高分子材料的制备反应

合集下载

化学有机合成高分子材料

化学有机合成高分子材料

化学有机合成高分子材料
高分子材料是指由大分子化合物构成的材料,其分子量通常在10^3-10^7之间。

化学有机合成是制备高分子材料的主要方法之一。

化学有机合成高分子材料的过程包括聚合反应、交联反应、引入功能基团等步骤。

聚合反应是制备高分子材料的核心步骤。

聚合反应可以通过自由基聚合、阴离子聚合、阳离子聚合、离子共聚等多种方式进行。

自由基聚合是最常用的聚合方式之一,其优点是反应条件温和,反应速度快,反应体系简单。

阴离子聚合适用于制备聚丙烯酸、聚苯乙烯等材料,但需要在严格的惰性气氛下进行反应。

阳离子聚合适用于制备聚合物电解质等材料。

离子共聚是一种特殊的聚合方式,能制备出具有特殊性能的高分子材料。

交联反应是制备高分子材料的重要方法之一。

交联反应可以增强材料的力学性能和耐热性能。

交联反应包括化学交联和物理交联两种方式。

化学交联是指在聚合物内部或聚合物与其它物质之间形成共价键的过程。

化学交联的优点是交联度高,但反应条件苛刻,反应时间长。

物理交联是指通过物理作用使聚合物形成网络结构的过程,如热交联、辐射交联等。

引入功能基团是改善高分子材料性能的有效手段之一。

引入功能基团可以使高分子材料具有特殊的性能,如亲水性、亲油性、光学性
能等。

引入功能基团的方法包括原位功能化、后修饰等。

化学有机合成高分子材料的发展已经成为高分子材料领域的一个重要分支,不断涌现出新的合成方法和新的高分子材料。

由于高分子材料具有广泛的应用前景和巨大的经济价值,因此化学有机合成高分子材料的研究也将继续深入发展。

生物医用高分子材料的制备生产方法

生物医用高分子材料的制备生产方法

生物医用高分子材料的制备生产方法
1. 共聚物法:指将两个或更多的单体在聚合反应中同时进行聚合,得到的高分子材料称为共聚物。

常用的共聚物制备方法包括自由基共聚、阴离子共聚、阳离子共聚及复合共聚等。

例如合成聚乙烯醇和聚乙烯醇接枝聚乙二醇共聚物。

2. 溶液法:将高分子前体或分子筛等添加到有机溶液中,通过溶剂挥发或凝胶化等方法制备高分子材料。

例如制备丙烯酸共聚物的方法。

3. 电纺法:将高分子材料通过高电场作用下,由一根金属针头或环状电极喷出成纤维,形成纳米级的纤维网,主要用于制备纳米级纤维和膜材料。

例如以聚乳酸为原料制备的纳米级聚乳酸纤维。

4. 压延法:通过将高分子料均匀地压搓,加热后将高分子材料制成膜状材料。

例如制备聚苯醚膜的方法。

5. 喷雾干燥法:将高分子溶液通过喷雾器雾化成小颗粒,然后通过干燥制成高分子材料。

例如制备聚酰胺6 纳米颗粒的方法。

高分子材料的制备及应用研究

高分子材料的制备及应用研究

高分子材料的制备及应用研究高分子材料是一种有机化合物,由多个单体分子经过共价或离子键结合而成,具有分子量较大、长链或分支链的特点。

在日常生活中,高分子材料被广泛应用于塑料、橡胶、纤维、涂料、粘合剂等各个领域。

本文将就高分子材料的制备及应用研究进行探讨。

一、高分子材料的制备高分子材料的制备通常可以分为两类:物理方法和化学方法。

1.物理方法:物理方法是指利用物理原理将多个单体分子结合成高分子材料。

例如,加热时将低分子量单体化合物分解为自由基,再利用自由基引发剂进行链式聚合反应,形成高分子。

又如,通过利用高分子界面活性剂制成纳米乳液,然后在外界条件的作用下控制相转移,获得一种微粒直径稳定的高分子。

2.化学方法:化学方法则是利用化学反应或酶催化的方法将多个单体分子结合成高分子材料。

例如,聚合物材料可以通过通过酶的催化作用,将一些生物提取物聚合成高分子。

又如,可以通过两种单体分子在特定催化剂存在下的共聚反应,形成不同的共聚物品种。

二、高分子材料的应用高分子材料在生产、科学研究和医学治疗方面都有着广泛的应用。

1.生产领域:高分子材料在生产领域中主要应用于塑料、橡胶、纤维、涂料、粘合剂等诸多方面。

例如,聚乙烯和聚丙烯等塑料材料广泛应用于制造各种商品包装,如袋子、瓶子、保鲜膜、玩具等。

聚氨酯等高分子材料则广泛应用于制造泡沫塑料材料,被广泛用于隔音、隔热等方面。

此外,化纤、涂料、粘合剂、拉铆钉、密封材料等产业也都广泛使用高分子材料。

2.科学研究领域:高分子材料在科学研究领域有着非常广泛的应用,例如纳米粒子通过控制粒径的方式被制成了表面整齐,形状多样,组成结构不断变化的高分子材料。

这种材料在纳米学,材料科学,生物医药等领域有着广泛的应用。

3.医学治疗领域:高分子材料在医学治疗方面应用广泛,如医用高分子材料,中空纤维膜等常用于血液透析,膜分离和支架等医疗设备中。

另外,高分子材料也广泛应用于医学材料。

例如,人工关节材料、医用湿敷料等。

高分子材料制备方法

高分子材料制备方法

高分子材料制备方法
高分子材料制备方法有很多种,以下是常见的几种方法:
1. 添加聚合法:通过将单体加入反应体系中,在适当的温度和反应条件下进行聚合反应,来制备高分子材料。

