离心泵特性测定实验指导书

合集下载

离心泵特性曲线的测定实验报告

离心泵特性曲线的测定实验报告

离心泵特性曲线的测定实验报告离心泵特性曲线的测定实验报告引言:离心泵是一种常见的流体机械设备,广泛应用于工业生产、农业灌溉和城市供水等领域。

了解离心泵的特性曲线对于正确选择和使用离心泵至关重要。

本实验旨在通过测定离心泵的特性曲线,分析其性能参数,为离心泵的应用提供参考。

一、实验目的1. 了解离心泵的基本原理和工作特性;2. 掌握离心泵特性曲线的测定方法;3. 分析离心泵的性能参数,如扬程、流量和效率等。

二、实验原理离心泵是利用离心力将液体从低压区域输送到高压区域的装置。

其工作原理是通过转子的旋转产生离心力,使液体在离心力的作用下产生压力,从而实现液体的输送。

离心泵的特性曲线是描述离心泵在不同工况下流量、扬程和效率之间关系的曲线。

三、实验仪器和材料1. 离心泵实验装置;2. 流量计;3. 压力计;4. 温度计。

四、实验步骤1. 连接实验装置:将离心泵与流量计、压力计和温度计等仪器连接好,确保密封良好;2. 开始实验:首先调整离心泵的转速,使其达到设定值。

然后逐渐调整流量计的开度,记录不同流量下的压力和温度数据;3. 测定数据:根据实验装置的读数,得到不同流量下的扬程、压力和温度数据;4. 绘制特性曲线:根据测得的数据,绘制离心泵的特性曲线,包括流量-扬程曲线和效率-流量曲线;5. 分析结果:根据特性曲线,计算出离心泵的最大流量、最大扬程和最佳效率点。

五、实验结果和分析根据实验数据绘制的特性曲线显示了离心泵在不同工况下的性能表现。

根据流量-扬程曲线,我们可以得到离心泵的最大流量和最大扬程。

最大流量是指离心泵能够输送的最大液体流量,而最大扬程是指离心泵能够提供的最大扬程高度。

根据效率-流量曲线,我们可以得到离心泵的最佳效率点。

最佳效率点是指离心泵在该点下的效率最高,能够以最小的能量损失输送液体。

通过分析特性曲线,可以选择合适的工况来提高离心泵的效率和使用寿命。

六、结论通过实验测定离心泵的特性曲线,我们可以得到离心泵在不同工况下的性能参数。

离心泵性能测定实验

离心泵性能测定实验
ρ---水的密度,kg/m3
四、实验装置
离心泵特性曲线测定示意图 1.水槽,2.泵,3.出口阀,4.放空阀,5.涡轮流量计,6.旁路阀,7.漏斗 8.阀门,9.测温点,10.真空测压点,11.出口测压点,12.挡板,13.底阀
五、实验步聚与方法
Q
4


P2
1.4.5
T
P1
.6 3.6
1 关闭出口阀和旁路阀。
2 打开漏斗阀门,向泵内灌水, 灌满水后关闭漏斗阀门。
开启电源总开关,校正仪表,
3 然后开启泵电源开关,泵开 始运转。
先打开出口阀,再打开放空
4 阀进行管内排气,气排好后, 关闭放空阀。
打开出口阀,流量从零开始调节,由小到大取10—15组数 据,包括流量、温度、功率、出口压力和进口真空度 (每调一个流量,请稳定1分钟后读数)。
实验结束,先关闭出口阀,
5 然后关阀泵电源开关,最后 关闭电源总开关号:
实验时间: 年 月 日
序号 流量Q/m3/h 水温t/℃ 压力P2/KPa 真空度P1/MPa 1 2 3 4 5 6 7 8
……
功率/W
实验数据处理结果:
序号 流量Q(m3/s) 1 2 3 4 5 6 7 8
同时,因为吸入口、压出口的管径相同,即u入=u出
于是上式变为:
H
Z出 Z入
P出 P入
g
将 Z出 Z入 和测得的 P出 P入 的值代 入上式即可求得H的值。
⒉ N的测定
功率表测得的功率为电动机的输入功率。由于 泵由电动机直接带动,传动效率可视为1.0,所 以电动机的输出功率等于泵的轴功率。即:
2
3
4
5
6
7

离心泵性能测定实验

离心泵性能测定实验

实验三离心泵性能测定实验一、目的要求1.熟悉离心泵的构造和操作。

2.测定离心泵在一定转速下的特性曲线。

二、实验仪器、设备、工具和材料1.循环水池(1770×1380×1030mm)1个。

2.不锈钢计量槽(790×400×800mm)1个。

3.IS-50-32-125A离心泵1台,进口管为Φ57×3.0mm,出口管为Φ38×4.0mm。

4.涡轮流量计,涡轮流量变送器LW-401只,MDD流量积算仪1台。

5.16S1-W3三相有功功率表1台,用来测量交流三相电机的有功功率,仪表的精确度为1.0级,额定电流为5A,额定电压为380V。

6.玻璃温度计1支(0~50℃)。

7.秒表1块。

离心泵特性曲线测定实验装置的流程,如图3-1所示。

1-水池 2-底阀 3-离心泵 4-出口调节阀 5-涡轮流量计 6-计量槽7-阀 8-进水管 9-灌泵口 10-真空表 11-压力表 12-液位计图3-1 离心泵特性曲线测定实验装置流程图三、实验原理和设计要求离心泵的主要性能参数有流量q v、压头H、效率η和轴功率N,通过实验测出在一定的转速下H-q v、N-q v及η-q v之间的关系,并以曲线表示,该曲线称为离心泵的特性曲线。

