拱桥的设计与计算解析
拱桥的设计
算时拟定截面尺寸的参考
• 拱圈构造尺寸
临时性施工措施,能满足各 施工阶段的要求;
• 3、计算方法简便;
• 4、线型美观,便于施工;
压力线作为拱轴线
• 公路拱桥恒载所占比
重大,一般采用恒载
压力线作为拱轴线;
• 特殊情况,活载较大
时,如铁路拱桥,可
用恒载加一半活载的 压力线作为拱轴线。
拱桥常用的拱轴线型---能表达为拱轴线方程
①圆弧线 优点:
③悬链线
实腹拱桥的合理拱轴线----
恒载集度(单位长度的恒 重)由拱顶向拱脚连续分 布、逐渐增大;
空腹拱桥恒载压力线在腹孔 墩处有转折点,用悬链线 作拱轴线与恒载压力线有 偏离,但对拱圈控制截面 有利;
悬链线作空腹拱的拱轴线 可采用“五点重合法”即: 在拱顶、跨径1/4及拱脚处 使拱轴线与恒载压力线重 合;
悬链线、高次抛物线是目 前大、中跨径拱桥采用最 普遍的拱轴线型;
13-3 拱圈截面变化规律和截面尺寸拟定
• 主拱圈:等截面及变截面型式; • 变截面:沿拱轴方向宽度不变,高度变化;或高度不变,
宽度变化;
• 增大截面 I 对降低应力不是最有效;
• 对大跨或很陡的圬工拱桥, • 根据拱厚系数确定:
•
• 一、拱轴线型
• 选择原则: • 尽可能降低由于荷载产生
的弯矩值。
• 合理拱轴: • 拱轴线与各种荷载的压力
线相吻合;拱圈截面上轴 向力,无弯矩作用,应力 均匀;
• 拱轴线选择应满足:
• 1、尽量减小拱圈截面弯矩,
使截面在附加内力影响下各 主要截面的应力相差不大, 并不出现拉应力;
• 2、对于无支架施工,不用
拱桥拱架设计与承载验算
拱桥拱架设计与承载验算一、基本情况和有关数据1、拱桥设计净跨径L 『1800厘米,拱圈宽度B 0 = 430厘米,矢 高f=360厘米 取拱架预拱度A f=L 0/600=3厘米 则拱架净矢高f 0=f+△f=360+3=363厘米。
考虑到拱圈施工时会产生振动,拱圈浆砌块石 容重取Y = 2.4x 1.20=2.88t/m 3o2、拱盔立柱的纵、横向间距划分靠两桥台排柱和第一节弓形木的平距分别取30厘米和270厘米, 则跨中段的4间档纵平距设五根立柱,@纵二[1800 - (30+270) x2 边]/4档=300厘米,拱盔桁片的横向间距取@横二[430 - 2x15]/3间 档= 133厘米,即拱板间距L 板、跨中立柱、托木和拉梁平均宽度为 16厘米外,其余拱盔桁片宽为14厘米。
3、拱板验算单元宽取20厘米,板厚取7厘米,则85厘米厚拱 圈及拱板等的单位长度重q 拱二(0.85x2.88+0.07x0.75)x0.2 = 0.5001t/m 。
施工集中荷载取p 施= 200kg o4、作用于每棍拱盔桁片上的单位长度的施工荷载为E q ,,=拱(0.5001/0.2+其它 0.16) x1.3+拱盔约 0.32 = 3.779t/m ,取施工荷载 p 施 =400kg o二、拱板强度验算板按二跨连续计算,由《结构静力计算手册》得:E M 板=-0.125 xq 拱 x L 板 2 - O.094xp 施 x L 板=-0,125x 0,5001x 1,332-0.094x0.2x1.33= - 0.13558t-m(支点处弯矩值为负),板的单元宽抗弯截面模量W板二20x72/6=163.33cm3 ,则板的应力6板=E M板/W板=13558/163.33=83.01kg/cm2,因6板v [6]=95kg/cm2,故板的强度可以满足要求。
三、拱盔承载验算及技术措施1、跨中立柱承受垂直荷载最大,且立柱最长(立柱长取363-24=339厘米),其上荷载为N柱=E q拱火@纵+ p施=3.779x3.00+0.4=11.737t,柱截面尺寸取 16x16 厘米,其截面面积A .= 16x16 = 256cm2,截面惯性半径为i柱= 0.289x16=4.6 厘米,柔度入柱=339/4.6=73.70<80,稳定系数查表得⑴柱=0.536,则应力6压柱=N柱/6柱公柱= 11737/(0.536x256)=85.54kg/cm2,因6压v [6]=90kg/cm2 , 故立柱承载能力满足要求。
拱桥的设计原则及计算分析
拱桥的设计原那么及计算分析拱桥的设计原那么及计算分析【摘要】拱桥是我国城市桥梁上使用很广的一种桥型。
拱桥和梁桥的区别不仅在于外形,更重要的在于受力性能方面的不同。
在自重和竖向活荷载作用下,梁在支撑处将仅受到竖向反力作用,而拱桥在竖向荷载作用下,支撑处将同时承受水平和竖向反力。
拱承受的弯矩将比同跨径的梁桥小很多,拱圈主要承受轴向压力。
这样拱桥不仅可以充分利用钢材的抗拉性能,也可以充分发挥混凝土抗压性能好的特性。
【关键词】拱桥;拱肋;1、引言桥梁是市政工程建设中的重要构成局部,是城市路网建设的关键控制点,在当前城市交通迅速开展以及对城市桥梁景观要求越来越高的情况下,普通的梁桥已经不能满足城市桥梁开展的需要了。
拱桥作为景观和受力都比拟好的一种桥型,在城市桥梁中得到了广泛的运用。
2、拱桥的设计原那么2.1拱桥的组成和类型拱桥的组成拱桥和其他桥梁一致,也是由上部结构和下部结构两大局部组成。
