接AD .若△ADC 的周长为10,AB=7,则△ABC 的周长为( ) A 、7 B 、 14 C 、17 D 、20第1题 第2题 第3题2、如图,在Rt △ACB 中,∠C=90°,BE 平分∠ABC ,ED 垂直平分AB 于D .若AC=9,则AE 的值是( )A 、6B 、4C 、6D 、43、如图,直线CD 是线段AB 的垂直平分线,P 为直线CD 上的一点,已知线段PA=5,则线段PB 的长度为( )A 、6B 、5C 、4D 、34、如图,等腰△ABC 中,AB=AC ,∠A=20°.线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则∠CBE 等于( )A 、80°B 、70°C 、60°D 、50°第4题 第 5题 第6题 5、如图,直线CP 是AB 的中垂线且交AB 于P ,其中AP=2CP .甲、乙两人想在AB 上取两点D 、E ,使得AD=DC=CE=EB ,其作法如下:(甲)作∠ACP 、∠BCP 之角平分线,分别交AB 于D 、E ,则D 、E 即为所求;(乙)作AC 、BC 之中垂线,分别交AB 于D 、E ,则D 、E 即为所求.对于甲、乙两人的作法,下列判断何者正确( )A 、两人都正确B 、两人都错误C 、甲正确,乙错误D 、甲错误,乙正确6、如图,在Rt △ABC 中,∠C=90°,∠B=30°.AB 的垂直平分线DE 交AB 于点D ,交BC 于点E ,则下列结论不正确的是( )A 、AE=BEB 、AC=BEC 、CE=DED 、∠CAE=∠B7、如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A 、△ABC 的三条中线的交点B 、△ABC 三边的中垂线的交点 C 、△ABC 三条角平分线的交点D 、△ABC 三条高所在直线的交点第7题 第8题8、如图,AC=AD ,BC=BD ,则有( ) A 、AB 垂直平分CD B 、CD 垂直平分AB C 、AB 与CD 互相垂直平分 D 、CD 平分∠ACB二、填空题(共12小题)9、如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE长为_________.第9题第10题第11题10、如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=_________度.11如图,等腰三角形ABC中,已知AB=AC,∠A=30°,AB的垂直平分线交AC于D,则∠CBD的度数为_________°.12、如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC 的周长之差为12,则线段DE的长为_________.第12题第13题第14题第15题13、如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB=_________度.14、如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠ADC=_________度.15、如图,∠ABC=50°,AD垂直且平分BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC的度数是_________度.16、如图,有一腰长为5cm,底边长为4cm的等腰三角形纸片,沿着底边上的中线将纸片剪开,得到两个全等的直角三角形纸片,用这两个直角三角形纸片拼成的平面图形中有_________个不同的四边形.第16题第17题第18题17已知如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC与E,则△ADE的周长等于_________.18、如图,在四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,且AB=AC,AC=AD,有如下四个结论:①AC⊥BD;②BC=DE;③∠DBC=1/2∠DAC;④△ABC是正三角形.请写出正确结论的序号_________(把你认为正确结论的序号都填上)19、如图,△ABC的周长为19cm,AC的垂直平分线DE交BC于D,E为垂足,AE=3cm,则△ABD的周长为_________cm.20、在△ABC中,∠A=50°,AB=AC,AB的垂直平分线DE交AC于D,则∠DBC的度数是_________°.三、解答题(共6小题)21、如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.22、如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.1、如图,在△ABC中,分别以点A和点B为圆心,大于的AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A、7B、14C、17D、20考点:线段垂直平分线的性质。
线段的垂直平分线、角平分线经典习题及答案

3.线段的垂直平分线4.角平分线例1: (1)在厶ABC中,AB= AC, AB的垂直平分线交AB于N,交BC的延长线于M / A= 40°, 求/ NMB的大小(2) 如果将(1)中/ A的度数改为70°,其余条件不变,再求/ NMB的大小(3) 你发现有什么样的规律性?试证明之•(4) 将(1)中的/ A改为钝角,对这个问题规律性的认识是否需要加以修改ANC例2:在厶ABC中,AB的中垂线DE交AC于F,垂足为D,若AC=6 BC=4求厶BCF的周长。
例3:如图所示,AC=AD BC=BD AB与CD相交于点巳求证:直线AB是线段CD的垂直平分线。
例4 :如图所示,在△ ABC中,AB=AC / BAC=12°, D F分别为AB AC的中点,,E、G 在BC上, BC=15cm 求EG的长度。
例5::如图所示,Rt△ ABC中,,D是AB上一点,BD=BC过D作AB的垂线交AC于点E,CD交BE于点F。
求证:BE垂直平分CD例6::在"ABC中,点O是AC边上一动点,过点O作直线MIN/ BC与/ACB的角平分线交于点E,与/ ACB的外角平分线交于点F,求证:OE=OFA例7、如图所示,AB>AC的平分线与BC的垂直平分线相交于D,自D作于E,,求证:BE=CF答案如下:例1:解:(1)vZ B= 1/2 (180° - / A) =70°,二/ M=20 ;(2)同理得,/ M=35 ;(3)规律是:/ M的大小为/ A大小的一半,即:AB的垂直平分线与底边BC所夹的锐角等于/ A的一半.证明:设/ A=a,则有/ B= 1/2 (180° - a), / M=90 - 1/2 (180° - a) = 1/2 a.( 4)改为钝角后规律成立.上述规律为:等腰三角形一腰的垂直平分线与底边相交所成的锐角等于顶角的一半.例2:解:连接BF,由线段的垂直平分线的性质可得,FB= FA又因为AOAF+CF =6,所以BF+C M6A BCF的周长=BC+CF+*4+6= 10例3:证明:因为AC=AD所以A在线段CD的垂直平分线上又因为BC=BD所以B在线段CD的垂直平分线上所以直线AB是线段CD的垂直平分线例4:解:作AF U BC于H, HC=15/2•••等腰•••/ ACB=/ ABC=30••• AC=2EC根号3EC=5根号3••• F为AC中点••• FC=5/2根号3••• FGL AC••• CG=5同理, BE=5••• EG=5例5:证明:v DEL AB,/ ACB= 90•••/ BDE=Z ACB= 90••• BD= BC, BE^ BE•••△BCE^A BDE (HL)•••/ CBE=Z DBE••• BF= BF•••△BCF^A BDF (SAS •••/ BFC=Z BFD CF= DF vZ BFC+Z BFD= 180 •••/ BFC=Z BFD= 90••• BE! CD••• BE垂直平分CD例6:解:v MN/ BC,•Z OEC=Z BCE,Z OFC=Z GCF,又已知CE平分Z BCO CF平分Z GCO •Z OCE Z BCE Z OC F^Z GCF•Z OCE=Z OEC Z OCF=Z OFC•EO=COFO=CO•EO=FO.例7 :证明:连接DC DBv点D在BC的垂直平分线上•DB=DCv D在Z BAC的平分线上•DE=DFvZ DFC=Z DEB•△DCF^A DEB•CF=BE。
《垂直平分线》练习题(含答案)

1题A B E C 2题D A B C 3题D AB EC 4题A B C O 5题D A BE C 11题D A B E C O 12题D A B E C 13题D A B E C 14题D A B E C 15题D A B E C6题D A BE C 8题D A B E C 7题D A B E C 10题'9题《垂直平分线》练习题1.如图,△ABC 的边AB 的垂直平分线交AC 于点E,若AE=23,则BE= 。
2.如图,△ABC 中,AB=AC ,AB 的垂直平分线交AC 于点D, △ABC 和△DBC 的周长分别为60㎝和38㎝,则△ABC 的腰长为 ,底边长为 。
3.如图,△ABC 中,∠ACB=90°,CB 的垂直平分线DE 交AB 于点D,垂足为E ,①若∠B=20°,则∠ADC 的度数为 ;②若△ADC 的周长为14,AC=4,则AB= ;③若AB=8㎝,则CD= 。
4.如图,△ABC 中,∠A=52°,AB 、AC 的垂直平分线交于点O ,则∠BOC 的度数为 。
5.如图,∠ABC=50°,AD 垂直平分线段BC ,交BC 于点D ,∠ABC 的角平分线BE 交AD 于点E ,连接EC ,则∠AEC 的度数为 。
6.如图,△ABC 中,AC 的垂直平分线交BC 于点D ,垂足为E ,△ABD 的周长为12㎝,AC=5㎝,则△ABC 的周长为 。
7.如图,△ABC 中,AB=AC ,AB 的垂直平分线交AC 于点E ,垂足为D, ∠EBC ∶∠EBA=1∶2,则∠A 的度数为 。
8.如图,平行四边形ABCD 中,AB=3,BC=5,AC 的垂直平分线交AD 与点E,则△CDE 的周长为 。
9.如图,某广告公司为一厂家设计的商标图案,AD 垂直平分线段BC ,E 、F 都在线段AD 上,若AB=5,BC=6,则图中阴影部分面积为 。
10.如图,△ABC 中,AB=BC=2,∠ABC=90°,D 为BC 的中点,且它关于AC 的对称点D ’,则 BD ’= 。
专题 垂直平分线的性质(含答案)

