气敏传感器公开课ppt
合集下载
半导体气敏传感器分类 ppt课件
化石油气、煤气和天然气。α-Fe2O3对水蒸气和乙醇 不灵敏,特别适合做家庭可燃气报警器。
2)氧气传感器 Nb2O5对氧气敏感。用其制成氧传感器检测汽车发
动机和锅炉等所排废气中的氧气分压强,以控制其最佳 燃烧状态,以达节能目的。
ppt课件
9
气敏元件外形
其他可燃性 气体传感器
酒精传感器
ppt课件
10
K2线圈失电,其常闭触点K2-2闭合,发光二极管VD1通,发绿光,能点火 起动发动机。
若司机酗酒,气敏器件的阻值急剧下降,使Ua为低电平,U1为高电 平,U3为为低电平,继电器K2线圈通电,K2-2常开触头闭合,发光二极管
VD2通,发红光,以示警告,同时常闭触点K2-1断开,无法起动发动机。 若司机拔出气敏器件,继电器K1线圈失电,其常开触电K1-1断开,仍
ppt课件
7
2)温湿度特性
SnO2传感器的阻值随温度、湿度上升而有规律地减小。 因此除尽量保持恒温、恒湿外,其有效措施是选用温湿
度特性好的气敏元件及在电路中进行温湿度补偿。
3)初期恢复特性及初期稳定特性
经短期存放再通电时,传感器电阻值有短暂的急剧变化
(减小),这一特性称为初期恢复特性,它与元件种类、存
ppt课件
4
A、烧结型气体传感器的结构与符号
烧结型气体传感器的加热方式分为直热式和间热式两种, 其结构与符号如图4-2-1、4-2-2所示。
直热式的加热 丝兼作电极。其结 构简单、成本低、 功耗小;但热容量 小,易受环境气流 影响;因加热丝热 胀冷缩,易使之与 材料接触不良;在 测量电路中,信号 电路和加热电路相 互干扰。
ppt课件
2
2、半导体气敏传感器分类:
半导体气敏传感器的类型可分电阻型和非电阻型 两大类。电阻型有表面电阻型如氧化锡(SnO2)、氧 化锌(ZnO)等和体电阻型(Fe2O3)系列;非电阻型 有MOS场效应管型、二极管型(表面电流型——氢敏传 感器)和固体电解质型。
2)氧气传感器 Nb2O5对氧气敏感。用其制成氧传感器检测汽车发
动机和锅炉等所排废气中的氧气分压强,以控制其最佳 燃烧状态,以达节能目的。
ppt课件
9
气敏元件外形
其他可燃性 气体传感器
酒精传感器
ppt课件
10
K2线圈失电,其常闭触点K2-2闭合,发光二极管VD1通,发绿光,能点火 起动发动机。
若司机酗酒,气敏器件的阻值急剧下降,使Ua为低电平,U1为高电 平,U3为为低电平,继电器K2线圈通电,K2-2常开触头闭合,发光二极管
VD2通,发红光,以示警告,同时常闭触点K2-1断开,无法起动发动机。 若司机拔出气敏器件,继电器K1线圈失电,其常开触电K1-1断开,仍
ppt课件
7
2)温湿度特性
SnO2传感器的阻值随温度、湿度上升而有规律地减小。 因此除尽量保持恒温、恒湿外,其有效措施是选用温湿
度特性好的气敏元件及在电路中进行温湿度补偿。
3)初期恢复特性及初期稳定特性
经短期存放再通电时,传感器电阻值有短暂的急剧变化
(减小),这一特性称为初期恢复特性,它与元件种类、存
ppt课件
4
A、烧结型气体传感器的结构与符号
烧结型气体传感器的加热方式分为直热式和间热式两种, 其结构与符号如图4-2-1、4-2-2所示。
直热式的加热 丝兼作电极。其结 构简单、成本低、 功耗小;但热容量 小,易受环境气流 影响;因加热丝热 胀冷缩,易使之与 材料接触不良;在 测量电路中,信号 电路和加热电路相 互干扰。
ppt课件
2
2、半导体气敏传感器分类:
半导体气敏传感器的类型可分电阻型和非电阻型 两大类。电阻型有表面电阻型如氧化锡(SnO2)、氧 化锌(ZnO)等和体电阻型(Fe2O3)系列;非电阻型 有MOS场效应管型、二极管型(表面电流型——氢敏传 感器)和固体电解质型。
6.1气敏传感器基本原理及测量电路.pptx
阻的特性影响很大,因此加热器的加热电压必须恒定。 如前所述,MQN型气敏传感器使用时气敏电阻工作时必须加热到200300℃,
其目的是加速被测气体的化学吸附和电离的过程并烧去气敏电阻表面的污物(起清洁 作用)。
— 20 —
8. 气体检测使用注意事项
2)温度补偿 半导体气敏电阻在气体中的电阻值与温度和湿度有关。当温度和湿度较低时,电
测量转换电路
据分压比定律,Uo不受温度影响,减小了
测量误差。
汽车尾气分析
二氧化钛氧浓度传感器可 用于汽车或燃烧炉排放气 体中的氧浓度测量。
观察右图看说明非线性特性对 浓度超限报警是否有利?
气敏半导体的灵敏度特性曲线
— 18 —
— 19 —
8. 气体检测使用注意事项
1)气敏电阻使用时一定要加热 一般由变压器二次绕组交流输出或直流电压提供低电压加热。加热温度对气敏电
阻值较大;温度和湿度较高时,电阻值较小。因此,即使气体浓度相同,电阻值也会 不同,需要进行温度补偿。
如前所述,TiO2氧浓度传感器的测量转换电路中,与TiO2气敏电阻串联的热敏电 阻Rt 起温度补偿作用。
— 21 —
8. 气体检测使用注意事项
• 温度补偿中实用的热敏电阻工作原理 • 半导体热敏电阻简称热敏电阻,是一种新型的半导体测温元件。 • 热敏电阻是利用半导体的电阻值随温度的变化而显著变化的特性实现测
气敏传感器类型:
半导体气敏传感器 接触燃烧式气敏传感器 电化学气敏传感器
2.气敏传感器外形
— 5—
半导体气敏传感器应用最多。它的 应用主要有:一氧化碳气体的检测、 瓦斯气体的检测、煤气的检测、氟 利昂的检测、呼气中乙醇的检测、 人体口腔口臭的检测等等。
— 6—
其目的是加速被测气体的化学吸附和电离的过程并烧去气敏电阻表面的污物(起清洁 作用)。
— 20 —
8. 气体检测使用注意事项
2)温度补偿 半导体气敏电阻在气体中的电阻值与温度和湿度有关。当温度和湿度较低时,电
测量转换电路
据分压比定律,Uo不受温度影响,减小了
测量误差。
汽车尾气分析
二氧化钛氧浓度传感器可 用于汽车或燃烧炉排放气 体中的氧浓度测量。
观察右图看说明非线性特性对 浓度超限报警是否有利?
