蓄电池的特性
蓄电池的工作特性
教学目标 教学过程
知识目标:
1.了解蓄电池的放电特性; 2.了解蓄电池的充电特性;
课堂小结
布置作业
教学目标 教学过程
1.蓄电池的放电特性
放电过程 当接通电源时,在2.1V电位差作用下。 蓄电池外部:电流从正极流出,经过用电设备流回负极; 蓄电池内部:极板上的活性物质与电解液发生反应生成
教学目标 教学过程
4.任务要求 1)描述蓄电池充放电的化学方程式; 2)叙述蓄电池放电过程的特征; 3)叙述蓄电池充电终了时的特征;
课堂小结
教学目标 教学过程 课堂小结 布置作业
布置作业
谢 谢!
硫酸铅和水,电解液中的H2SO4被消耗,而H2O增多,电解液 密度逐渐下降。
教学目标 教学过程
放电特性 在25℃下,以恒流放电过程中,蓄电池端电压与电解液
密度随时间而变化的规律称为放电特性。
教学目标 教学过程
放电过程特征 1)正、负极板上的活性物质逐渐转变为PbSO4; 2)电解液中的H2SO4减少,水增多,电解液密度下降; 3)蓄电池内阻增大,供电能力下降; 放电终了特征 1)单格电压降到放电终止电压; 2)电解液密度降到最小值;
教学目标 教学过程
2.蓄电池的充电特性
➢ 充电过程 当外加电源电压高于蓄电池电动势时,电流将以放电相
反地方向流过蓄电池,使蓄电池正、负极发生与放电相反 地化学反应。 ➢ 充电特性
在25℃下恒流充称为充电特性。
教学目标 教学过程
➢ 充电过程特征 1)正、负极板上的活性物质由PbSO4转变为PbO2和Pb; 2)电解液中的水减少,H2SO4增多,电解液密度上升; 3)蓄电池内阻减小,供电能力逐渐恢复; ➢ 充电终了特征 1)蓄电池端电压和电解液密度上升到最大,且在2h内不 再上升; 2)电解液中剧烈的冒气泡,呈沸腾现象;
蓄电池的工作原理和特性
(1)充电开始阶段 端电压迅速上升。
开始充电时,孔隙内迅速生成硫酸, 浓差极化增大,端电压迅速上升。
4.充电特性
在恒流充电过程中,蓄电池的端电压UC 和电解液密度ρ25℃ 随时间tC而变化的 规律。
恒流充电特性曲线见图1-13。
ρ25℃按直线规律上升。恒流放电,电流 值一定,化学反应速度一定,单位时间生 成的硫酸量一定。
负极板: Pb-2e→Pb2+ Pb2++SO42-→PbSO4
电解液:H++OH-→H2O
蓄电池放电特征
(1)活性物质PbO2和Pb均逐渐变为 PbSO4。
(2)放电过程中,电解液密度下降,所以, 可通过电解液密度判断放电程度
(3)蓄电池内阻逐渐增大。
3.充电过程 将电能转换成蓄电池化学能的过程称为充 电过程,它是放电反应的逆过程。 化学反应过程见图1-10所示: PbSO4→Pb2++SO42- H20→2H++OH-
OH-留在电解液中,Pb4+ 沉附在正极
表面,使正极板有+2.0V
在外电路未接通时,反应达到动态平 衡时,静止电动势为:
E=2.0-(-0.1)=2.1V
2.放电过程
将蓄电池的化学能转换成电能的过程 称为放电过程。
化学反应过程将按图1-9所示
正极板: Pb4++2e→Pb2+ Pb2++SO42-→PbSO4
蓄电池的工作原理和特性
一、工作原理
蓄电池的化学反应方程式为:
1.电动势的建立
蓄电池的电动势是正、负极浸入电解 液后产生的。其反应过程见图1-8所示
蓄电池名词解释和特性说明
铅酸蓄电池特性说明&&名词解释(本文内容为普通蓄能类铅蓄电池)一.STANDBY USE/CYCLING USE 浮充使用/循环使用I nitial current :less than 1.75A:初始电流不超过1.75A。
一般充电时,电池在未接入回路时内阻可能很小,为保护电池充电电流不能太大。
Standby use :浮充使用:表示长时间持续充电,只有需要时才放电。
如UPS。
Cycling use :循环使用:表示快速的充放电使用。
如电动车,需要经常性充电。
以上仅为某一品牌电池铭字简解,不同品牌略有差异。
二.放电电流/终止电压放电是蓄电池的最基本功能。
但过放电却能导致蓄电池性能急剧下降甚至永久性损坏。
在寿命功效最大化的情况下,蓄电池放电应在0.05C—3C之间。