专题垂直平分线的性质一.解答题(共12小题)1.如图,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,求∠DBC的度数.2.如图,在△ABC中,∠B=30°,边AB的垂直平分线分别交AB、BC于D、E两点,连接AE,若AE平分∠BAC,求∠C的度数.3.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,求∠C的度数.4.如图所示,在△ABC中,MP和NQ分别垂直平分AB和AC,MP分别交AB、BC于M、P两点,NQ分别交AC、BC于N、Q两点,连接AP、AQ.(1)若△APQ的周长为18,求BC的长;(2)若∠BAC=110°,求∠P AQ的度数.5.如图,△ABC中,边AB、AC的垂直平分线ED、GF分别交AB、AC于点E、G,交BC于点D、F,连接AD,AF,若∠DAF=40°,求∠BAC的度数.6.如图,在△ABC中,∠C=90°,边AB的垂直平分线DE交AC于D.CA=16cm,BC=8cm,求DC的长度;7.如图,在△ABC中,BC边的垂直平分线交AC边于点D,连接BD.(1)如图CE=4,△BDC的周长为18,求BD的长.(2)求∠ADM=60°,∠ABD=20°,求∠A的度数.8.如图,在△ABC中,∠C=90°,DE为AB的垂直平分线,DE交AC于点D,连接BD.若∠ABD=2∠CBD,求∠A的度数.9.如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.10.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,则△ADE周长是多少?为什么?(2)若∠BAC=128°,则∠DAE的度数是多少?为什么?11.在△ABC中,DE垂直平分AB,分别交AB、BC于点D、E,MN垂直平分AC,分别交AC、BC 于点M、N,连接AE,AN.(1)如图1,若∠BAC=100°,求∠EAN的度数;(2)如图2,若∠BAC=70°,求∠EAN的度数;专题垂直平分线的性质参考答案与试题解析一.解答题(共12小题)1.【解答】解:∵AB=AC,∴∠ABC=∠ACB ==70°,∵MN的垂直平分AB,∴DA=DB,∴∠A=∠ABD=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故答案为:30°.2.【解答】解:∵DE是线段AB的垂直平分线,∠B=30°,∴∠BAE=∠B=30°,∵AE平分∠BAC,∴∠EAC=∠BAE=30°,即∠BAC=60°,∴∠C=180°﹣∠BAC﹣∠B=180°﹣60°﹣30°=90°.3.【解答】解:∵∠B=90°,∠BAE=10°,∴∠BEA=80°.∵ED是AC的垂直平分线,∴AE=EC,∴∠C=∠EAC.∵∠BEA=∠C+∠EAC,∴∠C=40°.4.(【解答】解:(1)∵MP和NQ分别垂直平分AB和AC,∴P A=PB,QA=QC,∵△APQ的周长为18,∴AP+PQ+AQ=BP+PQ+QC=18,∴BC=18;(2)∵∠BAC=110°,∴∠B+∠C=70°,∵P A=PB,QA=QC,∴∠P AB=∠B,∠QAC=∠C,∴∠P AB+∠QAC=∠B+∠C=70°,∴∠P AQ=40°.5.【解答】解:在△ADF中,∵∠DAF=40°,∴∠ADF+∠AFD=180°﹣40°=140°,∵边AB、AC的垂直平分线ED、GF分别交AB、AC于点E、G,∴AD=BD,AF=CF,∴∠BAD=∠B,∠CAF=∠C,∴∠ADF=∠BAD+∠B=2∠B,∠AFD=∠CAF+∠C=2∠C,∴2∠B+2∠C=∠ADF+∠AFD=140°,∴∠B+∠C=70°,∴∠BAC=180°﹣(∠B+∠C)=110°.6.【解答】解:(1)∵DE垂直平分线段AB,∴DA=DB,设CD=x,则AD=BD=(16﹣x)cm,在Rt△BDC中,∵BD2=CD2+BC2,∴(16﹣x)2=x2+82,∴x=6,∴CD=6cm.7.【解答】解:(1)∵MN垂直平分BC,∴DC=BD,CE=EB,又∵EC=4,∴BE=4,又∵△BDC的周长=18,∴BD+DC=10,∴BD=5;(2)∵∠ADM=60°,∴∠CDN=60°,又∵MN垂直平分BC,∴∠DNC=90°,∴∠C=30°,又∵∠C=∠DBC=30°,∠ABD=20°,∴∠ABC=50°,∴∠A=180°﹣∠C﹣∠ABC=100°.8.【解答】解:∵DE为AB的垂直平分线,∴∠A=∠ABD,又∵∠ABD=2∠CBD,∴∠A=∠ABD=2∠CBD,设∠A=α,则∠ABD=α,∠CBD =α,又∵∠C=90°,∴∠A+∠ABC=90°,即α+α+α=90°,解得α=36°,∴∠A=36°.9.【解答】解:(1)∵AD垂直平分BE,EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴∠C =∠AED=35°;(2)∵△ABC周长13cm,AC=6cm,∴AB+BE+EC=7cm,即2DE+2EC=7cm,∴DE+EC=DC=3.5cm.10.【解答】解:(1)C△ADE=10.(1分)∵AB、AC的垂直平分线分别交BC于D、E,∴AD=BD,AE=CE.(3分)C△ADE=AD+DE+AE=BD+DE+CE=BC=10.(4分)(2)∠DAE=76°.(5分)∵AB、AC的垂直平分线分别交BC于D、E,∴AD=BD,AE=CE.∴∠B=∠BAD,∠C=∠CAE.∵∠BAC=128°,∴∠B+∠C=52°.(7分)∴∠DAE=∠BAC﹣(∠BAD+∠CAE)=∠BAC﹣(∠B+∠C)=76°.(8分)11.【解答】解:(1)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAC﹣∠BAE﹣∠CAN,=∠BAC﹣(∠B+∠C),在△ABC中,∠B+∠C=180°﹣∠BAC=80°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=100°﹣80°=20°;(2)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAE+∠CAN﹣∠BAC,=(∠B+∠C)﹣∠BAC,在△ABC中,∠B+∠C=180°﹣∠BAC=110°,∴∠EAN=∠BAE+∠CAN﹣∠BAC=110°﹣70°=40°;。
线段垂直平分线的性质定理及其逆定理 习题精选及答案(二)

线段垂直平分线的性质定理及其逆定理习题精选(二)1.下列作图语句正确的是()。
A.过点P作直线AB的中垂线B.过点P作直线AB的垂线C.延长直线AB交直线CD于点MD.过直线a、直线b外一点P作直线MN,使NM∥a∥b2.若点在线段的垂直平分线上,则该点到__________;若有两点到线段两端点的距离分别相等,则这两点的连线为__________。
3.如图24-65,△ABC中,∠B=115°,AC边的中垂线DE与边AB交于点D,且∠ACD︰BCD=5︰3,则∠ACB=__________。
4.下列说法:①若直线PE是线段AB的中垂线,则EA=EB,PA=PB;②若PA=PB,EA=EB,则直线PE垂直平分线段AB;③若PA=PB,则P点必是线段AB中垂线上的点;④若EA=EB,则经过点E的直线垂直平分线段AB。
其中正确的个数有()。
A.1个B.2个C.3个D.4个5.已知MN是线段AB的垂直平分线,下列说法正确的是()。
A.与AB距离相等的点在MN上B.与点A和点B距离相等的点在MN上C.与MN距离相等的点在AB上D.AB垂直平分MN6.已知点D在△ABC的边AB的垂直平分线上,且AD+DC=AC,若AC=5cm,BC =4cm则△BDC的周长为()。
A.6cm B.7cm C.8cm D.9cm7.如图24-66,△ABC中,AC=BC,直线l经过点C,则()。
A.l垂直ABB.l平分ABC.l垂直平分ABD.不能确定l与AB的关系8.如图24-67在四边形ABCD中,AB=AD,CB=CD,AC交BD于点O。
AC与BD 有怎样的大小关系?为什么?9.如图24-68,在R t△ABC中,过直角边AC上的一点P作直线交AB于点M,交BC的延长线于点N,且∠APM=∠A。
求证:点M在BN的垂直平分线上。
10.五个同学在一起玩游戏,要求其中一个同学站在其余四个同学的中间,为了使游戏公平,要求站在中间的同学要与其余四个同学的距离相等。
初二线段垂直平分线练习题带答案

初二线段垂直平分线练习题带答案题目一:在平面直角坐标系中,已知线段AB的坐标分别为A(-2,1)和B(4,-3),求线段AB的垂直平分线方程。
解析:要求线段AB的垂直平分线方程,我们需要找到线段AB的中点以及线段AB的斜率。
线段AB的中点坐标为:x坐标:(x_A + x_B)/2 = (-2 + 4)/2 = 2/2 = 1y坐标:(y_A + y_B)/2 = (1 + (-3))/2 = -2/2 = -1所以线段AB的中点为M(1, -1)。
线段AB的斜率为:斜率 k = (y_B - y_A)/(x_B - x_A)= (-3 - 1)/(4 - (-2))= -4/6= -2/3由于垂直平分线与线段的斜率乘积为-1,所以垂直平分线的斜率为斜率 k 的相反数的倒数:k_2 = -1/(-2/3) = 3/2。
通过中点和斜率,我们可以得到垂直平分线的方程:y - y_M = k_2(x - x_M)y - (-1) = (3/2)(x - 1)y + 1 = (3/2)(x - 1)2(y + 1) = 3(x - 1)2y + 2 = 3x - 32y = 3x - 5所以线段AB的垂直平分线方程为2y = 3x - 5。
题目二:在平面直角坐标系中,直线L过点A(-3,3),且与直线x = -1垂直,求直线L的方程。
解析:首先,直线L与直线x = -1垂直,说明直线L的斜率为0。
由于直线L过点A(-3,3),我们可以确定直线L的y截距为3。
所以直线L的方程为y = 3。
题目三:在平面直角坐标系中,已知线段CD的两个端点分别为C(-4,2)和D(6,2),求线段CD的垂直平分线方程。
解析:要求线段CD的垂直平分线方程,我们需要找到线段CD的中点以及线段CD的斜率。
线段CD的中点坐标为:x坐标:(x_C + x_D)/2 = (-4 + 6)/2 = 2/2 = 1y坐标:(y_C + y_D)/2 = (2 + 2)/2 = 4/2 = 2所以线段CD的中点为N(1, 2)。
线段垂直平分线知识点+经典例题

第三讲 线段的垂直平分线【要点梳理】要点一、线段的垂直平分线1.定义经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.2.线段垂直平分线的做法求作线段AB 的垂直平分线.作法:(1)分别以点A ,B 为圆心,以大于AB 的长为半径作弧,两弧相交于C ,D 两点;(2)作直线CD ,CD 即为所求直线.要点诠释:(1)作弧时的半径必须大于AB 的长,否则就不能得到两弧的交点了.(2)线段的垂直平分线的实质是一条直线.要点二、线段的垂直平分线定理线段的垂直平分线定理:线段垂直平分线上的点到这条线段两个端点的距离相等.要点诠释:线段的垂直平分线定理也就是线段垂直平分线的性质,是证明两条线段相等的常用方法之一.同时也给出了引辅助线的方法,“线段垂直平分线,常向两端把线连”.就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.要点三、线段的垂直平分线逆定理线段的垂直平分线逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 要点诠释:到线段两个端点距离相等的所有点组成了线段的垂直平分线.线段的垂直平分线可以看作是与这条线段两个端点的距离相等的所有点的集合.要点四、三角形的外心三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.要点诠释:1.三角形三条边的垂直平分线必交于一点(三线共点),该点即为三角形外接圆的圆心.2.锐角三角形的外心在三角形内部;钝角三角形的外心在三角形外部;直角三角形的外心在斜边上,与斜边中点重合.3.外心到三顶点的距离相等.要点五、尺规作图作图题是初中数学中不可缺少的一类试题,它要求写出“已知,求作,作法和画图”,画图必须保留痕迹,在现行的教材里,一般不要求写出作法,但是必须保留痕迹.证明过程一般不用写出来.最后要点题即“xxx 即为所求”.2121【典型例题】类型一、线段的垂直平分线定理例1、如图,△ABC中AC>BC,边AB的垂直平分线与AC交于点D,已知AC=5,BC=4,则△BCD的周长是()A.9 B.8 C.7 D.6【思路点拨】先根据线段垂直平分线的性质得到AD=BD,即AD+CD=BD+CD=AC,再根据△BCD的周长=BC+BD+CD即可进行解答.【答案】A;【解析】因为BD=AD,所以△BCD的周长=BD+CD+BC=AD+CD+BC=5+4=9.【总结升华】此题正是应用了线段垂直平分线的性质定理,也就是已知直线是线段垂直平分线,那么垂直平分线上的点到线段的两个端点距离相等,从而把三角形的边进行转移,进而求得三角形的周长.【变式1】如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点【答案】D;提示:根据等边对等角、三角形内角和定理及线段垂直平分线的性质定理即可推得选项A、B、C正确;所以选D,另外,注意排除法在解选择题中的应用.【变式2】如图,△ABC中,BC=7,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.求△AEG的周长.【答案】解:∵DE为AB的中垂线,∴AE=BE,∵FG是AC的中垂线,∴AG=GC,△AEG的周长等于AE+EG+GA,分别将AE和AG用BE和GC代替得:△AEG的周长等于BE+EG+GC=BC,所以△AEG的周长为BC的长度即7.类型二、线段的垂直平分线的逆定理例2、如图,已知AB=AC,∠ABD=∠ACD,求证:AD是线段BC的垂直平分线.A【答案与解析】证明:∵ AB=AC(已知)∴∠ABC=∠ACB (等边对等角)又∵∠ABD=∠ACD (已知)∴∠ABD-∠ABC =∠ACD-∠ACB (等式性质)即∠DBC=∠DCB∴DB=DC (等角对等边)∵AB=AC(已知)DB=DC (已证)∴点A 和点D 都在线段BC 的垂直平分线上(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上)∴AD 是线段BC 的垂直平分线。
线段的垂直平分线练习题