气敏半导体的灵敏度特性曲线
— 18 —
— 19 —
8. 气体检测使用注意事项
1)气敏电阻使用时一定要加热 一般由变压器二次绕组交流输出或直流电压提供低电压加热。加热温度对气敏电
阻值较大;温度和湿度较高时,电阻值较小。因此,即使气体浓度相同,电阻值也会 不同,需要进行温度补偿。
如前所述,TiO2氧浓度传感器的测量转换电路中,与TiO2气敏电阻串联的热敏电 阻Rt 起温度补偿作用。
— 21 —
8. 气体检测使用注意事项
• 温度补偿中实用的热敏电阻工作原理 • 半导体热敏电阻简称热敏电阻,是一种新型的半导体测温元件。 • 热敏电阻是利用半导体的电阻值随温度的变化而显著变化的特性实现测
气敏传感器类型:
半导体气敏传感器 接触燃烧式气敏传感器 电化学气敏传感器
2.气敏传感器外形
— 5—
半导体气敏传感器应用最多。它的 应用主要有:一氧化碳气体的检测、 瓦斯气体的检测、煤气的检测、氟 利昂的检测、呼气中乙醇的检测、 人体口腔口臭的检测等等。
— 6—
《气敏传感器》课件
相对误差
指传感器测量值与真 实值之间的差距,较 小的相对误差表示传 感器的测量精度较高。
工作温度范围
指传感器能够正常工 作的温度范围,对应 不同应用场景需要选 择适合的工作温度范 围。
响应时间
指传感器从检测到气 体变化到输出检测结 果所需的时间,较短 的响应时间意味着传 感器更加敏捷。
气敏传感器的应用
• 空气质量监测 • 工业制程控制 • 安全监测 • 智能家居
气敏传感器的发展趋势
1 微型化
2 智能化
ห้องสมุดไป่ตู้
随着技术的进步,气敏传感器正在朝着更小、 更集成的趋势发展,以适应日益复杂的应用 场景。
借助人工智能和物联网技术,气敏传感器正 在实现智能化,能够自动分析和判断气体状 况,并提供准确的监测结果。
3 多功能化
《气敏传感器》PPT课件
本课件介绍气敏传感器的原理、分类、制备方法、性能指标、应用和未来发 展趋势,帮助你深入了解这一重要领域。
什么是气敏传感器
气敏传感器是一种可以感知气体成分、浓度或相应的物理性质的装置。通过 检测气体的变化,它可以帮助我们了解环境中的气体状况。
气敏传感器的分类
基于传感材料分类
1 薄膜制备法
通过沉积敏感材料在基底上,形成薄膜结构的制备方法。
2 溶胶凝胶法
将溶胶中的成分凝胶化,制备敏感材料的方法。
3 高压方法
利用高压技术将材料转变为具有特殊结构和性质的制备方法。
气敏传感器的性能指标
灵敏度
指传感器对气体的响 应程度,越高说明相 同浓度的气体变化能 够被传感器更好地捕 捉到。
根据传感器所使用的敏感材 料的不同,可以将气敏传感 器分为多种类型,如金属氧 化物传感器、半导体传感器 等。
KC04050204m01气敏传感器的检测电路教学课件.pptx
2. 辅助电路 采用温度补偿电路,可减少气敏元件的温度系数 引起的误差; 设置延时电路,防止通电初期,因气敏元件阻值 大幅度变化造成误报; 使用加热失效通知电路,防止加热器失效导致漏 报现象。
6
检测电路的组成
气敏传感器的 检测电路
3. 检测工作电路 是气敏元件应用电路的主体部分,气敏元 件阻值随着环境中可燃气体浓度变化而变化 ,检测工作电路将电阻值的变化进行适当的 处理和转换,产生报警信号或者送至后续电 路进行处理。
7
气敏传感器的原理性测试电路一
气敏传感器的 检测电路
➢ 加热电源电路采用交流/直流5V; ➢ 气敏传感器与RL串联连接; ➢ 输出信号取自RL的串联分压,为模
拟信号;
8
气敏传感器的原理性测试电路二
气敏传感器的 检测电路
➢ 加热电源电路采用直流5V; ➢ 气敏传感器与R2串联连接; ➢ 输出信号既有模拟量输出AOUT,
燃气检测仪
家用燃气报警器
4
工业可燃气体监控
检测电路的组成气敏传感器的 Nhomakorabea测电路1. 电源电路 一般气敏元件的工作电压不高(3~10V) ,其工作电压,特别是供给加热的电压,必 须稳定。否则,将导致加热器的温度变化幅 度过大,使气敏元件的工作点漂移,影响检 测准确性。
5
检测电路的组成
气敏传感器的 检测电路
又经比较器U1A进行比较后,产生 的开关量输出DOUT;
9
气敏传感器的实际应用电路
气敏传感器的 检测电路
01 01
10
谢谢关注!
11
传感器及应用
1
传感器及应用
项目五 物联网中的气体检测
• 任务1:驾驶员酒精气体的检测 • 任务2:可燃气体的检测 • 任务3:物联网中的气体检测-知识拓展
MEMS 气体传感器简介ppt课件
.
图4 FA IMS气体传感器原理
Thank you!
Here is a question of
time.
.
1.1气体声光效应法 气体的光声效应(photoacoustic spectroscopy)早在1880
年就由贝尔发现,但直到20世纪80年代,随着激光器和高灵敏麦克 风技术的成熟, 才在气体传感器领域得到研究。
光声气体传感器由调制光源(modulated light source)、 光声池(photoacoustic cell )、高灵敏麦克风(High sensitive microphone )系统3个主要部分组成(如图1) 。
.
4、高场非对称波形离子迁移谱(Field Asymmetric Ion Mobility Spectrometry )技术气体传感器
FA IMS技术是基于离子迁移谱技术( IMS)发展而来, 原理如图4。载 气与样品混合电离后经过离子门送到离子飘移区,在高压(大于11 000V / cm)交变电场的作用下,不同离子的迁移速性有关,因此,高电场可以区分低电场迁移相近的 离子。对于交变电场再增加一个直流偏置电压,抵消待检测气体离子的高 电场迁移效果,即可使得特定离子通过飘移区达到检测电极。在样品检测 过程中对直流偏置电压进行扫描即可分析样品气体中的成分。
2.2电导型气体传感器
2.3谐振式微悬臂梁气体传感器
.
2.1声表面波型气体传感器
比较电路
产生声表面波
图3 SAW气体传感器原理图
.
接收声表面波
3、Gas sensor for inflammable and explosive gas catalytic combustion
催化燃烧式气体传感器的原理源自宏观的气体传感 器,主要用于甲烷, CO等易燃易爆气体检测领域。通过 MEMS技术将催化剂制做为薄膜,对其加热。当空气中有易 燃易爆气体存在时,气体分子在催化剂表面发生催化氧化 反应(catalytic oxidation reaction),并放出热量。经 过热敏元件将温度变化转换为电信号,与参比薄膜进行比 对得到气体体积分数变化,热敏元件常用热敏电阻器,常用 催化剂有氧化Pd, Pt等。MEMS工艺实现催化剂薄膜化、 微型化,并对加热电极、热敏元件进行集成,从而有效减小 传感器的体积。
图4 FA IMS气体传感器原理
Thank you!
Here is a question of
time.
.