常见的添加聚合法有自由基聚合法、阴离子聚合法、阳离子聚合法、共聚法等。

2. 缩聚法:通过合成可溶性低聚物和聚合物,然后通过化学反应或物理处理将其聚合成高分子材料。

常见的缩聚法有聚酯缩聚法、聚酰胺缩聚法、聚酰胺缩聚法等。

3. 乳液聚合法:将单体与表面活性剂、乳化剂等混合形成乳液,并通过反应引发剂或共聚催化剂进行聚合反应,得到乳液聚合物。

乳液聚合法具有操作简便、能够得到高纯度、高分子量聚合物等优点。

4. 溶液聚合法:将单体溶解在溶剂中,添加引发剂或催化剂,然后通过聚合反应得到高分子溶液。

常见的溶液聚合法有溶液聚合法、聚合溶胶-凝胶法等。

5. 辐射聚合法:通过辐射源(如光、电子束、离子束等)照射单体或预聚合体,使其发生聚合反应。

辐射聚合法具有反应速度快、操作简单等优点。

6. 其他方法:还有一些其他制备方法,如发泡法、交联法、剪切聚合法、纺丝
法等。

需要根据具体的高分子材料的性质和用途来选择适合的制备方法。

利用化学合成方法制备功能性高分子材料

利用化学合成方法制备功能性高分子材料

利用化学合成方法制备功能性高分子材料高分子材料在现代工业和科学研究中扮演着重要角色。

通过合成方法可以获得各种功能性高分子材料,以满足不同领域的需求。

本文将介绍几种常见的化学合成方法,并探讨它们在制备功能性高分子材料中的应用。

一、聚合反应法聚合反应法是制备高分子材料最常见的方法之一。

其中,自由基聚合反应是应用最广泛的一种。

通过合适的引发剂引发,将单体转化为高分子链,从而制备具有特定结构和性能的高分子材料。

这种方法广泛用于制备塑料、橡胶、涂料等材料。

以聚丙烯制备为例,聚合反应的步骤如下:1. 准备单体:将丙烯单体准备好,确保其纯度和质量。

2. 引发聚合:在适当的温度和压力下,添加引发剂开始聚合反应。

引发剂会生成自由基,引发单体的聚合。

3. 控制聚合过程:通过调控温度、压力和反应时间,控制聚合过程的进程和分子量。

4. 纯化和加工:将得到的高分子材料经过纯化和加工处理,获得所需的功能性高分子材料。

二、交联反应法交联反应法是制备功能性高分子材料中的另一种重要方法。

通过在高分子链上引入交联结构,使材料具有优异的力学性能和热稳定性。

交联反应方法有很多种,包括热交联、辐射交联和化学交联等。

以热交联为例,步骤如下:1. 准备聚合物:首先制备出具有交联基团的聚合物,例如含有双键或反应活性基团的聚合物。

2. 交联反应:将聚合物置于适当的温度下,使之发生交联反应。

通过热能的作用,交联结构得以形成。

3. 控制交联度:通过调控温度和时间,控制交联反应的程度和交联密度,从而控制高分子材料的性能。

三、引发共聚反应法引发共聚反应法可以制备具有复杂结构和多种功能的高分子材料。

这种方法通过在单一反应体系中引入多种单体,实现多种单体的共聚反应。

常见的引发共聚反应有自由基引发的聚合、阴离子引发的聚合和阳离子引发的聚合等。

以自由基引发的聚合为例,步骤如下:1. 选择单体:根据所需的功能和结构,选择合适的单体组合。

2. 引发聚合:在适当的条件下,添加引发剂开始聚合反应。

mdi合成反应方程式

mdi合成反应方程式

mdi合成反应方程式
mdi(Methylene Diphenyl Diisocyanate)合成反应是一种重要的有机合成反应,广泛应用于聚氨酯、聚碳酸酯等高分子材料的制备。