(第2题)E D C BA 线段的垂直平分线一、基础知识:1、线段垂直平分线的性质因为 ,所以AB =AC.理由:2、线段垂直平分线的判定因为 ,所以点A 在线段BC 的中垂线上.理由:1、 如图,△ABC 中,AD 垂直平分边BC ,AB =5,那么AC =_________.(第1题) (第3题) (第4题)2、如图,在△ABC 中,AB 的中垂线交BC 于点E ,若BE=2则A 、E 两点的距离是( ).A.4B.2C.3D.123、如图,AB 垂直平分CD ,若AC=1.6cm ,BC=2.3cm ,则四边形ABCD 的周长是( )cm.A.3.9B.7.8C.4D.4.64、如图,NM 是线段AB 的中垂线,下列说法正确的有: .①AB ⊥MN,②AD=DB , ③MN ⊥AB , ④MD=DN ,⑤AB 是MN 的垂直平分线.5、下列说法:①若直线PE 是线段AB 的垂直平分线,则EA =EB ,P A =PB ;②若P A =PB ,EA =EB ,则直线PE 垂直平分线段AB ;③若P A =PB ,则点P 必是线段AB 的垂直平分线上的点;④若EA =EB ,则过点E 的直线垂直平分线段AB .其中正确的个数有( )A .1个B .2个C .3个D .4个例1、已知:如图,DE 是△ABC 的AB 边的垂直平分线,分别交AB 、BC 于D 、E ,AE 平分∠BAC ,若∠B=300,求∠C 的度数。
例2、如图,在△ABC 中,AD 是∠BAC 平分线,AD 的垂直平分线分别交AB 、BC 延长线于F 、E求证:(1)∠EAD=∠EDA ;(2)DF ∥AC(3)∠EAC=∠B(第1题)(第8题)E D CB A一、选择:1、在三角形内部,有一点P 到三角形三个顶点的距离相等,则点P 一定是( )A 、三角形三条角平分线的交点;B 、三角形三条垂直平分线的交点;C 、三角形三条中线的交点;D 、三角形三条高的交点。
线段的垂直平分线(有答案)

线段的垂直平分线一、选择题(共5小题)1.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()2.如图,△ABC中,DE是AB的垂直平分线,AE=4,△ACD的周长为18,则△ABC的周长为()3.如图:△ABC中,∠ACB=90°,∠B=22.5°,AB的垂直平分线交BC于D,则下列结论不正确的是()4.(2011•裕华区一模)如图,在△ABC中,AC的垂直平分线ED交AC于点E,交AB与点D,CE=4,△BCD 的周长等于12,则△ABC的周长为()5.(2002•哈尔滨)如图,到△ABC的三个顶点距离相等的点是△ABC的()二、填空题(共5小题)(除非特别说明,请填准确值)6.如图,△ABC中,AB=8cm,边AB的垂直平分线分别交AB、BC于点D、E,BE=5cm,则△ABE的周长为_________ cm.7.如图,在△ABC中,DE是AC的中垂线,AE=2cm,△ABD的周长是10cm,则△ABC的周长是_________ cm.8.如果在△ABC中,AB=5,BC=4,边AC的垂直平分线交边AB于点D,那么△BCD的周长等于_________.9.在△ABC中,已知AC=13,BC=10,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长为_________.10.如图,在△ABC中,BC=8,△ABD的周长为12,MN垂直平分AC,交BC于D,则AB=_________.三、解答题(共17小题)(选答题,不自动判卷)11.如图,在△ABC中,DE是AC的垂直平分线,AE=3.(1)若AC=BC,求BC的长;(2)若△ABD的周长为13,求△ABC的周长.12.小明做了一个如图所示的“风筝”骨架,其中AB=AD,CB=CD.(1)八年级王云同学观察了这个“风筝”骨架后,他认为AC⊥BD,垂足为点E,并且BE=ED,你同意王云的判断吗?为什么?(2)设AC=a,BD=b,请用含a,b的式子表示四边形ABCD的面积.13.已知:如图,在△ABC中,MN是边AB的中垂线,∠MAC=50°,∠C=3∠B,求∠B的度数.14.如图,△ABC的边BC的垂直平分线DE交△BAC的外角平分线AD于D,E为垂足,DF⊥AB于F,且AB >AC,求证:BF=AC+AF.15.在△ABC中,BC边的垂直平分线DE交BC于D,交AB于E,BE=5,△BCE的周长为18 即BE+CE+BC=18,求BC的长?16.在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上.17.(2011•江津区)A、B两所学校在一条东西走向公路的同旁,以公路所在直线为x轴建立如图所示的平面直角坐标系,且点A的坐标是(2,2),点B的坐标是(7,3).(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C,使C点到A、B两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P的位置,并求出它的坐标.18.(2012•潮阳区模拟)如图,线段CD垂直平分线段AB,CA的延长线交BD的延长线于E,CB的延长线交AD 的延长线于F,求证:DE=DF.19.已知:如图,AB=AE,BC=ED,AF⊥CD且F是CD的中点,求证:∠B=∠E.20.如图,已知AB=AD,CB=CD,连接AC,BD交于点O.求证:(1)∠ABC=∠ADC;(2)AC⊥BD.21.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.22.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠FAC=∠B.23.如图,在△ABC中,DE,FG分别是△ABC的边AB、AC的垂直平分线,若BC=10,则△ADF的周长是多少?24.如图,直线l是线段AB的垂直平分线,若有一点C在直线l上,则由垂直平分线的性质可知:CA=CB;现有一点P在直线l的右侧,则PA、PB有何大小关系?请写出你的结论,并说明理由.25.如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.求证:(1)△ABC≌△DCB;(2)点M在BC的垂直平分线上.26.如图己知在△ABC中,∠C=90°,∠B=15°,DE垂直平分AB,E为垂足交BC于D,BD=16cm,求AC长.27.锐角△ABC的垂心关于三边的对称点分别是H1,H2,H3.已知:H1,H2,H3,求作△ABC.线段的垂直平分线参考答案与试题解析一、选择题(共5小题)1.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()2.如图,△ABC中,DE是AB的垂直平分线,AE=4,△ACD的周长为18,则△ABC的周长为()3.如图:△ABC中,∠ACB=90°,∠B=22.5°,AB的垂直平分线交BC于D,则下列结论不正确的是()4.(2011•裕华区一模)如图,在△ABC中,AC的垂直平分线ED交AC于点E,交AB与点D,CE=4,△BCD 的周长等于12,则△ABC的周长为()5.(2002•哈尔滨)如图,到△ABC的三个顶点距离相等的点是△ABC的()二、填空题(共5小题)(除非特别说明,请填准确值)6.如图,△ABC中,AB=8cm,边AB的垂直平分线分别交AB、BC于点D、E,BE=5cm,则△ABE的周长为18 cm.7.如图,在△ABC中,DE是AC的中垂线,AE=2cm,△ABD的周长是10cm,则△ABC的周长是14cm.8.如果在△ABC中,AB=5,BC=4,边AC的垂直平分线交边AB于点D,那么△BCD的周长等于9.9.在△ABC中,已知AC=13,BC=10,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长为23.10.如图,在△ABC中,BC=8,△ABD的周长为12,MN垂直平分AC,交BC于D,则AB=4.三、解答题(共17小题)(选答题,不自动判卷)11.如图,在△ABC中,DE是AC的垂直平分线,AE=3.(1)若AC=BC,求BC的长;(2)若△ABD的周长为13,求△ABC的周长.12.小明做了一个如图所示的“风筝”骨架,其中AB=AD,CB=CD.(1)八年级王云同学观察了这个“风筝”骨架后,他认为AC⊥BD,垂足为点E,并且BE=ED,你同意王云的判断吗?为什么?(2)设AC=a,BD=b,请用含a,b的式子表示四边形ABCD的面积.BD×13.已知:如图,在△ABC中,MN是边AB的中垂线,∠MAC=50°,∠C=3∠B,求∠B的度数.14.如图,△ABC的边BC的垂直平分线DE交△BAC的外角平分线AD于D,E为垂足,DF⊥AB于F,且AB >AC,求证:BF=AC+AF.推出BF=CN,根据HL证Rt△DFA≌Rt△DNA,推出AN=AF即可.15.在△ABC中,BC边的垂直平分线DE交BC于D,交AB于E,BE=5,△BCE的周长为18 即BE+CE+BC=18,求BC的长?16.在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上.17.(2011•江津区)A、B两所学校在一条东西走向公路的同旁,以公路所在直线为x轴建立如图所示的平面直角坐标系,且点A的坐标是(2,2),点B的坐标是(7,3).(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C,使C点到A、B两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P的位置,并求出它的坐标.,,18.(2012•潮阳区模拟)如图,线段CD垂直平分线段AB,CA的延长线交BD的延长线于E,CB的延长线交AD 的延长线于F,求证:DE=DF.19.已知:如图,AB=AE,BC=ED,AF⊥CD且F是CD的中点,求证:∠B=∠E.20.如图,已知AB=AD,CB=CD,连接AC,BD交于点O.求证:(1)∠ABC=∠ADC;(2)AC⊥BD.21.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.22.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠FAC=∠B.23.如图,在△ABC中,DE,FG分别是△ABC的边AB、AC的垂直平分线,若BC=10,则△ADF的周长是多少?24.如图,直线l是线段AB的垂直平分线,若有一点C在直线l上,则由垂直平分线的性质可知:CA=CB;现有一点P在直线l的右侧,则PA、PB有何大小关系?请写出你的结论,并说明理由.25.如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.求证:(1)△ABC≌△DCB;(2)点M在BC的垂直平分线上.26.如图己知在△ABC中,∠C=90°,∠B=15°,DE垂直平分AB,E为垂足交BC于D,BD=16cm,求AC长.ADAD=8cm27.锐角△ABC的垂心关于三边的对称点分别是H1,H2,H3.已知:H1,H2,H3,求作△ABC.21。
线段的垂直平分线、角平分线经典习题及答案#精选、

3.线段的垂直平分线4.角平分线例1:(1)在△ABC 中,AB =AC ,AB 的垂直平分线交AB 于N ,交BC 的延长线于M ,∠A =040,求∠NMB 的大小(2)如果将(1)中∠A 的度数改为070,其余条件不变,再求∠NMB 的大小(3)你发现有什么样的规律性?试证明之.(4)将(1)中的∠A 改为钝角,对这个问题规律性的认识是否需要加以修改例2:在△ABC 中,AB 的中垂线DE 交AC 于F ,垂足为D ,若AC=6,BC=4,求△BCF 的周长。
例3:如图所示,AC=AD ,BC=BD ,AB 与CD 相交于点E 。
求证:直线AB 是线段CD 的垂直平分线。
AC DEBA B C NM AB C N M AB CN M例4:如图所示,在△ABC中,AB=AC,∠BAC=1200,D、F分别为AB、AC的中点,,,E、G在BC上,BC=15cm,求EG的长度。
⊥⊥DE AB FG ACAB E G C例5::如图所示,Rt△ABC中,,D是AB上一点,BD=BC,过D作AB的垂线交AC于点E,CD交BE于点F。
求证:BE垂直平分CD。
CEFA D B例6::在⊿ABC中,点O是AC边上一动点,过点O作直线M N∥BC,与F,求证:OE=OF例7、如图所示,AB>AC,∠A的平分线与BC的垂直平分线相交于D,自D作DE AB⊥于,求证:BE=CF。
E,DF AC FAEB M CFD答案如下:例1:解:(1)∵∠B= 1/2(180°-∠A)=70°,∴∠M=20°;(2)同理得,∠M=35°;(3)规律是:∠M的大小为∠A大小的一半,即:AB的垂直平分线与底边BC 所夹的锐角等于∠A的一半.证明:设∠A=α,则有∠B= 1/2(180°-α),∠M=90°- 1/2(180°-α)= 1/2α.(4)改为钝角后规律成立.上述规律为:等腰三角形一腰的垂直平分线与底边相交所成的锐角等于顶角的一半.例2:解:连接BF,由线段的垂直平分线的性质可得,FB=FA又因为AC=AF+CF =6,所以BF+CF=6△BCF的周长=BC+CF+BF=4+6=10例3:证明:因为AC=AD所以A在线段CD的垂直平分线上又因为BC=BD所以B在线段CD的垂直平分线上所以直线AB是线段CD的垂直平分线例4:解:作AH⊥BC于H,HC=15/2∵等腰∴∠ACB=∠ABC=30°∴AC=2EC/根号3EC=5根号3∵F为AC中点∴FC=5/2根号3∵FG⊥AC∴CG=5同理,BE=5∴EG=5例5:证明:∵DE⊥AB,∠ACB=90∴∠BDE=∠ACB=90∵BD=BC,BE=BE∴△BCE≌△BDE (HL)∴∠CBE=∠DBE∵BF=BF∴△BCF≌△BDF (SAS)∴∠BFC=∠BFD,CF=DF∵∠BFC+∠BFD=180∴∠BFC=∠BFD=90∴BE⊥CD∴BE垂直平分CD例6:解:∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠GCF,又已知CE平分∠BCO,CF平分∠GCO,∴∠OCE=∠BCE,∠OCF═∠GCF,∴∠OCE=∠OEC,∠OCF=∠OFC,∴EO=CO,FO=CO,∴EO=FO.例7:证明:连接DC,DB∵点D在BC的垂直平分线上∴DB=DC∵D在∠BAC的平分线上∴DE=DF∵∠DFC=∠DEB∴△DCF≌△DEB∴CF=BE最新文件仅供参考已改成word文本。
线段的垂直平分线(有答案)