特性曲线是确定泵的适宜操作条件和选用离心泵的重要依据。

1.流量q v的测定在一定转速下,用出口阀调节离心泵的流量q v,用涡轮流量计计量离心泵的流量q v,其单位为m3/s。

2.压头H的测定离心泵的压头是指泵对单位重量的流体所提供的有效能量,其单位为m。

在进口真空表和出口压力表两侧压点截面之间,列出机械能衡算式:式中:p1:泵进口处真空表读数;p2:泵出口处压力表读数;h:压力表和真空表两测压截面间的垂直距离,本实验装置=0.13m;c1:吸入管内水的流速,m/s;c2:压出管内水的流速,m/s;g:重力加速度,m/s2。

3.轴功率N离心泵的轴功率是泵轴所需的功率,也就是电动机传给泵轴的功率。

离心泵说明书(电脑)

离心泵说明书(电脑)

实验二离心泵性能测定实验一. 实验设备的特点:1.本实验装置数据稳定,重现性好, 使用方便,安全可靠。

2.本装置体积小,重量轻,设备紧凑,功能齐全;实验采用循环水系统,节约实验费用。

二、设备主要技术数据:1. 设备参数:(1)离心泵:流量Q=4m3/h ,扬程H=8m ,轴功率N=168w(2)真空表测压位置管内径d1=0.025m(3)压强表测压位置管内径d2=0.025m(4)真空表与压强表测压口之间的垂直距离h0=0.41m(5)实验管路d=0.040m(6)电机效率为60%2. 流量测量采用涡轮流量计测量流量,由仪表调节。

3. 功率测量功率表:型号PS-139 精度1.0级4. 泵吸入口真空度的测量真空表:表盘真径-100mm 测量范围-0.1-0MPa 精度1.5级5. 泵出口压力的测量压力表:表盘直径-100mm 测量范围0-0.25MPa 精度1.5级三、实验装置的流程水泵2将水槽1内的水输送到实验系统,用流量调节阀11调节流量,流体经涡轮流量计6计量后,流回储水槽。

流程示意图见图一。

离心泵性能测定实验装置流程示意图1-水箱2-离心泵3-真空表4-回水阀5-压力表6-涡轮流量计7-温度计8-排水阀计9- 入口压力传感器10—出口压力传感器11—智能流量调节阀四、实验方法及步骤1. 向储水槽1内注入蒸馏水。

2. 检查流量调节阀11,压力表5及真空表3的开关是否关闭(应关闭)。

3.启动实验装置总电源,启动离心泵,利用流量仪表缓慢打开调节阀11至全开。

待系统内流体稳定,打开压力表和真空表的开关,方可测取数据。

4.测取数据的顺行可从最大流量至0,或反之。

一般测10~20组数据。

5.每次在稳定的条件下同时记录:流量、压力表、真空表、功率表的读数及流体温度。

6.实验结束,关闭流量调节阀,停泵,切断电源。

五、离心泵性能测定数据表六、使用实验设备注意事项1.该装置电路采用五线三相制配电,实验设备应良好地接地。

离心泵性能实验指导书

离心泵性能实验指导书

离心泵性能实验指导书一、实验目的了解实验设备,掌握离心泵实验方法,测绘离心泵在给定转速下,泵的压头H 、功率P 和效率η与流量Q 的关系曲线,验证理论推导特性曲线的正确性,并分析确定泵的额定工作点。

二、实验装置水泵试验台按其回路系统形式一般分为开式和闭式两种。

本试验台为开式试验装置,如图所示,由电机1、联轴节、传感器2、离心泵3、吸水池13、底阀6、吸入管8、排出管9、涡轮流量变送器10、调节阀门11及排出尾管12组成。

三、实验原理1、流量的测量它是由LW —SO 涡轮流量变送器10及XSF —40B 型流量积算仪配套使用,从而实现流量的测量。

A 、LW —50涡轮流量变送器它是由叶轮组件、导流体、壳体及前置放大器组成,其结构简图见图示、其工作原理是当被测液体流经变送器时。

变送器内的叶轮借助于流体的动能而旋转,叶轮则周期性地改变磁电感应系统中的磁阻值,使通过线圈中的磁通量发生变化而产生脉冲电信号,经前置放大后,送至二次仪表,实现流量的测量。

B 、 S F —40B 流量指示积算仪XSF —40B 能测定电频率讯号的瞬时值,当它与频率输出的流量变送器使用时,可测定流量的瞬时值,瞬时值的指示以HZ (赫兹)表示,量程分二档:0~500HZ 0~3000HZ由涡轮变送器送来的电脉冲信号的频率(f) 与流量(Q)在测量范围内有线性关系:F=ξQ (HZ )其中ξ为涡轮变送器的流量系数,其物理意义是:每流过单位容积(升)的液体所发出的脉冲数(脉冲数/升)所以Q=f(L/S —升/秒) 2.泵的转矩、转速及轴功率P 的测量采用JCIA 转矩转速传感器及其配套的二次仪表JSGS —1转矩转速功率仪配合测量。