拱桥的主要承重构件是拱圈,拱圈在横桥向有整体式和别离式两种。
根据桥面系在拱桥上部结构立面上的位置,拱桥可以分为:上承式、中承式、下承式。
上承式拱桥的桥面在拱圈之上,桥面板和拱圈之间通过传力构件或填充物过度形成平顺的桥面;中承式的桥面板在拱圈立面的中部,通过横梁处的吊杆和立柱将荷载传递到拱肋;下承式拱桥的拱圈由别离拱肋组成,拱肋立面的底部均由吊杆悬吊在拱肋上。
拱桥的类型拱桥的开展历史长,使用广泛,形式多样、构造各有差异,可以按照不同的方式将拱桥分类。
按照拱圈与桥面结构联接构造的方式,可以把拱桥分为简单体系拱桥和组合体系拱桥两大类。
简单体系拱桥按照不同的静力图式又可以分为:三饺拱、无饺拱和两饺拱;组合体系拱桥根据不同的组合方式及受力特点又可分为无推力的和有推力的外部静定和超静定的。
拱圈的横截面形式最常用的有以下几种:板拱、肋板拱、双曲拱、箱型拱等形式。
2.2 拱桥的计算过程分析设计高程确实定拱桥设计高程的控制因素主要有以下四方面:桥面高程、跨中底面高程、起拱线高程、根底底面高程。
第三节拱桥计算
(1)不考虑弹性压缩旳恒载内力--实腹式拱
以为实腹式拱轴线与压力线完全重叠,拱圈
中只有轴力而无弯矩,按纯压拱计算:
恒载水平推力: H g
m 1 4k 2
gdl2 f
kg
gdl2 f
(0.128 ~ 0.18)
gdl2 f
拱脚竖向反力为半拱恒载重力:
Vg
l1 0
g x dx
m2 2 ln(m
3、活载横向分布:活载作用在桥面上使主拱 截面应力不均匀旳现象。在板拱情况下经常 不计荷载横向分布,以为主拱圈全宽均匀承 担荷载。 4、计算措施:手算和程序计算。
第三节 拱桥计算
一、拱轴线旳选择与拟定 二、拟定拱轴系数 三、主拱圈弹性中心及弹性压缩系数计算 四、主拱圈截面内力计算 五、主拱圈正截面强度验算 六、主拱圈稳定性验算 七、主拱圈裸拱强度和稳定性验算 八、主拱圈应力调整
第三节 拱桥计算 一、拱轴线旳选择与拟定 二、拟定拱轴系数 三、主拱圈弹性中心及弹性压缩系数计算 四、主拱圈截面内力计算 五、主拱圈正截面强度验算 六、主拱圈稳定性验算 七、主拱圈裸拱强度和稳定性验算 八、主拱圈应力调整
2.3.3 主拱圈弹性中心及弹性压缩系数计算
1 悬链线无铰拱旳弹性中心
采用恒载压力线作为拱轴线,在恒载作用下不 考虑拱圈变形旳影响时,拱圈各截面均只有轴向压 力,此时拱圈处于纯压状态。但是拱圈材料有弹性, 它在恒载产生旳轴向压力作用下会产生弹性压缩, 使拱轴长度缩短,这种现象称为拱旳弹性压缩。因 为无铰拱是超静定构造,弹性压缩引起拱轴旳缩短, 会在拱中产生内力,在设计中为了计算以便将恒载 压力分为两个部分,即:不考虑弹性压缩引起旳内 力与弹性压缩引起旳内力。两者相加,得到恒载作 用下旳总内力。
拱桥预拱度的计算与设置
拱桥预拱度的计算与设置一、拱桥预拱度的定义和作用拱桥预拱度是指在桥的设计和施工阶段,在未施加任何荷载时,为了满足设计要求,在拱轴线上设置的一定曲率的曲线形状。
预拱度的作用是使桥梁在后期承受活荷载时能够得到理想的内力分布和形态,提高桥梁的工作性能和安全性。
二、拱桥预拱度的计算1.弹性计算方法:(1)找出转换微分方程在Euler-Bernoulli梁的弹性基础上建立转换微分方程:EIy''''=fx,其中E为杨氏模量,I为截面惯性矩,y为瞬时挠度,f为单位长度集中力。
(2)建立拟定解方程根据实际情况拟定解方程,并带入转换微分方程,建立微分方程的边界条件。
常见的边界条件有:刚性左支座和右支座的位移和旋转角度均为零。
(3)求解拟定解方程求解得到拟定解方程的解,即为拱桥的挠度方程,并利用该挠度方程可以计算出各点的差异度。
2.弹塑性计算方法:(1)建立中间截面的平衡条件通过建立拱桥中间截面的平衡条件,即获得拟定解方程,常用的平衡条件有:弯矩平衡条件、弯矩和剪力平衡条件等。
(2)求解拟定解方程求解得到拟定解方程的解,即为拱桥的挠度方程,并计算出各点的差异度。
(3)校核与调整根据计算结果,进行校核和调整,使得拟定解方程满足实际要求,并满足拱桥的结构和荷载性能。
三、拱桥预拱度的设置1.设计要求:(1)满足桥梁的运行、使用和验收要求;(2)保证桥梁的结构安全可靠,并考虑荷载效应;(3)尽可能减小桥梁的变形和挠度。
2.施工工艺:在设计和施工时,通常会考虑以下因素:(1)荷载效应:根据桥梁设计荷载的特点和分布,确定桥梁的最大挠度和最小挠度。
(2)构造特点:根据桥梁的结构特点和形态,考虑拱桥的几何特性。
(3)建筑机构:考虑拱桥的实际施工工艺和施工条件,避免施工过程中的困难和工程风险。
四、常见的拱桥预拱度设置原则1.平拱原则:在设计和施工中,拱桥的预拱度主要以平拱为原则,即拱轴线在未施加任何荷载时呈水平曲线。
拱桥拱轴线设计超详细图文解析
了解拱桥拱桥-以拱为承重结构的桥梁反力-在竖向荷载作用下,拱的两端支承处除有竖向反力外,还有水平推力受力性能-拱主要承受压力,而弯矩、剪力较小建造材料-圬工拱桥、钢筋混凝土拱桥,钢管混凝土拱桥和钢拱桥施工方法-拱架施工法,缆索吊装施工、无支架施工、转体施工以及劲性骨架施工等技术。
