开关电源工作原理解析

合集下载

开关电源工作原理

开关电源工作原理

开关电源工作原理开关电源是一种常见的电源供应装置,其工作原理是将输入电压通过开关器件进行高频开关,经过变压、整流、滤波等电路处理后,得到稳定的输出电压。

开关电源具有高效率、小体积、重量轻等优点,广泛应用于各种电子设备中。

一、开关电源的基本构成开关电源由输入端、输出端和控制电路组成。

1. 输入端:输入端主要包括输入电源和输入电路。

输入电源为交流电源,输入电路包括输入滤波电路和整流电路。

其中,输入滤波电路用于滤除输入电源中的杂波和干扰,保证输入电源的稳定性;整流电路将交流电源转换为直流电源。

2. 输出端:输出端主要包括输出电路和输出滤波电路。

输出电路通过开关器件进行高频开关,将整流后的直流电源转换为高频脉冲信号,经过输出滤波电路后得到稳定的直流输出电压。

3. 控制电路:控制电路主要包括开关控制电路和保护电路。

开关控制电路用于控制开关器件的开关频率和占空比,保证输出电压的稳定性和精度;保护电路用于监测输入输出电流电压,当超过设定值时进行过载保护。

二、开关电源的工作原理开关电源的工作原理可分为两个过程:变频过程和整流滤波过程。

1. 变频过程:变频过程即将输入电压通过开关器件进行高频开关,形成高频脉冲信号。

开关器件通常采用开关管或晶闸管进行控制,高频开关频率通常在几十kHz至几MHz之间。

当开关器件导通时,输入电源的能量通过开关管传导至输出端,形成电流;当开关器件断开时,输出端的电感储能元件将电能通过二极管进行放电,形成负电流。

通过不断的开关导通-断开操作,输入电压的能量被转换为高频脉冲信号。

2. 整流滤波过程:经过变频过程的高频脉冲信号需要通过变压、整流和滤波电路进行进一步处理。

首先,高频脉冲信号经过变压电路进行降压变换,得到适合输出电压的信号。

然后,经过整流电路将高频信号转换为直流信号,通过二极管进行单向导通。

最后,通过滤波电路对直流信号进行滤波,去除残余脉动和高频噪声,得到稳定的输出电压。

三、开关电源的工作模式开关电源的工作模式主要有两种:连续导通模式和断续导通模式。

开关电源工作原理超详细解析

开关电源工作原理超详细解析

开关电源工作原理超详细解析开关电源(Switching Power Supply)是一种先将输入交流电转换为直流电,再通过变换器和开关元件进行调制和控制,最终输出所需电压和电流的电源装置。

它可以高效地进行能量转换,减少功耗,适用于各种电子设备。

下面将详细解析开关电源的工作原理。

1.开关电源的基本组成开关电源由输入滤波器、整流器、脉宽调制器、变压器、输出滤波器和反馈电路组成。

-输入滤波器:用于滤除输入电源中的干扰信号,并平滑输送到整流器。

-整流器:将交流电转换为直流电,常用的整流方式有全波整流和半波整流。

-脉宽调制器:根据反馈信号调整开关管的导通时间,控制开关元件的开关频率和占空比。

-变压器:将输入电压转换为所需的输出电压,并通过与脉宽调制器协调工作来控制输出电压的稳定性。

-输出滤波器:用于平滑输出电压,减少纹波幅度,并滤波输出电流。

-反馈电路:通过采样输出电压并与目标电压进行比较,产生反馈信号控制脉宽调制器的输出。

2.工作原理-输入滤波:交流电经过输入滤波器后,去除干扰信号,并保持电压稳定。

输入滤波器通常由电容和电感组成,它们通过电压和电流的交替变化,将输入电源趋于稳定。

-变压:通过变压器将输入电压进行转换,以获得需要的输出电压。

变压器一般由磁性材料、绕线、磁心等组成,通过众多的绕线匝数比实现输入电压于输出电压的变化。

-输出滤波:经过变压器的输出信号包含较多的纹波幅度,通过输出滤波器将纹波幅度减小到可以忽略不计的程度。

输出滤波器通常包括电感和电容,通过滤除高频杂波和平滑输出电流。

3.脉宽调制脉宽调制器是开关电源中至关重要的一个部件,负责控制开关元件(如晶体管或MOSFET)的开关频率和占空比,以调节输出电压的稳定性。

- 控制开关频率:脉宽调制器根据输出电压的需求,采用不同的控制方式,例如固定频率PWM(Pulse-Width Modulation)、可变频率PWM和电流模式控制。

通过调整开关频率,可以实现对输出电压的精确控制。

开关电源工作原理详解析

开关电源工作原理详解析

开关电源工作原理详解析开关电源是一种常见的电源供应器件,具有高效率、稳定性和可靠性等优点。

本文将详细解析开关电源的工作原理,包括其基本构成、工作过程以及相关应用。

一、基本构成开关电源主要由输入端、输出端、开关管、变压器、整流电路、滤波电路和稳压电路等组成。

输入端:负责接收交流电源输入,并通过变压器进行电压变换。

输入滤波电路:用于滤除交流电源输入时的干扰信号,保证后续电路正常工作。

整流电路:将输入的交流电转换为直流电,一般采用整流桥或者整流二极管进行整流。

滤波电路:通过滤波电容和滤波电感对整流电路输出的脉动电流进行滤波,使其变为更为纯净的直流电。

开关管:起到开关的作用,通过开关管的导通和关断,将高频信号传送到变压器。

变压器:将输入的电压进行变换,可以降压或升压,以满足输出端的要求。

稳压电路:控制输出电压的稳定性,通过反馈电路控制开关管的导通和关断,保持输出电压恒定。

二、工作过程1. 导通状态:开关管导通,电流从输入端经过变压器进入输出端。

在导通状态下,开关管内部电阻很小,电流能够顺利通过。

通过变压器的转换作用,电压可以降低或升高,然后通过整流电路和滤波电路处理,输出为直流电。

2. 关断状态:开关管关断,电流中断。

在关断状态下,开关管内部电阻很大,电流无法通过。

由于开关管的关断,变压器产生磁场的能量无处释放,因此会产生反向电压,反向电压的存在使得电流继续流动,这一能量会被储存在电感中。

通过不断交替地在导通状态和关断状态之间进行切换,开关电源可以实现高效率的电能转换,进而向输出端提供稳定的直流电。

三、应用领域开关电源由于其高效性和可靠性,广泛应用于各个领域。

以下是一些常见的应用:1. 电子产品领域:如电脑、手机、电视等消费电子产品,它们都需要稳定的直流电供应。

2. 工业自动化:在工业生产中,很多设备需要稳定可靠的电源,开关电源可以满足这些需求。

3. 通信设备:无论是固定电话、移动通信基站还是网络交换设备,都需要开关电源来提供稳定的电能。

开关电源工作原理超全解读

开关电源工作原理超全解读

开关电源工作原理超全解读
开关电源是一种将交流电转换为稳定的直流电的设备,它通过电子开关器件的开关动作周期性地将输入电压切割成高频脉冲,然后经过滤波电路和稳压电路,最终输出稳定的直流电。