线段的垂直平分线一、选择题(共5小题)1.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( ) A.AC、BC两边高线的交点处B.AC、BC两边垂直平分线的交点处 C.AC、BC两边中线的交点处D.∠A、∠B两内角平分线的交点处2.如图,△ABC中,DE是AB的垂直平分线,AE=4,△ACD的周长为18,则△ABC的周长为( ) A.18B.22C.24D.263.如图:△ABC中,∠ACB=90°,∠B=22.5°,AB的垂直平分线交BC于D,则下列结论不正确的是( ) A.∠ADC=45°B.∠DAC=45°C.DB=DA D.BD=DC4.(2011•裕华区一模)如图,在△ABC中,AC的垂直平分线ED交AC于点E,交AB与点D,CE=4,△BCD 的周长等于12,则△ABC的周长为( ) A.20B.18C.16D.145.(2002•哈尔滨)如图,到△ABC的三个顶点距离相等的点是△ABC的( ) A.三边垂直平分线的交点B.三条角平分线的交点 C.三条高的交点D.三边中线的交点二、填空题(共5小题)(除非特别说明,请填准确值)6.如图,△ABC中,AB=8cm,边AB的垂直平分线分别交AB、BC于点D、E,BE=5cm,则△ABE的周长为 _________ cm.7.如图,在△ABC中,DE是AC的中垂线,AE=2cm,△ABD的周长是10cm,则△ABC的周长是 _________ cm .8.如果在△ABC中,AB=5,BC=4,边AC的垂直平分线交边AB于点D,那么△BCD的周长等于 _________ . 9.在△ABC中,已知AC=13,BC=10,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长为 _________ .10.如图,在△ABC中,BC=8,△ABD的周长为12,MN垂直平分AC,交BC于D,则AB= _________ .三、解答题(共17小题)(选答题,不自动判卷)11.如图,在△ABC中,DE是AC的垂直平分线,AE=3.(1)若AC=BC,求BC的长;(2)若△ABD的周长为13,求△ABC的周长.12.小明做了一个如图所示的“风筝”骨架,其中AB=AD,CB=CD.(1)八年级王云同学观察了这个“风筝”骨架后,他认为AC⊥BD,垂足为点E,并且BE=ED,你同意王云的判断吗为什么(2)设AC=a,BD=b,请用含a,b的式子表示四边形ABCD的面积.13.已知:如图,在△ABC中,MN是边AB的中垂线,∠MAC=50°,∠C=3∠B,求∠B的度数.14.如图,△ABC的边BC的垂直平分线DE交△BAC的外角平分线AD于D,E为垂足,DF⊥AB于F,且AB>AC ,求证:BF=AC+AF.15.在△ABC中,BC边的垂直平分线DE交BC于D,交AB于E,BE=5,△BCE的周长为18 即BE+CE+BC=18,求BC的长?16.在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上.17.(2011•江津区)A、B两所学校在一条东西走向公路的同旁,以公路所在直线为x轴建立如图所示的平面直角坐标系,且点A的坐标是(2,2),点B的坐标是(7,3).(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C,使C点到A、B两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P的位置,并求出它的坐标.18.(2012•潮阳区模拟)如图,线段CD垂直平分线段AB,CA的延长线交BD的延长线于E,CB的延长线交AD 的延长线于F,求证:DE=DF.19.已知:如图,AB=AE,BC=ED,AF⊥CD且F是CD的中点,求证:∠B=∠E.20.如图,已知AB=AD,CB=CD,连接AC,BD交于点O.求证:(1)∠ABC=∠ADC;(2)AC⊥BD.21.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.22.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠FAC=∠B.23.如图,在△ABC中,DE,FG分别是△ABC的边AB、AC的垂直平分线,若BC=10,则△ADF的周长是多少?24.如图,直线l是线段AB的垂直平分线,若有一点C在直线l上,则由垂直平分线的性质可知:CA=CB;现有一点P在直线l的右侧,则PA、PB有何大小关系?请写出你的结论,并说明理由.25.如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.求证:(1)△ABC≌△DCB;(2)点M在BC的垂直平分线上.26.如图己知在△ABC中,∠C=90°,∠B=15°,DE垂直平分AB,E为垂足交BC于D,BD=16cm,求AC长.27.锐角△ABC的垂心关于三边的对称点分别是H1,H2,H3.已知:H1,H2,H3,求作△ABC. 线段的垂直平分线参考答案与试题解析一、选择题(共5小题)1.如图,有A、B、C三个居民小区,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( ) A.AC、BC两边高线的交点处B.AC、BC两边垂直平分线的交点处 C.AC、BC两边中线的交点处D.∠A、∠B两内角平分线的交点处考点:线段垂直平分线的性质.分析:根据线段垂直平分线的性质即可得出答案.解答:解:根据线段垂直平分线上的点到线段两个端点的距离相等,超市应建在边AC和BC的垂直平分线上,故选B.点评:本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段两个端点的距离相等.2.如图,△ABC中,DE是AB的垂直平分线,AE=4,△ACD的周长为18,则△ABC的周长为( ) A.18B.22C.24D.26考点:线段垂直平分线的性质.分析:根据线段垂直平分线性质得出AB=2AE=8,AD=BD,求出△ABC的周长为:AB+AD+DC+AC,求出AD+DC+AC=18,即可求出答案.解答:解:∵DE是AB的垂直平分线,AE=4,∴AB=2AE=8,AD=BD,∵△ACD的周长为18,∴AD+DC+AC=18,∴△ABC的周长为:AB+BC+AC=8+BD+DC+AC=8+AD+DC+AC=8+18=26,故选D.点评:本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段的两个端点的距离相等.3.如图:△ABC中,∠ACB=90°,∠B=22.5°,AB的垂直平分线交BC于D,则下列结论不正确的是( ) A.∠ADC=45°B.∠DAC=45°C.DB=DA D.BD=DC考点:线段垂直平分线的性质.专题:数形结合.分析:由∠ACB=90°,∠B=22.5°,根据三角形的内角和定理求出∠BAC的度数,然后根据线段的垂直平分线的性质得到DB与DA相等,利用等边对等角得到∠BAD与∠B相等,求出∠BAD的度数,由∠BAC的度数减去∠BAD 的度数,求出∠DAC的度数,又因为∠ADC是三角形ADB的外角,由三角形的外角性质得到∠ADC等于2∠B ,求出∠ADC的度数,从而得到选项A,B,C的结论正确,在直角三角形ACD中,根据斜边总大于直角边,判定得到AD大于CD,而AD与BD相等,等量代换得到BD大于CD,选项D的结论错误.解答:解:∵∠ACB=90°,∠B=22.5,∴∠BAC=180°﹣90°﹣22.5°=67.5°,又AB的垂直平分线交BC于D,∴DB=DA,故选项C正确;∴∠BAD=∠B=22.5°,∴∠DAC=67.5°﹣22.5°=45°,选项A正确,∠ADC=22.5°+22.5°=45°,选项B正确,在直角三角形ACD中,∵AD>CD,又AD=BD,∴BD>CD,选项D错误,则不正确的选项为D.故选D.点评:此题考查了线段垂直平分线的性质,外角性质及直角三角形的边角关系.遇到线段垂直平分线,往往根据垂直平分线上的点到线段两端点的距离相等,构造出等腰三角形,从而利用等腰三角形的有关知识解决问题.4.(2011•裕华区一模)如图,在△ABC中,AC的垂直平分线ED交AC于点E,交AB与点D,CE=4,△BCD 的周长等于12,则△ABC的周长为( ) A.20B.18C.16D.14考点:线段垂直平分线的性质.专题:计算题.分析:先根据线段垂直平分线的性质得到AD=CD,即BD+CD+BC=12,再根据CE=4得到AC=8即可进行解答.解答:解:∵ED是线段AC的垂直平分线,∴AD=CD,∵△BCD的周长等于12,∴△BCD的周长=BC+BD+CD=AB+BC=12,∵CE=4,∴AC=8.∴△ABC的周长=AB+BC+AC=12+8=20.故选A.点评:本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.5.(2002•哈尔滨)如图,到△ABC的三个顶点距离相等的点是△ABC的( ) A.三边垂直平分线的交点B.三条角平分线的交点 C.三条高的交点D.三边中线的交点考点:线段垂直平分线的性质.分析:根据线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等)可得到△ABC的三个顶点距离相等的点是三边垂直平分线的交点.解答:解:△ABC的三个顶点距离相等的点是三边垂直平分线的交点.故选A.点评:本题考查的是线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等).二、填空题(共5小题)(除非特别说明,请填准确值)6.如图,△ABC中,AB=8cm,边AB的垂直平分线分别交AB、BC于点D、E,BE=5cm,则△ABE的周长为 18 cm.考点:线段垂直平分线的性质.分析:根据线段垂直平分线的性质得出AE=BE=5cm,代入AB+AE+BE求出即可.解答:解:∵DE是线段AB的垂直平分线,BE=5cm,∴AE=BE=5cm,∵AB=8cm,∴△ABE的周长是AB+AE+BE=8cm+5cm+5cm=18cm,故答案为:18.点评:本题考查了线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两端点的距离相等.7.如图,在△ABC中,DE是AC的中垂线,AE=2cm,△ABD的周长是10cm,则△ABC的周长是 14 cm.考点:线段垂直平分线的性质.专题:计算题.分析:根据线段垂直平分线得出CE=AE=2,AD=DC,根据已知得出AB+BD+AD=AB+BD+DC=AB+BC=10,即可求出答案.解答:解:∵DE是AC的中垂线,∴AE=CE=2,AD=DC,∵△ABD的周长是10cm,∴AB+BD+AD=10,∴AB+BD+DC=AB+BC=10,∴△ABC的周长是AB+BC+AC=10+2+2=14,故答案为14.点评:本题考查了线段的垂直平分线性质的应用,关键是求出AB+BC=10,题目比较典型,难度适中.8.如果在△ABC中,AB=5,BC=4,边AC的垂直平分线交边AB于点D,那么△BCD的周长等于 9 .考点:线段垂直平分线的性质.分析:根据线段垂直平分线得出AD=DC,求出△BCD的周长=AB+BC,代入求出即可.解答:解:∵DE是AC的垂直平分线,∴AD=DC,∴△BCD的周长是BD+DC+BC=BD+AD+BC=AB+BC=5+4=9,故答案为:9.点评:本题考查了线段垂直平分线的应用,关键是求出△BCD的周长等于AB+BC.9.在△ABC中,已知AC=13,BC=10,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长为 23 .考点:线段垂直平分线的性质.分析:由已知条件,根据垂直平分线的性质得到线段相等,由△BCE的周长=EC+BE+BC得到答案.解答:解:AB的垂直平分线交AB于点D,所以EA=BE.∵AC=13,BC=10,∴△BCE的周长是EC+BE+BC=BC+CE+EA=AC+BC=13+10=23,故答案为23.点评:本题考查了垂直平分线的性质;由于已知三角形的两条边长,根据垂直平分线的性质,求出另一条的长,相加即可.10.如图,在△ABC中,BC=8,△ABD的周长为12,MN垂直平分AC,交BC于D,则AB= 4 .考点:线段垂直平分线的性质.分析:根据线段垂直平分线得出AD=DC,根据BC长求出AD+BD=8,代入AB+AD+BD=12即可求出答案.解答:解:∵MN垂直平分AC,∴AD=DC,∵BC=8,∴BD+DC=8=AD+BD,∵△ABD的周长为12,∴AB+AD+BD=12,∴AB=12﹣8=4,故答案为:4.点评:本题考查了线段的垂直平分线性质,注意:线段垂直平分线上的点到线段两端点的距离相等.三、解答题(共17小题)(选答题,不自动判卷)11.如图,在△ABC中,DE是AC的垂直平分线,AE=3.(1)若AC=BC,求BC的长;(2)若△ABD的周长为13,求△ABC的周长.考点:线段垂直平分线的性质.专题:计算题.分析:(1)根据线段的垂直平分线性质求出AC即可;(2)根据线段的垂直平分线性质求出AD=DC,AC=2AE=6,根据△ABD的周长为13求出AB+BC的值即可求出答案.解答:解:(1)∵DE是AC的垂直平分线,AE=3,∴AC=2AE=6,∴AC=BC=6,答:BC的长是6.(2)∵DE是AC的垂直平分线,AE=3,∴AD=DC,AC=2AE=6,∵△ABD的周长为13,∴AB+AD+BD=13,∴AB+CD+BD=13,即AB+BC=13,∴△ABC的周长是AB+BC+AC=13+6=19.答:△ABC的周长是19.点评:本题主要考查对线段的垂直平分线性质的理解和掌握,能熟练地运用性质进行计算是解此题的关键.12.小明做了一个如图所示的“风筝”骨架,其中AB=AD,CB=CD.(1)八年级王云同学观察了这个“风筝”骨架后,他认为AC⊥BD,垂足为点E,并且BE=ED,你同意王云的判断吗为什么(2)设AC=a,BD=b,请用含a,b的式子表示四边形ABCD的面积.考点:线段垂直平分线的性质;全等三角形的判定与性质.分析:(1)根据SSS证△ABC≌△ADC,推出∠BAC=∠DAC,根据等腰三角形的三线合一定理推出即可;(2)求出四边形ABCD的面积为S=S△ABD+S△CBD=BD×AC,代入求出即可.解答:解:(1)∵在△ABC和△ADC中∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∵AB=AD,∴AC⊥BD,BE=DE(三线合一定理);(2)∵AC=a,BD=b,∴四边形ABCD的面积S=S△ABD+S△CBD=×BD×AE+×BD×CE=×BD×(AE+CE)=BD×AC=ab.点评:本题考查了等腰三角形的性质和线段垂直平分线性质,三角形的面积等知识点的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等,等腰三角形的顶角的平分线垂直于底边,且平分底边.13.已知:如图,在△ABC中,MN是边AB的中垂线,∠MAC=50°,∠C=3∠B,求∠B的度数.考点:线段垂直平分线的性质.分析:根据线段垂直平分线性质得出AM=BM,推出∠BAM=∠B,设∠B=x,则∠BAM=x,∠C=3x,在△ABC中,由三角形内角和定理得出方程x+x+3x+50°=180°,求出即可.解答:解:∵MN是边AB的中垂线,∴AM=BM,∴∠BAM=∠B,设∠B=x,则∠BAM=x,∵∠C=3∠B,∴∠C=3x,在△ABC中,由三角形内角和定理,得x+x+3x+50°=180°,∴x=26°,即∠B=26°.点评:本题考查了线段垂直平分线性质,三角形的内角和定理,等腰三角形的性质,关键是求出关于x的方程,注意:线段垂直平分线上的点到线段两端点的距离相等,等边对等角.14.如图,△ABC的边BC的垂直平分线DE交△BAC的外角平分线AD于D,E为垂足,DF⊥AB于F,且AB>AC ,求证:BF=AC+AF.考点:全等三角形的判定与性质;线段垂直平分线的性质.专题:证明题.分析:过D作DN⊥AC,垂足为N,连接DB、DC,推出DN=DF,DB=DC,根据HL证Rt△DBF≌Rt△DCN,推出BF=CN,根据HL证Rt△DFA≌Rt△DNA,推出AN=AF即可.解答:证明:过D作DN⊥AC,垂足为N,连接DB、DC,则DN=DF(角平分线性质),DB=DC(线段垂直平分线性质),又∵DF⊥AB,DN⊥AC,∴∠DFB=∠DNC=90°,在Rt△DBF和Rt△DCN中∵,∴Rt△DBF≌Rt△DCN(HL)∴BF=CN,在Rt△DFA和Rt△DNA中∵,∴Rt△DFA≌Rt△DNA(HL)∴AN=AF,∴BF=AC+AN=AC+AF,即BF=AF+AC.点评:本题考查了全等三角形的性质和判定,线段的垂直平分线定理,角平分线性质等知识点,会添加适当的辅助线,会利用中垂线的性质找出全等的条件是解此题的关键.15.在△ABC中,BC边的垂直平分线DE交BC于D,交AB于E,BE=5,△BCE的周长为18 即BE+CE+BC=18,求BC的长?考点:线段垂直平分线的性质.专题:计算题.分析:根据线段垂直平分线性质求出CE长,代入BE+CE+BC=18求出BC即可.解答:解:∵BC边的垂直平分线DE,∴BE=CE=5,∵BE+CE+BC=18,∴BC=18﹣5﹣5=8,答:BC的长是8.点评:本题考查了线段垂直平分线的应用,关键是求出CE长,题目较好,难度不大.16.在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上.考点:线段垂直平分线的性质.专题:证明题.分析:根据线段的垂直平分线性质求出BD=DE,推出DE+EC=AE+DE,得出EC=AE,根据线段垂直平分线性质推出即可.解答:证明:∵AD是高,∴AD⊥BC,又BD=DE,∴AD所在的直线是线段BE的垂直平分线,∴AB=AE,∴AB+BD=AE+DE,又AB+BD=DC,∴DC=AE+DE,∴DE+EC=AE+DE∴EC=AE,∴点E在线段AC的垂直平分线上.点评:本题考查了线段的垂直平分线的应用,解此题的关键是熟练地运用性质进行推理,培养了学生分析问题和解决问题的能力.17.(2011•江津区)A、B两所学校在一条东西走向公路的同旁,以公路所在直线为x轴建立如图所示的平面直角坐标系,且点A的坐标是(2,2),点B的坐标是(7,3).(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C,使C点到A、B两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P的位置,并求出它的坐标.考点:一次函数综合题;线段垂直平分线的性质;作图—应用与设计作图;轴对称-最短路线问题.专题:综合题.分析:(1)连接AB,作出线段AB的垂直平分线,与x轴的交点即为所求的点;(2)找到点A关于x轴的对称点,连接对称点与点B与x轴交点即为所求作的点.解答:解:(1)存在满足条件的点C;作出图形,如图所示.(2)作点A关于x轴对称的点A′(2,﹣2),连接A′B,与x轴的交点即为所求的点P.设A′B所在直线的解析式为:y=kx+b,把(2,﹣2)和(7,3)代入得:,解得:,∴y=x﹣4,当y=0时,x=4,所以交点P为(4,0).点评:本题是一道典型的一次函数综合题,题目中还涉及到了线段的垂直平分线的性质及轴对称的问题.18.(2012•潮阳区模拟)如图,线段CD垂直平分线段AB,CA的延长线交BD的延长线于E,CB的延长线交AD 的延长线于F,求证:DE=DF.考点:全等三角形的判定与性质;线段垂直平分线的性质.专题:证明题.分析:根据线段垂直平分线得出AC=BC,BD=AD,推出∠CBE=∠CAF,证△BCE≌△ACF,推出BE=AF,即可得出答案.解答:证明:∵线段CD垂直平分AB,∴AC=BC,AD=BD,∴∠CAB=∠CBA,∠BAD=∠ABD,∴∠CAB+∠BAD=∠CBA+∠ABD,即∠CBE=∠CAF,在△BCE和△ACF中∵,∴△BCE≌△ACF(ASA),∴BE=AF,∵BD=AD,∴BE﹣BD=AF﹣AD,即DE=DF.点评:本题考查了等腰三角形的性质和判定,线段垂直平分线性质,全等三角形的性质和判定等知识点的综合运用.19.已知:如图,AB=AE,BC=ED,AF⊥CD且F是CD的中点,求证:∠B=∠E.考点:线段垂直平分线的性质;全等三角形的判定与性质.专题:证明题.分析:连接AC、AD,根据线段垂直平分线定理求出AC=AD,根据全等三角形的判定SSS证△ABC≌△AED即可.解答:证明:连接AC,AD,∵AF⊥CD,F为CD的中点,∴AC=AD,在△ABC和△AED中,∴△ABC≌△AED,∴∠B=∠E.点评:本题考查了对线段的垂直平分线定理和全等三角形的性质和判定的应用,关键是构造三角形ABC和三角形AED,并推出两三角形全等,题目比较典型,难度适中.20.如图,已知AB=AD,CB=CD,连接AC,BD交于点O.求证:(1)∠ABC=∠ADC;(2)AC⊥BD.考点:全等三角形的判定与性质;线段垂直平分线的性质.专题:证明题.分析:(1)根据全等三角形的判定SSS证出△ABC和△ADC即可;(2)根据线段垂直平分线定理得出点A,C都在线段BD的垂直平分线上即可.解答:证明:(1)在△ABC和△ADC中∴△ABC≌△ADC,∴∠ABC=∠ADC.(2)∵AB=AD,CB=CD,∴点A,C都在线段BD的垂直平分线上,∴AC⊥BD.点评:本题综合运用全等三角形的性质和判定和线段的垂直平分线定理,难度适中,题型较好.通过作题培养了学生分析问题和解决问题的能力.21.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.考点:线段垂直平分线的性质.专题:探究型.分析:(1)先根据E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA得出△ODE≌△OCE,可得出OD=OC,DE=CE ,OE=OE,可得出△DOC是等腰三角形,由等腰三角形的性质即可得出OE是CD的垂直平分线;(2)先根据E是∠AOB的平分线,∠AOB=60°可得出∠AOE=∠BOE=30°,由直角三角形的性质可得出OE=2DE ,同理可得出DE=2EF即可得出结论.解答:解:(1)∵E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,∴DE=CE,OE=OE,∴Rt△ODE≌Rt△OCE,∴OD=OC,∴△DOC是等腰三角形,∵OE是∠AOB的平分线,∴OE是CD的垂直平分线;(2)∵OE是∠AOB的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°,∵EC⊥OB,ED⊥OA,∴OE=2DE,∠ODF=∠OED=60°,∴∠EDF=30°,∴DE=2EF,∴OE=4EF.点评:本题考查的是角平分线的性质及直角三角形的性质、等腰三角形的判定与性质,熟知以上知识是解答此题的关键.22.如图,AD是△ABC的角平分线,AD的垂直平分线交BC的延长线于点F.求证:∠FAC=∠B.考点:线段垂直平分线的性质;角平分线的定义;三角形内角和定理.专题:证明题.分析:根据线段垂直平分线得出AF=DF,推出∠FAD=∠FDA,根据角平分线得出∠BAD=∠CAD,根据三角形外角性质推出即可.解答:证明:∵EF是AD的垂直平分线,∴AF=DF,∴∠FAD=∠FDA,∵∠FAD=∠FAC+∠CAD,∠FDA=∠B+∠BAD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠FAC=∠B.点评:本题考查了三角形的外角性质,角平分线定义,线段垂直平分线性质等知识点的运用,关键是推出∠FAD=∠FDA,培养了学生综合运用性质进行推理的能力.23.如图,在△ABC中,DE,FG分别是△ABC的边AB、AC的垂直平分线,若BC=10,则△ADF的周长是多少?考点:线段垂直平分线的性质.专题:计算题.分析:利用线段的垂直平分线的性质得到:AD=BD,AF=CF,就可以将△ADF的周长转化为线段BC的长.解答:解:∵DE,FG分别是△ABC的边AB、AC的垂直平分线∴AD=BD,AF=CF∴△ADF的周长=AD+DF+AF=BD+DF+CF=BC=10∴△ADF的周长是10.点评:本题考查了线段的垂直平分线的性质以及转化思想的应用.24.如图,直线l是线段AB的垂直平分线,若有一点C在直线l上,则由垂直平分线的性质可知:CA=CB;现有一点P在直线l的右侧,则PA、PB有何大小关系?请写出你的结论,并说明理由.考点:线段垂直平分线的性质;三角形三边关系.专题:数形结合.分析:PA大于PB,理由是:如图连接PA,与直线l交于C,连接PB,BC,因为直线l为线段AB的垂直平分线,根据线段垂直平分线的定理得直线l上的点C到线段两端点的距离相等,即AC=BC,在三角形PBC中,根据三角形的两边之和大于第三边得到PC+BC大于PB,然后利用等量代换把其中的BC换为AC,根据图形可得证.解答:解:PA>PB.理由如下:(3分)如图,连接PA,与直线l交于点C;连接PB、BC.(2分)因为直线l是线段AB的垂直平分线,所以CA=AB;(2分)因为三角形任意两边之和大于第三边,所以PC+CB>PB;(2分)所以PC+CA>PB,即PA>PB.(1分)点评:此题考查了线段垂直平分线的定理,以及三角形的三边关系.遇到线段垂直平分线,常常连接垂直平分线上的点与线段的两端点,构造等腰三角形.同时注意运用在三角形中,任意两边之和大于第三边,两边之差小于第三边.25.如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.求证:(1)△ABC≌△DCB;(2)点M在BC的垂直平分线上.考点:全等三角形的判定与性质;线段垂直平分线的性质.专题:证明题.分析:(1)由已知和BC=BC,根据SSS即可推出两三角形全等;(2)由全等得出∠DBC=∠ACB,推出MB=MC,根据线段垂直平分线定理得出即可.解答:(1)证明:∵在△ABC和△DCB中,∴△ABC≌△DCB(SSS).(2)证明:∵由(1)知:△ABC≌△DCB,∴∠ACB=∠DBC,∴MB=MC,∴点M在BC的垂直平分线上.点评:本题考查了全等三角形的性质和判定和线段垂直平分线定理的应用,关键是推出△ABC≌△DCB,题目比较好,难度适中.26.如图己知在△ABC中,∠C=90°,∠B=15°,DE垂直平分AB,E为垂足交BC于D,BD=16cm,求AC长.考点:线段垂直平分线的性质.分析:根据线段垂直平分线得出BD=AD=16cm,推出∠B=∠BAD=15°,根据三角形的外角性质求出∠ADC=30°,根据含30度角的直角三角形性质得出AC=AD,代入求出即可.解答:解:∵DE垂直平分AB,∴BD=AD=16cm,∴∠B=∠BAD=15°,∴∠ADC=15°+15°=30°,∵∠C=90°,∴AC=AD=8cm,点评:本题考查了三角形的外角性质,线段垂直平分线性质,等腰三角形性质,含30度角的直角三角形性质等知识点的综合运用,题目比较典型,是一道比较好的题目.27.锐角△ABC的垂心关于三边的对称点分别是H1,H2,H3.已知:H1,H2,H3,求作△ABC.考点:三角形的五心;线段垂直平分线的性质.专题:作图题.分析:首先根据线段的垂直平分线的性质,推出垂心H关于三边的对称点,均在△ABC的外接圆上,作△H1H2H3的外接圆O,根据线段的垂直平分线的性质作出弧H1H2、弧H2H3、弧H1H3的中点即可得到答案.解答:作法:1、作△H1H2H3的外接圆O,2、连接H1H2,作H1H2的垂直平分线EF交圆O于A,同法可作H2H3和H1H3的垂直平分线,分别交圆于B、C,3、连接AB、BC、AC,则△ABC为所求.点评:本题主要考查了三角形的五心,线段的垂直平分线的性质等知识点,解此题的关键是理解△ABC的垂心H 关于三边的对称点,均在△ABC的外接圆上.题型较好,但有一定的难度.21。
八年级数学上册《第二章 线段的垂直平分线》练习题-含答案(湘教版)