拱桥特点:拱桥与梁桥外形不同,拱桥在竖向荷载作用下在支承处除了竖向力外,还有水平力的产生,使得拱内的弯矩大大减小。
拱肋中主要是受压的轴力。
拱肋截面受压,可以充分发挥全截面材料的性能,从而能较大地高跨越能力。
相对于梁式和索式结构,拱桥的变形较小,行车条件好。
水平推力的存在使得拱桥对基础条件的要求较高。
实腹拱桥组成空腹拱桥组成拱桥分类拱桥的设计计算流程拱桥的总体布置总体布置-确定桥梁长度、分跨、桥面标高、主拱矢跨比和墩台尺寸等。
桥面高程-由线路设计与总体布置及设计综合研究决定。
拱顶底面高程-满足拱顶最小填料厚度和主拱拱顶截面高度的要求。
起拱线高程-根据拱顶底面标高和桥下净空要求(通航泄洪等)拟定。
基础底面高程-根据地基情况决定。
矢跨比的确定矢跨比:矢高与跨度的比值。
拱桥的最重要设计控制参数。
满足泄洪和通航要求,还应从经济、结构受力、施工等方面综合分析比较确定。
拱的水平推力同矢跨比成反比。
连拱体系中的分跨等跨分孔和不等跨分孔。
不平衡水平推力的处理:拱肋的横向布置拱轴线的选择拱轴线选择-形状直接影响主拱截面内力的分布与大小,选择拱轴线的原则,也就是尽可能降低由于荷载产生的弯矩值。
理想拱轴线-仅承受压力,无弯矩和剪力作用。
合理拱轴线-荷载压力线尽量接近理想拱轴线。
“五点重合法”-采用悬链线时,设计拱轴线与恒载压力线在拱顶、1/4跨和拱脚5处重合。
混凝土拱圈断面的设计选择混凝土拱圈板拱的截面及尺寸板拱是指主拱(圈)采用整体实心矩形截面的拱。
按照主拱所采用的材料,可分为石板拱、混凝土板拱和钢筋混凝土板拱等。
A.宽度考虑板拱宽度即为拱圈的宽度;板宽略小于桥面宽度(便于排水);考虑人行道外挑等因素来减小板宽设置。
混凝土拱桥的设计与计算方法
混凝土拱桥的设计与计算方法一、绪论混凝土拱桥是一种常见的桥梁结构形式,其独特的造型、强大的承载能力和良好的经济性受到了广泛的认可和应用。
混凝土拱桥的设计与计算方法是建造这种桥梁的重要前提,本文将详细介绍混凝土拱桥的设计与计算方法。
二、混凝土拱桥的基本结构混凝土拱桥主要由桥墩、拱肋、桥面、支座和伸缩缝等部分组成。
其中,桥墩是承载拱肋和桥面荷载的主要构件,通常采用钢筋混凝土或预应力混凝土制成。
拱肋是拱桥的主要承载构件,其形状和尺寸直接影响着拱桥的力学性能。
桥面是承载行车荷载和行人重量的部分,通常采用钢筋混凝土制成。
支座用于支承拱肋和桥面,使其能够自由伸缩和旋转。
伸缩缝则用于补偿温度变形和桥梁的变形。
三、混凝土拱桥的设计方法混凝土拱桥的设计方法通常包括以下几个步骤:1、确定桥梁跨径和净空高度桥梁跨径和净空高度是拱桥设计的最基本参数,其确定需要考虑到拱桥所处的地理环境、交通流量、车辆类型和荷载等。
一般情况下,桥梁跨径和净空高度的设计应满足规范的要求和实际使用的需要。
2、确定拱肋形状和尺寸拱肋的形状和尺寸是决定拱桥力学性能的主要因素,其设计需要考虑到拱桥的荷载和几何形状。
一般情况下,拱肋的形状可以采用圆弧形、椭圆形、抛物线形等,其尺寸则需要根据实际情况进行计算和确定。
3、确定桥墩和支座桥墩和支座的设计需要考虑到拱桥的荷载、几何形状和地基条件等。
一般情况下,桥墩的形状可以采用圆柱形、矩形、T形等,其尺寸则需要根据实际情况进行计算和确定。
支座的设计需要考虑到拱桥的伸缩和旋转,一般采用橡胶支座或滑动支座。
4、确定桥面结构桥面结构是承载行车荷载和行人重量的主要构件,其设计需要考虑到拱桥的荷载、几何形状和使用要求等。
一般情况下,桥面结构可以采用钢筋混凝土梁板、钢箱梁、钢桁架等形式。
四、混凝土拱桥的计算方法混凝土拱桥的计算方法通常包括以下几个方面:1、拱肋的内力计算拱肋的内力计算是拱桥设计的重要环节,其结果直接影响着拱桥的力学性能。
拱桥设计计算内容及方法
拱桥设计计算内容及方法
2.拱桥整体受力计算:拱桥是一个整体结构,因此需要进行整体的受
力计算。
这包括确定整个拱桥受力的大小、方向和分布情况,以及确定拱
桥的整体稳定性。
常用的方法包括静力学平衡方法、弹性力学方法和有限
元方法等。
3.拱桥的固有频率计算:拱桥是一个动力结构,其固有频率对于设计
的安全性是非常重要的。
因此,需要计算拱桥的固有频率,以评估其在自
然频率下的抗风、抗震等性能。
4.应力和变形计算:拱桥在使用过程中会受到荷载的作用,因此需要
计算拱桥在荷载作用下的应力和变形情况,以评估拱桥的安全性能。
常用
的方法包括弹性力学法、有限元法等。
5.断面设计:根据拱桥的受力情况,进行断面设计,包括确定构件的
尺寸和材料。
断面设计需要满足强度和刚度的要求,同时还要考虑构件的
自重和施工的可行性等因素。
6.水力条件计算:对于水上拱桥来说,还需要计算水流对拱桥的冲击
力和涌浪力等水力条件,以评估拱桥的稳定性和安全性。
在进行拱桥设计计算时,常用的工具和软件包括AutoCAD、ANSYS、STAAD.Pro等。
这些工具可以帮助工程师进行受力分析、应力计算和断面
设计等。
同时,还需要参考相关的设计规范和规范,如公路桥梁设计规范、钢结构设计规范等,以确保拱桥的设计计算符合规范和标准的要求。