A . JCIA 传感器该传感器的基本原理是通过磁电变换,把被测转矩、转速换成具有相位差的两个电信号。

这两个电信号的相位差的变化与被子测转矩的大小成正比,把这两个电信号输入到JSGS —1。

转矩转速功率仪即显示出转矩、转速及功率的大小。

离心泵特性曲线测定实验报告

离心泵特性曲线测定实验报告

离心泵特性曲线测定实验报告一、实验目的。

本实验旨在通过对离心泵进行特性曲线测定,了解离心泵的性能参数,并掌握离心泵的性能曲线绘制方法。

二、实验原理。

离心泵是利用离心力将液体输送到高处的一种泵,其工作原理是通过叶轮的旋转产生离心力,使液体产生压力并输送。

离心泵的性能参数通常包括扬程、流量、效率等,这些参数与泵的特性曲线息息相关。

三、实验仪器与设备。

1. 离心泵。

2. 流量计。

3. 压力表。

4. 水槽。

5. 测量工具。

四、实验步骤。

1. 将离心泵安装在水槽内,并连接好流量计和压力表。

2. 打开水泵,调节流量计阀门,使水泵处于稳定工作状态。

3. 逐步调节水泵的转速,记录不同转速下的流量和扬程数据。

4. 根据实验数据,绘制离心泵的性能曲线。

五、实验数据处理与分析。

根据实验记录的数据,我们得到了不同转速下的流量和扬程数据,利用这些数据可以绘制离心泵的性能曲线。

通过分析曲线,我们可以得到离心泵的最佳工作点,以及在不同工况下的性能表现。

六、实验结果与讨论。

根据实验测得的数据,我们成功绘制出了离心泵的性能曲线。

通过曲线分析,我们可以看到离心泵在不同转速下的流量和扬程的变化规律,这有助于我们选择合适的离心泵工作点,提高泵的效率和节能性能。

七、实验总结。

通过本次实验,我们深入了解了离心泵的特性曲线测定方法,掌握了离心泵的性能参数测定技术。

同时,我们也对离心泵的工作原理和性能特点有了更深入的认识,这对我们今后的工程实践具有重要的指导意义。

八、实验感想。

本次实验让我们对离心泵有了更加直观和深入的了解,同时也增强了我们对实验操作和数据处理的能力。

希望今后能够继续加强实验能力,为将来的工程实践做好充分准备。

以上就是本次离心泵特性曲线测定实验的实验报告,谢谢!。

实验五 离心泵特性曲线测定实验化工实验

实验五   离心泵特性曲线测定实验化工实验

实验五 离心泵特性曲线测定实验一、实验目的1、了解离心泵的构造与操作;2、测定单级离心泵在一定转速下的特性曲线;3、了解离心泵的工作点与流量调节。

二、基本原理离心泵是应用最广泛的一种液体输送设备。

它的主要特性参数包括流量Q ,扬程He ,功率N 和效率η。

这些参数之间存在着一定的关系。

在一定的转速下,He, N, η都随着输液量Q 变化而变化,通过实验测定不同Q, He, N, η的值,就可以作出泵在该转速下的特性曲线。

各种泵的特性曲线均已列入泵的样本中,供选泵时参考。

本实验目的就是要了解和掌握这些曲线的测定方法。

1、流量Q 的测定转速一定,用泵出口阀调节流量,通过转子流量计来测定流量。

2、扬程He 的测定以泵的吸入口真空表和压出口压力表测压口所处管路横截面分别为1-1及2-2,在两截面之间列柏努利方程:∑-+++=+++212222211122f e H gu g p z H g u g p z ρρ (1)若忽略两截面之间的压头损失,则gu u g p p z z H e 2)()()(21221212-+-+-=ρ (2)其中,测压口之间的管路很短,其流动阻力可忽略不计,故H f1-2≈0;p 1、p 2—分别为压力表和真空表测得的读数,MPa ;z 2-z 1—真空表与压力表测压口之间的垂直高度之差,z 2-z 1=h 0, m ;u 1,u 2—分别为泵进、出口管内的流速,m/s 。

ρ—水的密度,1000 kg/m 3。

3、功率N 的测定由功率表直接测定电机的输入功率N (kW)。

电动机的输出功率=电动机的输入功率×电动机的效率 (3)泵的轴功率=功率表的读数×电动机效率 (4)4、效率η的测定泵的效率η为有效功率Ne 与轴功率N 之比,NN e=η (5) 其中:Ne = HeQρg ,[W];He —扬程,m ;Q —流量,m 3/s 。

三、实验装置与流程 1、实验装置的特点使用方便,安全可靠,数据稳定,重现性好。

离心泵特性实验报告

离心泵特性实验报告

离心泵特性测定实验报告一、实验目的1.了解离心泵结构与特性,熟悉离心泵的使用;2.测定离心泵在恒定转速下的操作特性,做出特性曲线; 3.了解电动调节阀、流量计的工作原理和使用方法。

二、基本原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。

由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。

1.扬程H 的测定与计算取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程:f h gug p z H g u g p z ∑+++=+++2222222111ρρ (1)由于两截面间的管长较短,通常可忽略阻力项f h ∑,速度平方差也很小故可忽略,则有 (=H gp p z z ρ1212)-+- 210(H H H ++=表值)(2) 式中: 120z z H -=,表示泵出口和进口间的位差,m ;ρ——流体密度,kg/m 3; g ——重力加速度 m/s 2;p 1、p 2——分别为泵进、出口的真空度和表压,Pa ;H 1、H 2——分别为泵进、出口的真空度和表压对应的压头,m ; u 1、u 2——分别为泵进、出口的流速,m/s ; z 1、z 2——分别为真空表、压力表的安装高度,m 。

由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。

2.轴功率N 的测量与计算k N N ⨯=电 (3)其中,N 电为电功率表显示值,k 代表电机传动效率,可取95.0=k 。

即:电N N 95.0= (4)3.效率η的计算泵的效率η是泵的有效功率Ne 与轴功率N 的比值。

有效功率Ne 是单位时间内流体经过泵时所获得的实际功,轴功率N 是单位时间内泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。

离心泵特性测定实验报告

离心泵特性测定实验报告

离心泵特性测定实验报告一、实验目的1、了解离心泵的结构、工作原理和性能特点。

2、掌握离心泵特性曲线的测定方法。

3、熟悉离心泵在不同工况下的运行特性,为实际应用提供参考。

二、实验原理离心泵主要依靠叶轮的高速旋转产生离心力,将液体甩出叶轮并进入压出室,从而实现液体的输送。

其性能通常用流量 Q、扬程 H、功率 N 和效率η 等参数来描述。

1、流量 Q 的测定通过安装在管路上的流量计来测量离心泵的流量。

2、扬程 H 的测定在离心泵进出口处分别安装压力表,根据压力差计算扬程:\H =(P_2 P_1) /(ρg) +(v_2^2 v_1^2) /(2g)\其中,P1、P2 分别为离心泵进出口处的压力,ρ 为液体密度,g 为重力加速度,v1、v2 分别为离心泵进出口处的流速。