汽车蓄电池等某些特殊用途的蓄电池,瞬间放电10倍C(C为25℃下标称容量)甚至以上,也只是瞬间而已。
一般铅蓄电池的放电电流和终止电压具有“类负相关”关系。
不同品牌的铅蓄电池,放电电流/终止电压略有不同,其极板材质、化学成分和制作工艺导致差异的存在。
超过某一放电电流下终止电压的下限额度就会发生过放电。
若难免而发生了反复过放电情况,应及时充电甚至维护。
以下为某一品牌铅蓄电池放电电流/终止电压数据:正常工作温度25℃下,三.放电容量不同放电率下蓄电池容量不同。
以下为某一品牌铅蓄电池不同放电电流下的放电容量。
结论得出:放电电流Ix越大,电池所能放出的容量Cx越小。
铅蓄电池标称容量一般是:20—25℃左右的时候,10小时的放电量,就是标称容量。
进而可以得出,0.1C的放电量,可以放电10个小时。
四.其他注意事项①.温度.铅蓄电池正常温度范围为15℃—50℃。
温度过高过低,都会影响性能。
建议长期使用温度20℃—40℃。
对于60V以下蓄电池,温度补偿不明显,可以不予考虑。
②.充电电流/功率.铅蓄电池正常充电电流应小于0.25C。
充电电压应小于14.5(快速循环充放电时,充电电压要小于15V)。
第三节 蓄电池的工作原理和工作特性(王字号)
第三节 蓄电池的工作原理和工作特性
学习内容 工作原理 工作特性
负极板,由于得到二个电子与原二 价铅离子结合而生成纯铅(附在负极 板上)即: 电解液中: 在充电接近结束时,硫酸铅分别 转化为相应的活性物质,如果还继续 充电,将会引起水的电解,即:
2H2O 2H2 O2
概述 蓄电池的结构与型号 蓄电池的工作原理和工作特性 蓄电池的容量及影响因素 蓄电池的充电 蓄电池常见故障及其排除方法 蓄电池的使用与维护 新型蓄电池
蓄电池的结构与型号 蓄电池的工作原理和工作特性 蓄电池的容量及影响因素 蓄电池的充电 蓄电池常见故障及其排除方法 蓄电池的使用与维护 新型蓄电池
参考教材p9
第三节 蓄电池的工作原理和工作特性
学习内容 工作原理 工作特性
4、充电特性 蓄电池的充电特性是指在在恒流充电过程
概述 蓄电池的结构与型号 蓄电池的工作原理和工作特性 蓄电池的容量及影响因素 蓄电池的充电 蓄电池常见故障及其排除方法 蓄性
学习内容 工作原理 工作特性
蓄电池端电压的测量: 一般发动机未工作时测量蓄电池电压为开 路电压为12V。 一般发动机工作时测量蓄电池电压为充电
概述 蓄电池的结构与型号 蓄电池的工作原理和工作特性 蓄电池的容量及影响因素 蓄电池的充电 蓄电池常见故障及其排除方法 蓄电池的使用与维护 新型蓄电池
概述 蓄电池的结构与型号 蓄电池的工作原理和工作特性 蓄电池的容量及影响因素 蓄电池的充电 蓄电池常见故障及其排除方法 蓄电池的使用与维护 新型蓄电池
将完全充足电的蓄电池以20h放电率的电
流进行放电,使放电电流保持稳定不变,每 隔一定的时间,测量端电压和电解液密度, 即得到放电特性曲线。
第三节 蓄电池的工作原理和工作特性
蓄电池的特性1
1.充电电压
由于UPS蓄电池属于备用工作方式,市电正常情况下处于充电状态,只有停电时才会放电。为延长蓄电池的使用寿命,UPS的充电器一般采用恒压限流的方式控制,蓄电池充满后即转为浮充状态。
对于端电压为12V的蓄电池,正常的浮充电压在13.5~13.8V之间。浮充电压过低,蓄电池充不满,浮充电压过高,会造成过电压充电。当浮充电压超过14V时,即认为是过
出容量的百分之多少,而是要关注发现和处理落后蓄电池,经对落后蓄电池处理后再做核对性放电实验。这样可防止事故,以免放电中落后蓄电池恶化为反极蓄电池。
蓄电池的类型选择
蓄电池有多种类型,目前,风力发电普通采用于荷铅酸蓄电池。这种电池灌液
后,经过30分钟,待液温为l 5℃时即可使用,不需要进行初充电。对刚刚安装风力机,又不具备初充电条件的偏远地方,立即可以用电,是很优越的。这种电池的缺点是体积和重量较大,搬运不方便。市场销售的铝酸蓄电池多是机动车启动用电池,其极板结构和制造特点,使用在风力发电的充放运行条件下,是不适合的,使用命短,一般只有2~3年左右。在容量较大的风力发电站中,最好采用固定型防酸隔爆式铅蓄电池,这种电池具有容量大,电液比重较低(15℃时约在1.21左右),减少对极板和隔板的腐蚀,可延长蒸发时间,还有防渗漏措施,减少了对地的放电。