八年级数学上册《第二章线段的垂直平分线》练习题-含答案(湘教版)一、选择题1.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P作已知直线的垂线,则对应选项中作法错误..的是( ) A.① B.② C.③ D.④2.如图,已知线段AB,分别以A,B为圆心,大于12AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为( )A.40°B.50°C.60°D.70°3.如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,适当长度(大于BC长的一半)为半径作圆弧,两弧相交于点M和N;②作直线MN交AB于点D,连接CD.若AB=9,AC=4,则△ACD的周长是( )A.12B.13C.17D.184.如图,已知AB=AC,AB=5,BC=3,以A,B两点为圆心,大于12AB的长为半径画圆弧,两弧相交于点M,N,连接MN与AC相交于点D,则△BDC的周长为( )A.8B.10C.11D.135.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于12BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若AD=AC,∠A=80°则∠ACB的度数为( )A.65°B.70°C.75°D.80°6.如图,AB∥CD,BE垂直平分AD,DC=BC,若∠A=70°,则∠C=( )A.100°B.110°C.115°D.120°7.如图,MN是线段AB的垂直平分线,C在MN外,且与A点在MN的同一侧,BC交MN于P点,则( )A.BC>PC+APB.BC<PC+APC.BC=PC+APD.BC≥PC+AP8.如图,已知在直角坐标系中,点A在y轴上,BC⊥x轴于点C,点A关于直线OB的对称点D 恰好在BC上,点E与点O关于直线BC对称,∠OBC=35°,则∠OED的度数为( )A.10°B.20°C.30°D.35°二、填空题9.如图,在△ABC中,AB=AC=8,BC=6,AB的垂直平分线交AC于点E,垂足为点D,连接BE,则△BEC的周长为 .10.如图,DE是△ABC边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD的周长为 .11.如图,若△ACD的周长为7cm,DE为AB边的垂直平分线,则AC+BC= cm.12.小军做了一个如图所示的风筝,其中EH=FH,ED=FD,小军说不用测量就知道DH是EF的垂直平分线.其中蕴含的道理是 .13.如图,在△ABC中,∠C=35°,AB=AD,DE是AC的垂直平分线,则∠BAD=度.14.如图所示,点P为∠AOB内一点,分别作出点P关于OA、OB的对称点P1、P2.连接P1P2交OA于M,交OB于N,若P1P2=6,则△PMN的周长为.三、作图题15.尺规作图(不写作法,保留作图痕迹):已知线段a和∠AOB,点M在OB上(如图所示).(1)在OA边上作点P,使OP=2a;(2)作∠AOB的平分线;(3)过点M作OB的垂线.四、解答题16.如图,在Rt△ABC中,∠C=90°,AB的垂直平分线DE交BC于点D,垂足为E,且∠CAD∶∠CAB=1∶3,求∠B的度数.17.在△ABC中,AB>BC,AB=AC,DE是AB的垂直平分线,垂足为D点,交AC于点E. (1)若∠ABE=38°,求∠EBC的度数;(2)若△ABC的周长为36cm,一边为13cm,求△BCE的周长.18.如图所示,在△ABC中,∠BAC的平分线AD交BC于点D,DE垂直平分AC,垂足为点E,∠BAD=29°,求∠B的度数.19.如图,AD平分∠BAC,EF垂直平分AD交BC的延长线于F,连接AF.求证:∠B=∠CAF.20.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M.(1)若∠B=70°,则∠NMA的度数是________.(2)连接MB,若AB=8cm,△MBC的周长是14cm.①求BC的长;②在直线MN上是否存在点P,使由P,B,C构成的△PBC的周长值最小?若存在,标出点P 的位置并求△PBC的周长最小值;若不存在,说明理由.参考答案1.C.2.B.3.B.4.A.5.C.6.D.7.C8.B.9.答案为:14.10.答案为:28cm.11.答案为:7.12.答案为:与线段两个端点距离相等的点在这条线段的垂直平分线线上.13.答案为:40.14.答案为:6.15.解:(1)点P为所求作;(2)OC为所求作;(3)MD为所求作;16.解:设∠CAD=x°则∠CAB=3x°,∠BAD=2x°.∵DE是AB的垂直平分线∴DA=DB∴∠B=∠BAD=2x°.∵∠C=90°∴∠CAB+∠B=90°即3x+2x=90,解得x=18∴∠B=2×18°=36°.17.解:∵DE是AB的垂直平分线∴AE=BE∴∠A=∠ABE=38°∵AB=AC∴∠ABC=∠C=71°∴∠EBC=∠ABC-∠ABE=71°-38°=33°由△ABC的周长为36cmAB>BC,AB=AC可知AB=AC=13cm BC=10cm△BCE的周长=BE+CE+BC=AC+BC=13+10=23(cm) 18.解:∵AD平分∠BAC∴∠BAD=∠DAE∵∠BAD=29°∴∠DAE=29°∴∠BAC=58°∵DE垂直平分AC∴AD=DC∴∠DAE=∠DCA=29°∵∠BAC+∠DCA+∠B=180°∴∠B=93°.19.证明:∵EF垂直平分AD∴AF=DF,∠ADF=∠DAF∵∠ADF=∠B+∠BAD,∠DAF=∠CAF+∠CAD又∵AD平分∠BAC∴∠BAD=∠CAD∴∠B=∠CAF.20.解:(1)50°(2)猜想的结论为:∠NMA=2∠B﹣90°.理由:∵AB=AC∴∠B=∠C∴∠A=180°﹣2∠B又∵MN垂直平分AB∴∠NMA=90°﹣∠A=90°﹣(180°﹣2∠B)=2∠B﹣90°. 如图:①∵MN垂直平分AB.∴MB=MA又∵△MBC的周长是14cm∴AC+BC=14cm∴BC=6cm.②当点P与点M重合时,PB+CP的值最小,最小值是8cm.。
线段垂直平分线知识点+经典例题