3、功率 N 的测定由电机输入功率乘以电机效率和传动效率得到离心泵的轴功率:\N = N_e \times η_m \times η_v\其中,Ne 为电机输入功率,ηm 为电机效率,ηv 为传动效率。

4、效率η 的计算\η =(ρgQH) / N\三、实验装置1、离心泵实验中采用的是型号为_____的离心泵。

2、管路系统包括吸水管路和压出管路,管路上安装有阀门、流量计、压力表等测量仪表。

3、电机用于驱动离心泵运转。

4、测量仪表流量计采用_____型流量计,精度为_____;压力表采用_____型压力表,量程为_____。

四、实验步骤1、实验前准备(1)检查实验装置的连接是否牢固,各仪表是否正常工作。

(2)向离心泵内灌满液体,排除泵内的气体。

2、启动离心泵(1)接通电源,启动电机,缓慢打开出口阀门,调节流量至一定值。

(2)待离心泵运行稳定后,记录此时的流量、进出口压力、电机功率等数据。

3、改变工况(1)逐步调节出口阀门,改变流量,在不同流量下重复上述测量。

(2)记录多组数据,流量的调节范围应涵盖离心泵的正常工作范围。

4、实验结束(1)关闭出口阀门,切断电源,停止离心泵运行。

离心泵特性曲线测定实验报告

离心泵特性曲线测定实验报告
马达—天平测功仪测定轴功率P计算公式为:
P= = (3)
通过调节阀门开度调节流量,由式(3)求取的数据或扭矩测功仪可直接采集轴功率数据,就可得出泵的轴功率和流量的关系曲线。
3.离心泵效率的计算
离心泵的有效功率可用下式计算:
Pe=qv gH(4)
离心泵的效率为:
(5)
通过调节阀门开度调节流量,由式(5)求取的数据就可得出泵的效率和曲线流量。
=lgA+mlgRe
在双对数坐标中作图,找出直线斜率,即为方程的指数m。在直线上任取一点的函数值代入方程中,即可得到系数A,即:
A=
用图解法,根据实验点确定直线位置有一定的人为性。而用最小二乘法回归,可以得到最佳关联结果。应用微机,对多变量方程进行一次回归,就能同时得到m、n。
(2)对于方程的关联,首先要有Nu、Re、Pr的数据组。其准数定义式分别为:
(3)将出口调节阀开至最大,在流量范围内合理布置实验点,要求由大到小取10组以数据。
(4)将流量调节至某-数值,待系统稳定后读取并记录所需实验数据(包括流量为零时数据)。
(5)将泵出口调节阀关闭后,断开电源开关,停泵开启出口阀.开启进水阀。
(6)关闭各测试仪表,关闭总电源。
六、实验原始数据记录
水温:21.0℃转速:2900r/min
H=(pM-pV)/ρg=8.99(m)
P=2π*9.81Gnl/60=Gnl/0.974=58%
Pe=qvρgH=9.91m3/h×0.998(kg/m3)×8.99m=58%
η=Pe/P=23%/58%=39%
八、实验结果与分析讨论
离心泵有个重要特性:当压力(扬程)很低时,其流量会很大,这从泵的特性曲线上可以看出。而泵的功率与流量成正比,泵起动时,管道内没有压力,则造成泵的流量很大,则泵的功率很大,加上电机、泵的转动部分从静止到高速运转,需要很大的加速度,这样势必造成起动电流很大,因此采取关闭出口阀门的方法,使泵在起动时不输出水量,使泵的功率最小,当泵达到额定转速后,慢慢开启出口阀,逐渐增加水流量,使电机电流逐渐增加到额定电流。

离心泵特性测定实验指导书

离心泵特性测定实验指导书

离心泵特性曲线测定实验指导书第 1 页共6页第 2 页 共 6页离心泵特性曲线测定一、实验目的1.了解离心泵结构与特性,熟悉离心泵的使用; 2.掌握离心泵特性曲线测定方法; 3.了解电动调节阀的工作原理和使用方法。

二、基本原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。

由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。

1.扬程H 的测定与计算取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程:f h gug p z H g u g p z ∑+++=+++2222222111ρρ (1-1)由于两截面间的管长较短,通常可忽略阻力项f h ∑,速度平方差也很小故可忽略,则有 (=H gp p z z ρ1212)-+- 210(H H H ++=表值)(1-2) 式中: 120z z H -=,表示泵出口和进口间的位差,m ;和ρ——流体密度,kg/m 3 ; g ——重力加速度 m/s 2;p 1、p 2——分别为泵进、出口的真空度和表压,Pa ;H 1、H 2——分别为泵进、出口的真空度和表压对应的压头,m ; u 1、u 2——分别为泵进、出口的流速,m/s ; z 1、z 2——分别为真空表、压力表的安装高度,m 。

由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。

第 3 页 共 6页2.轴功率N 的测量与计算k N N ⨯=电 (W ) (1-3)其中,N 电为电功率表显示值,k 代表电机传动效率,可取95.0=k 。

3.效率η的计算泵的效率η是泵的有效功率Ne 与轴功率N 的比值。

有效功率Ne 是单位时间内流体经过泵时所获得的实际功,轴功率N 是单位时间内泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。

实验五 离心泵特性曲线实验

实验五  离心泵特性曲线实验

实验五 离心泵特性曲线实验一、实验目的1、了解离心泵的结构组成及特性, 掌握理性泵的操作方法;2、观察离心泵的气体现象;3、熟悉离心泵操作方法和特性曲线的应用;掌握离心泵特性曲线的测定方法、表示方法, 加深对离心泵性能的了解; 测定离心泵在一定转速下的特性曲线: N-Q 、H-Q 、η-Q 曲线。