mdi合成反应通过异氰酸酯与醇、胺等活泼氢化合物的反应,生成聚氨酯预聚体,进一步加工成各种聚氨酯产品。

mdi合成反应的反应方程式如下:
R-NCO + R"-OH → R-O-NCO-R" + H2O
其中,R和R"分别为有机基团,表示mdi分子中的两个苯环。

mdi合成反应具有广泛的应用领域,如家具、建筑、汽车、电子、医疗等。

以聚氨酯为例,它在我国的需求量逐年增长,尤其是在家具行业,硬质聚氨酯泡沫塑料已成为家具制造的重要原料。

此外,聚氨酯弹性体、涂料、胶粘剂等领域也对mdi有大量需求。

mdi合成反应具有以下优点:
1.反应条件温和,易于控制。

2.反应速度较快,生产效率高。

3.产品性能优良,如耐磨、耐腐蚀、弹性好等。

然而,mdi合成反应也存在一定的不足:
1.原料成本较高,制约了产业发展。

2.反应过程中产生的副产物废水、废气对环境有一定影响。

3.部分应用领域存在替代产品,如聚碳酸酯等。

在我国,mdi合成反应及下游产业得到了广泛关注和发展。

近年来,我国
政府加大对聚氨酯产业的扶持力度,推动产业链优化升级。

随着技术创新和环保要求的提高,mdi合成反应技术也在不断改进,如采用无溶剂法、生物降解等技术,以降低生产成本和环境影响。

展望未来,我国mdi合成反应及聚氨酯产业将继续发展,创新能力和市场份额有望进一步提升。

高分子聚合反应机理和条件

高分子聚合反应机理和条件

高分子聚合反应机理和条件引言:高分子聚合反应是一种重要的化学反应,其机理和条件对于高分子材料的合成和性能具有关键影响。

本文将探讨高分子聚合反应的机理和条件,并讨论其在材料科学和工程中的应用。

一、高分子聚合反应机理高分子聚合反应的机理主要包括引发剂作用、链增长和链传递三个步骤。

1. 引发剂作用引发剂在高分子聚合反应中起到引发自由基或离子的作用。

自由基引发剂通常通过热解或光解产生活性自由基,而离子引发剂则通过电离产生活性离子。

这些活性物种能够引发单体分子的聚合反应。

2. 链增长在链增长阶段,自由基或离子引发剂与单体分子发生反应,形成一个新的自由基或离子,使聚合链不断延长。

这个过程可以是自由基聚合或离子聚合,取决于引发剂的类型。

3. 链传递链传递是指聚合链上的自由基或离子与其他分子发生反应,导致聚合链的终止或分支。

链传递反应会影响聚合物的分子量分布和结构。

二、高分子聚合反应条件高分子聚合反应的条件包括温度、压力、溶剂和反应时间等。

1. 温度温度是影响高分子聚合反应速率的重要因素。

一般来说,提高反应温度可以加快聚合反应速率,但过高的温度可能导致副反应的发生。

因此,选择适当的反应温度是保证高分子聚合反应高效进行的关键。

2. 压力压力对高分子聚合反应的影响较小,一般情况下可以维持常压条件。

然而,在某些特殊情况下,如乳液聚合反应中,适当的压力可以促进反应物的分散和聚合反应的进行。

3. 溶剂溶剂在高分子聚合反应中起到溶解和传递反应物的作用。

选择合适的溶剂可以调节反应物的浓度、粘度和反应速率。

同时,溶剂的选择还应考虑对聚合物产物的溶解性和纯度的影响。

4. 反应时间反应时间是指高分子聚合反应所需的时间。

反应时间的长短直接影响聚合物的分子量和分子量分布。

在实际应用中,需要根据聚合物的要求和反应物的特性来确定合适的反应时间。

三、高分子聚合反应在材料科学和工程中的应用高分子聚合反应在材料科学和工程中有广泛的应用。

以下是其中几个典型的应用领域:1. 高分子材料合成高分子聚合反应是合成高分子材料的关键步骤。

高分子材料的制备

高分子材料的制备

高分子材料的制备高分子材料是一类具有高分子量的聚合物材料,具有良好的机械性能、耐热性能和化学稳定性,因此在工程材料、医疗器械、电子器件等领域有着广泛的应用。

高分子材料的制备是一个复杂的过程,需要经过多道工艺步骤才能得到理想的产品。

本文将介绍高分子材料的制备方法及其相关工艺。

首先,高分子材料的制备通常是通过聚合反应来实现的。

聚合反应是指将单体分子通过共价键连接成长链分子的化学反应。

常见的聚合方法包括自由基聚合、阴离子聚合、阳离子聚合和离子聚合等。

其中,自由基聚合是最为常见的一种方法,它通过引发剂引发单体的自由基聚合反应,从而形成高分子链。

在聚合反应中,需要控制反应条件,如温度、压力、催化剂的选择等,以获得理想的分子量和分子结构。

其次,高分子材料的制备还需要考虑材料的物理形态和结构。

高分子材料可以是线性聚合物、支化聚合物、交联聚合物等不同形态的结构。

这些结构的不同会影响材料的性能和用途。

因此,在制备过程中需要通过控制反应条件或添加特定的交联剂来调控材料的结构。

另外,高分子材料的制备还需要考虑材料的后处理工艺。

在聚合反应完成后,通常需要进行溶剂提取、干燥、成型等工艺步骤,以获得最终的高分子制品。

这些后处理工艺对于材料的性能和外观有着重要的影响,需要精心设计和控制。

最后,高分子材料的制备还需要考虑材料的应用环境和使用要求。

不同的应用领域对材料的性能和稳定性有着不同的要求,因此在制备过程中需要根据具体的使用要求来选择合适的材料和工艺。

例如,在医疗器械领域,对材料的生物相容性和耐用性有着严格的要求,需要选择合适的材料和制备工艺。

总之,高分子材料的制备是一个复杂而多样的过程,需要综合考虑材料的化学、物理和应用特性,通过精心设计和控制工艺来获得理想的产品。

随着科学技术的不断发展,高分子材料的制备工艺也在不断创新和完善,为各个领域的应用提供了更多可能性。

丙烯酸的合成

丙烯酸的合成

丙烯酸是一种重要的有机化合物,常用于制备聚丙烯酸等高分子材料。

以下是丙烯酸的一种常见合成方法:
1.丙烯腈水解法:
●首先,将丙烯腈(CH2=CHCN)与水反应,发生水解反应生成丙烯酰胺
(CH2=CHCONH2)。

●然后,在高温和高压条件下,将丙烯酰胺继续加热,发生脱氨反应,生成丙烯醛
(CH2=CHCHO)。

●最后,通过氧化反应将丙烯醛氧化为丙烯酸(CH2=CHCOOH),可以使用氧气或过
氧化钴等作为氧化剂。

2.乙烯氧化法:
●在高温和高压条件下,将乙烯(CH2=CH2)与氧气反应,发生部分氧化反应生成丙