1.1气体声光效应法 气体的光声效应(photoacoustic spectroscopy)早在1880
年就由贝尔发现,但直到20世纪80年代,随着激光器和高灵敏麦克 风技术的成熟, 才在气体传感器领域得到研究。
光声气体传感器由调制光源(modulated light source)、 光声池(photoacoustic cell )、高灵敏麦克风(High sensitive microphone )系统3个主要部分组成(如图1) 。
.
4、高场非对称波形离子迁移谱(Field Asymmetric Ion Mobility Spectrometry )技术气体传感器
FA IMS技术是基于离子迁移谱技术( IMS)发展而来, 原理如图4。载 气与样品混合电离后经过离子门送到离子飘移区,在高压(大于11 000V / cm)交变电场的作用下,不同离子的迁移速性有关,因此,高电场可以区分低电场迁移相近的 离子。对于交变电场再增加一个直流偏置电压,抵消待检测气体离子的高 电场迁移效果,即可使得特定离子通过飘移区达到检测电极。在样品检测 过程中对直流偏置电压进行扫描即可分析样品气体中的成分。
2.2电导型气体传感器
2.3谐振式微悬臂梁气体传感器
.
2.1声表面波型气体传感器
比较电路
产生声表面波
图3 SAW气体传感器原理图
.
接收声表面波
3、Gas sensor for inflammable and explosive gas catalytic combustion
催化燃烧式气体传感器的原理源自宏观的气体传感 器,主要用于甲烷, CO等易燃易爆气体检测领域。通过 MEMS技术将催化剂制做为薄膜,对其加热。当空气中有易 燃易爆气体存在时,气体分子在催化剂表面发生催化氧化 反应(catalytic oxidation reaction),并放出热量。经 过热敏元件将温度变化转换为电信号,与参比薄膜进行比 对得到气体体积分数变化,热敏元件常用热敏电阻器,常用 催化剂有氧化Pd, Pt等。MEMS工艺实现催化剂薄膜化、 微型化,并对加热电极、热敏元件进行集成,从而有效减小 传感器的体积。
气敏传感器专题知识宣讲培训课件
-4-
半导体式气敏传感器
电阻式
烧结型 薄膜型 厚膜型
参考书 上图片 理解
二极管气敏传感器
非电阻式
MOS二极管气敏传感器
Pd(铂)—MOSFET气敏传感器
1/25/2021
气敏传感器专题知识宣讲
-5-
2、电阻式气敏传感器的结构
SnO2系列气敏元件有烧结型、薄膜型和厚膜型三种。烧结型
应用最广泛性。其敏感体用粒径很小(平均粒径≤1μm)的SnO2
1
4
2
SnO2烧结体
5
瓷绝缘管
1/25/2021
(a)结构
(b)符号
旁热式气敏器件结构及符号
气敏传感器专题知识宣讲
3 -7-
3、基本原理
– 是利用气体在半导体表面的氧化还原反应导致敏感元件 阻值变化而制成的。举个例子
H2+CuO == H2O + Cu – 当半导体器件被加热到稳定状态,在气体接触半导体表
如前所述,TiO2氧浓度传感器的测量转换电路中, 与TiO2气敏电阻串联的热敏电阻Rt 起温度补偿作用 。
1/25/2021 应用电子气学敏院传感器专题知《识传宣感讲器技术》
-20-
温度补偿中实用的热敏电阻工作原理 半导体热敏电阻简称热敏电阻,是一种新型的半导测
温元件。
热敏电阻是利用半导体的电阻值随温度的变化而显 著变化的特性实现测温的。半导体热敏电阻有很高 的电阻温度系数,其灵敏度比热电阻高得多。而且 体积可以做得很小,故动态特性好,特别适于在100℃~300℃之间测温。
似苹果的香味,这是由于芳香族的碳氢气体同瓦斯同时涌出的缘故。 瓦斯对空气的相对密度是0.554,在标准状态下瓦斯的密度为 0.716kg/m³,瓦斯的渗透能力是空气的1.6倍,难溶于水,不助燃也 不能维持呼吸,达到一定浓度时,能使人因缺氧而窒息,并能发生燃 烧或爆炸。瓦斯在煤体或围岩中是以游离状态和吸着状态存在的。
气敏传感器公开课ppt知识讲稿
气敏传感器公开课ppt知 识讲稿
• 气敏传感器概述 • 气敏传感器的技术原理 • 气敏传感器的应用实例 • 气敏传感器的发展趋势与挑战 • 结论
01
气敏传感器概述
定义与工作原理
定义
气敏传感器是一种检测特定气体的传感器,它能将气体种类和浓度信息转换成 电信号,以便进一步处理和控制。
工作原理
气敏传感器的工作原理主要是基于不同气体对传感器材料的吸附、反应或化学 变化,从而改变传感器的电阻、电容、电感等参数,最终输出电信号。
01
02
03
原理
利用敏感材料吸附气体分 子后,其电阻值发生变化, 通过测量电阻值来检测气 体浓度。
敏感材料
金属氧化物、导电聚合物 等。
应用场景
广泛应用于可燃气体、有 毒气体、酒精等检测。
非电阻型气敏传感器
原理
利用敏感材料吸附气体分子后,其电 导率、电容、频率等参数发生变化, 通过测量这些参数来检测气体浓度。
敏感材料
应用场景
广泛应用于二氧化碳、湿度、氧气等 检测。
半导体金属氧化物、高分子材料等。
气敏传感器的性能参数
灵敏度
指传感器输出变化量与 输入变化量之比,越高
越好。
响应时间
稳定性
选择性
指传感器输出变化达到 稳定值所需的时间,越
短越好。
指传感器在长时间内保 持性能参数不变的能力,
越强越好。
指传感器对不同气体的 敏感程度,越高越好。
隐患。
工作原理
气敏传感器通过敏感材料吸附烟雾 颗粒,并检测其电阻变化来探测烟 雾。
应用场景
家庭、办公室、工厂、仓库等场所 的火灾预警系统。
天然气泄漏检测
天然气泄漏检测
• 气敏传感器概述 • 气敏传感器的技术原理 • 气敏传感器的应用实例 • 气敏传感器的发展趋势与挑战 • 结论
01
气敏传感器概述
定义与工作原理
定义
气敏传感器是一种检测特定气体的传感器,它能将气体种类和浓度信息转换成 电信号,以便进一步处理和控制。
工作原理
气敏传感器的工作原理主要是基于不同气体对传感器材料的吸附、反应或化学 变化,从而改变传感器的电阻、电容、电感等参数,最终输出电信号。
01
02
03
原理
利用敏感材料吸附气体分 子后,其电阻值发生变化, 通过测量电阻值来检测气 体浓度。
敏感材料
金属氧化物、导电聚合物 等。
应用场景
广泛应用于可燃气体、有 毒气体、酒精等检测。
非电阻型气敏传感器
原理
利用敏感材料吸附气体分子后,其电 导率、电容、频率等参数发生变化, 通过测量这些参数来检测气体浓度。