二、实验装置本实验用离心泵进行实验,其装置如图1所示, 离心泵用三相电动机带动, ,经整个管线返回水池。

在吸入管进口处装有阀, 以便启动前灌满水;在泵的吸入口和出口分别装有真空表和压力表, 以测量离心泵的进出口处压力;泵的出口管路装有孔板流量计用做流量测量, 并装有阀门以调节流量。

三、实验原理在离心泵进出口管装设真空表和压力表, 在相应的两截面列出机械能衡算方程式(以单位重量液体为衡算基准):f 22222111H 2g u g p z H 2g u g p z +++=+++ρρ (1)1、排水阀;2、吸水阀;3、水槽;4、泵;5、引水漏斗;6、真空表;7、功率表盒;8、压力表;9、文士管; 10、压力计图1 离心泵特性曲线实验装置图由于在测试离心泵特性曲线时, 直管段摩擦损失很小, 其损失归入离心泵的效率, 所以上式(1)的能量损失Hf=0。

令:gp H 11ρ= g p H 22ρ= 120z z h -= (2) 所以式(1)变为:2gu u h H H H 2122021-+++= (3) 式中: H1-泵入口真空表读数, 换算为mH2O 表示;H2-泵出口压力表读数, 换算为mH2O 表示;h0-压力表与真空表测压孔之间的垂直距离, m ;u1-吸入管内水的流速, m /s ;u2-排出管内水的流速, m /s ;g -重力加速度, 9. 8lm /s2。

由式(3)计算出扬程, 此即为离心泵给单位重量流体提供的能量, 由于体积流量可由涡轮流量计测得, 因此流体获得的有效功率Ne 为:Ne = Q ·H ·ρ·g (4)根据离心泵效率的定义及有效功率表达式(5), 有:1000N g QH ρη=(5) 式中: Q -流量, m3/s ;H -压头, m ;ρ-被输送液体密度, kg /m3;N -泵的轴功率, kW 。

离心泵性能综合实验说明书(1)

离心泵性能综合实验说明书(1)

离心泵性能综合实验指导书一、概述生产中所处理的原料及产品,大多为流体。

按照生产工艺的要求,制造产品时往往需要把他们依次输送到各设备内进行反应;产品又常需输送到贮罐内贮存。

如果欲达到上述所规定的条件,把流体从一个设备输送到另一个设备,需要输送设备要给流体以一定的速度。

生产中,由于各种因素的制约,如场地、设备费用、工艺要求等等;各设备之间流体流动需要消耗能量,流体以一定速度在管内流动亦需要能量。

这样,就必须给流体提供能量的输送设备。

我们把为液体提供能量的输送设备称为泵,为气体提供能量的输送设备称为风机及压缩机。

泵种类很多,按照工作原理的不同,分为离心泵、往复泵、旋转泵、旋涡泵等几种;风机及压缩机有通风机、鼓风机、压缩机、真空泵等。

其作用均是:对流体做功,提高流体的压强。

本实验主要介绍离心泵。

离心泵一般用电机带动,在启动前需向壳内罐满被输送的液体,启动电机后,泵轴带动叶轮一起旋转,充满叶片之间的液体也随着转动,在离心力的作用下,液体从叶轮中心被抛向外缘的过程中便获得了能量,使叶轮外缘的液体静压强提高,同时增加了液体的动能。

液体离开叶轮进入泵壳后,由于泵壳中流道逐渐加宽,液体的流速逐渐降低,一部分动能转化为静压能,使泵出口处液体的压强进一步提高,于是液体以较高的压强,从泵的排出口进入管路,输送至所需的场所。

一个完整的流体输送系统所必须包括的主要设备及仪表有:1)泵(或风机、压缩机):对流体作功,提高流体压强:2)进、出口阀门;控制流体流量;3)压力表;测量流体的压强;4)管道;流体流动的通道。

二、设备性能与主要技术参数1、本实验装置主要由:离心泵、功率表、数字压力表、涡轮流量计、蓄水箱、操作台架等组成。

2、离心泵采用ISG25-125型立式离心泵,电机功率:0.75KW,转速:2900r/min,流量:4m3/h,扬程:20m。

3、数字压力表采用YS-100型量程为-0.1~0.6Mpa。

4、涡轮流量计流量:1~10 m3/h。

离心泵特性曲线测定实验

离心泵特性曲线测定实验
实验准备。 启动泵。 调节流量。 读取数据。 要求:测定6-8组数据,最大和最小流量一定要进行测
定。 思考:管路特性曲线如何测定?
五、数据记录和处理
液体温度: 液体密度: 泵进出口高0.18m
仪表常数K:77.902次/L 电机频率: 电机效率:60%
qV
360f0m3 100K0
/h
离心泵特性曲线测定实验
ቤተ መጻሕፍቲ ባይዱ
一、实验目的
1)熟悉离心泵的结构、特性和操作,掌握其工作原 理,了解常用的测压仪表。
2)掌握离心泵特性曲线的测定方法,测定离心泵在 一定转速下的特性曲线。
3)掌握用作图法处理实验数据的方法。
二、基本原理
离心泵的主要性能参数:
泵的流量、压头、轴功率、效率和气蚀余量。 离心泵的特性曲线:
Hp2gp116 0h0u2 22gu12
轴功 N电 率机 N 电 功 电率 机 电 效
HV q10% 0gHVq10% 0
10N 2
N
qV m3/s
要求: 数据记录在表格里,表头标明符号与单位。数
据表格手写。 数据处理要有一组计算示例。 在坐标纸上绘图,或利用相关软件绘图。注明
坐标轴名称,要有数据点。 对实验结果进行讨论分析。
离心泵的H、η 、 P都与离心泵的qV有关
H~ qV 、η~ qV 、 P~ qV
注意:特性曲线随转速而变。 各种型号的离心泵都有本身独自的特性曲线,
但形状基本相似,具有共同的特点 。
1)H~ qV曲线:表示泵的压头与流量的关系,离心泵的压头 普遍是随流量的增大而下降(流量很小时可能有例外)。 2)P~ qV曲线:表示泵的轴功率与流量的关系,离心泵的轴 功率随流量的增加而上升,流量为零时轴功率最小。