开关电源的工作原理主要包括以下几个部分:
1. 变压器:将输入的交流电压变压升高或降低,并进行隔离。

2. 整流:将变压器输出的交流电压通过整流电路转换为脉冲波形的直流电。

3. 滤波:通过滤波电路对脉冲波形的直流电进行平滑处理,去除掉其中的纹波成分,使得输出电压更加稳定。

4. 开关控制:通过控制开关器件(如MOS管、IGBT等)的
导通和截止来切割输入的交流电压,输出高频脉冲。

5. 输出稳压:将高频脉冲输入到变压器的副边或电感元件中,经过滤波和稳压电路,将输出的脉冲波形转换为稳定的直流电,以供电子器件使用。

总的来说,开关电源的工作原理就是通过控制开关器件的开关动作,将交流电压转换为高频脉冲,并通过滤波和稳压电路将脉冲波形转换为稳定的直流电。

开关电源具有输出电压稳定、效率高、体积小等特点,广泛应用于家庭电器、计算机、通信设备等领域中。

开关电源工作原理及维修技巧

开关电源工作原理及维修技巧

开关电源工作原理及维修技巧开关电源是一种将交流电转换为稳定直流电的电子设备,广泛应用于各种电子设备和系统中。

了解开关电源的工作原理,对于工程技术人员和维修人员来说至关重要。

本文将介绍开关电源的工作原理,并提供一些常见问题的维修技巧。

一、开关电源的工作原理开关电源通过使用电子器件(如开关管、二极管和电感等)将交流电转换为高频脉冲电流,再通过滤波和稳压电路得到稳定的直流电。

下面将详细介绍开关电源的主要工作原理。

1. 输入滤波:开关电源的输入端会接入交流电源,而交流电源会带有各种干扰信号。

为了保证开关电源的正常工作,需要通过输入滤波电路来滤除这些干扰信号。

输入滤波电路一般由电容器和电感器组成,能够有效地滤除高频和低频的干扰信号。

2. 整流和滤波:经过输入滤波后,交流电会被整流电路转换为直流电。

整流电路通常使用二极管桥整流器来实现。

然后,通过输出滤波电路对整流后的直流电进行滤波处理,以去除直流电中的纹波电压,得到相对稳定的直流电。

3. 高频开关转换:直流电经过滤波后,会进入开关电源的核心部件——开关电路。

开关电路由开关管(如MOSFET、IGBT等)组成,通过快速开关操作将直流电转换为高频脉冲电流。

4. 变压器:高频脉冲电流进一步经过变压器的转换,得到所需的电压大小。

通过变压器的变换比例,可以实现升压、降压或保持电压稳定的功能。

5. 输出调节和稳压:经过变压器转换后的电流会进入稳压电路,稳压电路通常由反馈电路、误差放大器和控制开关管等组成。

利用反馈电路监测输出电压的变化情况,并与设定的参考电压进行比较,在误差放大器和控制开关管的调节下,保持输出电压稳定在设定值。

二、开关电源的常见故障和维修技巧1. 电源无输出或输出电压波动大:可能原因:- 输入端电源线异常,如插头松动或电源线破损。

- 滤波电容故障,需要检查滤波电容是否损坏或漏电。

- 开关管故障,开关管可能损坏或短路,需要更换。

- 控制电路故障,检查反馈电路和误差放大器是否正常工作。

开关电源工作原理超全解读

开关电源工作原理超全解读

开关电源工作原理超全解读【实用版】目录1.开关电源的定义和分类2.开关电源的工作原理3.开关电源的优缺点4.开关电源的应用领域正文一、开关电源的定义和分类开关电源,又称为直流 - 直流(DC-DC)转换器,是一种利用现代电力电子技术,通过控制电子开关器件的导通和关断时间比率,来维持输出电压的稳定的电源。

根据电路拓扑的不同,开关电源可以分为多种类型,如 buck-boost、boost 和 buck 等。

二、开关电源的工作原理开关电源的工作原理主要基于电压斩波原理,通过对输入电压进行脉冲调制,使得输出电压可调并自动稳压。

开关电源的主要元器件包括电感器、开关管和二极管。

在电路中,电感器、开关管和二极管之间的节点被称为交换节点。

当开关管导通时,电感器中的电流流入交换节点,再通过二极管输出;当开关管关断时,电感器中的电流则通过开关管流出。

这样,在交换节点处,电流在二极管和开关管之间交替流动,使得节点电压在电感器两端电压跳变的同时,保持大范围跳动。

这种电压斩波方式使得开关电源具有较高的效率和较小的体积。

三、开关电源的优缺点1.优点:(1)高效率:开关电源的效率一般在 80%~90%,远高于传统的线性稳压电源(效率只有 40%~50%);(2)小体积:由于开关电源采用脉冲宽度调制技术,其电路结构较简单,体积较小;(3)可调性:开关电源的输出电压可以通过改变脉冲宽度进行调节,具有较好的可调性;(4)适应性强:开关电源能够适应不同电压、电流和负载的需求。

2.缺点:(1)复杂性:开关电源的电路结构相对较复杂,维修和调试难度较大;(2)电磁干扰:由于开关电源采用脉冲电流,会产生较强的电磁干扰,需要采取屏蔽和滤波措施;(3)噪声:开关电源在运行过程中,由于开关管的开关操作,会产生一定的噪声。