烯醛(CH2=CHCHO)。

●然后,通过进一步氧化反应将丙烯醛氧化为丙烯酸(CH2=CHCOOH),可以使用氧
气或过氧化钴等作为氧化剂。

这些方法是丙烯酸的常见合成途径之一,然而要注意其中的反应条件、催化剂的选择以及产品纯度的控制。

此外,还有其他一些合成丙烯酸的方法,如丙烷氧化法和异辛烷裂解法等,具体选择合适的合成方法取决于所需的产量、纯度和经济可行性等因素。

高分子材料制备技术作业指导书

高分子材料制备技术作业指导书

高分子材料制备技术作业指导书第1章引言 (4)1.1 高分子材料概述 (4)1.2 制备技术简介 (4)第2章高分子合成基本原理 (5)2.1 高分子合成方法 (5)2.1.1 加聚反应 (5)2.1.2 缩聚反应 (5)2.1.3 模板聚合 (5)2.1.4 原子转移自由基聚合 (5)2.2 高分子聚合反应 (5)2.2.1 自由基聚合 (5)2.2.2 离子聚合 (6)2.2.3 配位聚合 (6)2.2.4 缩聚反应 (6)2.3 高分子结构及其功能 (6)2.3.1 高分子链结构 (6)2.3.2 高分子结晶性 (6)2.3.3 高分子取向 (6)2.3.4 高分子复合材料 (6)2.3.5 高分子功能材料 (6)第3章均相聚合反应 (7)3.1 溶液聚合 (7)3.1.1 原理 (7)3.1.2 操作步骤 (7)3.1.3 注意事项 (7)3.2 乳液聚合 (7)3.2.1 原理 (7)3.2.2 操作步骤 (7)3.2.3 注意事项 (7)3.3 悬浮聚合 (7)3.3.1 原理 (8)3.3.2 操作步骤 (8)3.3.3 注意事项 (8)第4章非均相聚合反应 (8)4.1 本体聚合 (8)4.1.1 概述 (8)4.1.2 基本原理 (8)4.1.3 实验操作 (8)4.2 熔融聚合 (8)4.2.1 概述 (8)4.2.2 基本原理 (9)4.3 水相聚合 (9)4.3.1 概述 (9)4.3.2 基本原理 (9)4.3.3 实验操作 (9)第5章高分子材料添加剂 (9)5.1 稳定剂 (9)5.1.1 光稳定剂 (9)5.1.2 热稳定剂 (10)5.1.3 抗氧化剂 (10)5.2 填充剂 (10)5.2.1 无机填充剂 (10)5.2.2 有机填充剂 (10)5.3 润滑剂 (10)5.3.1 外润滑剂 (10)5.3.2 内润滑剂 (10)5.4 阻燃剂 (10)5.4.1 无机阻燃剂 (10)5.4.2 有机阻燃剂 (11)第6章热塑性高分子材料制备 (11)6.1 热塑性塑料概述 (11)6.2 聚乙烯制备 (11)6.2.1 制备方法 (11)6.2.2 工艺流程 (11)6.2.3 影响因素 (11)6.3 聚丙烯制备 (11)6.3.1 制备方法 (12)6.3.2 工艺流程 (12)6.3.3 影响因素 (12)6.4 聚氯乙烯制备 (12)6.4.1 制备方法 (12)6.4.2 工艺流程 (12)6.4.3 影响因素 (12)第7章热固性高分子材料制备 (13)7.1 热固性塑料概述 (13)7.2 酚醛树脂制备 (13)7.2.1 原料选择与配比 (13)7.2.2 缩合反应 (13)7.2.3 凝胶化与固化 (13)7.2.4 后处理 (13)7.3 环氧树脂制备 (13)7.3.1 原料选择与配比 (13)7.3.2 开环聚合 (13)7.3.3 固化 (14)7.4 不饱和聚酯树脂制备 (14)7.4.1 原料选择与配比 (14)7.4.2 酯化反应 (14)7.4.3 固化 (14)7.4.4 后处理 (14)第8章橡胶材料制备 (14)8.1 天然橡胶 (14)8.1.1 橡胶树种植与采集 (14)8.1.2 天然橡胶的制备 (14)8.1.3 天然橡胶的性质与应用 (14)8.2 合成橡胶 (14)8.2.1 丁苯橡胶 (14)8.2.2 顺丁橡胶 (15)8.2.3 丁腈橡胶 (15)8.2.4 氯丁橡胶 (15)8.3 硫化橡胶 (15)8.3.1 硫化橡胶的制备原理 (15)8.3.2 硫化橡胶的配方设计 (15)8.3.3 硫化橡胶的功能评价 (15)8.3.4 硫化橡胶的应用 (15)8.4 特种橡胶 (15)8.4.1 硅橡胶 (15)8.4.2 氟橡胶 (15)8.4.3 聚氨酯橡胶 (15)8.4.4 氯磺化聚乙烯橡胶 (15)8.4.5 热塑性弹性体橡胶 (15)第9章复合材料制备 (15)9.1 复合材料概述 (16)9.2 纤维增强复合材料 (16)9.2.1 纤维的选择 (16)9.2.2 基体材料 (16)9.2.3 制备工艺 (16)9.3 层状复合材料 (16)9.3.1 层状复合材料的结构 (16)9.3.2 制备工艺 (16)9.4 颗粒增强复合材料 (17)9.4.1 颗粒的选择 (17)9.4.2 制备工艺 (17)第10章功能性高分子材料制备 (17)10.1 功能性高分子概述 (17)10.1.1 功能性高分子的定义与分类 (17)10.1.2 功能性高分子的基本性质与特点 (17)10.1.3 功能性高分子的应用领域 (17)10.2.1 导电高分子材料的类型与结构 (17)10.2.2 导电高分子材料的制备方法 (17)10.2.3 导电高分子材料的应用实例 (17)10.3 磁性高分子材料 (17)10.3.1 磁性高分子材料的结构与分类 (18)10.3.2 磁性高分子材料的制备技术 (18)10.3.3 磁性高分子材料的应用研究 (18)10.4 光学活性高分子材料 (18)10.4.1 光学活性高分子材料的特性与分类 (18)10.4.2 光学活性高分子材料的制备方法 (18)10.4.3 光学活性高分子材料的应用领域 (18)10.5 生物医用高分子材料 (18)10.5.1 生物医用高分子材料的特性与要求 (18)10.5.2 生物医用高分子材料的分类与选用 (18)10.5.3 生物医用高分子材料的制备与加工技术 (18)10.5.4 生物医用高分子材料的应用实例 (18)第1章引言1.1 高分子材料概述高分子材料是一类由相对分子质量较高的化合物构成的材料,具有独特的物理、化学及生物学功能。