离心泵特性曲线的测定实验

离心泵特性曲线的测定实验

离心泵特性曲线的测定实验一、实验内容测定一定转速下离心泵的特性曲线。

二、实验目的1、了解离心泵的结构特点,熟悉并掌握离心泵的工作原理和操作方法。

2、掌握离心泵特性曲线的测定方法。

三、基本原理泵是输送液体的机械。

工业选泵时,一般根据生产工艺要求的扬程和流量,考虑输送液体的性质和蹦的结构特点及工作特性,来决定绷得类型和型号。

对一定的类型的泵而言,蹦的特性主要是指泵在一定转速下,其扬程、功率和效率与流量的关系。

离心泵的特性,通常与泵的结构、泵的转速以及输送液体的性质有关,影响因素很多。

因此,离心泵的特性只能采用饰演的方法实际测定。

如果在泵的进口管和出口管处分别安装上真空表和压力表,则可根据柏努 利方程得到扬程的计算公式:gu u h g P P H e 22122012-++-=ρ ①式①中,h 0—两测压点截面之间的垂直距离,m ; P 1——真空表所处截面的绝对压力,MPa ; P 2——压力表所处截面的绝对压力,MPa ; u 1—泵进口管流速,m/s ; u 2—泵出口管流速,m/s ;H e —泵的实际扬程,m 。

由于压力表和真空表的读数均是表示两测压点处的表压,因此,式①可表示为:gu u h H H H e 221220-+++=真压 ②其中, gP H ρ2=压 ③ gP H ρ1=真 ○4 式③、 ○4中的 P 2 和 P 1 分别是压力表和真空表的显示值。

离心泵的效率为泵的有效功率与轴功率之比值,轴N N e=η ○5 式○5中,η—离心泵的效率;Ne —离心泵的有效功率,kW ; N 轴—离心泵的轴功率,kW 。

有效功率可用下式计算][W g Q H N e e ρ= ○6 或][102KW Q H N e e ρ=○7 泵的轴功率是由泵配置的电机提供的,而输入电机的电能在转变成机械能时亦存在一定的损失,因此,工程上有意义的是测定离心泵的总效率(包括电机效率和传动效率)。

电总N N e=η ○8 实验时,使泵在一定转速下运转,测出对应于不同流量的扬程、电机输入功 率、效率等参数值,将所得数据整理后用曲线表示,即得到泵的特性曲线。

5离心泵的特性曲线及管路特性曲线的测量实验指导书

5离心泵的特性曲线及管路特性曲线的测量实验指导书

实验五 离心泵特性曲线及管路特性曲线测定、实验目的:1. 熟悉离心泵的操作方法。

2. 掌握离心泵特性曲线和管路特性曲线的测定方法、表示方法,加深对离心 泵性能的了解。

、实验内容:1. 熟悉离心泵的结构与操作方法。

2. 测定某型号离心泵在一定转速下的特性曲线。

3. 测定流量调节阀某一开度下管路特性曲线。

三、实验原理:1. 离心泵特性曲线的测定:离心泵是最常见的液体输送设备。

在一定的型号和转速下,离心泵的扬程 H、轴功率N 及效率n 均随流量Q 而改变。

通常通过实验测出H-Q N-Q 及n — Q 关 系,并用曲线表示之,称为特性曲线。

特性曲线是确定泵的适宜操作条件和选用 泵的重要依据。

泵特性曲线的具体测定方法如下:⑴H 的测定:在泵的吸入口和排出口之间列柏努利方程2 2Z入詈H订出當卷Hf〜d 、F 出一P 入 u 2出一u 2入H=z 出一Z 入=h H -上式中H f 入曲是泵的吸入口和压出口之间管路内的流体流动阻力,与柏努力 方程中其它项比较,H f 入曲值很小,故可忽略。

于是上式变为:将测得的Z 出-Z 入和P 出- P 入值以及计算所得的u 入 ,u 出代入上式,即可求得Ho⑵N 测定:(8)F 出- P 入2g(9)功率表测得的功率为电动机的输入功率。

由于泵由电动机直接带动,传动效(10)1率可视为1,所以电动机的输出功率等于泵的轴功率。

即:泵的轴功率N=电动机的输出功率,kW电动机输出功率=电动机输入功率X 电动机效率; 泵的轴功率二功率表读数X 电动机效率,kW⑶ 测定二NeN HQPg HQP Ne(Kw)1000 102 式中: 一泵的效率;N—泵的轴功率,kWNe-泵的有效功率,kW H —泵的扬程,m C —泵的流量,nVs ; "-水的密度,kg/m 3。

2. 管路特性曲线的测定:当离心泵安装在特定的管路系统中工作时,实际的工作压头和流量不仅与离 心泵本身的性能有关,还与管路特性有关,也就是说,在液体输送过程中,泵和 管路二者相互制约的。

离心泵特性曲线实验指导书

离心泵特性曲线实验指导书

离心泵特性曲线测定实验指导书一、实验目的掌握离心泵特性曲线(H -Q 曲线,N -Q 曲线,η-Q 曲线)的测定方法。

二、实验装置泵1泵2阀4阀35阀1.阀261342VA1、计量水箱2、回流阀3、储水箱4、放水阀5、孔板流量计6、万向漏斗三、实验原理和方法1 、H -Q 曲线利用阀门1、2调节流量,测定H 、Q 的数值。

Q 用计量水箱和秒表测定;H 可由下式要求测试和计算。

式中:M —压力表读数[MPa]V —真空表读数[KPa]Z —压力表至真空表接出点之间的高度[m]V1,V2—泵进出口流速,一般进口和出口管径相同,d2=d1, V2=V1,所以逐次改变阀门1、2的开度,测得不同的Q值和其相应的水头H值,在Q—H坐标系中得出相应的若干测点,将这些点光滑的连接起来,即得水泵H-Q的曲线。