四、开关电源的应用领域开关电源广泛应用于个人电脑、通信设备、家电、工业控制等领域,为各种电子设备提供稳定的直流电源。

随着全球对能源问题的重视,电子产品的耗能问题将愈来愈突出,如何降低待机功耗、提高供电效率成为亟待解决的问题。

开关电源工作原理及维修技巧

开关电源工作原理及维修技巧

开关电源工作原理及维修技巧开关电源是现代电子设备中广泛应用的一种电源供应方式。

它以其高效、稳定、可靠的优点,被广泛应用在通信、计算机、工控等领域。

本文将介绍开关电源的工作原理,并分享一些常见故障的维修技巧。

一、开关电源的工作原理开关电源的工作原理基于开关管的开关动作。

它通过将输入直流电压经过变压器降压、整流滤波后得到直流电源,再通过开关管的开关动作进行调节和控制,最终输出稳定的直流电压。

以下是开关电源的工作原理流程:1. 输入电压调整:开关电源通过输入电路接收来自电网的交流电压,并通过变压器将其降压转换为适合电源内部使用的直流电压。

2. 整流滤波:经过变压器的降压,得到的直流电压仍然存在波动和纹波。

开关电源通过整流电路,将交流电压转换为直流电压,并通过滤波电路去除纹波,从而得到稳定的直流电源。

3. 电压变换:开关电源中的开关管负责对电源输出电压进行调节和控制。

当需要增加输出电压时,开关管关闭,此时磁场储能在变压器中。

而当需要降低输出电压时,开关管打开,此时磁场释放能量,通过变压器将电压降低到所需的输出电压。

4. 输出稳定:开关管通过调节开关动作的频率和占空比,控制输出电压的稳定性。

通过负反馈控制,开关电源可以实现对输出电压的精确控制,从而确保工作在设定的电压范围内。

二、开关电源的常见故障及维修技巧尽管开关电源在工作上具有高效、稳定的特点,但由于工作环境、负载变化等原因,仍然可能出现各种故障。

下面是一些常见的开关电源故障及相应的维修技巧:1. 输出电压异常当开关电源输出电压异常,例如过高或过低,可能是由于电源输出端电容损坏、电感元件损坏或者控制芯片故障导致。

此时,可通过测量输出电压、检查元件损坏情况来确诊故障点,并进行相应的更换或修复。

2. 整流滤波故障整流滤波电路是保证开关电源获得稳定直流电压的关键部分。

若出现纹波过大、输出电压波动较大等问题,可能是整流二极管或滤波电容损坏引起的。

在维修时,可通过测试电容容值,检测二极管正常工作情况,及时更换损坏元件。

开关电源工作详细原理讲解

开关电源工作详细原理讲解

开关电源工作详细原理讲解
开关电源是一种将输入电源转换为需要的输出电源的电子装置。

它主要由变压器、整流电路、滤波电路、功率开关器件、控制电路等组成。

以下是开关电源的工作原理的详细讲解。

1. 变压器:开关电源采用高频工作,输入的交流电压经过变压器降压,得到适合的工作电压。

2. 整流电路:变压器输出的交流电压经过整流电路,将其变为直流电压。

常用的整流电路包括单相半波整流电路、单相全波整流电路和三相全波整流电路。

3. 滤波电路:直流电压经过整流后还带有较大的纹波,需要通过滤波电路进行滤波,减小纹波。

常见的滤波电路有电容滤波电路和电感滤波电路。

4. 功率开关器件:开关电源使用功率开关器件(如MOSFET
或IGBT)来控制电流的开关状态。

通过控制开关的导通和关
断时间,可以调整输出电压和电流。

5. 控制电路:控制电路是开关电源的核心部分,它根据输出电压的反馈信号,实时调整功率开关器件的开关状态,确保输出电压稳定。

6. 反馈回路:开关电源会通过反馈回路感知输出电压情况,并将这一信息传递给控制电路。

当输出电压偏离设定值时,控制电路将校正功率开关器件的开关状态,维持输出电压的稳定性。

综上所述,开关电源通过变压器对输入电源进行降压,然后经过整流、滤波、功率开关器件和控制电路的协同作用,将输入的交流电源转换为稳定的直流输出电源。

控制电路通过反馈回路不断调整功率开关器件的开关状态,以维持输出电压的稳定性。

开关电源具有高效率、小体积、重量轻等优点,广泛应用于各种电子设备中。

开关电源工作原理超详细解析

开关电源工作原理超详细解析

开关电源工作原理超详细解析开关电源工作原理是指通过开关元件(如晶体管、MOSFET等)控制电源的输入电压,使其以一定的频率进行开关操作,从而将输入电压转换为所需的输出电压。