蓄电池的放电特性和放电要求
蓄电池的放电特性和放电要求发布者:dcxfy发布时间:2008-3-22 12:46:26 阅读:195次1.放电特性蓄电池在出厂前都会进行容量试验。
依据YD/T799-1996标准,容量试验的步骤如下:①将被试验蓄电池完全充电。
②将被试验蓄电池静置1~24h,使蓄电池表明温度达到25℃±5℃。
③固定型蓄电池采用0.1C10连续对负载恒流放电,在放电过程中定期测试蓄电池的端电压。
蓄电池电压达到1.80V/单格时为放电终止。
最后累积放电量达到100%即为合格。
对于蓄电池来说,放电终止的依据是蓄电池的端电压,即单体蓄电池的终止电压约为1.80V。
但是蓄电池的端电压与正、负极的3种极化密切相关,终止电压1.80V/单格是针对0.1C10左右的放电速率而设置的。
由于极化的存在,放电速率减小时,放电终止电压也应该越来越高,否则极有可能导致蓄电池过放电,出现不可逆硫酸盐化、寿命提前终止。
2.放电终止电压在蓄电池放电时需要注意的是放电速率和放电终止电压,尤其是不同环境温度下放电速率和放电终止电压的设定。
由于不同的环境温度会极大的影响蓄电池中电解液的冰点和活性物质的活性,为保证化学反应的充分进行,蓄电池最低温度最好控制在25℃左右。
而蓄电池放电时终止电压的设定是为了防止在放电过程中蓄电池组内出现各单体蓄电池的电压和容量不平衡的现象。
通常过放电越严重,下次充电时落后的蓄电池越不容易恢复,这就将严重影响蓄电池组的寿命。
通常蓄电池放电速率为0.02C10、0.1C10、0.2C10或0.3C10。
为了防止过充电,不仅要尽可能的避免放电速率过小,而且还必须根据放电速率,同时结合环境温度,精确地设计放电的终止电压。
在一般情况下,如果放电速率为(0.01~0.025)C,终止电压可设定为2.00V;放电速率为(0.5~0.25)C时,终止电压可设定为1.80V。
由于浓差极化的存在,放电速率增大时,伴随着放电电流的增大,放电终止电压也应该越来越低。
蓄电池
2.定压充电 充电过程中,加在蓄电池两 端的电压保持不变的充电方法。 特点:
充电过程中,充电电压保 持不变。充电开始,充电电流 很大,随着蓄电池电动势的为 断升高,充电电流逐渐减小, 直至为零。
单格电池充电电压通常选 择为2.5V。
3.脉冲快速充电 脉冲快速充电电流波形如图 所示。
特点:
(1)充电速度快、充电时间短; (2)可以增加蓄电池的容量。 (3)去硫化效果好。 (4)充电过程中产生大量气泡, 对活性物质的冲刷力强,易使活性 物质脱落,蓄电池的使用寿命下降。
三、 蓄电池的容量及影响因素
主要内容: 1.蓄电池的容量 2.蓄电池容量的影响因素
蓄电池的容量
定义:蓄电池在完全充足电的情况下,在允许放电的 范围内对外输出的电量,单位为安培小时(A· h)。 类型:额定容量、起动容量 (1)额定容量 完全充足电的蓄电池在电解液平均温度为25℃的 情况下,以20h率放电电流连续放电至单格电压降至 1.75V时所输出的电量.
充电过程:
电路连接 充电时,外接直流电源 的正极接蓄电池的正极板,电源的负极 接蓄电池的负极板。 电流流向 当直流电源的电动势高 于蓄电池的电动势时,电流将以放电电 流相反的方向流过蓄电池。 充电结果 正极板上的正二价铅离 子失去2个电子成为正四价铅离子,与水 反应生成二氧化铅,附着在正极板上, 电位升高; 负极板上的正二价铅离子得到2个电 子生成一个铅分子而附着在负极板上; 从正、负极板上电离出来的硫酸根离 子与水中的氢离子结合生成硫酸。
且与底部垂直,以便充放电时,电解液能通过沟槽及时供给正极 板,当正极板上的活性物质PbO2脱落时能迅速通过沟槽沉入容器 底部。
3. 电解液
作用:由纯净硫酸和蒸馏水按一定比例配制而成。 密度一般为1.24~1.30 g/cm3。
蓄电池的特性
(1)使用寿命长高强度紧装配工艺,提高电池装配紧度,防止活物质脱落,提高电池使用寿命。
低酸比重电液,提高电池充电接受能力,增强电池深放电循环能力。
增多酸量设计,确保电池不会因电解液枯竭缩短电池使用寿命。