2 、N-Q曲线测定泵在不同流量Q时的泵输入功率N,(为电机的输出功率),绘制N-Q曲线。

水泵电机轴功率由下式计算:N=UIcosφηm1000(kw)式中:I —电流表读数(A)U —电压表读数(V)cosφ—功率因数,取0.77ηm —电机效率,取0.65从Q=0开始,得到不同的流量Q值,对应不同的扬程H,将这些点光滑的连接起来,即为水泵的H-Q曲线。

根据不同流量时速的功率N,绘制N-Q曲线。

逐次改变阀门1、2的开度,测得不同的Q i值和其相应的泵实用功率N值,在Q—N坐标系中得出相应的若干测点,将这些点光滑地连接起来,即为泵的N-Q曲线。

四、实验步骤1、实验前准备(1)记录装置的常数:Z、L值(2)接上电源(3)为水箱加水2、进行实验(1)开动电机,使水泵运转,此时阀门1、2关闭,为空载状态,测读压力表读数Mo,真空表读数Vo电流I、和电压V。

(2)略开阀门1、2水泵开始给水,并利用计量水箱和秒表测量在此工况下的流量Q。

(3)逐次调节阀门1、2,重复上述步骤,测读相应数据。

实验数据可记录在如下表格中:(4)根据测试数据,在坐标系中点出实验点,最后光滑的绘制出H-Q、N-Q和η-Q 曲线。

THXLX-1型离心泵特性曲线测定实验指导书

THXLX-1型离心泵特性曲线测定实验指导书

实用文案Tian huangTeaching Apparatus系列流体力学与化工原理THXLX-1 型ifugal Pump Characteristic Curve Measureme nt Experime ntalEquipmentceNVIJ天煌教仪版本离心泵特性曲线测定实验装置实验指导书天煌教仪浙江天煌科技实业有限公司离心泵特性曲线测定实验、实验目的1. 了解离心泵的结构特性,掌握离心泵的操作方法;2.压力、流量等传感器的使用方法;3.转速下的运行特性,测定特性曲线。

二、实验装置与流程实验装置如图1所示,由水箱、离心泵、涡轮流量计、电动调节阀、压力表、真空表、转 速传感器、功率表和不锈钢进、出管道等组成。

1 —底阀;2 —引水阀;3 —离心泵;4 —真空表前切断阀;5 —真空表;6 —负压传感器;7 —压力表前切断阀;8 —压力表;9 —压力传感器;10 —温度传感器;11 —涡轮流量传感器;12 —电动调节阀;13 —切断阀;14 —旁路阀;15 —转速表;16 —功率表;17 —水箱 图1离心泵特性曲线测定实验装置流程示意图水从水箱17经泵底阀1吸入,流过吸入管路到离心泵3,经离心泵增压后,流经涡轮流量计11、电动调节阀12返回水箱,循环使用。

在泵的进、出口管线上分别装有真空表 5、负 压传感器6、压力表8和压力传感器9,在它们的进口管线上分别装有真空表前切断阀 4和压力表前切断阀7。

管路内流量由涡轮流量计 11测量,并由出口电动调节阀12调节流量。

所用离心泵型号为IT-6,涡轮流量传感器型号为 LWGY-40,电动调节阀的开度和流量均可在无纸记录仪上操作和读数。

了解无纸记录仪及测定离心泵在恒定三、监控工程1 .有组态要求的上位监控机软件安装1)软件环境要求:“力控5.0 ”组态软件安装在Windows NT4.0/Windows2000/Wi ndows XP 简体中文版操作系统下使用。

5离心泵的特性曲线及管路特性曲线的测量实验指导书

5离心泵的特性曲线及管路特性曲线的测量实验指导书

实验五 离心泵特性曲线及管路特性曲线测定一、实验目的:1.熟悉离心泵的操作方法。

2.掌握离心泵特性曲线和管路特性曲线的测定方法、表示方法,加深对离心泵性能的了解。

二、实验内容:1.熟悉离心泵的结构与操作方法。

2.测定某型号离心泵在一定转速下的特性曲线。

3.测定流量调节阀某一开度下管路特性曲线。

三、实验原理:1.离心泵特性曲线的测定:离心泵是最常见的液体输送设备。

在一定的型号和转速下,离心泵的扬程H 、轴功率N 及效率η均随流量Q 而改变。

通常通过实验测出H —Q 、N —Q 及η—Q 关系,并用曲线表示之,称为特性曲线。

特性曲线是确定泵的适宜操作条件和选用泵的重要依据。

泵特性曲线的具体测定方法如下: (1) H 的测定:在泵的吸入口和排出口之间列柏努利方程出入入出出入入入-+++=+++f H g u g P Z H g u g P Z 2222ρρ (7)()出入入出入出入出-+-+-+-=f H gu u g P P Z Z H 222ρ (8)上式中出入-f H 是泵的吸入口和压出口之间管路内的流体流动阻力,与柏努力方程中其它项比较,出入-f H 值很小,故可忽略。

于是上式变为:()gu u g P P Z Z H 222入出入出入出-+-+-=ρ (9)将测得的()入出Z Z -和入出P P -值以及计算所得的出入u u ,代入上式,即可求得H 。

(2) N 测定:功率表测得的功率为电动机的输入功率。

由于泵由电动机直接带动,传动效率可视为1,所以电动机的输出功率等于泵的轴功率。

即:泵的轴功率 N=电动机的输出功率,kW ;电动机输出功率=电动机输入功率×电动机效率; 泵的轴功率=功率表读数×电动机效率,kW 。

(3) η 测定 NNe=η (10) )(1021000Kw HQ g HQ Ne ρρ== (11)式中:η—泵的效率; N —泵的轴功率,kW ;Ne-泵的有效功率,kW ; H —泵的扬程,m ; Q —泵的流量,m 3/s ; ρ-水的密度,kg/m 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离心泵特性曲线测定实验指导书
第 1 页共6页
第 2 页 共 6页
离心泵特性曲线测定
一、实验目的
1.了解离心泵结构与特性,熟悉离心泵的使用; 2.掌握离心泵特性曲线测定方法; 3.了解电动调节阀的工作原理和使用方法。