敏感材料
应用场景
广泛应用于二氧化碳、湿度、氧气等 检测。
半导体金属氧化物、高分子材料等。
气敏传感器的性能参数
灵敏度
指传感器输出变化量与 输入变化量之比,越高
越好。
响应时间
稳定性
选择性
指传感器输出变化达到 稳定值所需的时间,越
短越好。
指传感器在长时间内保 持性能参数不变的能力,
越强越好。
指传感器对不同气体的 敏感程度,越高越好。
隐患。
工作原理
气敏传感器通过敏感材料吸附烟雾 颗粒,并检测其电阻变化来探测烟 雾。
应用场景
家庭、办公室、工厂、仓库等场所 的火灾预警系统。
天然气泄漏检测
天然气泄漏检测
气敏传感器公开课ppt教材
烟雾报警器
酒精传感器
二氧化碳传感器
气敏电阻外形
其他可燃性 气体传感器
酒精传感器
酒精测试仪
呼气管
家庭用液化气 报警器
一氧化碳传感器
其他气体传感器
甲烷传感器
NH3传感器
二氧化碳浓度传感器
氧浓度传感器外形
可用于汽车 尾气测量
汽车尾气分析
有毒气体传感器的使用
二、认识气敏传感器
1、气敏传感器的性能要求:
三、气体传感器的应用
气敏传感器应用较广泛的是用于防灾报警,如可制成液化 石油气、天燃气、城市煤气、煤矿瓦斯以及有毒气体等方 面的报警器。也可用于对大气污染进行监测以及在医疗上 用于对O2、CO2等气体的测量。生活中则可用于空调机、烹 调装置、酒精浓度探测等方面。
(1)、电源电路 一般气敏元件的工作电压不高 (3V~10V),其工作电压,特别是供 给加热的电压,必须稳定。否则,将 导致加热器的温度变化幅度过大,使 气敏元件的工作点漂移,影响检测准 确性。
(1) MOS二极管气敏器件
MOS二极管气敏元件制作过程
是在P型半导体硅片上,利用热氧化工艺生成一层厚度为50~100 nm 的二氧化硅 (SiO 2) 层,然后在其上面蒸发一层钯 (Pd) 的金 属薄膜,作为栅电极,如图9-5(a)所示。
M(Pd) C SiO2 Ca P—Si Cs O (a ) (b ) (c) b a
以质量浓度的单位(mg/m3)表示,中国的标准规范也都是采
用质量浓度单位(如:mg/m3)表示。
什么是气敏传感器?
气敏传感器是用来检测气体类别、浓度和成分的传感器。
由于气体种类繁多, 性质各不相同,不可能用一种传感器检测所
有类别的气体,因此,能实现气-电转换的传感器种类很多,按 构成气敏传感器材料可分为半导体和非半导体两大类。目前实 际使用最多的是半导体气敏传感器。
《气湿敏传感器》课件
03
CATALOGUE
气湿敏传感器的发展趋势
提高灵敏度和精度
优化材料结构
通过改进材料结构,提高气湿敏传感器的灵敏度和响应速度。
表面修饰与功能化
采用表面修饰和功能化技术,提高气湿敏传感器的选择性,降低交 叉敏感性。
微纳技术与纳米材料
利用微纳加工技术和纳米材料,减小气湿敏传感器的尺寸,提高其 精度和稳定性。
农业领域的应用
在农业生产中,气湿敏传感器可 用于监测和控制温室内的气体和 湿度,以提高农作物的生长和产
量。
通过监测温室内的气体成分和湿 度,可以及时调整环境条件,满 足不同植物生长的需求,提高农
作物的品质和产量。
此外,气湿敏传感器还可以用于 农田环境的监测,例如检测土壤 中的气体和湿度,以指导农民合
加强基础研究与技术突破
总结词
基础研究和技术突破是推动气湿敏传感器发展的重要驱动力。
详细描述
加强基础研究,深入了解气湿敏传感器的原理和机制,探索新的材料、工艺和设 计方法。同时,鼓励技术突破,推动传感器技术的创新和进步,为气湿敏传感器 的发展注入新的活力。
拓展应用领域和范围
总结词ቤተ መጻሕፍቲ ባይዱ
拓展应用领域和范围是气湿敏传感器发展的必然趋势。
理施肥和灌溉。
医疗领域的应用
在医疗领域,气湿敏传感器可用 于监测患者的呼吸和环境中的气 体成分,以协助医生诊断和治疗
。
对于某些疾病,如哮喘、慢性阻 塞性肺病等,气湿敏传感器可以 用于监测患者的呼吸状况,及时 发现异常情况并采取相应措施。
在手术室和重症监护室等医疗环 境中,气湿敏传感器可以用于监 测空气中的气体成分和湿度,以
详细描述
为了提高气湿敏传感器的稳定性与可靠性,可以采用先进的 材料和制造工艺,优化传感器结构,提高其长期稳定性和重 复性。此外,加强质量检测和控制也是必要的措施。
最新7.2气敏传感器解析ppt课件
• 4、稳定性:当检测的气体浓度不变时,气敏元件的 输出也应保持不变,但实际情况会受其他条件的变化 影响而发生变化,这种在其他条件发生变化时气敏元 件的输出特性保持不变的能力,称为稳定性。
• 5、温度特性:气敏元件的特性随温度的变化而发生 变化的特性称为温度特性,消除这种影响的方法是采 用温度补偿。
由等效电路可知,总电容C
也是栅偏压的函数。其函数 关系称为该类MOS二极管的 C—V特性。由于钯对氢气 (H2)特别敏感,当钯吸附了 H2以后,会使钯的功函数降 低,导致MOS管的C – V特 性向负偏压方向平移,如右 图(c)所示。根据这一特性就 可用于测定H2的浓度。
一、Pd-MOSFET气敏传感器
三、接触燃烧式气体传感器
• 1、结构:管芯、支架、引脚组成。 • 2、原理:敏感材料铂丝遇到空气中的可燃气体时,由
于可燃气体与氧发生氧化反应,产生反应热,使铂丝 温度升高,具有正温度系数的铂丝电阻会相应增大, 而铂丝电阻值的增大量与可燃气体的浓度成正比。这 样只要测出铂丝的电阻增大量就能检测出空气中的可 燃气体浓度。 • 可以检测常见的可燃气体,如H2、CO、CH4、丙酮、 丙烷等。在低温度时,输出信号与可燃气体的浓度之 间具有良好的线性关系,而不受空气中水蒸气的影响。
(G)、源极(S)之间加正向偏压VGS,且VGS>VT(阈值电压)
时,则栅极氧化层下面的硅从P型变为N型。这个N型区就 将源极和漏极连接起来,形成导电通道,即为N型沟道, MOSFET进入工作状态。若此时,在源(S)漏(D)极之间加
电压VDS,则源极和漏极之间有电流(IDS)流过。IDS随VDS和 VGS 的大小而变化,其变化规律即为MOSFET的V-A特性。 当VGS<VT时,MOSFET的沟道未形成.故无漏源电流。
• 5、温度特性:气敏元件的特性随温度的变化而发生 变化的特性称为温度特性,消除这种影响的方法是采 用温度补偿。
由等效电路可知,总电容C