因此GFM系列蓄电池的正常浮充设计寿命可达15年以上(25℃)(2)高倍率放电性能优良高强度紧装配工艺,电池内阻极小,大电流放电特性优良,比一般电池提高20[%]以上。
(3)自放电低高纯度原料与特殊造工艺,自放电很小,室温储存半年以上也可无需补电。
(4)维护简单特殊氧气吸收循环设计,克服了电池在充电过程中电解失水的现象,在使用过程中电解液水份含量几乎没有变化,因此电池在使用过程中完全无需补水,维护简单。
(5)安全性高电池内部装有特制安全阀,能有效隔离外部火花,不会引起电池内部发生爆炸。
(6)安装简捷电池立式、侧卧、叠层安装均可,安装时占地面积小,灵活方便。
(7)洁净环保电池使用时不会产生酸雾,对周围环境与配套设计无腐蚀,可直接将电池安装在办公室或配套设备房内,无需作防腐处理。
蓄电池的充放电特性•蓄电池具有自放电效应。
从生产制造车间到用户使用,大约要延误数月的时间。
以PA-NASONIC蓄电池为例,在30℃的环境温度下贮藏8个月,蓄电池的残存容量仅为出厂时的一半,因此对于新购买的与UPS配套的蓄电池,一般要进行一次较长时间的充电,这叫做初充电。
蓄电池的初充电电流大小应按0.1C来充电,蓄电池在放电终了后可进行再充电,这叫正常充电。
目前在UPS中普遍采用两种充电方式:浮充与脉充。
所谓浮充电是指整流器的输出与蓄电池并联工作,并同时向负载供电,实际上此时整流器提供的电流分两路,一路送给负载,另一路送给蓄电池,以补充蓄电池自身内部损耗,浮充充电工作方式接线简单,对改善UPS输出瞬态响应特性有好处。
脉冲充电的特点是充电电流随蓄电池容量而变化,用这种方式充电,可以缩短充电时间。
1.充电电压由于UPS蓄电池属于备用工作方式,市电正常情况下处于充电状态,只有停电时才会放电。
蓄电池的工作原理和工作特性
图2-14 恒流充电特性曲线源自 谢谢观看!汽车电器设备与维修
图2-11 电解液温度对容量的影响
(4)电解液密度。电解液密 度与容量的关系如图2-12所示。
适当增加电解液的密度, 可 以提高蓄电池的电动势及电解液 的渗透能力, 并减小电解液的内 阻, 使蓄电池容量增加。但密度 过大, 其黏度增加, 渗透能力降 低, 内阻增大, 蓄电池端电压及 容量将减小。电解液密度偏小有 利于提高放电电流和容量。冬季 使用的电解液, 在不使其结冰的 前提下, 尽可能采用较小密度的 电解液。
3)蓄电池的容量 蓄电池的容量标志着蓄电池对外供电的能力,是指蓄电池在完全充足 电的条件下,在允许的放电范围内所输出的电量,单位为安培小时( A·h)。当蓄电池以恒定电流放电时,其容量C为 C=If·tf 式中,If为放电电流(A);tf为放电时间(h)一般蓄电池容量包含以 下类型: 理论容量。 实际容量。 额定容量。 储备容量。 起动容量。
蓄电池的工作原理和工作特性
2.1 蓄电池的工作原理
1 .蓄电池电动势的建立 极板浸入电解液后,由
于少量的活性物质溶解于电 解液,产生了电极电位,并 且由于正、负极板的电极电 位不同而形成了蓄电池的电 动势,如图2-8所示。
图2-8 电动势的建立
2 .蓄电池的充电过程
铅酸蓄电池充电时, 应 外接一直流电源(充电机或 整流器), 使正、负极板在 放电后生成的物质恢复成原 来的活性物质状态, 并把外 界的电能转化为化学能储存 起来, 如图2-9所示。
充、放电时化学反应总方程式为:
2PbSO4+ 2H2O→ PbO2+Pb + 2H2SO4
3 .蓄电池的放电过程
铅酸蓄电池放电时, 在蓄电池的电位差作用 下, 负极板上的电子经 负载进 入正极板形成 电流。同时 在蓄电池 内部进行化学反 应, 如 图2-10所示。
3-蓄电池的工作原理与特性
开路电压(静止电动势)公式
1)当温度为25℃时:
Es=0.84+ρ25℃(V)
式中:Es—静止电动势(V)
0.84—温度换算系数
ρ25℃--25℃时的电解液密度(g/cm3)
汽车用蓄电池的电解液密度普通在1.12-1.30g/cm3之
间,因此ES=1.97~2.15(V)
2)当温度不为25℃时,密度修正为:
ρ25℃=ρ+β(t-25)
式中:ρ—实测密度(g/cm3)
β—密度的温度换算系数。数值为0.00075g/cm3.含义为:电解液温升1℃,密度下降0.00075g/cm3.