高分子材料的制备及其应用

高分子材料的制备及其应用

高分子材料的制备及其应用高分子材料是一种由大量分子组成的材料,具有多种性能优异、加工性好、耐腐蚀、轻质等优点,被广泛应用于化工、医药、电子、汽车等各个领域。

高分子材料的制备技术不断发展、创新,使得高分子材料的品质不断提高,应用范围不断扩大。

一、高分子材料的制备技术1、聚合法聚合法是制备高分子材料的最常用的方法之一,它是利用单体分子中的共价键发生聚合反应而将单体转变为高分子的过程。

聚合反应中,单体反应物与聚合引发剂在加热、搅拌等作用下,形成聚合物。

2、交联法交联法是通过引入化合物,如交联剂等,使高分子材料中的结构发生交联,并形成高强度的网络结构。

交联法主要以叉烷、化学交联等方式实现交联。

3、聚合物改性法聚合物改性法是利用外界工艺干预的方式,通过加入其他物质改变聚合物的化学结构和物理性质,以改变和优化高分子材料的性质。

二、高分子材料的应用领域1、建筑领域高分子材料在建筑领域中的应用越来越广泛。

例如,防水屋面、防水涂料、粘合剂、土壤改良剂、保温材料等都可以利用高分子合成材料得到实现。

他们在建筑材料中具有优异的防水性、耐热性、强度高、粘合性好、不膨胀等特点。

2、电子领域高分子材料在电子领域中的应用是提高电子设备应用性能、功能的一个有效方式。

高分子材料可以为各种微型器件提供基础,如液晶显示器、电池电极、电容器、开关、透明导电系统等。

3、医疗领域高分子材料在医疗领域中的应用也较为广泛,如人工器官、生物传感器、医用材料、药物缓释系统、组织修复等。

高分子材料的生物可兼容性使得其在医疗领域中的应用得到了较为完整的认可与推广。

4、汽车领域高分子材料在汽车领域中的应用是使汽车整体降低重量,提高噪音隔绝性能等。

例如,高分子热塑料可以代替传统的铝合金制品;高分子复合材料可以成为汽车制造业中轻量化的一个新方向。

总的来看,高分子材料的制备技术和应用领域不断扩大和创新,推动了高分子材料行业的发展。

未来随着该行业不断成熟,更多创新技术和产品的涌现,高分子材料行业无疑将拥有更广阔的发展前景。

高分子材料的制备和性能调控

高分子材料的制备和性能调控

高分子材料的制备和性能调控高分子材料是一类具有巨大潜力的材料,它们具有轻质、高强度、耐腐蚀等特点,在各个领域都有广泛的应用。

然而,要充分发挥高分子材料的优势,就需要对其制备和性能进行精确的调控。

一、高分子材料的制备方法高分子材料的制备方法多种多样,包括聚合法、溶液法、熔融法等。

其中,聚合法是最常用的制备方法之一。

聚合法通过将单体分子进行聚合反应,形成高分子链结构。

这种方法可以控制高分子的分子量和分子结构,从而调控材料的性能。

溶液法则是通过将高分子溶解在溶剂中,然后通过溶剂的蒸发或者其他方法使高分子重新凝聚成固体材料。

熔融法则是将高分子加热至熔融状态,然后通过冷却使其重新凝固成固体材料。

这些制备方法可以根据不同的需求选择合适的方法进行制备。

二、高分子材料的性能调控高分子材料的性能调控是实现材料优化的关键。

通过调控高分子的分子结构和组成,可以改变材料的力学性能、热学性能、电学性能等。

例如,通过改变高分子的交联程度和分子量,可以调控材料的硬度和强度。

通过引入不同的功能基团,可以使高分子具有特殊的化学性质,如耐腐蚀性、抗菌性等。

此外,还可以通过控制高分子的晶型和分子排列方式,调控材料的热学性能和电学性能。

这些性能调控手段可以根据具体的应用需求进行选择和设计。

三、高分子材料的应用领域高分子材料在各个领域都有广泛的应用。

在汽车工业中,高分子材料被用于制造轻量化零部件,以提高汽车的燃油效率。

在电子工业中,高分子材料被用于制造电子设备的绝缘层、封装材料等,以提高电子设备的性能和可靠性。

在医疗领域中,高分子材料被用于制造人工关节、医疗器械等,以改善患者的生活质量。

在环保领域中,高分子材料被用于制造可降解塑料、污水处理材料等,以减少对环境的污染。

这些应用领域的不断拓展,推动了高分子材料的制备和性能调控的研究。

四、高分子材料的发展趋势随着科技的进步和社会的发展,对高分子材料的需求越来越高。

未来,高分子材料的发展趋势将主要集中在以下几个方面。

高中化学选修五第五章第一节合成高分子化合物的基本方法

高中化学选修五第五章第一节合成高分子化合物的基本方法

高中化学选修五第五章第一节合成高分子化合物的基本方法合成高分子化合物是化学领域的一个重要研究方向。

高分子化合物广泛应用于塑料制品、纤维材料、涂料、胶粘剂、医药材料等领域。

本文将介绍合成高分子化合物的基本方法。

一、聚合反应是合成高分子化合物的主要方法之一、聚合反应是指将单体分子在一定条件下发生共价键的形成,形成线性、支化、交联或三维网络结构的高分子化合物。

聚合反应包括链聚合、开环聚合和交联聚合等。

1.链聚合是最常用的聚合反应之一,通过单体分子上的反应中心引发聚合链的生长。

链聚合反应有自由基聚合、阴离子聚合和阳离子聚合等。

自由基聚合反应广泛应用于合成塑料和橡胶,而阴离子聚合反应常用于制备高分子材料。

2.开环聚合是通过单体分子的环状结构反应性上的开环产生线性链的聚合过程。

开环聚合反应包括环氧树脂聚合、环丁烷聚合等。

3.交联聚合是通过在聚合过程中引入交叉链接结构,在高分子材料中形成三维网络结构。

交联聚合反应主要包括热交联反应和辐射交联反应等。

二、缩聚反应是合成高分子化合物的另一种方法。

缩聚反应是指通过两个或多个单体分子间的反应生成高分子化合物。

缩聚反应通常是通过脱水或脱溴等反应,在单体分子之间形成共价键。

缩聚反应主要包括酯化反应、酰胺化反应、缩醛反应等。

缩聚反应可选择性强,可以合成不同结构、性质和用途的高分子化合物。

三、改变分子结构的方法也是合成高分子化合物的重要手段。

改变分子结构可以通过引入官能团或交联剂等方式实现。

引入官能团可以改变分子的相容性、热稳定性、力学性能等。

交联剂可以引入交联结构,增强高分子材料的耐热性、耐溶剂性和力学性能等。

四、模板聚合是一种特殊的方法,它可以通过模板分子的存在,控制高分子聚合的反应过程和产物的结构。

模板聚合可以合成具有特殊功能和结构的高分子材料,如分子印迹聚合物和电导聚合物。

综上所述,合成高分子化合物的基本方法包括聚合反应、缩聚反应、改变分子结构的方法和模板聚合等。

这些方法具有一定的选择性和可控性,可以合成不同结构和性质的高分子化合物,广泛应用于材料科学、医学和工业领域。

高分子材料的制备方法

高分子材料的制备方法

高分子材料的制备方法
高分子材料的制备方法通常包括以下几个步骤:
1.原料选择:选择适合制备目标高分子材料的合适原料,通常包括单体、溶剂、稀释剂等。

单体选择要考虑其结构、反应特性和物性等因素。

2.预处理:将原料进行预处理,例如通过溶解、过滤等方法去除杂质,提高原料的纯度。

3.聚合反应:将适量的单体和催化剂等加入反应容器中,并控制合适的温度、反应时间和反应条件,使单体发生聚合反应,形成高分子链。

反应过程中要注意聚合反应的副反应的控制和氧气、水分的排除。

4.混合、加工:将聚合得到的高分子链与其他添加剂(例如填料、增塑剂等)进行充分混合,以获得所需的材料性能。

5.成型加工:根据高分子材料的用途需求,将材料进行成型加工。

常见的成型加工方法包括挤出、注塑、吹塑、压延、热压等。

6.热处理:对成型后的高分子材料进行热处理,以提高材料的稳定性和性能。

7.表面处理:对需要的高分子材料进行表面处理,如涂覆、镀金、氧化等,以改
变材料的表面性质。