也是栅偏压的函数。其函数 关系称为该类MOS二极管的 C—V特性。由于钯对氢气 (H2)特别敏感,当钯吸附了 H2以后,会使钯的功函数降 低,导致MOS管的C – V特 性向负偏压方向平移,如右 图(c)所示。根据这一特性就 可用于测定H2的浓度。
一、Pd-MOSFET气敏传感器
三、接触燃烧式气体传感器
• 1、结构:管芯、支架、引脚组成。 • 2、原理:敏感材料铂丝遇到空气中的可燃气体时,由
于可燃气体与氧发生氧化反应,产生反应热,使铂丝 温度升高,具有正温度系数的铂丝电阻会相应增大, 而铂丝电阻值的增大量与可燃气体的浓度成正比。这 样只要测出铂丝的电阻增大量就能检测出空气中的可 燃气体浓度。 • 可以检测常见的可燃气体,如H2、CO、CH4、丙酮、 丙烷等。在低温度时,输出信号与可燃气体的浓度之 间具有良好的线性关系,而不受空气中水蒸气的影响。
(G)、源极(S)之间加正向偏压VGS,且VGS>VT(阈值电压)
时,则栅极氧化层下面的硅从P型变为N型。这个N型区就 将源极和漏极连接起来,形成导电通道,即为N型沟道, MOSFET进入工作状态。若此时,在源(S)漏(D)极之间加
电压VDS,则源极和漏极之间有电流(IDS)流过。IDS随VDS和 VGS 的大小而变化,其变化规律即为MOSFET的V-A特性。 当VGS<VT时,MOSFET的沟道未形成.故无漏源电流。
新型传感器原理及应用ppt课件
半导瓷材料的表面电阻下降。由此可见,不论是N型还是P型 半导瓷,其电阻率都随湿度的增加而下降。
5.1 气敏、湿敏传感器
2) 正特性湿敏半导瓷的导电原理 正特性材料的结构、电子能量状态与负特性材料有所不 同。当水分子附着在半导瓷的表面使电动势变负时,导 致其表面层电子浓度下降,但这还不足以使表面层的空 穴浓度增加到出现反型程度,此时仍以电子导电为主。 于是,表面电阻将由于电子浓度下降而加大,这类半导 瓷材料的表面电阻将随湿度的增加而加大。
5.1 气敏、湿敏传感器
2. 半导体陶瓷湿敏电阻
通常,用两种以上的金属氧化物半导体材料混合烧结而成为多孔陶瓷,这 些材料有ZnO-LiO2-V2O5系、Si-Na2O-V2O5系、TiO2-MgO-Cr2O3系和Fe3O4等, 前三种材料的电阻率随湿度增加而下降,故称为负特性湿敏半导体陶瓷, 最后一种材料的电阻率随湿度增加而增大,故称为正特性湿敏半导体陶瓷 (以下简称半导瓷)。
1—ZnO-LiO2-V2O5;2—Si-Na2OV2O5;3—TiO2-MgO-Cr2O3
Fe3O4半导瓷正湿敏特性图
5.1 气敏、湿敏传感器
1) 负特性湿敏半导瓷的导电原理
由于水分子中的氢原子具有很强的正电场,当水在半导瓷表面吸 附时,就有可能从半导瓷表面俘获电子,使半导瓷表面带负电。 如果该半导瓷是P型半导体,则由于水分子吸附使表面电动势下降, 将吸引更多的空穴到达其表面,于是,其表面层的电阻下降。若 该半导瓷为N型,则由于水分子的附着使表面电动势下降,如果表 面电动势下降较多,不仅使表面层的电子耗尽,同时吸引更多的 空穴达到表面层,有可能使到达表面层的空穴浓度大于电子浓度, 出现所谓表面反型层,这些空穴称为反型载流子。它们同样可以 在表面迁移而表现出电导特性。因此,由于水分子的吸附,使N型
5.1 气敏、湿敏传感器
2) 正特性湿敏半导瓷的导电原理 正特性材料的结构、电子能量状态与负特性材料有所不 同。当水分子附着在半导瓷的表面使电动势变负时,导 致其表面层电子浓度下降,但这还不足以使表面层的空 穴浓度增加到出现反型程度,此时仍以电子导电为主。 于是,表面电阻将由于电子浓度下降而加大,这类半导 瓷材料的表面电阻将随湿度的增加而加大。
5.1 气敏、湿敏传感器
2. 半导体陶瓷湿敏电阻
通常,用两种以上的金属氧化物半导体材料混合烧结而成为多孔陶瓷,这 些材料有ZnO-LiO2-V2O5系、Si-Na2O-V2O5系、TiO2-MgO-Cr2O3系和Fe3O4等, 前三种材料的电阻率随湿度增加而下降,故称为负特性湿敏半导体陶瓷, 最后一种材料的电阻率随湿度增加而增大,故称为正特性湿敏半导体陶瓷 (以下简称半导瓷)。
1—ZnO-LiO2-V2O5;2—Si-Na2OV2O5;3—TiO2-MgO-Cr2O3
Fe3O4半导瓷正湿敏特性图
5.1 气敏、湿敏传感器
1) 负特性湿敏半导瓷的导电原理
由于水分子中的氢原子具有很强的正电场,当水在半导瓷表面吸 附时,就有可能从半导瓷表面俘获电子,使半导瓷表面带负电。 如果该半导瓷是P型半导体,则由于水分子吸附使表面电动势下降, 将吸引更多的空穴到达其表面,于是,其表面层的电阻下降。若 该半导瓷为N型,则由于水分子的附着使表面电动势下降,如果表 面电动势下降较多,不仅使表面层的电子耗尽,同时吸引更多的 空穴达到表面层,有可能使到达表面层的空穴浓度大于电子浓度, 出现所谓表面反型层,这些空穴称为反型载流子。它们同样可以 在表面迁移而表现出电导特性。因此,由于水分子的吸附,使N型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SnO2 烧结体 1 2 3 4 Ir—Pd 合金丝 (加热器兼电极) (a ) 1 3 1 3
2
4 (b )
2 4
图 9-3 直热式气敏器件的结构及符号 (a) 结构; (b) 符号
旁热式气敏器件的结构及符号如图9-4所示
引线 引线 电极 加热丝 电极 绝缘瓷管 (a ) SnO2 烧结体 加热丝 (b ) 测量 电极 加热丝
0.5 3 3
(单位: mm)
氧化物半导体 Pt电极 氧化铝基片
7 器件加热用的加热器(印制 厚膜电阻)
(c)
图9-2 气敏半导体传感器的器件结构 (a) 烧结型气敏器件; (b) 薄膜型器件; (c) 厚膜型器件
由于加热方式一般有直热式和旁热式两种,因而形成了直热
式和旁热式气敏元件。直热式气敏器件的结构及符号如图 9-3 所 示。
2、常见气敏传感器的分类
3、半导体气敏传感器的机理
半导体式气敏传感器: 利用半导体气敏元件同气体接触,造成半导体的电 导率等物理性质发生变化的原理来检测特定气体的 成分或者浓度
材料:气敏电阻的材料是金属氧化物半导体; 其中P型:如氧化钴、 氧化铅、氧化铜、氧化镍等。 N型:如氧化锡、氧化铁、氧化锌、氧化钨等。 合成材料有时还渗入了催化剂, 如钯(位(mg/m3)表示,中国的标准规范也都是采
用质量浓度单位(如:mg/m3)表示。
什么是气敏传感器?