下面是对开关电源工作原理的超详细解析:1. 输入电压:开关电源的输入电压通常是交流电(AC),其电压值和频率根据不同的应用而不同。

在实际应用中,通常需要将交流电转换为直流电(DC)来供给电子设备。

2. 整流:通过整流电路将交流电转换为直流电。

整流电路通常采用整流桥或者二极管桥等元件,将交流电的负半周或者正半周转换为直流电。

3. 滤波:由于整流后的直流电还存在较大的纹波,需要通过滤波电路进行滤波处理。

滤波电路通常采用电容器和电感器等元件,将纹波电压进行平滑,得到较为稳定的直流电。

4. 开关操作:开关电源的核心部份是开关元件,如晶体管、MOSFET等。

开关元件根据控制信号的输入,以一定的频率进行开关操作。

当开关元件处于导通状态时,输入电压通过开关元件传递到输出端;当开关元件处于断开状态时,输入电压不会传递到输出端。

5. 脉宽调制(PWM):为了控制开关元件的导通和断开时间,需要使用脉宽调制技术。

脉宽调制是通过调节开关元件导通时间的比例来控制输出电压的大小。

通常使用比较器和参考电压等元件来实现脉宽调制。

6. 输出变压器:为了将输出电压变换为所需的电压水平,通常使用输出变压器。

输出变压器通过变换输入电压和输出电压的变比关系,实现输出电压的变换。

7. 输出滤波:由于开关操作会引入一定的干扰和纹波,需要通过输出滤波电路进行滤波处理。

输出滤波电路通常采用电容器和电感器等元件,将纹波电压进行平滑,得到稳定的输出电压。

8. 控制和保护:开关电源通常还包括控制和保护电路。

控制电路用于控制开关元件的开关操作,保护电路用于保护开关电源和电子设备免受过电流、过电压和短路等故障的影响。

以上是开关电源工作原理的超详细解析。

开关电源通过开关操作和脉宽调制技术,将输入电压转换为所需的输出电压,并通过滤波和保护等电路对输出电压进行处理和保护。

开关电源入门必读开关电源工作原理超详细解析

开关电源入门必读开关电源工作原理超详细解析

开关电源入门必读开关电源工作原理超详细解析开关电源是一种将直流电源转换为可变直流电压输出的电源装置。

它通过开关管的通断控制,以高频脉冲方式调节输出电压,能够实现高效、稳定、可靠的电源转换。

本文将详细解析开关电源的工作原理。

开关电源由以下几个基本组成部分组成:输入滤波电路、整流电路、能量存储元件、控制电路和输出电路。

输入滤波电路的作用是滤除输入电源中的高频噪声和干扰,确保输入电压稳定。

它一般由电容、电感和绕组构成。

输入电压经过滤波电路后,接入整流电路。

整流电路的作用是将交流电转换为脉冲直流电。

常用的整流电路有单相桥式整流电路和三相桥式整流电路。

整流电路通过整流管将输入的交流电转换为直流电,并通过电容滤波电路将脉冲形式的直流电转换为平滑的直流电压。

能量存储元件一般是电感和电容。

电感能存储电能,电容能存储电荷。

在开关电源中,电感和电容组成的电容滤波电路起到储存能量的作用。

它们能够在负载电流突然增加时,释放存储的能量,从而保持输出电压的稳定性。

控制电路是开关电源的核心部分,其中包括开关管的控制电路和反馈电路。

开关管的控制电路负责控制开关管的通断,从而改变输出电压的大小。

反馈电路用于检测输出电压的实际值与设定值之间的差异,并向控制电路提供反馈信号,用于调整开关管的通断状态。

开关电源的输出电压由开关管通断的频率和占空比决定。

开关管的通断由控制电路控制,控制信号通常由脉冲宽度调制(PWM)产生。

PWM信号通过改变脉冲的宽度和间隔,调整开关管的通断时间,从而改变输出电压的大小。

开关电源的优点是高效率、稳定性好和体积小。

相比传统的线性电源,开关电源的转换效率更高,可以达到90%以上。

此外,开关电源的输出电压稳定性好,能够在负载变化较大的情况下保持输出电压的稳定。

由于使用高频脉冲调节输出电压,在相同输出功率的情况下,开关电源体积更小。

总之,开关电源是一种高效、稳定、可靠的电源装置。

它通过开关管的通断控制,以高频脉冲方式调节输出电压,实现电源转换。

开关电源工作原理详细解析

开关电源工作原理详细解析

开关电源工作原理详细解析开关电源是一种将输入电源进行高频开关,通过变压和整流来获得所需输出电压的电源装置。

其具有体积小、效果高、效率高以及可靠性好等特点,被广泛应用于电子设备中。

开关电源的工作原理主要包括三个基本环节:输入变压、高频开关和输出整流。

下面将详细解析开关电源的工作原理。

1.输入变压首先,将交流输入电源通过变压器进行变压。

变压器是由磁性材料制成的,通过电磁感应原理将输入电压转换为所需的输出电压。

变压器包括一个输入绕组和一个输出绕组,通过绕组的匝数比实现电压的变化。

输入变压结束后,得到所需的直流电压。

2.高频开关在输入变压后,输入电压变成了所需的直流电压。

接下来,将直流电压输入到高频开关电路中,这里的高频指的是开关管的开关频率达到了几十KHz~几十MHz。

高频开关电路由开关管、驱动电路、电感和电容等组成。

开关管是整个开关电源中重要的元件,其作用是开关输入电源的通断。

通常使用的开关管有MOSFET和IGBT两种。

驱动电路用于控制开关管的开关动作,以确保输出符合要求。

电感起到滤波的作用,它能够抵抗电流的变化,并将电流平滑地输出。

电容则起到稳压的作用,将波动电压平滑地转换为稳定的直流电压。

高频开关的原理是通过不断开关开关管,使输入电源以高频脉冲的形式提供给输出端。

开关时间很短,因此开关过程中电流的变化很小,这减小了能量损失。

3.输出整流高频开关电路的输出是以脉冲的形式存在的,需要进行整流处理,将脉冲电流转换为稳定的直流电流。

输出整流主要由输出电感、输出滤波电容和负载电阻组成。

输出电感和滤波电容起到平滑输出脉冲电流的作用,将脉冲电流转换为稳定的直流电流。

负载电阻则接收电源输出电流,并提供给负载使用。

除了上述三个基本环节外,开关电源还包括过压保护、电流限制和短路保护等功能。

这些功能是通过控制电压和电流的大小来实现的,避免电源过载。

总结起来,开关电源是通过变压和整流来获得所需输出电压的电源装置。

其工作原理包括输入变压、高频开关和输出整流。

开关电源工作原理详解

开关电源工作原理详解

开关电源工作原理详解
开关电源是一种将直流电转换为高频交流电,然后通过变压器进行变压、整流和滤波得到稳定的直流电输出的电源。

开关电源的工作原理主要包括以下几个步骤:
1. 输入电压调整:开关电源首先对输入电压进行调整,通常使用一个电压反馈回路来实现电压稳定。

具体方式是通过一个采样电阻将一部分输入电压反馈给一个比较器,与内置的参考电压进行比较并调整。

2. 脉冲宽度调制:为了将输入电压转换为高频交流电,开关电源使用脉冲宽度调制(PWM)技术。

通过调整一个脉冲调制器中的比较器输入电压来控制开关管的开关时间,从而调整输出电压。

3. 开关管控制:开关电源中的主要元件为开关管,通常使用MOSFET作为开关管。