总之,拱桥设计计算是一项复杂而关键的工作,需要对拱桥结构进行
全面的受力、应力和变形分析,并根据工程实际要求和设计规范进行设计。
只有进行合理的设计计算,才能保证拱桥的安全性和可靠性。
拱桥的设计与计算
§8.1 拱桥设计要点
§8.1.1 确定桥梁的设计标高和矢跨比 §8.1.2 主拱截面尺寸的拟定 §8.1.3 拱轴线选择
大连海事大学----《桥梁工程》
1
第八章 拱桥的设计与计算
一、确定桥梁的设计标高和矢跨比
桥面标高:由两岸线路的纵断面设计来控制;要保证 桥下净空能满足泄洪或通航的要求。
y1 f
gd y
gx=gd+γy1 gj
l/2
12
第八章 拱桥的设计与计算
k 2 l12 gd (m 1)
d 2 y1
d 2
l12 Hg
gd [1 (m 1)
Hg
y1 ] f
f
x
d 2 y1
d 2
l12 gd Hg
k 2 y1
l/ 2
上式为二阶非齐次常系数线性微分方程。 解此方程,则得拱轴线方程为:
基础底面标高
大连海事大学----《桥梁工程》
3
第八章 拱桥的设计与计算
矢跨比 当跨径大小在分孔时已初步拟定后,根据跨径及拱顶、
拱脚标高,就可以确定主拱圈的矢跨比(f /L )。
板拱桥:矢跨比可采用1/3~1/7,不宜超过1/8。
混凝土拱桥:矢跨比多在1/5 ~ 1/8间,以1/6居多;
钢管混凝土拱桥矢跨比:1/4~1/5之间,以1/5最多。 钢拱桥常用的矢跨比为1/5~1/10,有推力拱中1/5~ 1/6最为常用。
M
0 x
ql 2
x
q 2
x2
M
0 l
2
ql 2 8
令 M x 0 可得
(ql x q x2 ) ql 2 y 0
22
8f
混凝土拱桥的设计与计算方法
混凝土拱桥的设计与计算方法一、前言混凝土拱桥作为一种重要的桥梁类型,在现代交通建设中得到了广泛的应用。
混凝土拱桥结构简洁、美观、稳定性能好、寿命长等特点使得它成为城市道路、高速公路等重要交通工程的主要选择。
但是,混凝土拱桥的设计和计算需要考虑的因素很多,因此需要对混凝土拱桥的设计与计算方法进行深入的研究。
二、设计步骤混凝土拱桥的设计过程包括以下几个步骤:1. 确定设计参数设计混凝土拱桥的第一步是确定桥梁的设计参数,包括跨度、拱高、拱径、荷载等。
这些参数将在后续设计中起到决定性的作用。
2. 设计拱的几何形状在确定设计参数之后,需要根据桥梁跨度、荷载等参数来设计拱的几何形状。
拱的几何形状对桥梁的稳定性和荷载承载能力有着重要的影响。
设计拱的几何形状需要考虑到桥梁的美观性、经济性和结构的可行性等因素。
3. 确定混凝土材料和参数混凝土拱桥的耐久性和稳定性与混凝土的质量有着密切的关系。
因此,在设计混凝土拱桥时需要选择合适的混凝土材料和参数。
需要考虑的因素包括混凝土的强度等级、材料的密度、抗裂性能等。
4. 进行静力分析进行静力分析是设计混凝土拱桥不可或缺的一步。
静力分析可以帮助工程师确定拱的几何形状、材料和参数等,从而保证桥梁的稳定性和承载能力。
在进行静力分析时需要考虑到桥梁的荷载、自重和温度变形等因素。
5. 进行动力分析在设计混凝土拱桥时,还需要进行动力分析。
动力分析可以帮助工程师确定桥梁的自然频率和振动响应等参数。
在进行动力分析时需要考虑到桥梁的荷载、风荷载、地震荷载等因素。
6. 进行施工设计设计混凝土拱桥还需要进行施工设计。
施工设计可以帮助工程师确定桥梁的施工程序、施工工艺、施工进度等参数。
在进行施工设计时需要考虑到桥梁的施工安全、施工质量等因素。
三、计算方法混凝土拱桥的计算方法包括以下几种:1. 弹性理论计算法弹性理论计算法是一种基于弹性理论的计算方法,其优点是计算结果精度高、计算过程简单。
该方法适用于设计跨度小的混凝土拱桥。
拱桥高度计算公式讲解
拱桥高度计算公式讲解拱桥是一种古老而又美丽的建筑结构,它不仅可以承载重量,还可以起到装饰作用。
在设计和建造拱桥时,计算拱桥的高度是非常重要的一步。
拱桥的高度不仅影响着拱桥的外观美观,还直接关系到拱桥的承重能力。
因此,掌握拱桥高度的计算公式是非常重要的。
在计算拱桥的高度时,需要考虑到多个因素,包括拱桥的跨度、拱的形状、荷载等。
下面将从这些因素出发,介绍拱桥高度的计算公式。
首先,拱桥的跨度是计算拱桥高度的重要因素之一。
拱桥的跨度指的是两个支墩之间的距离,通常用L来表示。
在计算拱桥高度时,可以使用以下的公式:H = L/10。
在这个公式中,H代表拱桥的高度,L代表拱桥的跨度。
这个公式是根据经验公式得出的,对于一般情况下的拱桥设计是比较合适的。
但需要注意的是,这个公式只是一个估算值,实际设计中还需要考虑其他因素。
其次,拱桥的形状也会影响拱桥的高度。
一般来说,拱桥的形状可以分为三种,圆拱、平拱和梯形拱。
不同形状的拱桥对应着不同的高度计算公式。
对于圆拱来说,其高度计算公式为:H = L/15。
在这个公式中,H代表拱桥的高度,L代表拱桥的跨度。
与之前的公式相比,圆拱的高度计算公式系数稍大一些,这是因为圆拱的结构更加稳定,可以承受更大的荷载。