气敏传感器是用来检测气体类别、浓度和成分的传感器。
由于气体种类繁多, 性质各不相同,不可能用一种传感器检测所
有类别的气体,因此,能实现气-电转换的传感器种类很多,按 构成气敏传感器材料可分为半导体和非半导体两大类。目前实 际使用最多的是半导体气敏传感器。
当氧化型气体吸附到N型半导体(SnO2, ZnO)上, 还原型气体吸附到P型半导体(CrO3)上时,将 使半导体载流子减少,而使电阻值增大。 当还原型气体吸附到N型半导体上,氧化型气体 吸附到P型半导体上时,则载流子增多,使半 导体电阻值下降。
器件电阻 / k 响应时间约1 min 以内 1 00 稳定状 态 氧化型
(2)、辅助电路 由于气敏元件自身的特性(温度系数、湿度系数、初期稳定性等),在
设计、制作应用电路时,应予以考虑。如采用温度补偿电路,减少气敏元
件的温度系数引起的误差;设置延时电路,防止通电初期,因气敏元件阻 值大幅度变化造成误报;使用加热器失效通知电路,防止加热器失效导致
漏报现象。
(3)、检测工作电路 这是气敏元件应用电路的主体部分。 下图是设有串联蜂鸣器的应用电路。随着环境中可燃性气体浓度的增加,气 敏元件的阻值下降到一定值后,流入蜂鸣器的电流,足以推动其工作而发出 报警信号。
V
图 9-5 MOS二极管结构和等效电路 (a) 结构; (b) 等效电路; (c) C-U特性
(2)MOS场效应晶体管气敏器件 钯-MOS场效应晶体管(PdMOSFET)的结构, 参见图9-6。
S
Pd栅
D Al SiO2
N+ P—Si
N+
图 9-6 钯—MOS场效应晶体管的结构
5、气敏元件的基本特性
图 9-4 旁热式气敏器件的结构及符号 (a) 旁热式结构; (b) 符号
2. 非电阻型半导体气敏传感器 非电阻型气敏器件也是半导体气敏传感器之一。它是利用 MOS二极管的电容 —电压特性的变化以及 MOS场效应晶体管 (MOSFET) 的阈值电压的变化等物性而制成的气敏元件。由
于类器件的制造工艺成熟,便于器件集成化,因而其性能稳定 且价格便宜。 利用特定材料还可以使器件对某些气体特别敏感。
气敏传感器
提问:同学们都会知道哪些是有毒有害的气体呢? 煤气、CO、甲烷、烟雾
是的,这些气体当达到一定浓度的时候都会危机到我们的生命。
2、那我们要如何预防有害气体对我们的生命安全造成的伤害呢? 装个对这些有害气体敏感的报警器。这章要介绍的气敏传感器就是 这种报警器电路里一个很重要的器件。接下来我们就开始介绍气 敏传感器。
2.ZnO(氧化锌)系气敏元件 ZnO 系气敏元件对还原性气体有较高的灵敏度。它的工作温度比 SnO2 系气敏元件约高 100 ℃左右,因此不及 SnO2 系元件应用普遍。同样 如此,要提高 ZnO系元件对气体的选择性,也需要添加 Pt和Pd等添加剂。 例如.在 ZnO 中添加 Pd ,则对 H 2 和 CO 呈现出较高的灵敏度;而对丁烷 (C4H10)、丙烷(C4H8)、乙烷(C4H6)等烷烃类气体则灵敏度很低,如下图(a) 所示。如果在 ZnO 中添加 Pt,则对烷烃类气体有很高的灵敏度,而且含 碳量越多、灵敏度越高,而对H2和CO气体则灵敏度很低,如下图(b)所示。
烟雾报警器
酒精传感器
二氧化碳传感器
气敏电阻外形
其他可燃性 气体传感器
酒精传感器
酒精测试仪
呼气管
家庭用液化气 报警器
一氧化碳传感器
其他气体传感器
甲烷传感器
NH3传感器
二氧化碳浓度传感器
氧浓度传感器外形
可用于汽车 尾气测量
汽车尾气分析
有毒气体传感器的使用
二、认识气敏传感器
1、气敏传感器的性能要求:
B
R
~220V 氖管 气敏传感器
BZ 蜂鸣器
家用可燃性气体报警器电路
各类易燃、易爆、有毒、有害气体的检测和报警都可 以用相应的气敏传感器及其相关电路来实现,如气体 成分检测仪、气体报警器、空气净化器等已用于工厂、 矿山、家庭、娱乐场所等。
家用燃气泄漏报警器
案例1.燃气报警器
下图是一种最简单的家用气体报警器电路。气-电转换器件采 用测试回路高电压的直热式气敏元件TGS109。当室内可燃性气体增 加时,由于气敏元件接触到可燃性性气体而其阻值降低,这样流经 回路的电流便增加,可直接驱动蜂鸣器报警。 设计报警时,应合理选择开始报警浓度,选低了,灵敏度高, 容易产生误报;选高了,又容易造成漏报,起不到报警效果
( 2 ) SnO 2 材料的物理、化学稳定性较好,与其它类型气 敏元件(如接触燃烧式气敏元件)相比,SnO2气敏元件 寿命长、稳定性好、耐腐蚀性强。 ( 3 ) SnO 2 气敏元件对气体检测是可逆的,而且吸附、脱 附时间短,可连续长时间使用。 ( 4 )元件结构简单,成本低,可靠性较高,机械性能良 好。 ( 5 )对气体检测不需要复杂的处理设备。可将待检测气 体浓度可通直接转变为电信号,信号处理电路简单。
• 当半导体的功函数小于吸附分子的亲和力时, 吸附分 子将从器件夺得电子而变成负离子吸附, 半导体表面 呈现电荷层。氧气等具有负离子吸附倾向的气体被称 为氧化型气体或电子接收性气体。
• 如果半导体的功函数大于吸附分子的离解能,吸附分 子将向器件释放出电子,而形成正离子吸附。具有正 离子吸附倾向的气体有石油蒸气、酒精蒸气、甲烷、 乙烷、煤气、天然气、氢气等。 它们被称为还原型气 体或电子供给性气体,也就是在化学反应中能给出电 子,化学价升高的气体;多数属于可燃性气体。
气敏传感器的作用相当于我们的 气体,并判定气体的浓度,从而
鼻子,可“嗅”出空气中某种特定的 实现对气体成分的检测和监测,
以改善人们的生活水平,保障人们
的生命。
化工
环境污染、火灾报警
煤矿
一、与气敏相关的基本概念
气体浓度的表示?