通过控制开关管的导通和断开,可以将输入电压转换为高频的方波信号。

开关管的导通和断开通过PWM信号控制。

4. 变压器和整流:通过变压器将高频方波信号变换为适宜的电压,并进行整流。

变压器主要负责将输入电压变压到适合输出电压的比例,并通过整流电路将高频信号转换为直流信号。

5. 稳压和滤波:通过控制PWM信号的占空比和频率,可以调整输出电压的稳定性。

而后,通过滤波电容和电感器对输出直
流电进行滤波,减小输出电压波动。

6. 输出调节:将滤波后的直流电通过一个稳压稳流电路进行输出调节,确保输出电流和电压的稳定性和精度。

输出调节可以通过负载的变化来自动调整。

开关电源的工作原理利用了高频开关管的导通和断开来控制输出电压,通过变压器和整流电路将输入电压转换为稳定的直流电。

开关电源具有体积小、效率高、可调范围广等优点,被广泛应用于各种电子设备中。

开关电源电路原理

开关电源电路原理

开关电源电路原理开关电源电路是一种常用的电源供电方式。

相比线性电源,开关电源具有高效率、小体积、稳定性好等优点,因此在各个领域得到了广泛的应用。

了解开关电源的原理对于电子工程师和爱好者来说是非常重要的。

本文将介绍开关电源的基本原理以及其工作过程。

一、开关电源的基本原理开关电源的基本原理是通过控制开关管(也叫开关MOS管)的导通和截止来实现电源输出电压的调节。

开关电源主要由输入电流滤波电路、整流电路、PWM调制电路以及输出滤波电路等组成。

1. 输入电流滤波电路开关电源的输入电流滤波电路主要由输入滤波电容和输入滤波电感构成。

输入滤波电容能够对输入电流进行平滑,使得输入电流的波形更加接近直流。

而输入滤波电感可以起到滤除高频噪声的作用,从而保护后续电路。

2. 整流电路整流电路主要由整流二极管和输出滤波电容构成。

在开关电源中,通常采用整流二极管将输入电压的负半周截掉,从而得到一个单向的输出电压波形。

输出滤波电容的作用是进一步平滑输出电压,使得输出的直流电压更加稳定。

3. PWM调制电路PWM调制电路是开关电源的核心部分,其作用是通过调节开关管的导通和截止时间,改变输出电压的占空比。

一般采用固定频率的PWM调制方式,通过将输入电压转换成高频PWM信号,并且通过控制开关管的导通和截止时间来调节输出电压的大小。

4. 输出滤波电路输出滤波电路主要由输出滤波电感和输出滤波电容构成。

输出滤波电感可以滤除PWM调制带来的高频噪声,而输出滤波电容可以进一步平滑输出电压。

二、开关电源的工作过程开关电源的工作过程可以简单分为导通状态和截止状态两种情况。

1. 导通状态当PWM调制电路控制开关管导通时,电路中的电感会储存能量,同时输出电容开始向负载放电。

此时,输出电压会逐渐上升,直到达到设定值。

2. 截止状态当PWM调制电路控制开关管截止时,电路中的电感释放储存的能量,并将其传递给输出电容。

同时,输出电容会向负载供电,并且带动电流流向负载。

开关电源工作原理超详细解析

开关电源工作原理超详细解析

开关电源工作原理超详细解析开关电源是一种常见的电源供应器件,它通过将输入电源的直流电转换为高频脉冲电流,再经过整流、滤波和稳压等环节,输出稳定的直流电。

本文将详细解析开关电源的工作原理,包括开关电源的基本组成部分、工作原理的流程、常见的开关电源拓扑结构以及其优点和应用。

一、开关电源的基本组成部分开关电源通常由以下几个基本组成部分构成:1. 输入电路:用于接收外部交流电源,并将其转换为适合开关电源工作的直流电压。

2. 整流电路:将输入电压转换为脉冲电流,通常采用整流桥或者整流电路来实现。

3. 滤波电路:用于平滑整流后的脉冲电流,以减小输出电压的波动。

4. 开关器件:通常采用晶体管或者功率MOSFET等开关器件,用于控制电流的开关状态。

5. 控制电路:用于控制开关器件的开关频率和占空比,以控制输出电压的稳定性。

6. 输出电路:将经过整流、滤波和稳压处理后的直流电压输出给负载。

二、开关电源的工作原理流程开关电源的工作原理可以分为以下几个流程:1. 输入电路接收交流电源:开关电源的输入电路通常采用变压器来降低输入电压,然后通过整流电路将交流电转换为直流电。

2. 整流电路将交流电转换为脉冲电流:整流电路通常采用整流桥或者整流电路来将交流电转换为脉冲电流,这样可以减小能量损耗。

3. 滤波电路平滑脉冲电流:滤波电路通常采用电容器和电感器来平滑脉冲电流,以减小输出电压的波动。

4. 控制电路控制开关器件的开关频率和占空比:控制电路通过对开关器件的控制,可以控制开关频率和占空比,从而控制输出电压的稳定性。

5. 输出电路将处理后的直流电压输出给负载:经过整流、滤波和稳压处理后的直流电压将被输出给负载,供其正常工作。

三、常见的开关电源拓扑结构开关电源有多种拓扑结构,常见的有以下几种:1. 单端开关电源:输入电源和输出电源共用一个地线,适用于低功率应用。

2. 双端开关电源:输入电源和输出电源分别有独立的地线,适用于高功率应用。

开关电源工作原理是什么-开关电源工作原理详解析

开关电源工作原理是什么-开关电源工作原理详解析

开关电源工作原理是什么?开关电源工作原理详解析开关电源由于重量轻、体积小,输出电压稳定,且纹波系数小等特点,被广泛应用。

一、开关电源的电源开关电源的电源是给开关电源供应电能的电源输入部分。

电原理如图1所示。

220V市电经从三极插针送入,经速熔保险管、双向滤波器、压敏电阻、电感、电容,到达整流电路。

其中,FU为速熔保险管,起限流爱护作用;双向滤波器、压敏电阻、电感、电容组成抗干扰电路,使整流电路得到一个较为抱负的AC220V电压。

二、开关电源的工作原理开关电源的电压转换,是由开关晶体管、脉冲变压器等组成的脉冲振荡器,产生脉冲电,将300V的直流电经脉冲变压器的次级变换成所需要的电压。

电原理如图2所示。

1、脉冲振荡器的工作原理1)脉冲振荡器的启动电源经R10、R10A、R15给Q3(三极管)的b极(基极)、e极(放射极)供应正向偏置电压,强迫Q3进入导通状态。

2)脉冲振荡器的振荡过程当Q3进入导通状态后,+Vc就会经脉冲变压器的初级线圈、Q3的c 极、e极、R15到电源的-Vc,此时脉冲变压器的次级线圈就会产感应电势,次级线圈的一端接在-Vc,另一端经R12、C8接到Q3的b 极,且感应电势的极性与初级线圈的自感电势是同极性的(图中初次极线圈的上端均为同名端),便得Q3的b极得到更大的基极电流,加速Q3的导通直至Q3进入饱和状态。

电路如图3所示。

当Q3饱和后,Ic不再变化,波形如图4中t0到t3。

经过t3到t4的饱和过程后,自感电势、感应电势的极性会随其反转,即上负下正。

次极线圈中这个反转后的电势,正极经R15加在Q1的e极,负极经R12、C8加在Q3的b极,使得Q3处于反向偏置,促使Q3快速地从饱和状态过度到截止状态,图中t4到t6。