除了上述步骤,还要注意在制备过程中控制适当的工艺参数,如温度、压力、反应时间等,以保证高分子材料的质量和性能。

高分子材料合成方法

高分子材料合成方法

高分子材料合成方法高分子材料合成方法是一种制备高分子材料的方法,通过控制分子结构和化学反应参数,合成出具有特定功能和性能的高分子材料。

高分子材料是一类由大量重复单元组成的巨大分子,具有较高的分子量和多种物理、化学性质。

高分子材料广泛应用于材料科学、化学工程、生物医学和能源等领域。

高分子材料的合成方法可以分为物理方法和化学方法两大类。

物理方法主要包括聚合法、熔融法、溶剂法和固相法等。

聚合法是最常用的高分子材料合成方法之一,它通过在反应中引入单体分子与链端活性中心反应,将单个分子逐渐连接成为高分子链。

常用的聚合方法包括自由基聚合、阴离子聚合、阳离子聚合和锁链聚合等。

自由基聚合是最常见的聚合方法之一,它通过引入引发剂,使单体分子中的双键发生开裂,生成自由基反应活性中心,从而引发聚合反应。

阴离子聚合和阳离子聚合是通过引入铵盐或离子交换体等引发剂,在适当的条件下引发聚合反应。

锁链聚合是通过引入不对称的双功能或多功能单体,并通过合适的引发反应来制备线性链或交联聚合物。

熔融法是将高分子材料的原料加热至熔融状态,通过受热、冷却等工艺来合成高分子材料。

这种方法适用于热稳定性较好的高分子材料,如聚乙烯、聚丙烯等。

熔融法合成具有高分子量和较好相容性的聚合物,可以通过热塑性加工制备各种材料。

溶剂法是将高分子材料的原料溶解在适当的溶剂中,通过调整反应条件来合成高分子材料。

常见的溶剂法包括沉淀聚合法、液液界面聚合法和乳液聚合法等。

沉淀聚合法是将高分子材料的溶质从溶液中析出,并在一定条件下生成聚合物。

液液界面聚合法是在两相非亲和的溶剂界面上引发聚合反应,生成高分子材料。

乳液聚合法是在水相中形成乳液,通过引发剂的作用,在油相中生成聚合物颗粒。

固相法是将高分子材料的原料固态混合,在高温条件下相互反应,生成高分子材料。

常见的固相法包括缩聚法、交联法和光聚合法等。

缩聚法是通过相应的单体之间的缩合反应将单体聚合成高分子材料,生成分子链延长的高分子材料。

高分子材料的合成

高分子材料的合成

高分子材料的合成在现代材料科学领域中,高分子材料凭借其独特的性能和广泛的应用领域而备受关注。

高分子材料的合成是一项重要的研究课题,本文将深入探讨高分子材料的合成方法,包括常用的聚合反应、共聚反应和后掺等技术。

一、聚合反应聚合反应是制备高分子材料的常见方法之一。

聚合反应通过将单体分子在一定条件下连接成长链高分子分子,使其具备特定的结构和性质。

聚合反应的条件包括适宜的温度、催化剂和反应时间等。

1. 自由基聚合反应自由基聚合反应是一种常用的聚合方法,通过引入自由基引发剂,使单体分子中的双键发生开裂并与其他自由基连接形成长链高分子。

自由基聚合反应适用于合成聚乙烯、聚丙烯等高分子材料。

2. 阳离子聚合反应阳离子聚合反应是基于阳离子引发剂的一种聚合方法,适用于含有极性官能团的单体。

阳离子聚合反应可用于合成聚苯乙烯、聚甲基丙烯酸甲酯等高分子材料。

3. 阴离子聚合反应阴离子聚合反应是基于阴离子引发剂的一种聚合方法,适用于含有负电荷的单体。

阴离子聚合反应常用于合成聚氯乙烯、聚苯乙烯等高分子材料。

二、共聚反应共聚反应是将两种或多种不同的单体分子通过聚合反应连接成高分子结构的方法。

共聚反应可以在一定程度上调节高分子材料的性能,扩展其应用范围。

1. 无定型共聚反应无定型共聚反应是一种常见的共聚反应方法,通过在反应体系中同时引入不同单体分子,使其共同参与聚合反应形成无定型高分子结构。

无定型共聚反应适用于制备聚酯醚、聚酰胺等高分子材料。

2. 嵌段共聚反应嵌段共聚反应是一种将两种或多种单体分子以片段的形式依次连接成高分子结构的方法。

嵌段共聚反应可以控制高分子材料的结晶行为和热性能,并能制备具有特定功能的材料。

三、后掺后掺是一种将低分子化合物(后掺剂)加入到高分子材料中,通过化学反应使其与高分子链发生结合的方法。

后掺可以在材料表面改善性能、调节形态和增加功能等。

1. 共价后掺共价后掺是一种通过共价键连接后掺剂和高分子链的方法。

反应型功能高分子材料

反应型功能高分子材料
B、连接结构---能起到连接反应性小分子和 高
④、固相合成法的特点及应用 固相合成法简化了分离过程(过滤),并可
以 使用大大过量的小分子试剂,使合成过程大幅度
简 化,合成产率也相应提高。
目前这种固相合成方法已经广泛应用于多肽、
二、多肽的固相合成 1、肽的人工合成特点
肽的合成是人工合成蛋白质的起点。在肽的 合 成过程中,构成肽的结构单元-氨基酸(α-氨基酸), 有 两个活性基团-氨基和羧基,均有反应能力,使合 成 反应异常复杂。即:
②、高分子配位体与金属离子进行络合反应, 形成高分子金属络合物催化剂。
2、高分子金属络合物催化剂的应用 可用于烯烃的加氢、氧化、环氧化、不对称
加 成、异构化、羰基化、烷基化、聚合等反应中。 如,烯烃的羰基化反应:
三、高分子相转移催化剂 1、高分子相转移催化剂 ①、相转移催化剂(PTC)
在极性差别较大的极性(特别是离子型化合 物)-非极性(有机物)物质的反应中(多数为极性物质在
C6H5COOH
COOH
COCl
CH2OCOCR OO
2、高分子酰基化反应试剂的应用 酰基化反应是主要指对有机化合物中氨基、
羧 基和羟基的酰化反应,分别生成酰胺、酸酐和酯
类 化合物。
这一类反应常常是可逆的,为了使反应进行 得 完全,往往要求加入的试剂过量,但是随之造成
①、用于有机合成中的活泼官能团的保护。
①、在反应中两个氨基酸头--尾联接方向难 以 控制。因此在每一步反应过程中,对不希望参与 反 应的氨基酸一端都要进行保护。这种保护、反应、 脱保护,随肽链加长需要不断重复。
②、中间产物与原料(反应试剂)的烦琐的 分 离过程,使肽的合成过程非常复杂。
2、肽的常规液相合成法 肽的常规液相合成法存在以下问题: ①、产物的分离和纯化问题; ②、随肽链的增长,其溶解度下降,从而肽

高分子材料制备方法

高分子材料制备方法
29
N
O
第三章 功能高分子的制备方法
R nM R [ M ]n -1 M

0 N
O N
nM R O N R [ M ]n O N
图3—5 TEMPO引发体系的引发机理
30
第三章 功能高分子的制备方法
3. 可逆加成-断裂链转移自由基聚合(RAFT) TEMPO引发体系导致自由基活性聚合的原理是 增长链自由基的可逆链终止,而可逆加成-断裂链 转移自由基聚合过程则实现了增长链自由基的可逆 链转移。
单官能度 CH2 SCN S C2H5 C2H5 CH3CH2OCCH2SCN O C2H5 C2H5 S C2H5 C2H5
CH3CH2CH2CH2OCCH2SCN O S
CH3
NHCCH2SCN O S
C2H5 C2H5
双官能度
C2H5 NCS C2H5 S
SCN S
C2H5 C2H5
C2H5 NCS C2H5 S CH2 CH2 SCN S
13
引发
M A + ROH RO M + CH2 O RO M CH2 + AH RO CH2 CH2 O M
增长
RO CH2 CH2 O M + CH2 O RO [CH2 CH2 O] nCH2 CH2 O M CH2
14
第三章 功能高分子的制备方法
四氢呋喃为五元环,较稳定,阴离子聚合不能 进行,而只能进行阳离子聚合。碳阳离子与较大的 反离子组成的引发剂可引发四氢呋喃的阳离子活性 聚合。例如 Ph3C+SbF6- 可在-58℃下引发四氢呋 喃聚合,产物的相对分子质量分散指数为1.04。
21
第三章 功能高分子的制备方法