对于平拱来说,其高度计算公式为:H = L/20。
在这个公式中,H代表拱桥的高度,L代表拱桥的跨度。
平拱的结构相对较为简单,因此其高度计算公式系数相对较小。
对于梯形拱来说,其高度计算公式为:H = (L+2h)/15。
在这个公式中,H代表拱桥的高度,L代表拱桥的跨度,h代表拱的高度。
梯形拱的结构比较特殊,需要额外考虑拱的高度对整体高度的影响。
除了跨度和形状外,荷载也是影响拱桥高度的重要因素之一。
在实际设计中,需要根据拱桥所承受的荷载情况来确定拱桥的高度。
一般来说,荷载越大,拱桥的高度就需要越大。
总结一下,拱桥高度的计算公式主要与拱桥的跨度、形状和荷载有关。
对于一般情况下的拱桥设计,可以使用经验公式来进行估算。
拱桥的计算
第三章 拱桥的设计
第二节 拱轴系数的选择和拱上建筑的布置
一、概述
拱轴线的选择与确定
恒载内力 活载内力
拱
温度、收缩徐变
桥 成桥状态的内力分析和强度、刚度、稳定验算 拱脚变位
的 计
内力调整
算
拱上建筑的计算
施工阶段的内力分析和定验算
1
2
时, y1
y1/ 4
;代
1 2
到悬链线方程
y1
f (chk m 1
1)
半元公式
chk m
y1/4 1 (ch k 1) f m 1 2
ch k Βιβλιοθήκη hk 1 m 122
2
y1/ 4
m 1 1
2
1
f
m 1
2(m 1) 2
y1/ 4 随m的增大而减小(拱轴线
2h
d cos j
计算出g j,连同(4-3-13) gd 1hd d 由
m gj gd
计算出m值。
d)比较假设值m,如两者相符,即假定的m为真实值;如两者相 差较大, 则以计算出的m作为假设值,重新计算,直到两者相 等。
拱轴线线形可用l/4点纵坐标y1/4的大小表示:
当
上式为二阶非齐次微分方程。解此方程,得到的拱轴线(压力线)方程为:
y1
f m 1
(chk
1)
为悬链线方程。
双曲余弦函数
(4-3-11)
chk ek ek
2
•对于拱脚截面有:=1,y1=f,代入式(4-3-11)
y1
f (chk
m 1
1)
得:
chk m
拱桥的设计与计算解析(81页)
化受矢跨比变化的影响不大。矢跨比有时根据特殊情况, 也有取1/2.5或1/17的所谓极端值的。
5
第八章 拱桥的设计与计算
矢跨比与拱的内力:当跨径相同时矢高越小,拱的水平 推力Hg也越大;反之,拱的水平推力越小。
矢跨比与拱轴的长度:
YB
P
a l
YBo
XA
XB
YA
l 2
P( l 2
f
a)
M
o l
2
f
Mx Nx
M
o x
H
Qo sin x
y
H
cos x
Qx
Qo cos x
H sin x
三铰拱内力计算简图
7
第八章 拱桥的设计与计算
三铰拱在任意荷载作用下任意截面的弯矩为:
Mx
M
0 x
Hy
M
0 x
M
0 1/
2
y f
若令 M x 0 ,即在某种荷载作用下任意截面的弯矩均为零, 拱则为纯压拱。对于一些特殊的分布荷载,可以求出与荷载分 布规律有关的拱轴线,称这条拱轴线为合理拱轴线。
y
H
x
l
H
竖直均布荷载作用下 拱的合理拱
l(m 1)
可见,拱轴水平倾角与拱轴系数m有关。拱轴线
上各点的水平倾角tg ,可直接由《拱桥》(参考文
献[19]、[20]《公路桥涵设计手册一拱桥》的简称) 表(Ⅲ)-2查出。
4-2拱桥设计计算
上式即为求解恒载压力线的基本微分方程。为了得到 拱轴线(即恒载压力线)的一般方程,必须知道恒载的分 布规律。任意点的恒载集度qx可以下式表示:
qx = q1 + q2(x) + q3(x)
PDF 文件使用 "pdfFactory Pro" 试用版本创建
d
hd
n
上式较为复杂,为推导方便,不妨假定桥面、拱上填料 与侧墙、主拱圈的平均 重 度为 γ', 取 单 位拱 宽( 1m) 为计算单元,拱顶处的恒载集度为qd,则
拱桥计算应按照一定的顺序进行例如对于不计联合作用的简单体系拱桥应先进行拱上结构受力分析及验算计算通过后方可进行主拱和墩台计算否则可能会出现拱上结构型式或尺寸不合理而须改变结构或尺寸的情况此时拱上恒载发生变化导致主拱圈或墩台需重新计算
§3 拱桥计算 3.1 概述
n
从整体结构来看,拱桥通常为多次超静定 的空间结构,当活载作用于桥跨结构时, 拱上建筑参与主拱圈共同承受活载的作 用,这种现象称为 “ 拱上建筑与主拱的联合 作用 ”,简称 “ 联合作用 ”。在横桥方向,与 梁桥相似,不论活载是否作用在桥面的中 心,在桥梁的横断面上都会出现应力的不 均匀分布,这种现象,称为“活载的横向分 布”。
PDF 文件使用 "pdfFactory Pro" 试用版本创建
n
n
可见,拱上建筑的型式及其布置,对于合理 选择拱轴线型是非常重要的。一般情况下, 小跨径拱桥可采用实腹式圆弧拱或悬链线 拱;大、中跨径拱桥可采用空腹式悬链线拱。 轻型拱桥或矢跨比较小的大跨径钢筋混凝土 拱桥可以采用抛物线拱. 对于无支架施工的拱桥,布置拱上建筑时, 应使恒载集度的分布尽可能接近均布荷载, 以便改善施工阶段裸拱的受力状态,简化施 工临时措施,保证施工的质量和安全.