Q3截止后,通过D8、R17、C7组成的汲取电路很快地将初极线圈中所产生的反向电势以及反向电流汲取掉,图中t6到t7。

完成了一个振荡周期。

之后振荡电路就会周而复始重复上述过程。

开关电源入门必读开关电源工作原理超详细解析

开关电源入门必读开关电源工作原理超详细解析

开关电源入门必读开关电源工作原理超详细解析开关电源是电源技术中常见的一种类型,它的工作原理相对较复杂。

本文将详细解析开关电源的工作原理,帮助读者快速入门。

开关电源的基本工作原理是将交流电源转换为高频脉冲电源,再经过变压、整流和滤波等步骤,最终获得所需的直流电压输出。

下面将分为几个方面详细解析开关电源的工作原理。

一、开关电源的基本组成部分开关电源包括输入端、控制电路、开关元件、变压器、整流滤波电路和输出端等组成部分。

1.输入端:接收外部交流电源输入,并经过保险丝和滤波电路等进行初步处理。

2.控制电路:负责控制开关元件的开关行为,控制电路由集成电路、电感和电容等组成。

3.开关元件:由开关管和二极管组成,承担着将交流信号转换为脉冲信号的关键任务。

4.变压器:通过变换输入电压和电流的比值,实现电压和电流的变换。

5.整流滤波电路:包括整流电路和滤波电路。

整流电路将脉冲电流转化为直流电流,滤波电路将直流电流进行进一步平滑处理。

6.输出端:将经过整流滤波处理后的直流电压输出给负载。

二、开关电源的工作原理开关电源的工作原理主要分为以下几个步骤:1.输入端处理:输入端首先通过保险丝保护电路,然后通过滤波电路对输入信号进行初步处理,去除杂质和干扰。

2.控制电路:控制电路根据输入端的信号控制开关元件的开关行为。

当开关元件关闭时,电源工作在储能状态,当开关元件开启时,电源进入释放能量状态。

3.开关元件:开关元件由开关管和二极管组成。

当开关管导通时,电源中的输入电流和能量通过变压器传递给负载,当开关管关断时,电源中的储能电流和能量通过二极管回流到输入端。

4.变压器:变压器将输入电压和电流进行变换,通过磁性耦合实现输出端所需的电压和电流。

5.整流滤波电路:整流电路将经过变压器变换后的输出信号转化为直流电压,滤波电路将直流电压进行平滑处理,去除残余脉冲和噪声。

6.输出端:经过整流滤波电路处理后的直流电压输出给负载,从而实现电源对负载的供电支持。

开关电源原理详解

开关电源原理详解

开关电源原理详解
开关电源是由开关管、变压器、滤波电感、电容和稳压电路等器件组成的电源,其工作原理是将交流电转换为直流电。

下面我们来详细了解开关电源的工作原理:
1.输入变压器:开关电源的输入变压器工作于高频状态下,将低电压高电流的输入变换成高电压低电流的输出,促使开关电源的高频开关能够实现小尺寸和高效率的要求。

2.整流电路:开关电源的整流电路负责将输入电压的交流部分转换成直流电。

整流电路通常包括一个桥式整流器,它可以同时整流正、负电压的交流信号。

3.滤波电路:由于开关电源的输出具有高频脉冲特性,需要通过滤波电路将其转换成平稳的直流电。

滤波电路主要由电感和电容组成,可以过滤高频杂波,从而保持输出电压的稳定性。

4.变换电路:开关电源的变换电路主要由开关管和变压器构成。

变换电路负责将滤波后的直流电转换成需要的电压和电流,并将其输出。

5.稳压电路:开关电源的稳压电路主要由电容和稳压芯片构成,负责保持输出电压的稳定性。

稳压电路可以根据输入电压和输出电流自动调整输出电压,以确保输出电压不会因外部负载的变化而波动。

综合以上几部分,开关电源的工作原理就是将输入电压通过整流、滤波、变换和稳压等过程,最终将输出电压转换成需要的电压和电流,以满足各种电器设备的需要。

开关电源工作原理详解

开关电源工作原理详解

开关电源工作原理详解
开关电源是一种将交流电转换为直流电的电源。

其工作原理可以总结为以下几个步骤:
1.输入滤波:将市电输入的交流电通过滤波电路进行滤波处理,去除掉交流电中的高频杂波和噪声。

2.输入整流:将滤波后的交流电转换为脉冲信号,这一过程通常使用整流桥或者可控硅等元件实现。

3.中间电压处理:将整流后得到的脉冲信号通过电容进行滤波,使得输出变为稳定的直流电。

4.开关管驱动:通过驱动电路控制开关管的开关状态,使得开关管能够按照一定频率进行开关操作,产生一系列的脉冲信号。

5.输出变压:开关管的开关操作使得输入直流电的幅值和级数发生变化,通过不同的电路拓扑结构,可实现升压、降压和反向转换等功能。

6.输出滤波:将变压后的脉冲信号通过电容滤波,使得输出变为平稳的直流电。

7.反馈控制:通过反馈电路将输出电压与其中一参考电压进行比较,通过控制开关管的占空比,调整开关管的导通时间,使得输出电压稳定在设定值。

8.输出稳压:根据反馈电路的控制信号,调整开关管的导通时间,使得输出电压保持在一个稳定的水平。

需要注意的是,开关电源的不同拓扑结构会对其工作原理有所不同。

常见的开关电源拓扑结构有单相桥式、半桥、全桥、降压型、升压型等。

不同的拓扑结构有不同的优缺点及适用场景。

总之,开关电源是一种能够高效转换交流电为直流电的电源,其工作原理涉及输入滤波、输入整流、中间电压处理、开关管驱动、输出变压、输出滤波、反馈控制和输出稳压等多个环节。