t—实测温度(℃)
(3)蓄电池端电压的测量
端电压包括开路电压、放电电压和充电电压,取决于蓄电池的工作状况。
度过高、过低时,电
解液的电阻都会增大。
因此,适当采用低密度电解液和提高电解液温度(如冬
季对电池采取保温措施),对降低蓄电池内阻、提高起动性
能十分有利。
2、蓄电池的内阻
(1)组成
电解液电阻、极板电阻、隔板电阻、联条与极柱接触电
阻等。
(2)影响因素1)放电程度
放电程度越高,PbSO4越多,极板电阻越大。
电解液的电阻与其密度和温度有关。如6-Q-75型铅酸蓄电池在温度为+40C时的内阻为0.01Ω,而在-20C时内阻为0.019Ω,可见,内阻随温度降低而增大。
电解液电阻与密度的关系如图2-22所示。由图可见,
电解液密度为
1.20g/cm3(15C)
时其电阻最小。同时,
在该密度下,电解液
的粘度也比较小。密
1)开路电压:在发机电未正常工作时测量的蓄电池端电压为开路电压。普通为12V。
a、b、c类蓄电池
a、b、c类蓄电池随着社会的发展,蓄电池作为电子产品中不可或缺的一部分,扮演着重要的角色。
根据其使用场景和特性的不同,蓄电池可以分为a、b、c类蓄电池。
本文将对这三类蓄电池进行详细介绍,帮助读者更好地了解和选择适合自己需求的蓄电池。
一、a类蓄电池a类蓄电池是一种广泛应用于日常生活的蓄电池,它具有以下特点:1. 安全性高:a类蓄电池采用了高品质的材料和工艺,具有较低的自放电率和循环寿命,并且在使用过程中不会产生过多的热量和有害物质。
2. 充放电效率高:a类蓄电池采用了先进的充放电技术,能够以较高的效率进行能量转换,并且能够快速充电和释放电能。
3. 适用范围广:a类蓄电池广泛应用于各种便携式电子产品,如手机、平板电脑、数码相机等,以及家用电器,如电动牙刷、遥控器等。
二、b类蓄电池b类蓄电池是一种专业用途的蓄电池,主要用于工业领域和特殊场合,它具有以下特点:1. 高能量密度:b类蓄电池采用了高容量的电池芯,能够存储更多的电能,提供更长的使用时间。
2. 高放电率:b类蓄电池能够以较高的速率释放电能,满足工业设备和特殊场合对高功率输出的需求。
3. 长寿命:b类蓄电池采用了特殊的材料和工艺,具有较长的循环寿命和较低的自放电率,适合长时间使用和频繁循环充放电。
三、c类蓄电池c类蓄电池是一种新型的蓄电池技术,具有以下特点:1. 高安全性:c类蓄电池采用了无汞、无镉等环保材料,不会产生有害物质,具有较低的自燃和爆炸风险。
2. 高能量密度:c类蓄电池采用了高能量密度的电池芯,能够存储更多的电能,提供更长的使用时间。
3. 快速充电:c类蓄电池具有较低的内阻和较高的充电效率,能够以较快的速度进行充电,提高使用效率。
a、b、c类蓄电池各具特点,适用于不同的场景和需求。
在购买蓄电池时,我们应根据实际使用需求选择合适的蓄电池类型。
对于日常生活中的便携式电子产品,a类蓄电池是不错的选择;对于工业领域和特殊场合,b类蓄电池能够满足高功率输出的需求;而c类蓄电池则是一种环保、高能量密度且快速充电的新兴选择。
硅能蓄电池特点
硅能蓄电池特点1、储备容量高,35Ah以下达到国际要求的1.5倍。
2、充电接受能力强,达到国际要求的2.5倍。
3、大电流放电效率高,可高倍率放电,30C放电8S内电池不损伤。
4、自放电小,完全充电后一年内仍可正常使用。
5、充放电无记忆(次数)6、能够适用于各种恶劣质环境下,可以在-40C--70C温度范围内使用,6000公尺深渊环境下仍能正常工作。
7、使用寿命长,GM系列在正常环境下浮充寿命可达十年,DW系列循环寿命达到400次。
硅能蓄电池性能特性1、环保型。
该产品采用复合硅盐电解质取代硫酸,解决了在生产和使用过程中一直存在在的酸雾和接口腐蚀难题,而所报废的电解质可用于种植,无污染,极易处理,电池极板亦可再生使用。
2、优良的充电特性。
充电接受能力是衡量一个蓄电池的重要技术指标。
硅能蓄电池可用额定Ah值的60%-80%充电,常规充电时间为1.5-2小时,仅为铅酸蓄电池充电时间的1/4/。
变可采用额定Ah值的100-150%快速充电,快速充电时间<1小时,突破0.5小时率。
由于产品内阻小,除常规放电外可超大电流放电,大电流充电时硅能蓄电池无明显的温升,也不会影响电解质特性及寿命。
硅能蓄电池充电迅速,在要求解决快速充电的行业有广阔的应用前景。
可以满足作动力使用的需要,充电次数超过400充次(行业标准现为300充次)。
3、放电特性:与充电能力相对应,蓄电池的放电能力同样是极其重要的技术指标,某额定容量的蓄电池用越短的时间放完电,标志着其放电性能越好。
国内通讯用蓄电池放电标准为10小时率,动力用蓄电池为2小时。
硅能蓄电池由于电解质内阻极小,适用于大小电流放电,可普遍用额定Ah值的60-80%放电。
起力用电池短时间放电能力高达额定Ah值的15倍至30倍。