第三讲 线段的垂直平分线【要点梳理】要点一、线段的垂直平分线1.定义经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.2.线段垂直平分线的做法求作线段AB 的垂直平分线.作法:(1)分别以点A ,B 为圆心,以大于AB 的长为半径作弧,两弧相交于C ,D 两点;(2)作直线CD ,CD 即为所求直线.要点诠释:(1)作弧时的半径必须大于AB 的长,否则就不能得到两弧的交点了.(2)线段的垂直平分线的实质是一条直线.要点二、线段的垂直平分线定理线段的垂直平分线定理:线段垂直平分线上的点到这条线段两个端点的距离相等.要点诠释:线段的垂直平分线定理也就是线段垂直平分线的性质,是证明两条线段相等的常用方法之一.同时也给出了引辅助线的方法,“线段垂直平分线,常向两端把线连”.就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.要点三、线段的垂直平分线逆定理线段的垂直平分线逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上. 要点诠释:到线段两个端点距离相等的所有点组成了线段的垂直平分线.线段的垂直平分线可以看作是与这条线段两个端点的距离相等的所有点的集合.要点四、三角形的外心三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.要点诠释:1.三角形三条边的垂直平分线必交于一点(三线共点),该点即为三角形外接圆的圆心.2.锐角三角形的外心在三角形内部;钝角三角形的外心在三角形外部;直角三角形的外心在斜边上,与斜边中点重合.3.外心到三顶点的距离相等.要点五、尺规作图作图题是初中数学中不可缺少的一类试题,它要求写出“已知,求作,作法和画图”,画图必须保留痕迹,在现行的教材里,一般不要求写出作法,但是必须保留痕迹.证明过程一般不用写出来.最后要点题即“xxx 即为所求”.2121【典型例题】类型一、线段的垂直平分线定理例1、如图,△ABC中AC>BC,边AB的垂直平分线与AC交于点D,已知AC=5,BC=4,则△BCD的周长是()A.9 B.8 C.7 D.6【思路点拨】先根据线段垂直平分线的性质得到AD=BD,即AD+CD=BD+CD=AC,再根据△BCD的周长=BC+BD+CD即可进行解答.【答案】A;【解析】因为BD=AD,所以△BCD的周长=BD+CD+BC=AD+CD+BC=5+4=9.【总结升华】此题正是应用了线段垂直平分线的性质定理,也就是已知直线是线段垂直平分线,那么垂直平分线上的点到线段的两个端点距离相等,从而把三角形的边进行转移,进而求得三角形的周长.【变式1】如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABC B.△BCD的周长等于AB+BCC.AD=BD=BC D.点D是线段AC的中点【答案】D;提示:根据等边对等角、三角形内角和定理及线段垂直平分线的性质定理即可推得选项A、B、C正确;所以选D,另外,注意排除法在解选择题中的应用.【变式2】如图,△ABC中,BC=7,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.求△AEG的周长.【答案】解:∵DE为AB的中垂线,∴AE=BE,∵FG是AC的中垂线,∴AG=GC,△AEG的周长等于AE+EG+GA,分别将AE和AG用BE和GC代替得:△AEG的周长等于BE+EG+GC=BC,所以△AEG的周长为BC的长度即7.类型二、线段的垂直平分线的逆定理例2、如图,已知AB=AC,∠ABD=∠ACD,求证:AD是线段BC的垂直平分线.A【答案与解析】证明:∵ AB=AC(已知)∴∠ABC=∠ACB (等边对等角)又∵∠ABD=∠ACD (已知)∴∠ABD-∠ABC =∠ACD-∠ACB (等式性质)即∠DBC=∠DCB∴DB=DC (等角对等边)∵AB=AC(已知)DB=DC (已证)∴点A 和点D 都在线段BC 的垂直平分线上(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上)∴AD 是线段BC 的垂直平分线。
专题 垂直平分线的性质(含答案)