拱桥设计计算内容及方法[精品文档首发]
拱桥设计计算内容及方法[精品文档首发]拱桥设计计算内容及方法拱桥实用计算计算内容需要计算的部位:主拱、拱上建筑;组合体系拱:主拱圈、系梁、吊杆;桁架拱:上下弦杆、斜杆;主要荷载:结构重力、预应力、活载、常年及日照温差、拱脚水平位移推力;计算项目:主拱强度设计、验算;拱上建筑强度设计、验算;系梁、吊杆强度设计、验算;横梁、桥面板强度设计、验算;主拱稳定性验算;主拱变形计算、预拱度计算;关键局部应力验算;主拱内力调整计算。
拱桥实用计算计算方法合理拱轴线:按照拱轴线的形状直接影响主拱截面内力大小、分布的原则选取拱轴线。
尽可能降低由于荷载产生的弯矩值,使拱轴线与拱上各种荷载的压力线相吻合,也就是合理拱轴线。
有推力主拱自重内力:无支架施工拱桥:按实际结构尺寸计算恒载集度,按施工方法确定各种荷载作用的体系与截面。
有支架施工拱桥:按一次落架计算,常采用弹性中心法。
有推力拱活载内力:利用弹性中心法公式查表计算,利用影响线加载计算。
多肋式主拱以及拱上建筑为排架的双曲拱必须考虑横向分布作用,箱形截面应作箱梁应力析。
有推力拱温差及拱脚水平位移内力:利用弹性中心法公式查表计算,或利用有限元结构计算程序进行。
拱上建筑计算:进行拱上建筑的计算时应该考虑联合作用的影响,否则是不安全的。
联合作用的计算必须与拱桥的施工程序相适应。
若是在拱合拢后即拆架,然后再建拱上建筑,则拱与拱上建筑的自重及混凝土收缩影响的大部分仍有拱单独承受,只有后加的那部分恒载和活载及温度变化影响才由拱与拱上建筑共同承担;如果拱架是在拱上建筑建成后才拆除,那么全部恒载和活载以及其它影响力可考虑都由拱与拱上建筑共同承受;拱与拱上建筑的联合作用计算是解高次超静定问题,可以应用平面杆件系统程序进行计算。
组合体系拱桥恒载内力:高次超静定结构必须采用有限元结构程序进行计算。
最优吊杆张拉力:通过吊杆张拉力和系梁内预应力大小的调整可以使主拱与系梁基本处于受压状态。
组合体系拱活载内力计算:采用影响线加载计算包络图,拱肋也必须用横向分布系数考虑车列的偏载。
第三章_拱桥计算
g j gd f mgd
m gj gd
(1-2-16)
其中:
称为拱轴系数。
这样gx可变换为:
g j gd f mgd
y1 g x g d y1 g d 1 (m 1) f
(m 1) gd / f
到上式,并积分,有
(1-2-43)
其中
Vg
m2 1 2[ln(m m 2 1)]
拱圈各截面的轴力N:由于不考虑弹性压缩时恒载弯矩和剪力为零,有
N
Hg cos
(1-2-44)
2)空腹拱 在计算空腹式悬链线不考虑弹性压缩的恒载内力时,可分为两部分, 即先不考虑拱轴线与压力线偏离的影响,假设恒载压力线与拱轴线 完全重和,然后再考虑偏离的影响,计算由偏离引起的恒载内力, 二者叠加。 不考虑偏离的影响:此时拱的恒载推力Hg,拱脚的竖向反力Vg和 拱任意截面的轴力可由静力平衡条件得到
M M
1/ 4 j
(1-2-27)
M
1/ 4
自拱定至拱跨1/4点的恒载对l/4截面的力距。
求得 y1/ 4 后,即可求得m值:
f
y1/ 4 1 f 2(m 1) 2
(1-2-28)
1 f m ( 2) 2 1 2 y1/ 4
空腹拱的m值,任需采用试算法计算(逐次渐近法)。 (3)悬链线无铰拱的弹性中心 无铰拱是三次超静定结构。对称无铰 拱若从拱定切开取基本结构,多余力 X1(弯矩),X2 (轴力)为对称, 而X3(剪力)是反对称的,故知副系 数
拱脚的竖向反力:拱脚的竖向反力为半拱的恒载重力,即
Vg g x dx g xl1d
混凝土拱桥设计计算详解
§2-2-1 主拱圈的构造
在拱桥的分类方法中,有一个以主拱圈截面形式分类的方法, 按这种方法划分,拱桥的种类有:板拱、肋拱、双曲拱和箱 形拱。
57
图4-2-9
58
图4-2-10
59
≯
60
61
图4-2-11
62
图4-2-12
63
2 .肋拱 板拱主要用于实腹拱,也可用来建造空腹拱;而肋拱则主要
37
2. 拱轴线与压力线 2.1 理想情况:既然压力线与结构物的轴线无关,那么,总可以
这样选择使拱轴线与压力线完全重合。M=0。 2.2 实际情况: ① 活载作用使得压力线在不断地变化,理想状态是不可能达到的
。 ② 大跨径拱桥,活载影响仅占20%左右,恒载是不变的(或很少
变化),取一个与恒载压力线重合拱轴线也是较理想的。 大跨径桥梁,恒载作用下,主拱圈弹性压缩量很大,与拱轴线相
两铰拱为一次超静定结构,它的特点介于三铰拱与无铰拱 之间,由于取消了跨中铰,使结构整体刚度较三铰拱大。
就其适用性而言:三铰拱适用于地基不良地区,但由于内 力大,变形大,刚度逊于其它两种拱桥,且由于过多的铰致 使构造复杂,施工困难。无铰拱一般希望修建在地基良好的 条件下。两铰拱在因地基条件较差不宜修建无铰拱时,可考 虑采用。
钢筋砼拱桥 钢拱桥 钢管混凝土拱 2.2 按拱桥线的几何特性分:圆弧拱
抛物线拱(多次) 悬链线拱 2.3 按拱上建筑的结构形式划分:实腹拱
空腹拱(空腹式拱)
15
(一)按结构体系分类
三铰拱
简单体系拱桥主拱圈作为主要承重结构二铰拱
无铰拱
组合体系拱桥刚各架种拱系杆,吊杆拱
16
图4-1-2
17
三铰拱属静定结构。温度变化、混凝土收缩、支座沉陷 等原因引起的变形不会在拱圈内产生附加内力。
拱桥计算