二、基本原理
离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。

由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。

1.扬程H 的测定与计算
取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程:
f h g
u
g p z H g u g p z ∑+++=+++222
2222111ρρ (1-1)
由于两截面间的管长较短,通常可忽略阻力项f h ∑,速度平方差也很小故可忽略,则有 (=H g
p p z z ρ1
212)-+
- 210(H H H ++=表值)
(1-2) 式中: 120z z H -=,表示泵出口和进口间的位差,m ;和
ρ——流体密度,kg/m 3 ; g ——重力加速度 m/s 2;
p 1、p 2——分别为泵进、出口的真空度和表压,Pa ;
H 1、H 2——分别为泵进、出口的真空度和表压对应的压头,m ; u 1、u 2——分别为泵进、出口的流速,m/s ; z 1、z 2——分别为真空表、压力表的安装高度,m 。

由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。

第 3 页 共 6页
2.轴功率N 的测量与计算
k N N ⨯=电 (W ) (1-3)
其中,N 电为电功率表显示值,k 代表电机传动效率,可取95.0=k 。

3.效率η的计算
泵的效率η是泵的有效功率Ne 与轴功率N 的比值。

有效功率Ne 是单位时间内流体经过泵时所获得的实际功,轴功率N 是单位时间内泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。

泵的有效功率Ne 可用下式计算:
g HQ Ne ρ= (1-4)
故泵效率为 %100⨯=N
g
HQ ρη (1-5) 4.转速改变时的换算
泵的特性曲线是在定转速下的实验测定所得。

但是,实际上感应电动机在转矩改变时,其转速会有变化,这样随着流量Q 的变化,多个实验点的转速n 将有所差异,因此在绘制特性曲线之前,须将实测数据换算为某一定转速n '下(可取离心泵的额定转速2900rpm )的数据。

换算关系如下:
流量 n
n Q
Q '
=' (1-6) 扬程 2
)(
n
n H H '=' (1-7) 轴功率 3
)(
n
n N N '=' (1-8) 效率 ηρρη==''=
'N
g
QH N g H Q ' (1-9)
三、实验装置与流程
离心泵特性曲线测定装置流程图如下:
1-水箱;2-离心泵;3-温度传感器;4-泵进口压力传感器;5-灌泵口;6-泵出口压力传感器;7-涡轮流量计;8-转速传感器;9-电动调节阀;10-旁路闸阀;11-管路进水阀;
图1 实验装置流程示意图
四、实验步骤及注意事项
1.实验步骤:
(1)清洗水箱,并加装实验用水。

通过灌泵口给离心泵灌水,排出泵内气体。

(2)检查各阀门开度和仪表自检情况,试开状态下检查电机和离心泵是否正常运转。

开启离心泵之前先将管路进水阀11打开,电动调节阀9的开度开到0,当泵达到额定转速后方可逐步调节电动调节阀的开度。

(3)实验时,通过组态软件或者仪表逐渐增加电动调节阀9的开度以增大流量,待各仪表读数显示稳定后,读取相应数据。

离心泵特性实验主要获取实验数据为:流量Q、泵进口压力p1、
第 4 页共6页
泵出口压力p2、电机功率N电、泵转速n,及流体温度t和两测压点间高度差H0(H0=0.1m)。

(4)测取10组左右数据后,可以停泵,同时记录下设备的相关数据(如离心泵型号,额定流量、额定转速、扬程和功率等),停泵前先将出口阀关闭。

(5)旁路闸阀10可以在电动调节阀失灵的时候做“替补”,工业上应用广泛,保证了装置的正常实验。

2.注意事项:
(1)一般每次实验前,均需对泵进行灌泵操作,防止离心泵气缚。

同时注意定期对泵进行保养,防止叶轮被固体颗粒损坏。

(2)泵运转过程中,勿触碰泵主轴部分,因其高速转动,可能会缠绕并伤害身体接触部位。

(3)不要在出口阀关闭状态下(或者电动调节阀开度在0时)长时间使泵运转,一般不超过三
分钟,否则泵中液体循环温度升高,易生气泡,使泵抽空。

五、数据处理
(1)记录实验原始数据如下表1:
实验日期:实验人员:学号:装置号:离心泵型号=,额定流量=,额定扬程=,额定功率=
泵进出口测压点高度差H0 =,流体温度t =
序号流量Q
m3/h
泵进口压力p1
kPa
泵出口压力p2
kPa
电机功率N电
kW
泵转速n
r/min
(2)根据原理部分的公式,按比例定律校合转速后,计算各流量下的泵扬程、轴功率和效率,如表2:
第 5 页共6页
第 6 页 共 6页
六、实验报告
1.分别绘制一定转速下的H ~Q 、N ~Q 、η~Q 曲线 2.分析实验结果,判断泵最为适宜的工作范围。

七、思考题
1. 试从所测实验数据分析,离心泵在启动时为什么要关闭出口阀门?
2. 启动离心泵之前为什么要引水灌泵?如果灌泵后依然启动不起来,你认为可能的原因是什
么?
3. 为什么用泵的出口阀门调节流量?这种方法有什么优缺点?是否还有其他方法调节流量?
4. 泵启动后,出口阀如果不开,压力表读数是否会逐渐上升?为什么?
5. 正常工作的离心泵,在其进口管路上安装阀门是否合理?为什么?
6. 试分析,用清水泵输送密度为1200Kg/m3
的盐水,在相同流量下你认为泵的压力是否变化?
轴功率是否变化?
序号 流量Q ’ m 3/h
扬程H ’
m
轴功率N ’
kW
泵效率η’
%。

相关文档
最新文档