硅能蓄电池达到2小时率的国际先进水平。
4、自放电小,免维护性好,便于长时间保存。
普通铅酸蓄电池由于自放电因素,在20C环境中存放180天,通常需要进行一次放/充电维护,否则可能损害电池的寿命。
蓄电池-3讲解
25
中国无电线网信络河运源营分中心公司
大纲
1 蓄电池的作用
2 蓄电池的特点
3 蓄电池的参数
`
4 充放电特性
`
5 维护注意事项
6 小结
26
××部
中国无电线网信络河运源营分中心公司
五、蓄电池维护注意事项
1、蓄电池运行环境要求: 阀控式密封蓄电池(包括UPS 蓄电池)可不专设电池室,
8
中国无电线网信络河运源营分中心公司
二、蓄电池结构特点—安全阀
1、安全阀(排气阀)的作用:“单向节流性”
电池中气体压力超过开启压力时,排气阀便打开阀门,及时排 出,以减小内压。
在正常浮充状态下,由安全阀逸散微量气体,以防止电池气体 聚集,确保安全。
当压力下降到闭阀压时阀门自动关闭,防止外部空气进入蓄电 池内,避免加速自放电。
三、蓄电池基本参数
5、标称容量(额定容量)
容量:指电池的电量,用“C”表示。单位为安时(用“Ah” 表示)
额定容量
固定电池在25oC下,以10Hr放电至终止电压为1.8v/只时,应
该放出最低限度的电量称为额定容量。用“C10”表示。
10小时率称标准放电率,其电流值为:I10=C10/10=0.1C10
2、安全阀(排气阀)的性能:“开阀压和闭阀压”
开阀压为10~35kPa,闭阀压为3~15kPa。
开阀压过高,外壳易膨胀或鼓裂;
开阀压过低,则易因失水过多而造成失效;
排气阀必须具有氧气不透过性能;
阀门关闭不及时,空气易进入蓄电池,加速自放电。
9
中国无电线网信络河运源营分中心公司
二、蓄电池结构特点—电池壳体
镍镉蓄电池的工作原理及特性
镍镉蓄电池的工作原理及特性镍镉蓄电池为碱性蓄电池,它具有机械强度高、循环寿命长、耐过充电及过放电、自放电小和比能量大等优点。
缺点是材料利用率低、价格昂贵、长期充放循环有记忆效应等。
1、镍镉蓄电池的结构镍镉蓄电池主要由正负极板组、隔离物、电解液和容器组成。
2、镍镉蓄电池的工作原理镍镉蓄电池的正极活性物质由氧化镍粉和石墨粉组成,石墨不参与化学反应,它的主要作用是增强导电性。
负极活性物质由氧化镉粉和氧化铁粉组成。
电解液为氢氧化成钠(NaOH)或者是氢氧化钾(KOH)水溶液,环境温度较高时,用15℃时密度为1.17~1.19kg/L的氢氧化钠溶液;环境温度较低时,用15℃时密度为1.19~1.21kg/L的氢氧化钾溶液。
隔膜采用耐碱的硬橡胶绝缘棍、多孔的聚氯乙烯瓦楞板和尼龙等,作用是防止正、负极板相碰。
充、放电的化学反应式为从化学反应式可以看出,放电后,正极活性物质为氢氧化亚镍N,负极活性物质为氢氧化镉Cd(OH)2。
充电后正极活i(OH)2性物质为氢氧化镍NiOOH,负极活性物质为金属镉Cd。
电解液不直接参与反应,只起导电作用。
此外,充电过程中由水分子生成,放电过程中由水分子消耗,在充放电过程中电解液的密度只有微小变化,所以不能用电解液密度来判断电池的充放电程度。
充放电程度通常应根据蓄电池的端电压来判断。
3、镍镉蓄电池的主要特性(1)充电特性曲线镍镉蓄电池采用标准充电率(4小时率)充电时,充电特性曲线如下图中曲线1所示。
▲镍镉蓄电池充放电特性曲线充电过程中,蓄电池端电压的变化可分为两个阶段:第一阶段,蓄电池的端电压从1.45V缓慢上升到1.5V;第二阶段,蓄电池的端电压迅速上升到1.75~1.8V,并稳定下来。
因此,把1.75~1.8V规定为镍镉蓄电池的充电结束电压。
(2)放电特性曲线镍镉蓄电池以标准放电率(8小时率)放电时,放电特性曲线如上图中曲线2所示。
放电过程中,蓄电池的平均工作电压为1.2V,端电压下降到1.1V时应停止放电,否则,端电压迅速下降,造成深度放电。
12v9ah蓄电池的意思
12v9ah蓄电池的意思蓄电池(又称铅酸电池)是一种闭式的氢化物或铅酸电池,其具有可靠性和长寿命的特点,是集大量储能于一体的蓄电系统,可以稳定、可靠地储存电能,并可以满足企业对电能的需要。
它广泛应用于太阳能、风能等可再生能源发电系统、通信基站、电动车充电系统以及一些发电厂等场合,是不间断电源系统(UPS)的重要组成部分。
12V9Ah蓄电池,又称12V9Ah铅酸电池,属于一种常见的蓄电池,它的负极为铅,阳极为氢化物,包装使用塑料材料,具备优良的电气性能和电能储存能力,有着长的使用寿命,在放电时可以抗深放电,同时能够抗循环放电。
12V9Ah蓄电池的特性1.电压稳定性:12V9Ah蓄电池的电压稳定性良好,它能够以恒定的电压输出,即使在放电时仍能保持稳定性,使用寿命更长。
2.安全性:12V9Ah蓄电池采用特殊的铅酸工艺制成,具备良好的安全性,即使在使用过程中出现异常,也不会发生明显的异常情况,使用更加安全可靠。