开关电源工作原理详细解析

开关电源工作原理详细解析

开关电源工作原理详细解析开关电源是一种将输入电源变换为输出电源的电源转换装置,其主要特点是高效率、轻便、体积小和输出电压稳定等。

本文将详细解析开关电源的工作原理。

开关电源的基本组成部分包括输入滤波器、整流器、能量存储元件、开关管、控制电路和输出变压器等。

1.输入滤波器:开关电源将电源直流电压转换为高频脉冲电压,因此需要通过输入滤波器消除输入电源中的高频干扰和杂散信号。

2.整流器:开关电源首先将输入交流电压通过整流器转换为直流电压,常用的整流器包括二极管整流器和桥式整流器。

二极管整流器只能进行半波整流,而桥式整流器则能进行全波整流。

3.能量存储元件:开关电源通过能量存储元件来实现电能转换,常用的能量存储元件包括电感和电容。

电感在工作过程中能够储存磁能,并通过改变电流来改变电压;而电容则能够储存电能,并通过改变电荷来改变电压。

4.开关管:开关电源中的开关管根据需要周期性地切断和闭合电路,以控制能量的传输和流动。

开关管主要有晶体管、IGBT和MOSFET等。

晶体管可完成小功率的开关控制,IGBT适用于中高功率的开关控制,而MOSFET则适用于高频开关。

5.控制电路:开关电源的控制电路负责控制开关管的导通和关断,以确保输出电压稳定。

控制电路主要包括脉宽调制(PWM)控制电路和反馈控制电路。

脉宽调制控制电路通过改变开关管的导通时间来调节输出电压;反馈控制电路则通过与输出电压进行比较,并改变PWM信号的占空比来实现输出电压的稳定控制。

6.输出变压器:开关电源中的输出变压器将高频脉冲电压转换为所需的输出电压。

输出变压器主要由一对或多对线圈组成,通过互感作用来实现电能的传输和变压。

开关电源的工作过程如下:1.输入交流电压通过输入滤波器进入整流器,经二极管或桥式整流器转换为直流电压。

2.直流电压通过能量存储元件(电感和电容)进行储能和滤波,以保证输出电压的平稳。

3.控制电路根据反馈信号和设定值,通过脉宽调制控制电路生成PWM信号,控制开关管的导通和关断。

电器中的开关电源工作原理

电器中的开关电源工作原理

电器中的开关电源工作原理电器中的开关电源是一种常见的电源类型,广泛应用于家用电器、计算机设备、通信设备等领域。

本文将介绍开关电源的工作原理,以及其在电器中的应用。

一、开关电源的工作原理开关电源是一种将输入电源频率转换为高频脉冲,再经过变压器、整流滤波电路等一系列变换和处理过程,最终得到需要的输出电压的电路。

其基本工作原理如下:1. 输入电源变换:开关电源首先接收输入电源,通常为交流(AC)电源。

通过输入电源的变压器,将交流电压变压为较低的交流电压,并通过整流电路将交流电压转换为直流电压。

2. 高频脉冲产生:开关电源中的主要元件是开关管(或开关电源芯片),它可以快速开关导通和截止。

通过开关管的高频开关动作,将直流电压变换为高频脉冲信号。

3. 变压器转换:高频脉冲信号通过变压器的升压或降压转换,实现输入电压的变换。

变压器通常由多个线圈绕制而成,根据输出的电压需求,通过不同的绕制方式实现升压或降压。

4. 整流滤波:经过变压器转换后的高频信号,需要通过整流电路进行整流,将其转换为稳定的直流电压。

整流电路中常使用二极管进行单向导通,滤波电容则用于平滑电压波动。

5. 输出调节:得到稳定的直流电压后,需要通过稳压电路对输出电压进行调节。

稳压电路常采用反馈原理,监测输出电压,并通过控制开关管的开关频率和占空比,使输出电压保持稳定。

二、开关电源在电器中的应用开关电源由于其高效率、体积小、重量轻等优点,被广泛应用于电器领域。

以下是几个常见的应用场景:1. 家用电器:开关电源在家用电器中广泛应用,如电视机、空调、冰箱等。

其高效率和稳定的输出电压,能够满足不同电器对电源的需求。

2. 计算机设备:在计算机设备中,开关电源用于为主机、显示器、硬盘等供电。

其高频率开关工作方式,减少了能量损耗,提高了电源效率。

3. 通信设备:无线通信设备、网络设备等需要稳定电源的领域,也广泛采用开关电源。

开关电源提供了高效、可靠的电源支持,确保了通信设备的稳定运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

开关电源工作原理解析个人PC所采用的电源都是基于一种名为研关模式旧勺技术,所以我们经常会将个人PC电源称之为------ 开关电源(Switching Mode Power Supplies,简称SMPS),它还有一个绰号一一DC-DC转化器。

本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。

•线性电源知多少目前主要包括两种电源类型:线性电源(linear)和开关电源(switching )。

线性电源的工作原理是首先将127 V或者220 V市电通过变压器转为低压电,比如说12V ,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的一3)11 ;下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的一4)11 ; 此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。

最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的一5)11配图2:线性电源的波形尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、 PlayStati on/Wii/Xbox 等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。

对于线性电源而言,其内部电容以及变压器的大小和AC 市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。

由于当前一直采用的是 60Hz (有些国家是50Hz )频率的AC 市电,这是一个相对较低的频率,所 以其变压器以及电容的个头往往都相对比较大。

此外, AC 市电的浪涌越大,线性电源的变压器的个头就越大。

由此可见,对于个人PC 领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。

所以说个人PC 用户并不适合用线性电源。

•开关电源知多少开关电源可以通过高频开关模式很好的解决这一问题。

对于高频开关电源而言,AC 输入电压可以在进入变压器之前升压(升压前一般是50-60 KHz )。

随着输入电源的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。

这种高频开关电源正是我们的个人PC 以及像VCR 录像机这样的设备所需要的。

需要说明的是,我们经常所说的 子关电源I 其实是—高频开关电源I 的缩写形式,和电源本身的关闭和开启式没有任何关系的。

事实上,终端用户的PC的电源采用的是一种更为优化的方案:闭回路系统(closed loop system)――负责控制开关管的电路从电源的输出获得反馈信号,然后更加PC的功耗来增加或者降低某一周期内的电压的频率以便能够适应电源的变压器(这个方法称作PWM,Pulse Width Modulation,脉冲宽度调制)。

所以说,开关电源可以根据与之相连的耗电设备的功耗的大小来自我调整,从而可以让变压器以及其他的元器件带走更少量的能量,而且降低发热量。

反观线性电源,它的设计理念就是功率之上,即便负载电路并不需要很大电流。

这样做的后果就是所有元件即便非必要的时候也工作在满负荷下,结果产生高很多的热量。

第2页:倍压器和一次侧整流电路•咅压器和一次侧整流电路上文已经说过,开关电源主要包括主动式PFC电源和被动式PFC电源,后者没有PFC电路,但是配备了倍压器(voltage doubler )。