合成高分子化合物的基本方法——加聚反应

合成高分子化合物的基本方法——加聚反应

第一节
合成高分子化合物的基本方法
(第一课时:加成聚合反应)
【教学重点】:
1、了解有机化合物的链节、聚合度、单体的概念
2、了解加聚反应的一般特点
分为: 加成聚合反应 缩合聚合反应
【教学难点】:
1、由简单的单体写出加聚反应的方程式
2、加聚物的结构式 3、由简单的加聚物的结构式分析出它的单体
[知识回顾ቤተ መጻሕፍቲ ባይዱ:
若遇双键断开时,只断开双键中 的一个键。
CH2=CH2
碳的四价法:
具体操作:从左往右,去掉括号,依次按照碳 的四价,少于四价的补一个共价键,多余四价 的断开一个共价键。
练习:判断形成下列聚合物的单体
[CH2-CH=CH-CH2-CH-CH2]n CH3 [CH2-CH2-CH=CH-CH2-C=CH-CH2]n CH3
浓硫酸 ②
B(C4H6O2) 可以使溴水褪色 E (C4H6O2)n
一定条件 ③
C (C4H6O2)n
一定条件 ④
(1)试写出各步反应方程式,并标注反应类型:
(2)写出与A 有相同官能团的所有同分异构体的结构简式:
作业书写原则:
1,外观整洁:不准折角、破裂、胡写乱划 2,书写整洁: (1)整本不准更改笔记颜色,需要标注用红笔在题后标 注,不准加塞书写; (2)不准超出给定范围书写 (3)不准有涂改的迹象 (4)字体大小不准超过横格宽度的3/4(复杂物质、方程 式占两横书写) 3,答案要与试题有分界线,需要划线,要用尺规作图 4,凡是不按照要求书写的作业,公开展示,必要时处罚!
[ CH2—CH ]n Cl
CH2=CHCl
CH2—CHCl
CF2—CF2
聚四氟乙 烯
[CF2—CF2]n