3.高储能密度:12V9Ah蓄电池具有较高的能量储存密度,可以满足用户对电能使用的需求,使用起来更加高效率。
4.寿命长:按照一定技术标准,12V9Ah蓄电池的寿命可长达6年以上,且维护保养方便,使用起来更加稳定可靠。
12V9Ah蓄电池的应用1、可再生能源发电系统:12V9Ah蓄电池可以应用于太阳能、风能发电系统等可再生能源发电系统中,用于存储电能,使发电更加稳定。
2、电动车充电系统:电车是新能源汽车的主要产品之一,12V9Ah 蓄电池可以用于电动车充电系统,使充电更加高效可靠。
3、不间断电源系统:12V9Ah蓄电池可以用于不间断电源系统,能够保证关键设备的正常运行,使系统更加可靠。
4、高空无人机系统:12V9Ah蓄电池可以用于高空无人机系统,可以在一定时间内提供足够的电量,确保无人机的正常使用。
结论12V9Ah蓄电池是一种常用的铅酸电池,它具有电压稳定性、储能密度高、安全性好等优点,广泛应用于各类发电系统,具有重要的现实意义。
胶体蓄电池产品特性
胶体蓄电池产品特性■采用先进的纳米材料硅胶体,成胶后形成稳定的3.2.2.3锥形三维结构,具有不水化、酸液不分层的优点。
■寿命长:胶体电池电解质为高分子结构,凝胶后铅粉不易脱落,负板不易硫酸化,电池充电小电流及欠压电池接受电能力强,特别适合太阳能系统储能的要求。
■低温性能佳:在低温下(-30℃),电解质不分成,比同规格的铅酸蓄电池容量高30-50%。
■高温、过充性能好:胶体蓄电池采用过量的电解质,电池在高温及过充电情况下,不易出现干枯现象。
胶体电池热容量大,散热性好,不产生热失控现象。
■自放电小:采用稳定的的电解质结构,使蓄电池自放电微小,最长可储存2年不充电。
■容量稳定性好:采用了较强渗透性的胶体电解质,使蓄电池的容量不易衰减胶电池八大特性:1使用寿命2高容量密度3不漏液免维护4可快速充电5大电流放电能力强6低温保持高容量7超低自放电率8充电容易胶电池十大优点:1低内阻2充电不易升温3深放电恢复能力强4无记忆性5大电流放电回压6耐震动7免保养8温度适用范围+60℃至-40℃9超低自放电10使用范围广可取代镍氢或镍镉电池BLS系列胶体电池的优越性主要表现在:•深度放电后回充性强,甚至在放电后在未及时补充电的情况下容量能100%得到回充。
•是最理想的用于循环使用的电池——最适于每天使用。
•长时间放电具有优越的性能。
•更适合于高温环境使用。
•适于电力干线供电不稳定的环境。
•无流动性的胶体电解液,使电解液在电池内部不产生分层现象。
•无需平衡充电。
•自放电小。
•非常准确的酸量控制,有效地保护了正极板并极大地提高了电池寿命。
•采用厚极板,减小了板栅的腐蚀,并极大地提高循环寿命。
•内阻低,充电接受能力强。
•与AGM电池相比,在正常的充电条件下,电池内部水份损耗非常小。
•德国先进技术造就的高分子聚合物隔板,提高了电池的性能及寿命。
•隔板超高机械强度隔板的应用,避免了短路的产生的可能。
•在没有完全充足电的情况下,可以对电池进行放电,且对电池不会有任何损坏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
独立光伏系统太阳能电池方阵及蓄电池容量设计
25 护系统设备的过负载运行及免遭雷击,维护系统设备的安全使用。
在有条件的地区,还可安装太阳能跟踪系统,以保持太阳能电池板随时正对太阳,使太阳光的光线随时垂直照射太阳能电池板,该装置能够显著提高太阳能光伏组件的发电效率。
2.2 系统工作原理白天,在有太阳光照条件下,太阳电池组件产生一定的电动势,通过组件的串并联形成太阳能电池方阵,使得方阵电压达到系统输入电压的要求。
再通过充放电控制器对蓄电池进行充电,将由光能转换而来的电能贮存起来。
逆变器将直流电转换成交流电,供使用交流电压的负载使用。
3 太阳能光伏发电系统的设计 3.1 设计时必须掌握的数据进行太阳能光伏发电系统的设计,其任务是:在太阳能电池方阵所处的环境条件下(即现场的地理位置、太阳辐射能、气候、地形和地物等),设计的太阳能电池方阵及蓄电池电源系统既要讲究经济效益,又要保证系统的高可靠性。
系统设计时必须首先收集到以下数据,以此作为设计的基本依据。
1)安装地区的日光辐射能量数据;2)系统的负载功率;3)系统输出电压的类型(直流还是交流)和数值;4)系统每天需要工作的时间;5)连续阴雨天气,系统需连续供电的天数;6)2次连续阴雨天气间的最短间隔天数7)负载的性质(电阻性、电感性);8)启动电流数值;9)系统需求的数量(有无备用)。
在光伏系统设计中,设计者多数以气象台提供的太阳每天总的辐射能量或每年的日照时数的平均值作为设计的主要数据,这些设计仅考虑了蓄电池的自维持时间(即最长连续阴雨天),而没有考虑到亏电后的蓄电池最短恢复时间(即两组最长连续阴雨天之间的最短间隔天数)。