倍压器采用两颗巨大的电解电容,也就是说,如果你在电源内部看到两颗大号电容的话,那基本可以判断出这就是电源的倍压器。

前面我们已经提到,倍压器只适合于127V电压的地区。

两颗巨大的电解电容组成的倍压器拆下来看看在倍压器的一侧可以看到整流桥。

整流桥可以是由4颗二极管组成,也可以是有单个元器件组成,如图15所示。

高端电源的整流桥一般都会安置在专门的散热片上。

整流桥在一次侧部分通常还会配备一个NTC热敏电阻一一一种可以根据温度的变化改变电阻值的电阻器。

NTC热敏电阻是Negative Temperature Coefficient的缩写形式。

它的作用主要是用来当温度很低或者很高时重新匹配供电,和陶瓷圆盘电容比较相似,通常是橄榄色。

第3页:主动式PFC电路•主动式PFC电路毫无疑问,这种电路仅可以在配有主动PFC电路的电源中才能看到。

图16描述的正是典型的PFC电路:+ BU5Bus主动式PFC电路通常使用两个功率MOSFET开光管。

这些开光管一般都会安置在一次侧的散热片上。

为了易于理解,我们用在字母标记了每一颗MOSFET开光管:S表示源极(Source)、D表示漏极(Drain )、G表示栅极(Gate)。

PFC二极管是一颗功率二极管,通常采用的是和功率晶体管类似的封装技术,两者长的很像,同样被安置在一次侧的散热片上,不过PFC二极管只有两根针脚。

PFC电路中的电感是电源中最大的电感;一次侧的滤波电容是主动式PFC电源一次侧部分最大的电解电容。

图16中的电阻器是一颗NTC热敏电阻,可以更加温度的变化而改变电阻值,和二级EMI的NTC热敏电阻起相同的作用。

主动式PFC控制电路通常基于一颗IC整合电路,有时候这种整合电路同时会负责控制PWM电路(用于控制开光管的闭合)。

这种整合电路通常被称为一PFC/PWM combO.照旧,先看一些实例。

在图17中,我们将一次侧的散热片去除之后可以更好的看到元器件。

左侧是瞬变滤波电路的二级EMI电路,上文已经详细介绍过;再看左侧,全部都是主动式PFC电路的组件。

由于我们已经将散热片去除,所以在图片上已经看不到PFC 晶体管以及PFC二极管了。

此外,稍加留意的话可以看到,在整流桥和主动式PFC电路之间有一个X电容(整流桥散热片底部的棕色元件)。

通常情况下,外形酷似陶制圆盘电容的橄榄色热敏电阻都会有橡胶皮包裹。

X Capacitor 主动式PFC 兀器件 RFC ControlterPFC CoilActive PFC PFCOaoacitorThermistor 图18是一次侧散热片上的元件。

这款电源配备了两个 MOSFET 开光管和主动式PFC 电路的功率二极管: Switching TransistorsActive PFC DiodeActive PFC Transistors开光管、功率二极管下面我们将重点介绍开光管……第4页:开光管•开光管开关电源的开关逆变级可以有多种模式,我们总结了一下几种情况:当然了,我们只是分析某种模式下到底需要多少元器件,事实上当工程师们在考虑采用哪种模式时还会收到很多因素制约。

目前最流行的两种模式时双管正激( two-transistor forward )和全桥式(push-pull)设计,两者均使用了两颗开光管。

这些被安置在一次侧散热片上的开光管我们已经在上一页有所介绍,这里就不做过多赘述。

以下是这五种模式的设计图:+BusPWMControlDGSSecondary 双管正激(Two-transistor forward configuration )半桥(Half bridge configuration )推挽(Push-pull configuration )第5页:变压器和PWM控制电路•变压器和PWM控制电路先前我们已经提到,一太PC电源一般都会配备3个变压器:个头最大的那颗是之前图3、4和图19-23上标示出来的主变压器,它的一次侧与开关管相连,二次侧与整流电路与滤波电路相连,可以提供电源的低压直流输出(+12V,+5V, +3.3V,-12V,-5V )。

最小的那颗变压器负载+5VSB输出,通常也成为待机变压器,随时处于—待命状态因为这部分输出始终是开启的,即便是PC电源处于关闭状态也是如此。

第三个变压器室隔离器,将PWM控制电路和开光管相连。

并不是所有的电源都会装备这个变压器,因为有些电源往往会配备具备相同功能的光耦整合电路。

变压器这台电源采用的是光耦整合电路,而不是变压PWM控制电路基于一块整合电路。

一般情况下,没有装备主动式PFC的电源都会采用TL494整合电路(下图26中采用的是可兼容的DBL494整合芯片)。

具备主动式PFC 电路的电源里,有时候也会采用一种用来取代PWM芯片和PFC控制电路的芯片。

CM6800芯片就是一个很好的例子,它可以很好的集成PWM芯片和PFC控制电路的所有功能。

PWM控制电路第6页:二次侧(一)•二次侧最后要介绍的是二次侧。

在二次侧部分,主变压器的输出将会被整流和过滤,然后输出PC所需要的电压。

-5 V和-2 V的整流是只需要有普通的二极管就能完成,因为他们不需要高功率和大电流。

不过+3.3 V, +5 V以及+12 V等正压的整流任务需要由大功率肖特基整流桥才行。

这种肖特基有三个针脚,外形和功率二极管比较相似,但是它们的内部集成了两个大功率二极管。

二次侧整流工作能否完成是由电源电路结构决定,一般有可能会有两种整流电路结构,如图27所示:整流模式模式A 更多的会被用于低端入门级电源中,这种模式需要从变压器引出三个针脚。

模式B 则多用于高端电源中,这种模式一般只需要配备两个变压器,但是铁素体电感必须 够大才行,所以这种模式成本较高,这也是为什么低端电源不采用这种模式的主要原因。

此外,对于高端电源而言,为了提升最大电流输出能力,这些电源往往会采用两 颗二极管串联的方式将整流电路的最大电流输出提升一倍。

无论是高端还是低端电源,其 +12 V 和+5 V 的输出都配备了完整的整流电路和滤 波电路,所以所有的电源至少都需要2组图27所示的整流电路。

对于3.3V 输出而言,有三种选项可供选择:☆在+5 V 输出部分增加一个 3.3V 的电压稳压器,很多低端电源都是采用的这种设 计方案; ☆为3.3 V 输出增加一个像图 27所示的完整的整流电路和滤波电路,但是需要和 5 V整流电路共享一个变压器。

这是高端电源比较普通的一种设计方案。

☆采用一个完整的独立的3.3V 整流电路和滤波电路。

这种方案非常罕见,仅在少数发烧级顶级电源中才可能出现,比如说安耐美的银河由于3.3V 输出通常是完全公用5V 整流电路(常见于低端电源)或者部分共用(常见于高端电源中),所以说3.3V 输出往往会受到5V 输出的限制。

这就是为什么很多电源要在铭牌中著名一3.3V 和5V 联合输出llo下图28是一台低端电源的二次侧。

这里我们可以看到负责产生 路。

通常情况下,低端电源都会采用LM339整合电路。

D1F|o Output Q GNDD2D1o OutputXD2Q GND1000W 。

PG 信号的整合电此外,我们还可以看到一些电解电容(这些电容的个头和倍压器或者主动式电路的电容相比要小的多)和电感,这些元件主要是负责滤波功能。

相关文档
最新文档