专题垂直平分线的性质一.解答题(共12小题)1.如图,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,求∠DBC的度数.2.如图,在△ABC中,∠B=30°,边AB的垂直平分线分别交AB、BC于D、E两点,连接AE,若AE平分∠BAC,求∠C的度数.3.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,求∠C的度数.4.如图所示,在△ABC中,MP和NQ分别垂直平分AB和AC,MP分别交AB、BC于M、P两点,NQ分别交AC、BC于N、Q两点,连接AP、AQ.(1)若△APQ的周长为18,求BC的长;(2)若∠BAC=110°,求∠PAQ的度数.5.如图,△ABC中,边AB、AC的垂直平分线ED、GF分别交AB、AC于点E、G,交BC于点D、F,连接AD,AF,若∠DAF=40°,求∠BAC的度数.6.如图,在△ABC中,∠C=90°,边AB的垂直平分线DE交AC于D.CA=16cm,BC=8cm,求DC的长度;7.如图,在△ABC中,BC边的垂直平分线交AC边于点D,连接BD.(1)如图CE=4,△BDC的周长为18,求BD的长.(2)求∠ADM=60°,∠ABD=20°,求∠A的度数.8.如图,在△ABC中,∠C=90°,DE为AB的垂直平分线,DE交AC于点D,连接BD.若∠ABD=2∠CBD,求∠A的度数.9.如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.10.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,则△ADE周长是多少?为什么?(2)若∠BAC=128°,则∠DAE的度数是多少?为什么?11.在△ABC中,DE垂直平分AB,分别交AB、BC于点D、E,MN垂直平分AC,分别交AC、BC于点M、N,连接AE,AN.(1)如图1,若∠BAC=100°,求∠EAN的度数;(2)如图2,若∠BAC=70°,求∠EAN的度数;专题垂直平分线的性质参考答案与试题解析一.解答题(共12小题)1.【解答】解:∵AB=AC,∴∠ABC=∠ACB ==70°,∵MN的垂直平分AB,∴DA=DB,∴∠A=∠ABD=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故答案为:30°.2.【解答】解:∵DE是线段AB的垂直平分线,∠B=30°,∴∠BAE=∠B=30°,∵AE平分∠BAC,∴∠EAC=∠BAE=30°,即∠BAC=60°,∴∠C=180°﹣∠BAC﹣∠B=180°﹣60°﹣30°=90°.3.【解答】解:∵∠B=90°,∠BAE=10°,∴∠BEA=80°.∵ED是AC的垂直平分线,∴AE=EC,∴∠C=∠EAC.∵∠BEA=∠C+∠EAC,∴∠C=40°.4.(【解答】解:(1)∵MP和NQ分别垂直平分AB和AC,∴PA=PB,QA=QC,∵△APQ的周长为18,∴AP+PQ+AQ=BP+PQ+QC=18,∴BC=18;(2)∵∠BAC=110°,∴∠B+∠C=70°,∵PA=PB,QA=QC,∴∠PAB=∠B,∠QAC=∠C,∴∠PAB+∠QAC=∠B+∠C=70°,∴∠PAQ=40°.5.【解答】解:在△ADF中,∵∠DAF=40°,∴∠ADF+∠AFD=180°﹣40°=140°,∵边AB、AC的垂直平分线ED、GF分别交AB、AC于点E、G,∴AD=BD,AF=CF,∴∠BAD=∠B,∠CAF=∠C,∴∠ADF=∠BAD+∠B=2∠B,∠AFD=∠CAF+∠C=2∠C,∴2∠B+2∠C=∠ADF+∠AFD=140°,∴∠B+∠C=70°,∴∠BAC=180°﹣(∠B+∠C)=110°.6.【解答】解:(1)∵DE垂直平分线段AB,∴DA=DB,设CD=x,则AD=BD=(16﹣x)cm,在Rt△BDC中,∵BD2=CD2+BC2,∴(16﹣x)2=x2+82,∴x=6,∴CD=6cm.7.【解答】解:(1)∵MN垂直平分BC,∴DC=BD,CE=EB,又∵EC=4,∴BE=4,又∵△BDC的周长=18,∴BD+DC=10,∴BD=5;(2)∵∠ADM=60°,∴∠CDN=60°,又∵MN垂直平分BC,∴∠DNC=90°,∴∠C=30°,又∵∠C=∠DBC=30°,∠ABD=20°,∴∠ABC=50°,∴∠A=180°﹣∠C﹣∠ABC=100°.8.【解答】解:∵DE为AB的垂直平分线,∴∠A=∠ABD,又∵∠ABD=2∠CBD,∴∠A=∠ABD=2∠CBD,设∠A=α,则∠ABD=α,∠CBD =α,又∵∠C=90°,∴∠A+∠ABC=90°,即α+α+α=90°,解得α=36°,∴∠A=36°.9.【解答】解:(1)∵AD垂直平分BE,EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴∠C =∠AED=35°;(2)∵△ABC周长13cm,AC=6cm,∴AB+BE+EC=7cm,即2DE+2EC=7cm,∴DE+EC=DC=3.5cm.10.【解答】解:(1)C△ADE=10.(1分)∵AB、AC的垂直平分线分别交BC于D、E,∴AD=BD,AE=CE.(3分)C△ADE=AD+DE+AE=BD+DE+CE=BC=10.(4分)(2)∠DAE=76°.(5分)∵AB、AC的垂直平分线分别交BC于D、E,∴AD=BD,AE=CE.∴∠B=∠BAD,∠C=∠CAE.∵∠BAC=128°,∴∠B+∠C=52°.(7分)∴∠DAE=∠BAC﹣(∠BAD+∠CAE)=∠BAC﹣(∠B+∠C)=76°.(8分)11.【解答】解:(1)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAC﹣∠BAE﹣∠CAN,=∠BAC﹣(∠B+∠C),在△ABC中,∠B+∠C=180°﹣∠BAC=80°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=100°﹣80°=20°;(2)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAE+∠CAN﹣∠BAC,=(∠B+∠C)﹣∠BAC,在△ABC中,∠B+∠C=180°﹣∠BAC=110°,∴∠EAN=∠BAE+∠CAN﹣∠BAC=110°﹣70°=40°;温馨提示:最好仔细阅读后才下载使用,万分感谢!。
(完整word版)线段垂直平分线的性质定理及其逆定理习题精选及答案(一)

线段垂直平分线的性质定理及其逆定理习题精选(一) 1.线段的垂直平分线定理是,逆定理是。
2.如图,DE是AB的垂直平分线,D是垂足,DE交BC于E,BC=32cm,AC=18cm,则△AEC的周长为cm。
3.在△ABC中,∠BAC=110°, AB、AC的垂直平分线交BC于D、E,则∠DAE= .4.如图,已知Rt△ABC中,∠C=90°,AB的垂直平分线交AB于E,交BC于D,∠CAD=20°,则∠B =。
5.若三角形中两边的垂直平分线的交点正好在第三边上,则这个三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等边三角形6.一个三角形的三边中垂线交点在形外,那么这个三角形是()A.钝角三角形 B.直角三角形 C.锐角三角形 D.等腰直角三角形7.已知如图,∠AOB=40°,OM平分∠AOB,MA⊥OA,MB⊥OB于B,则∠MAB的度数为 ( )A.50° B.40° C.60° D.20°8.在Rt△ABC中,∠C=90°,∠A=15°,AB的垂直平分线与AC相交于点M,则BC与MB的比为 ( ) A.1︰3 B.1︰2 C。
2︰3 D. 3︰49.已知如图,AB=AD,CB=CD,求证:AC垂直平分BD。
10.已知如图,△ABC中,∠C=90°,∠B=15°,AB的中垂线交BC于点D,若BD=20cm,求AC的长。
11.如图△ABC中,∠C=90°,DE垂直平分AB,∠CAD︰∠BAD=2︰3,求∠ADB的度数.12.如图,在等边△ABC中,∠B、∠C的平分线相交于O,BO、OC的垂直平分线分别交BC于E和F.求证BE=EF=FC。
13.如图,在△ABC中,∠ACB=90°,D是BC延长线上一点,E是BD的垂直平分线与AB的交点,DE交AC于F,求证:E在AF的垂直平分线上。
线段的垂直平分线、角平分线经典习题及答案