聚氨酯丙烯酸酯的制备和反应机理

聚氨酯丙烯酸酯的制备和反应机理

聚氨酯丙烯酸酯的制备和反应机理聚氨酯丙烯酸酯是一种重要的高分子材料,具有优异的物理和化学性质,在诸多领域中广泛应用。

其制备方法和反应机理是制备过程中必须掌握的重要知识。

一、聚氨酯丙烯酸酯制备方法聚氨酯丙烯酸酯的制备方法有许多种,常用的包括溶液法、聚合物间交联法、环氧化合物基团打开交联等。

其中,溶液法是一种较为常用的制备方法,其具体步骤为:1. 将二异氰酸酯与丙烯酸酯混合并加入无水醇中,进行酯交换反应,生成异氰酸酯丙烯酸酯。

2. 加入一定量的聚醚二元醇,分别是较短的低分子量二元醇和较长的高分子量二元醇(如聚醚多元醇、聚醚三元醇等),形成一个预聚物。

3. 加入一定量的另一种异氰酸酯,和预聚物进行反应,形成直链聚氨酯丙烯酸酯。

该制备方法简单、成本低、反应条件温和、可控性好,且得到的产品色泽均匀,收率高,广泛应用于医药、化妆品、电子、建材等领域。

但需要注意的是,制备过程中应严格控制反应条件,避免造成毒性物质的释放,并保证产品的质量和稳定性。

二、聚氨酯丙烯酸酯反应机理聚氨酯丙烯酸酯的反应机理比较复杂,其中包括酯交换反应、异氰酸酯基团反应、氢氧化钠催化反应等环节。

1. 酯交换反应酯交换反应是聚氨酯丙烯酸酯制备过程中首先进行的一步,包括二异氰酸酯和丙烯酸酯的酯交换反应。

其中,二异氰酸酯是一个活性物质,其通过与丙烯酸酯进行反应,形成异氰酸酯丙烯酸酯结构。

2. 异氰酸酯基团反应异氰酸酯基团反应是聚氨酯丙烯酸酯制备过程中的核心反应,包括异氰酸酯和聚醚二元醇、聚醚三元醇等二元醇基团的反应。

在反应过程中,异氰酸酯基团会与二元醇基团反应形成尿素骨架,并放出一定量的CO2气体。

3. 氢氧化钠催化反应氢氧化钠催化反应是聚氨酯丙烯酸酯制备过程中的一种辅助反应,其主要目的是催化异氰酸酯基团和二元醇基团间的反应,促进反应速率和反应效率。

以上反应机理只是聚氨酯丙烯酸酯制备过程中的一部分,整个制备过程涉及到许多反应和物质的转化,需要精确控制反应条件,保证反应稳定性和产品质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 根据此要求,引发剂有偶氮化合物、过氧化物和氧化-还 原体系三类。
路漫漫其修远兮, 吾将上下而求索
• 偶氮化合物
偶氮二异丁腈(AIBN)
偶氮二异庚腈(ABVN)
– 特点:形成一种自由基,无副反应,产生N2化学性质稳定,制备 、 储存、运输安全、方便,有毒。
路漫漫其修远兮, 吾将上下而求索
• 过氧化物
特点:有小分子生成,缩聚物的元素组成与单体不同
路漫漫其修远兮, 吾将上下而求索
2. 按反应机理
• (1) 连锁聚合(chain-growth polymerization) 定义:聚合反应是几个单元反应相继进行的过程,如链的 引发、链的增长、链的终止等。(多米诺骨牌)
• (2) 逐步反应(step-growth polymerization) 定义:单体转变成聚合物的过程是逐步进行的,即先生成 二聚体、三聚体等低聚物,这些低聚物再继续聚合成高聚 物。(穿珠子)
• (3)两类聚合反应的特点
路漫漫其修远兮, 吾将上下而求索
2.2.2 连锁聚合反应
Chain-growth Polymerization
路漫漫其修远兮, 吾将上下而求索
若以R*表示活性中心,M 表示单体,则连锁聚合反应可表 示为:
链引发 R* + M → RM* 链增长 RM* + M → RM2* —M—→ RM3* 链终止 RMx* + RMy* → RMx+yR 偶合终止
路漫漫其修远兮, 吾将上下而求索
• 各步基元反应的相对速率:慢引发、快增长、速终止、易转移 • 只有链增长反应才使聚合度增加 • 在聚合过程中,单体浓度逐步降低,聚合物浓度相应提高 • 少量(0.01~0.1%)阻聚剂足以使自由基聚合反应终止
自由基聚合过程中分子量与时间的关系图 自由基聚合过程中转化率与时间的关系
(3) 自由基的活性
– 高活性自由基
– 中活性自由基
– 低活性自由基
路漫漫其修远兮, 吾将上下而求索
2. 引发剂(initiator)
• 引发剂是容易分解成自由基的化合物,分子结构上具有弱 键,在热能或辐射能的作用下,沿弱键均裂成自由基。一 般聚合温度下(40~100℃),要求离解能约 1.25×105~1.47×105 J·mol-1。
1. 自由基(free radical)
• 自由基是带有未配对独电子的基团,性质不稳定,可进行 多种反应。带有未配对独电子的基团R 表示为R•,这时独 电子(•)应理解为处在碳原子上。
(1) 自由基的结构、产生
热解、氧化-还原反 应、光解、电解、高 能粒子轰击
(2) 自由基的反应
路漫漫其修远兮, 吾将上下而求索
• 所以链增长反应速率即单体M 转变为聚合物的速率为:
(3) 按商品名称命名
路漫漫其修远兮, 吾将上下而求索
单体简称+聚合物用途或物性类别 适用于共聚化合物
两种命名法对比
路漫漫其修远兮, 吾将上下而求索
2.1.3 聚合物的分类
Classification of Polymers
路漫漫其修远兮, 吾将上下而求索
1. 按来源分类-天然高分子和合成高分子 2. 按用途分类-纤维、塑料、橡胶、粘合剂、涂料、功能高分子 3. 按性能分类-结构材料和功能材料 4. 按主链的元素组成分类-碳链、杂链、元素有机高分子、无机
路漫漫其修远兮, 吾将上下而求索
2.1.1 基本概念 Basic Concept
路漫漫其修远兮, 吾将上下而求索
1 高分子(macromolecule、polymer)
定义:一种由许多结构相同的、简单的单元通过共价键重 复连接而成的相对分子质量很大的化合物。
特点:由相同的化学结构重复多次而成
共价键连接
路漫漫其★修远兮注, 意:适用于加聚物,不适用于缩聚物
吾将上下而求索
(2) 按聚合物的结构特征命名 • 环氧树脂:特征单元为环氧基
环氧树脂 Epoxy Resin EP
• 聚酯(二元醇与二元酸的产物):特征单元为酯基
路漫漫其修远兮, 吾将上下而求索
聚酯树脂 Polyster Resin
适用于杂链化合物
路漫漫其修远兮, 吾将上下而求索
2.2.2.3 聚合反应动力学
Radical Polymerization Kinetics
路漫漫其修远兮, 吾将上下而求索
自由基聚合反应动力学主要是研究单体转化为聚合 物的速率问题
• 假定生成的聚合物分子聚合度很大(一般情况都是这样),则在引发 阶段所消耗的单体可以忽略,单体M 的转化完全发生在链增长阶段。 链增长反应:
重复单元的个数(n) 记作DP Xn:结构单元的个数 DP与Xn之间的关系:PS Xn=DP
PET Xn=2DP
6. 分子量(molecular weight)
Mn= DP•M1 或Mn= Xn•M2(M1和M2的涵义) 数均分子量、重均分子量、粘均分子量
7. 聚合物(Polymer)
高聚物→重复单元数多(均聚物和共聚物) 低聚物→重复单元数少(均聚物和共聚物)
高分子材料的制备反应
路漫漫其修远兮, 吾将上下而求索
2020年4月9日星期四
Content
2.1 高分子与高分子材料 2.2 聚合反应 2.3 逐步聚合反应
路漫漫其修远兮, 吾将上下而求索
2.1 高分子与高分子材料
2.1.1 基本概念 2.1.2 命名 2.1.3 分类 2.1.4 高分子材料的组成与成型加工
或→ RMx + RMy 歧化终止 均裂 R: R → 2 R · 异裂 R1: R2 → R1+ R2Θ
路漫漫其修远兮, 吾将上下而求索
1. 单体对聚合反应类型的选择 (1) 连锁聚合种类与活性中心
路漫漫其修远兮, 吾将上下而求索
(2) 取代基的电子效应决定聚合类型
• 诱导效应
– 带给电子基团的烯类单体易进行阳离子聚合
由一种单体分子通过聚合进入重复单元的部分
路漫漫其修远兮, 吾将上下而求索
尼龙66 nylon 66 PA66 聚己二酰己二胺、锦纶66
聚苯乙烯 Polystyrene PS
路漫漫其修远兮, 吾将上下而求索
聚对苯二甲酸乙二醇酯 (涤纶) polyethylene terephthalate PET
5. 聚合度(degree of polymerization )
路漫漫其修远兮, 吾将上下而求索
一些重要的碳链聚合物
路漫漫其修远兮, 吾将上下而求索
某些杂链和元素有机聚合物
路漫漫其修远兮, 吾将上下而求索
2.1.4 高分子材料的组成和成型加工
Composition and Processing of Polymers
路漫漫其修远兮, 吾将上下而求索
组成
高分子化合物→高分子材料
路漫漫其修远兮, 吾将上下而求索
相对分子量较大:5~15×104
聚氯乙烯 polyvinyl chloride PVC
2 单体(unit)
形成聚合物结构单元的小分子化合物
3.乙重烯,复氯乙单烯,元苯乙(r烯e等p等eating unit )(链节 )
高分子链中可重复的最小单位
4. 结构单元(structure unit)
国际纯化学与应用化学联盟标志
2. 习惯命名法
路漫漫其修远兮, 吾将上下而求索
2. 习惯命名法
(1) 按单体来源命名——“聚” +“单体名称” A. 以单体名称为基础命名
聚丙烯腈 polyacrylonitrile PAN (腈纶)
B. 以假想单体名称为基础命名
聚乙烯醇 polyvinyl alcohol PVA
过氧化苯甲酰-BPO
过氧化乙酰基环己烷磺酰(ACSP)
– 特点:形成多种自由基,无副反应氧化性强易燃、易爆
• 水溶性过硫化物
路漫漫其修远兮, 吾将上下而求索
过硫酸钾
• 氧化-还原体系——0~50℃,活化能40-60kJ/mol
氧化剂:有机过氧化物 油溶性氧化-还原引发体系 还原剂:叔胺、环烷酸盐、硫醇、有机金属化合物
不同类型的高分子材料需要不同类型的添加成分,举例如下 :
塑料:增塑剂、稳定剂、填料、增强剂、颜料、润滑剂、增 韧剂等。
橡胶:硫化剂、促进剂、防老剂、补强剂、填料、软化剂等 。
涂料:颜料、催干剂、增塑剂、润湿剂、悬浮剂、稳定剂等 。
路漫漫其修远兮, 吾将上下而求索
成型加工
塑料的挤出、压延、注射、压制、吹塑; 橡胶的硫化、开炼、密炼、挤出、注射等。 在成型加工过程中,物料的形态、结构都会发生显著变化, 从而改变材料的性能。
• 歧化终止
特点:活化能很低,终止反应速率很高
路漫漫其修远兮, 吾将上下而求索
(4) 链转移反应(chain transfer)
– 单体
– 溶剂修远兮, 吾将上下而求索
(5) 分子量调节(molecular weight regulation)
• 缓聚(polymerization retardation) – 形成的自由基比原来的自由基的活性有明显下降,致使聚合速率 明显减小。
路漫漫其修远兮, 吾将上下而求索
2.2 聚合反应
Polymerization
路漫漫其修远兮, 吾将上下而求索
2.2 聚合反应
2.2.1 聚合反应分类 2.2.2 连锁聚合反应 2.2.3 离子型聚合 2.2.4 定向聚合 2.2.5 聚合实施方法
路漫漫其修远兮, 吾将上下而求索
2.2.1 聚合反应分类
路漫漫其修远兮, 吾将上下而求索
2.1.2 聚合物的命名
Polymer Naming
路漫漫其修远兮, 吾将上下而求索
原则:既要表明聚合物的结构特征,又要反映其与 原料单体的联系。
相关文档
最新文档