对环境大气(空气)中污染物浓度的表示方法有两种: 1、质量浓度表示法:每立方米空气中所含污染物的质量 数,即mg/m3 2、体积浓度表示法:一百万体积的空气中所含污染物的 体积数,即ppm 大部分气体检测仪器测得的气体浓度都是体积浓度 (ppm)。而按中国规定,特别是环保部门,则要求气体浓度
三、气体传感器的应用
气敏传感器应用较广泛的是用于防灾报警,如可制成液化 石油气、天燃气、城市煤气、煤矿瓦斯以及有毒气体等方 面的报警器。也可用于对大气污染进行监测以及在医疗上 用于对O2、CO2等气体的测量。生活中则可用于空调机、烹 调装置、酒精浓度探测等方面。
(1)、电源电路 一般气敏元件的工作电压不高 (3V~10V),其工作电压,特别是供给 加热的电压,必须稳定。否则,将导 致加热器的温度变化幅度过大,使气 敏元件的工作点漂移,影响检测准确 性。
1. SnO2系
(1)气敏元件灵敏度特性 烧结型、薄膜型和厚膜型SnO2气敏器件对 气体的灵敏度特性如右图所示。气敏元件 的阻值 R C 与空气中被测气体的浓度 C 成对 数关系: log RC=m logC+n 式中n与气体检测灵敏度有关,除了随材料 和气体种类不同而变化外,还会由于测量 温度和添加剂的不同而发生大幅度变化。 1 1 m 为气体的分离度,随气体浓度变化而变 m 3 2 化,对于可燃性气体, 。 在气敏材料SnO2中添加铂(Pt)或钯(Pd)等作为催化剂,可以提高其灵 敏度和对气体的选择性。添加剂的成分和含量、元件的烧结温度和工作 温度都将影响元件的选样性。
器件加热
50
5 2 min 4 min 加热开关 大气中
还原型
吸气时
图 9-1 N型半导体吸附气体时器件阻值变化图
规则总结:
氧化型气体+N型半导体:载流子数下降, 电阻增加 还原型气体+N型半导体:载流子数增加, 电阻减小 氧化型气体+P型半导体:载流子数增加, 电阻减小 还原型气体+P型半导体:载流子数下降, 电阻增加
(1) MOS二极管气敏器件
MOS二极管气敏元件制作过程
是在P型半导体硅片上,利用热氧化工艺生成一层厚度为50~100 nm 的二氧化硅 (SiO 2) 层,然后在其上面蒸发一层钯 (Pd) 的金 属薄膜,作为栅电极,如图9-5(a)所示。
M(Pd) C SiO2 Ca P—Si Cs O (a ) (b ) (c) b a
影响 SnO2气敏效应的主要因素
(1)SnO2结构组成对气敏效应的影响 SnO2具有金红石型晶体结构,用于制作气敏元件的SnO2, 一般都是偏离化学计量比的,在SnO2中有氧空位或锡间隙 原子。这种结构缺陷直接影响气敏器件特征。一般地说, SnO2中氧空位多,气敏效应明显。 (2)SnO2中添加物对气敏效应的影响 实验证明, SnO 2 中的添加物质,对其气敏效应有明显影响。 表7-3列出了具有不同添加物质的 SnO 2 气敏元件的气敏效应。 (3)烧结温度和加热温度对气敏效应的影响 实验证明,制作元件的烧结温度和元件工作时的加热温度, 对其气敏性能有明显影响。因此,利用元件这一特性可进 行选择检测。
2
4 (b )
2 4
图 9-3 直热式气敏器件的结构及符号 (a) 结构; (b) 符号
旁热式气敏器件的结构及符号如图9-4所示
引线 引线 电极 加热丝 电极 绝缘瓷管 (a ) SnO2 烧结体 加热丝 (b ) 测量 电极 加热丝
0.5 3 3
(单位: mm)
氧化物半导体 Pt电极 氧化铝基片
7 器件加热用的加热器(印制 厚膜电阻)
(c)
图9-2 气敏半导体传感器的器件结构 (a) 烧结型气敏器件; (b) 薄膜型器件; (c) 厚膜型器件
由于加热方式一般有直热式和旁热式两种,因而形成了直热
式和旁热式气敏元件。直热式气敏器件的结构及符号如图 9-3 所 示。
2、常见气敏传感器的分类
3、半导体气敏传感器的机理
半导体式气敏传感器: 利用半导体气敏元件同气体接触,造成半导体的电 导率等物理性质发生变化的原理来检测特定气体的 成分或者浓度
材料:气敏电阻的材料是金属氧化物半导体; 其中P型:如氧化钴、 氧化铅、氧化铜、氧化镍等。 N型:如氧化锡、氧化铁、氧化锌、氧化钨等。 合成材料有时还渗入了催化剂, 如钯(位(mg/m3)表示,中国的标准规范也都是采
用质量浓度单位(如:mg/m3)表示。
什么是气敏传感器?
气敏传感器是用来检测气体类别、浓度和成分的传感器。
由于气体种类繁多, 性质各不相同,不可能用一种传感器检测所
有类别的气体,因此,能实现气-电转换的传感器种类很多,按 构成气敏传感器材料可分为半导体和非半导体两大类。目前实 际使用最多的是半导体气敏传感器。
当氧化型气体吸附到N型半导体(SnO2, ZnO)上, 还原型气体吸附到P型半导体(CrO3)上时,将 使半导体载流子减少,而使电阻值增大。 当还原型气体吸附到N型半导体上,氧化型气体 吸附到P型半导体上时,则载流子增多,使半 导体电阻值下降。
器件电阻 / k 响应时间约1 min 以内 1 00 稳定状 态 氧化型
(2)、辅助电路 由于气敏元件自身的特性(温度系数、湿度系数、初期稳定性等),在
设计、制作应用电路时,应予以考虑。如采用温度补偿电路,减少气敏元
件的温度系数引起的误差;设置延时电路,防止通电初期,因气敏元件阻 值大幅度变化造成误报;使用加热器失效通知电路,防止加热器失效导致
漏报现象。
(3)、检测工作电路 这是气敏元件应用电路的主体部分。 下图是设有串联蜂鸣器的应用电路。随着环境中可燃性气体浓度的增加,气 敏元件的阻值下降到一定值后,流入蜂鸣器的电流,足以推动其工作而发出 报警信号。
V
图 9-5 MOS二极管结构和等效电路 (a) 结构; (b) 等效电路; (c) C-U特性
(2)MOS场效应晶体管气敏器件 钯-MOS场效应晶体管(PdMOSFET)的结构, 参见图9-6。
S
Pd栅
D Al SiO2
N+ P—Si
N+
图 9-6 钯—MOS场效应晶体管的结构
5、气敏元件的基本特性
图 9-4 旁热式气敏器件的结构及符号 (a) 旁热式结构; (b) 符号
2. 非电阻型半导体气敏传感器 非电阻型气敏器件也是半导体气敏传感器之一。它是利用 MOS二极管的电容 —电压特性的变化以及 MOS场效应晶体管 (MOSFET) 的阈值电压的变化等物性而制成的气敏元件。由
于类器件的制造工艺成熟,便于器件集成化,因而其性能稳定 且价格便宜。 利用特定材料还可以使器件对某些气体特别敏感。
气敏传感器
提问:同学们都会知道哪些是有毒有害的气体呢? 煤气、CO、甲烷、烟雾