线段的垂直平分线、角平分线经典习题及答案由于A、B都在CD的垂直平分线上,所以直线AB是CD的垂直平分线。
证毕。
例4:解:连接EF,由于AB=AC,所以∠BAC=60°,∴∠DEG=30°,∠GFC=60°,又因为DE⊥AB,FG⊥AC,所以DEGF是一个菱形,且DG=GF=7.5cm,所以EG=2DGsin30°=7.5cm。
例5:证明:因为BD=BC,所以∠XXX∠CBD,又因为BE⊥CD,CF⊥BD,所以∠BEC=∠BCF,所以BE平分∠XXX,CF平分∠CBD,又因为∠XXX∠CBD,所以BE和CF都平分∠BCD,即BE垂直平分CD。
证毕。
例6:证明:连接OF,OE,MN,∵MN∥BC,∴∠EOF=∠ACB,又∠XXX∠EOM+∠MOF,∠XXX∠EOM+∠EOF,∴∠MOF=∠ACB-∠EOF,又因为EF是AC的角平分线,∴∠XXX∠EAF,又因为EF是AC的外角平分线,∴∠XXX∠XXX,∴∠MOF=∠ACB-∠XXX,又因为OE⊥AC,OF⊥AC,所以OE=OF,证毕。
例7:证明:连接AD,因为AD是∠A的平分线,所以∠EAD=∠FAD,又因为BD=BC,所以∠XXX∠DCB,又因为AD⊥DE,所以∠EDB=90°-∠XXX,又因为DF⊥CF,所以∠XXX°-∠DCB,所以∠EDB=∠XXX,又因为∠EAD=∠FAD,所以三角形ADE与三角形ADF全等,所以DE=DF,又因为BE⊥DE,CF⊥DF,所以BE=DEsin∠EDB=DFsin∠FDC=CF,证毕。
例4:根据题意,作AH垂直BC于点H,可以得到HC 的长度为15/2.由于△ABC是等腰三角形,所以∠ACB=∠ABC=30°。
根据正弦定理,可以求得AC的长度为5√3.由于F是AC的中点,所以FC的长度为5/2√3.根据勾股定理,可以得到CG和BE的长度都为5.因此,EG的长度也为5.例5:由于DE垂直于AB,而∠ACB=90°,所以∠BDE=∠ACB=90°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线段的垂直平分线经典习题及答线段的垂直平分线一、选择题(共8小题) 1、如图,在△ABC 中,分别以点A 和点B 为圆心,大于的21AB 的长为半径画孤,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD .若△ADC 的周长为10,AB=7,则△ABC 的周长为( )A 、7B 、 14C 、17D 、20第1题 第2题 第3题2、如图,在Rt △ACB 中,∠C=90°,BE 平分∠ABC ,ED 垂直平分AB 于D .若AC=9,则AE 的值是( )A 、6B 、4C 、6D 、43、如图,直线CD 是线段AB 的垂直平分线,P 为直线CD 上的一点,已知线段PA=5,则线段PB 的长度为( )A 、6B 、5C 、4D 、34、如图,等腰△ABC 中,AB=AC ,∠A=20°.线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则∠CBE 等于( )A 、80°B 、70°C 、60°D 、50°第4题 第 5题 第6题5、如图,直线CP 是AB 的中垂线且交AB 于P ,其中AP=2CP .甲、乙两人想在AB 上取两点D 、E ,使得AD=DC=CE=EB ,其作法如下:(甲)作∠ACP 、∠BCP 之角平分线,分别交AB 于D 、E ,则D 、E 即为所求;(乙)作AC、BC之中垂线,分别交AB于D、E,则D、E即为所求.对于甲、乙两人的作法,下列判断何者正确()A、两人都正确B、两人都错误C、甲正确,乙错误D、甲错误,乙正确6、如图,在Rt△ABC中,∠C=90°,∠B=30°.AB的垂直平分线DE交AB于点D,交BC于点E,则下列结论不正确的是()A、AE=BEB、AC=BEC、CE=DED、∠CAE=∠B7、如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A、△ABC的三条中线的交点B、△ABC三边的中垂线的交点C、△ABC三条角平分线的交点D、△ABC三条高所在直线的交点第7题第8题8、如图,AC=AD,BC=BD,则有()A、AB垂直平分CDB、CD垂直平分ABC、AB与CD互相垂直平分D、CD平分∠ACB二、填空题(共12小题)9、如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=3.则CE长为_________.第9题第10题第11题10、如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=_________度.11如图,等腰三角形ABC中,已知AB=AC,∠A=30°,AB的垂直平分线交AC于D,则∠CBD 的度数为_________°.12、如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC 的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为_________.第12题第13题第14题第15题13、如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB=_________度.14、如图,AB=AC,∠BAC=120°,AB的垂直平分线交BC于点D,那么∠ADC=_________度.15、如图,∠ABC=50°,AD垂直且平分BC于点D,∠ABC的平分线BE交AD于点E,连接EC,则∠AEC的度数是_________度.16、如图,有一腰长为5cm,底边长为4cm的等腰三角形纸片,沿着底边上的中线将纸片剪开,得到两个全等的直角三角形纸片,用这两个直角三角形纸片拼成的平面图形中有_________个不同的四边形.第16题第17题第18题17已知如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC与E,则△ADE 的周长等于_________.18、如图,在四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,且AB=AC,AC=AD,有如下四个结论:①AC⊥BD;②BC=DE;③∠DBC=1/2∠DAC;④△ABC是正三角形.请写出正确结论的序号_________(把你认为正确结论的序号都填上)19、如图,△ABC的周长为19cm,AC的垂直平分线DE交BC于D,E为垂足,AE=3cm,则△ABD的周长为_________cm.20、在△ABC中,∠A=50°,AB=AC,AB的垂直平分线DE交AC于D,则∠DBC的度数是_________°.三、解答题(共6小题)21、如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.22、如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.1、如图,在△ABC中,分别以点A和点B为圆心,大于的AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为()A、7B、14C、17D、20考点:线段垂直平分线的性质。
专题:几何图形问题;数形结合。
分析:首先根据题意可得MN是AB的垂直平分线,即可得AD=BD,又由△ADC的周长为10,求得AC+BC的长,则可求得△ABC的周长.解答:解:∵在△ABC中,分别以点A和点B为圆心,大于的AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.∴MN是AB的垂直平分线,∴AD=BD,∵△ADC的周长为10,∴AC+AD+CD=AC+BD+CD=AC+BC=10,∵AB=7,∴△ABC的周长为:AC+BC+AB=10+7=17.故选C.点评:此题考查了线段垂直平分线的性质与作法.题目难度不大,解题时要注意数形结合思想的应用.2、如图,在Rt△ACB中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D.若AC=9,则AE 的值是()A、6B、4C、6D、4考点:线段垂直平分线的性质;含30度角的直角三角形。
专题:计算题。
分析:由角平分线的定义得到∠CBE=∠ABE,再根据线段的垂直平分线的性质得到EA=EB,则∠A=∠ABE,可得∠CBE=30°,根据含30度的直角三角形三边的关系得到BE=2EC,即AE=2EC,由AE+EC=AC=9,即可求出AC.解答:解:∵BE平分∠ABC,∴∠CBE=∠ABE,∵ED垂直平分AB于D,∴EA=EB,∴∠A=∠ABE,∴∠CBE=30°,∴BE=2EC,即AE=2EC,而AE+EC=AC=9,∴AE=6.故选C.点评:本题考查了线段的垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等.3、如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=5,则线段PB的长度为()A、6B、5C、4D、3考点:线段垂直平分线的性质。
专题:计算题。
分析:由直线CD是线段AB的垂直平分线可以得到PB=PA,而已知线段PA=5,由此即可求出线段PB的长度.解答:解:∵直线CD是线段AB的垂直平分线,P为直线CD上的一点,∴PB=PA,而已知线段PA=5,∴PB=5.故选B.点评:本题主要考查线段垂直平分线的性质,此题比较简单,主要利用了线段的垂直平分线上的点到线段的两个端点的距离相等这个结论.4、如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于()A、80°B、70°C、60°D、50°考点:线段垂直平分线的性质;等腰三角形的性质。
专题:计算题。
分析:先根据△ABC中,AB=AC,∠A=20°求出∠ABC的度数,再根据线段垂直平分线的性质可求出AE=BE,即∠A=∠ABE=20°即可解答.解答:解:∵等腰△ABC中,AB=AC,∠A=20°,∴∠ABC==80°,∵DE是线段AB垂直平分线的交点,∴AE=BE,∠A=∠ABE=20°,∴∠CBE=∠ABC﹣∠ABE=80°﹣20°=60°.故选C.点评:此题主要考查线段的垂直平分线及等腰三角形的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.5、如图,直线CP是AB的中垂线且交AB于P,其中AP=2CP.甲、乙两人想在AB上取两点D、E,使得AD=DC=CE=EB,其作法如下:(甲)作∠ACP、∠BCP之角平分线,分别交AB于D、E,则D、E即为所求;(乙)作AC、BC之中垂线,分别交AB于D、E,则D、E即为所求.对于甲、乙两人的作法,下列判断何者正确()A、两人都正确B、两人都错误C、甲正确,乙错误D、甲错误,乙正确考点:线段垂直平分线的性质。
分析:先根据直线CP是AB的中垂线且交AB于P,判断出△ABC是等腰三角形,即AC=BC,再根据线段垂直平分线的性质作出AD=DC=CE=EB.解答:解:甲错误,乙正确.证明:∵CP是线段AB的中垂线,∴△ABC是等腰三角形,即AC=BC,∠A=∠B,作AC、BC之中垂线分别交AB于D、E,∴∠A=∠ACD,∠B=∠BCE,∵∠A=∠B,∴∠A=∠ACD,∠B=∠BCE,∵AC=BC,∴△ACD≌△BCE,∴AD=EB,∵AD=DC,EB=CE,∴AD=DC=EB=CE.故选D.点评:本题主要考查线段垂直平分线的性质,还涉及等腰三角形的知识点,不是很难.6、如图,在Rt△ABC中,∠C=90°,∠B=30°.AB的垂直平分线DE交AB于点D,交BC于点E,则下列结论不正确的是()A、AE=BEB、AC=BEC、CE=DED、∠CAE=∠B考点:线段垂直平分线的性质;角平分线的性质。
分析:根据线段垂直平分线的性质,得AE=BE;根据等角对等边,得∠BAE=∠B=30°;根据直角三角形的两个锐角互余,得∠BAC=60°,则∠CAE=∠BAE=30°,根据角平分线的性质,得CE=DE.解答:解:A、根据线段垂直平分线的性质,得AE=BE.故该选项正确;B、因为AE>AC,AE=BE,所以AC<BE.故该选项错误;C、根据等角对等边,得∠BAE=∠B=30°;根据直角三角形的两个锐角互余,得∠BAC=60°.则∠CAE=∠BAE=30°,根据角平分线的性质,得CE=DE.故该选项正确;D、根据C的证明过程.故该选项正确.故选B.点评:此题考查了线段垂直平分线的性质、等角对等边的性质、角平分线的性质.由已知条件结合各知识点得到结论对选项逐一验证时解答本题的关键.7、如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A、△ABC的三条中线的交点B、△ABC三边的中垂线的交点C、△ABC三条角平分线的交点D、△ABC三条高所在直线的交点考点:线段垂直平分线的性质。