计算报告目录一、结构计算分析依据 (2)二、结构计算分析 (2)2.1 拱轴系数计算 (2)2.1.1 计算标准 (2)2.1.2 材料及其数据 (2)2.1.3 上部结构计算 (2)2.2 计算分析模型 (7)2.2.1 建立模型 (7)2.2.2 材料特性 (8)2.2.3计算分析说明 (8)2.2.4 计算分析结果 (9)2.2.4.1 主拱圈承载能力极限状态承载能力计算结果 (9)2.2.4.2 主拱圈应力计算结果 (11)2.2.4.3 主拱圈抗剪验算 (14)2.2.4.4 刚度验算 (15)2.2.4.5 桥台稳定性和抗滑移验算 (15)三、结构计算分析结论 (23)一、结构计算分析依据1、交通部《公路桥涵养护规范》(JTG H11-2004)2、交通部《公路桥涵设计通用规范》(JTG D60-2004)3、交通部《公路工程技术标准》(JTG B01-2003)4、交通部《公路工程质量检验评定标准》(JTG F80/1-2004)5、交通部《公路圬工桥涵设计规范》(JTG D61-2005)6、交通部《公路桥涵地基与基础设计规范》(JTG D63-2007)7、交通部部标准《公路砖石及混凝土桥涵设计规范(JTJ022-85》8、《公路桥涵设计手册-拱桥》(上、下册),人民交通出版社,1994年9、《公路桥涵设计手册-基本资料》,人民交通出版社,1993年二、结构计算分析2.1 拱轴系数计算2.1.1 计算标准设计荷载:公路-Ⅱ级净跨径:L0=80m净矢高:f0=13.33m桥面净宽:净4.5+2×0.5m(防撞护栏)2.1.2 材料及其数据拱顶填料厚度hd=0.62m,γ4=24KN/m3拱腔填料单位重γ3=23KN/m3腹孔结构材料单位重γ2=25KN/m3主拱圈采用C40钢筋混凝土,γ1=26KN/m3,轴心抗压强度设计值fcd=18.4MPa,弹性模量E=3.00×104MPa。
拱形桥模型公式范文
拱形桥模型公式范文拱形桥是一种功能性和美观性都很高的桥梁结构。
它通过弧形的主体结构,具有良好的承重性能和抗破坏能力,能够在跨越大距离的同时保持桥梁的稳定性。
在设计和建造拱形桥的过程中,需要使用各种公式来计算和确定其结构参数。
下面将介绍一些常用的拱形桥模型公式。
1.筒拱高度计算公式:筒拱高度是指拱形桥梁轴线到桥面板顶部的垂直距离。
根据经验公式,可以使用以下公式计算筒拱高度:H=a*L^b其中,H是筒拱高度,L是桥梁的跨度长度,a和b是经验系数,一般由设计人员根据具体情况确定。
2.筒拱几何特征参数计算公式:筒拱的几何特征参数包括拱高、拱顶宽度、拱底宽度等。
这些参数与桥梁的跨径、净高、净宽等参数有关。
以下是一些常用的计算公式:-拱高(h)=H-d其中,H是筒拱高度,d是桥梁的桥面板厚度。
-拱顶宽度(T)=A*h其中,A是拱顶宽度的系数,一般为0.2-0.3-拱底宽度(B)=A*h+b其中,A是拱底宽度的系数,一般为0.15-0.25,b是桥梁的单幅宽度。
3.筒拱分布荷载计算公式:在计算筒拱受力和结构稳定性时,需要考虑到桥梁承载的分布荷载。
一般情况下,根据桥梁的设计标准和使用要求,可以使用以下公式计算筒拱的分布荷载:-q=γ*q0其中,q是筒拱受到的分布荷载,γ是荷载系数,q0是设计标准给定的荷载。
4.筒拱内力计算公式:筒拱在承受荷载作用时会发生内力的转移和分布。
为了保证拱形桥的结构安全和稳定,需要计算和分析拱形桥各部分的内力情况。
以下是一些常用的筒拱内力计算公式:-弦向内力计算公式:M=q*L^2/8其中,M是弦向内力,q是筒拱所受到的分布荷载,L是桥梁的跨度长度。
-拱腹内力计算公式:V=q*L/2其中,V是拱腹的内力,q是筒拱所受到的分布荷载,L是桥梁的跨度长度。
总之,这些公式是为了方便设计人员计算和确定拱形桥的结构参数和受力情况而提出的。
在实际设计和施工过程中,需要根据具体情况选择和应用合适的公式,并考虑到桥梁的功能性和美观性,以确保拱形桥的安全性和稳定性。
拱桥的设计与计算
第一节 概述
第一节 拱桥的设计与计算概述
No5. 益阳茅草街大桥 368m
第一节 概述
第一节 拱桥的设计与计算概述
No7. 丫髻沙大桥 360m
第一节 概述
第一节 拱桥的设计与计算概述
5.大跨度钢拱桥现状的对比
New No1.重庆朝天门大桥,552m,在建
第一节 概述
第一节 拱桥的设计与计算概述
➢ 反力-在竖向荷载作用下,拱的两端支承处 除有竖向反力外,还有水平推力
➢ 受力性能-拱主要承受压力,而弯矩、剪力 较小
➢ 建造材料-圬工拱桥、钢筋混凝土拱桥,钢 管混凝土拱桥和钢拱桥
➢ 施工方法-拱架施工法,缆索吊装施工、无 支架施工、转体施工以及劲性骨架施工等技 术
第一节 概述
第一节 拱桥的设计与计算概述
3.拱桥的分类
(1)根据行车道位置划分
桥面与受力结构(拱)的位置关系
Hale Waihona Puke 上承式中承式下承式
➢上承拱-构造简单, 行车视野开阔,广为 采用。
桥面
立柱
拱肋
➢中承拱-需要布置吊杆 和立柱,在桥梁建筑高度 受到限制时采用,只能用 肋拱。
桥
立柱
拱
面
吊杆
肋
➢必须布置吊杆,形成 悬吊结构,车辆在拱 肋之间行驶。
拱肋
吊杆
桥面
第一节 概述
第一节 拱桥的设计与计算概述
(2)根据拱上建筑的形式划分 上承式拱桥
空腹式拱桥
实腹式拱桥
第一节 概述
第一节 拱桥的设计与计算概述
混凝土
(3)根据拱圈材料的形式划分钢筋混凝土
混凝土
拱圈材料
普通钢筋
型钢
圬工拱桥
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(m 1) gd
f
gx
gd
(m 1) gd f
y1 gd [1 (m 1)
y1 ] f
10
拱桥的设计与计算
当拱轴线为合理拱轴线时,拱的各个截面弯矩均为零。对于拱 顶截面,由于对称性,剪力也等于零。于是,拱顶截面仅有恒
载推力 H g 。对拱脚截面取矩,则有:
H g
Mj f
x
对任意截面取矩,可得:
1/6最为常用。 当矢跨比在1/5~1/6这个范围内变化时,材料用量变
化受矢跨比变化的影响不大。矢跨比有时根据特殊情况, 也有取1/2.5或1/17的所谓极端值的。