如果有几天连续阴雨天,方阵就几乎不能发电,只能靠蓄电池来供电,而蓄电池深度放电后又需尽快地将其补充好,以便为下一次阴雨天的来临做好准备。
这个问题尤其在我国南方地区应引起高度重视,因为我国南方地区阴雨天既长又多,而对于方便适用的独立光伏电源系统,由于没有应急的其他电源保护备用,所以应该将此问题纳入设计中一起考虑。
安装地点的太阳辐射能量数据,要以气象台提供的资料为依据,这些气象数据需取积累十年以上的平均值。
由于一个地区各年的数据不相同,如为可靠起见,最好取近十年内的最小数据。
3.2 蓄电池组容量设计太阳能光伏系统的储能装置主要是蓄电池。
与太阳能电池方阵配套的蓄电池通常工作在浮充状态下,其电压随方阵发电量和负载用电量的变化而变化。
考虑到方阵发电量的不足和过剩值以及无光照连续供电天数,它的容量比负载所需的电量大得多。
蓄电池提供的能量还受环境温度的影响。
为了与太阳能电池匹配,要求蓄电池工作寿命长且维护简单。
目前广泛采用的有铅酸免维护蓄电池。
3.2.1蓄电池组容量的计算蓄电池的容量对保证连续供电是很重要的。
在一年内,方阵发电量各月份有很大差别。
方阵的发电量在不能满足用电需要的月份,要靠蓄电池的电能给以补足;在超过用电需要的月份,是靠蓄电池将多余的电能储存起来。
所以方阵发电量的不足和过剩值,是确定蓄电池容量的依据之一。
同样,连续阴雨天期间的负载用电也必须从蓄电池取得。
所以,这期间的耗电量也是确定蓄电池容量的因素之一。
因此,蓄电池的容量BC计算公式为:
)(AhCTNQABC O LLC(1) (1)式中:A为安全系数,取1.1~1.4之间;QL 为负载日平均耗电量,为工作电流乘以日工作小时数;NL 为最长连续阴雨天数;TO 为温度修正系数,一般在0℃以上取1,-10℃以上取1.1,-10℃以下取1.2;
重庆市电机工程学会2010年学术会议论文
26 CC为蓄电池放电深度,一般铅酸蓄电池取0.75,碱性镍镉蓄电池取0.85。
3.2.2蓄电池串并联数的计算蓄电池串联是为了获得负载所需的额定电压。
每个蓄电池都有自己的标称电压,为了达到负载工作的额定电压,我们将蓄电池串联起来给负载供电,需要串联的蓄电池的个数等于负载的额定电压除以蓄电池的标称电压。
蓄电池标称电压值负载额定电压值串联蓄电池数 3.3 太阳能电池方阵的设计
太阳能电池组件设计的基本思想就是满足年平均日负载的用电需求,包括电压和电流。
3.3.1太阳能电池组件串联数计算将太阳能电池组件按一定数目串联起来,就可获得蓄电池组所需要的工作电压,但是,太阳能电池组件的串联数必须适当。
串联数太少,串联电压低于蓄电池浮充电压,方阵就不能对蓄电池充电。
如果串联数太多使输出电压远高于浮充电压时,充电电流也不会有明显的增加。
因此,只有当太阳能电池组件的串联电压等于合适的浮充电压时,才能达到最佳的充电状态。
太阳能电池组件串联数NS计算方法如下:
OC C DfOC R SUUUUUUN(2) (2)式中:UR为太阳能电池方阵输出最小电压;Uoc为太阳能电池组件的最佳工作电压;Uf为蓄电池浮充电压;UD为二极管压降,一般取0.7V;UC为其它因数引起的压降。
蓄电池的浮充电压和所选的太阳能电池组件参数有关,应小于等于在最低温度下所选电池组件的最大工作电压乘以串联的电池数。
3.3.2太阳能电池组件并联数的计算设太阳能电池组件并联数为Np 。
Np 的计算是为了向系统提供足够的负载电流,包括最恶劣的天气条件时。
在确定NP之前,先确定一系列相关量的计算方法。
①将太阳能电池方阵安装地点的太阳能日辐射量Ht,转换成在标准光强下的平均日辐射时数H(日辐射量可查我国主要城市的辐射参数表):
h HHt10000778 .2(3) (3)式中:2.778/10000(h•m2/kJ)为将日辐射量换算为标准光强(1000W/m2)下的平均日辐射时数的系数。
②太阳能电池组件日发电量Qp )(AhCKHIQZOPOCP(4) (4) 式中:Ioc为太阳能电池组件最佳工作电流;Kop为斜面修正系数(可查我国主要城市的辐射参数表);Cz为修正系数,主要为组合、衰减、灰尘、充电效率等的损失,一般取0.8。
③两组最长连续阴雨天之间的最短间隔天数Nw及其在此段时间内需补充的蓄电池容量Bcb 设两组最长连续阴雨天之间的最短间隔天数为Nw,要在此段时间内将亏损的蓄电池电量补充起来,需补充的蓄电池容量Bcb 为最长阴雨天负载所消耗的电量:)(AhNQABLLCb(5) ④太阳能电池组件并联数Np的计算
W PL WCbPNQQNBN(6) (6)式的表达意为:并联的太阳能电池组组数,在两组连续阴雨天之间的最短间隔天数内所发电量,不仅供负载使用,还需补足蓄电池在最长连续阴雨天内所亏损电量。