是的,这些气体当达到一定浓度的时候都会危机到我们的生命。
2、那我们要如何预防有害气体对我们的生命安全造成的伤害呢? 装个对这些有害气体敏感的报警器。这章要介绍的气敏传感器就是 这种报警器电路里一个很重要的器件。接下来我们就开始介绍气 敏传感器。
2.ZnO(氧化锌)系气敏元件 ZnO 系气敏元件对还原性气体有较高的灵敏度。它的工作温度比 SnO2 系气敏元件约高 100 ℃左右,因此不及 SnO2 系元件应用普遍。同样 如此,要提高 ZnO系元件对气体的选择性,也需要添加 Pt和Pd等添加剂。 例如.在 ZnO 中添加 Pd ,则对 H 2 和 CO 呈现出较高的灵敏度;而对丁烷 (C4H10)、丙烷(C4H8)、乙烷(C4H6)等烷烃类气体则灵敏度很低,如下图(a) 所示。如果在 ZnO 中添加 Pt,则对烷烃类气体有很高的灵敏度,而且含 碳量越多、灵敏度越高,而对H2和CO气体则灵敏度很低,如下图(b)所示。
烟雾报警器
酒精传感器
二氧化碳传感器
气敏电阻外形
其他可燃性 气体传感器
酒精传感器
酒精测试仪
呼气管
家庭用液化气 报警器
一氧化碳传感器
其他气体传感器
甲烷传感器
NH3传感器
二氧化碳浓度传感器
氧浓度传感器外形
可用于汽车 尾气测量
汽车尾气分析
有毒气体传感器的使用
二、认识气敏传感器
1、气敏传感器的性能要求:
B
R
~220V 氖管 气敏传感器
BZ 蜂鸣器
家用可燃性气体报警器电路
各类易燃、易爆、有毒、有害气体的检测和报警都可 以用相应的气敏传感器及其相关电路来实现,如气体 成分检测仪、气体报警器、空气净化器等已用于工厂、 矿山、家庭、娱乐场所等。
家用燃气泄漏报警器
案例1.燃气报警器
下图是一种最简单的家用气体报警器电路。气-电转换器件采 用测试回路高电压的直热式气敏元件TGS109。当室内可燃性气体增 加时,由于气敏元件接触到可燃性性气体而其阻值降低,这样流经 回路的电流便增加,可直接驱动蜂鸣器报警。 设计报警时,应合理选择开始报警浓度,选低了,灵敏度高, 容易产生误报;选高了,又容易造成漏报,起不到报警效果
( 2 ) SnO 2 材料的物理、化学稳定性较好,与其它类型气 敏元件(如接触燃烧式气敏元件)相比,SnO2气敏元件 寿命长、稳定性好、耐腐蚀性强。 ( 3 ) SnO 2 气敏元件对气体检测是可逆的,而且吸附、脱 附时间短,可连续长时间使用。 ( 4 )元件结构简单,成本低,可靠性较高,机械性能良 好。 ( 5 )对气体检测不需要复杂的处理设备。可将待检测气 体浓度可通直接转变为电信号,信号处理电路简单。
• 当半导体的功函数小于吸附分子的亲和力时, 吸附分 子将从器件夺得电子而变成负离子吸附, 半导体表面 呈现电荷层。氧气等具有负离子吸附倾向的气体被称 为氧化型气体或电子接收性气体。
• 如果半导体的功函数大于吸附分子的离解能,吸附分 子将向器件释放出电子,而形成正离子吸附。具有正 离子吸附倾向的气体有石油蒸气、酒精蒸气、甲烷、 乙烷、煤气、天然气、氢气等。 它们被称为还原型气 体或电子供给性气体,也就是在化学反应中能给出电 子,化学价升高的气体;多数属于可燃性气体。
气敏传感器的作用相当于我们的 气体,并判定气体的浓度,从而
鼻子,可“嗅”出空气中某种特定的 实现对气体成分的检测和监测,
以改善人们的生活水平,保障人们
的生命。
化工
环境污染、火灾报警
煤矿
一、与气敏相关的基本概念
气体浓度的表示?
对环境大气(空气)中污染物浓度的表示方法有两种: 1、质量浓度表示法:每立方米空气中所含污染物的质量 数,即mg/m3 2、体积浓度表示法:一百万体积的空气中所含污染物的 体积数,即ppm 大部分气体检测仪器测得的气体浓度都是体积浓度 (ppm)。而按中国规定,特别是环保部门,则要求气体浓度
三、气体传感器的应用
气敏传感器应用较广泛的是用于防灾报警,如可制成液化 石油气、天燃气、城市煤气、煤矿瓦斯以及有毒气体等方 面的报警器。也可用于对大气污染进行监测以及在医疗上 用于对O2、CO2等气体的测量。生活中则可用于空调机、烹 调装置、酒精浓度探测等方面。
(1)、电源电路 一般气敏元件的工作电压不高 (3V~10V),其工作电压,特别是供给 加热的电压,必须稳定。否则,将导 致加热器的温度变化幅度过大,使气 敏元件的工作点漂移,影响检测准确 性。
1. SnO2系
(1)气敏元件灵敏度特性 烧结型、薄膜型和厚膜型SnO2气敏器件对 气体的灵敏度特性如右图所示。气敏元件 的阻值 R C 与空气中被测气体的浓度 C 成对 数关系: log RC=m logC+n 式中n与气体检测灵敏度有关,除了随材料 和气体种类不同而变化外,还会由于测量 温度和添加剂的不同而发生大幅度变化。 1 1 m 为气体的分离度,随气体浓度变化而变 m 3 2 化,对于可燃性气体, 。 在气敏材料SnO2中添加铂(Pt)或钯(Pd)等作为催化剂,可以提高其灵 敏度和对气体的选择性。添加剂的成分和含量、元件的烧结温度和工作 温度都将影响元件的选样性。
器件加热
50
5 2 min 4 min 加热开关 大气中
还原型
吸气时
图 9-1 N型半导体吸附气体时器件阻值变化图
规则总结:
氧化型气体+N型半导体:载流子数下降, 电阻增加 还原型气体+N型半导体:载流子数增加, 电阻减小 氧化型气体+P型半导体:载流子数增加, 电阻减小 还原型气体+P型半导体:载流子数下降, 电阻增加
(1) MOS二极管气敏器件
MOS二极管气敏元件制作过程
是在P型半导体硅片上,利用热氧化工艺生成一层厚度为50~100 nm 的二氧化硅 (SiO 2) 层,然后在其上面蒸发一层钯 (Pd) 的金 属薄膜,作为栅电极,如图9-5(a)所示。
M(Pd) C SiO2 Ca P—Si Cs O (a ) (b ) (c) b a
影响 SnO2气敏效应的主要因素
(1)SnO2结构组成对气敏效应的影响 SnO2具有金红石型晶体结构,用于制作气敏元件的SnO2, 一般都是偏离化学计量比的,在SnO2中有氧空位或锡间隙 原子。这种结构缺陷直接影响气敏器件特征。一般地说, SnO2中氧空位多,气敏效应明显。 (2)SnO2中添加物对气敏效应的影响 实验证明, SnO 2 中的添加物质,对其气敏效应有明显影响。 表7-3列出了具有不同添加物质的 SnO 2 气敏元件的气敏效应。 (3)烧结温度和加热温度对气敏效应的影响 实验证明,制作元件的烧结温度和元件工作时的加热温度, 对其气敏性能有明显影响。因此,利用元件这一特性可进 行选择检测。