5
拱桥的设计与计算
矢跨比与拱的内力:当跨径相同时矢高越小,拱的水平 推力Hg也越大;反之,拱的水平推力越小。
矢跨比与拱轴的长度:
l12 gd Hg
k 2 y1
l/ 2
上式为二阶非齐次常系数线性微分方程。 解此方程,则得拱轴线方程为:
y1 f
gd y
gx=gd+γy1 gj
l/2
y1
f (chk
m 1
1)
13
拱桥的设计与计算
求拱轴线的水平倾角 tg 2 fk shk shk
l(m 1)
可见,拱轴水平倾角与拱轴系数m有关。拱轴线
15
拱桥的设计与计算
均布荷载作用下的合理拱轴线:二次抛物线。 荷载集度随拱轴线高度变化而变化的合理拱轴线:悬链线。 实腹式拱桥:悬链线 空腹式拱桥 :悬链线 石板拱,拱轴系数一般随跨径的增大而减小,采用无支架或
早期脱架施工拱的拱轴系数不宜大于3.5。 钢筋混凝土悬链线拱的拱轴系数,宜采用2.814-1.167,
桥面标高:由两岸线路的纵断面设计来控制;要保证 桥下净空能满足泄洪或通航的要求。
拱顶底面标高:由桥面标高推算
桥面标高
拱顶底面标高 起拱线标高
基础底面标高
3
拱桥的设计与计算
拱桥下净空的有关规定
通航净空要求 设计通航水位
设计洪水位
起拱线标高:一般宜选择低拱脚 的设计方案 基础底面标高:地基、水文条件 和上部结构
22
8f
求得
y 4 f (x2 lx) l2
y
H
x
l
H
9
拱桥的设计与计算
2. 悬链线拱轴线方程
对于荷载集度随拱轴线变化从拱顶往拱脚增加的分布荷载,
由图8-4,任意点的恒载强度 g x 可以下式表示:
g x g d y1
x
gd
gx=gd+γy1
gj
y1 f
设 m gj gd
y
l/ 2
l/2
拱桥的设计与计算
§8.1 拱桥设计要点 §8.2 拱桥设计计算要点 §8.3 拱桥有限元计算方法简介 §8.4 悬链线无铰拱内力简化计算
1
拱桥的设计与计算
§8.1 拱桥设计要点
§8.1.1 确定桥梁的设计标高和矢跨比 §8.1.2 主拱截面尺寸的拟定 §8.1.3 拱轴线选择
2
拱桥的设计与计算
一、确定桥梁的设计标高的确定
XB
YA
l 2
P(l 2
f
a)
M
o l
2
f
Mx
M
o x
Hy
Nx
Qo sin x
H cos x
Qx
Qo cos x
H sin x
三铰拱内力计算简图
7
拱桥的设计与计算
三铰拱在任意荷载作用下任意截面的弯矩为:
Mx
M
0 x
Hy
M
0 x
M
0 1/
2
y f
若令 M x 0 ,即在某种荷载作用下任意截面的弯矩均为零,
(b)
2256
该值应随跨径的增大或矢跨比的减小而减小取用。 钢管混凝土拱桥,一般来说立柱自重较轻,采用悬链线时拱
轴系数较小,一般在1.0-1.7。
16
拱桥的设计与计算
思考题:拱在 什么荷载作用 下的合理拱轴 线是圆弧线? 如何推导?
17
第拱八桥章的设拱计桥与的计设算计与计算
四 、主拱截面尺寸的拟定
1. 主拱宽度的确定
上各点的水平倾角tg ,可直接由《拱桥》(参考文
献[19]、[20]《公路桥涵设计手册一拱桥》的简称) 表(Ⅲ)-2查出。
14
拱桥的设计与计算
3. 拱轴线的选择 选择拱轴线的原则,就是要尽可能降低拱在各种 作用(荷载)组合作用下,在各个受力阶段,轴 向力偏心(即弯矩值)较小,使截面应力分布均 匀,充分利用材料,特别是充分利用圬工材料的 抗压性能。 当恒载压力线与拱轴线吻合时,在活载作用下就 不再吻合,此时仍然采用恒载压力线作为设计拱 轴线的原因?
d 2
பைடு நூலகம்
l12 Hg
gd [1 (m 1)
y1 ] f
l/ 2
令:
k 2 l12 gd (m 1) Hg f
y1 f
gd y
gx=gd+γy1 gj
l/2
12
拱桥的设计与计算
k 2 l12 gd (m 1)
d 2 y1
d 2
l12 Hg
gd [1 (m 1)
Hg
y1 ] f
f
x
d 2 y1
d 2
拱则为纯压拱。对于一些特殊的分布荷载,可以求出与荷载分 布规律有关的拱轴线,称这条拱轴线为合理拱轴线。
y
H
x
l
H
竖直均布荷载作用下 拱的合理拱
8
拱桥的设计与计算
1. 二次抛物线拱轴线方程 对于竖直均布荷载,由材料力学可知
M
0 x
ql 2
x
q 2
x2
M
0 l
2
ql 2 8
令 M x 0 可得
(ql x q x2 ) ql 2 y 0
2/3
1.0 米
桥面标高 拱顶底面标高 起拱线标高 基础底面标高
4
拱桥的设计与计算
二、矢跨比
当跨径大小在分孔时已初步拟定后,根据跨径及拱顶、 拱脚标高,就可以确定主拱圈的矢跨比(f /L )。
板拱桥:矢跨比可采用1/3~1/7,不宜超过1/8。 混凝土拱桥:矢跨比多在1/5 ~ 1/8间,以1/6居多; 钢管混凝土拱桥矢跨比:1/4~1/5之间,以1/5最多。 钢拱桥常用的矢跨比为1/5~1/10,有推力拱中1/5~
gd
gx=gd+γy1
gj
y1 f
y1
Mx Hg
将上式两边对x两次取导数得:
y
l/ 2
l/2
d 2 y1 1 d 2 M x g x dx2 H g dx2 H g
11
拱桥的设计与计算
令 x l1 ,则 dx l1d
d 2 y1 dx2
gx Hg
gx
gd [1
(m 1)
y1 ] f
x
d 2 y1
ls
l[1
8( 3
f l
)2
32 ( 5
f l
)4
257 ( 7
f l
)6
]
l
f/l
1/3
1/4
1/5
1/6
1.268 1.151 1.099 1.026
二次抛物线曲线长度系数
6
拱桥的设计与计算
三、拱轴线选择
拱桥的力学特点(第七章):
YA
P(l a) l
YAo
YB
P
a l
YBo
XA