光纤通信

合集下载

光纤通讯技术的特点及应用

光纤通讯技术的特点及应用

光纤通讯技术的特点及应用光纤通信技术是将信息以光信号的形式传输的一种通信技术。

它具有以下特点:1. 大带宽:光纤通信传输速度快,带宽大,一根光纤可以同时传输大量的数据信息。

光纤的传输速度通常可达到每秒数十亿比特。

2. 高速传输:光信号传输速度非常快,光信号传输速度约为光速的3×10^8m/s,远远超过了其他传输介质。

3. 低损耗:光纤通信具有较低的信号衰减和损耗。

由于光纤具有很好的透光性能,光信号可以在光纤中长距离传输而不会损失很多能量。

4. 抗电磁干扰:光纤通信不受电磁场的干扰,光信号可以在高电压、高电流的环境中稳定传输。

5. 安全性高:光纤通信不会产生电磁辐射和电磁泄漏,难以被窃听、干扰和破坏,信息传输更加安全可靠。

光纤通信技术具有广泛的应用领域,包括但不限于以下几个方面:1. 电信行业:光纤通信技术在电信行业中的应用非常广泛。

光纤通信可以大幅提高通信容量和速度,并且可以适应高速宽带网络的发展。

光纤通信设备已成为电话、移动通信、广播电视等网络传输的重要基础设施。

2. 互联网:光纤通信是互联网的重要支撑技术。

互联网的数据传输主要依靠光纤通信网络。

光纤通信的高速传输和大容量特点可以满足用户对高速、大带宽的需求,支持在线视频、在线游戏等大流量应用。

3. 医疗领域:光纤通信技术在医疗领域有着广泛的应用。

医疗光纤可以用于激光手术、内窥镜、光学成像等医疗仪器设备中,实现对人体内部的显微观察和操作。

4. 环境监测:光纤通信技术可以用于环境监测,比如通过光纤传感器可以实现对大气中的温度、压力、湿度等参数的实时监测,便于环境管理和控制。

5. 工业自动化:光纤通信可以应用于工业自动化控制系统中,实现远距离、高速传输。

例如,在电力系统中,光纤通信可以用于电力监测、保护、故障检测等方面。

6. 军事领域:光纤通信技术在军事领域也有广泛的应用。

军事通信需要快速、安全、可靠的传输方式,光纤通信正好满足这些需求。

光纤通信

光纤通信

光纤通信的优缺点:优点:1.通信容量大,2.中继距离长3.抗电磁干扰4.传输误码率极低缺点:1.有些光器件比较昂贵2.光线的机械强度差3.不能传输电力4.光线断裂后维修比较困难。

基本光纤传输系统组成:1:光发射机(光源[直接调制,间接调制]、驱动器、调制器):把电信号转换为光信号的过程是通过电信号对光的调制实现的。

2,光纤线路(光纤,光线接头,光纤连接器):把来自光发射机的光信号,以尽可能小的畸变和衰减传输到光接收机。

3.光接收机(光检测器,放大器,相关电路):把从光纤线路传输,产生畸变和衰减的微弱光信号转变为电信号,并经其后的电接收机放大和处理后恢复成基带信号。

单模光纤:只能传输一个模式(两个偏振态兼并),所以称为单模光纤,信号畸变很小。

色散:(模式色散,材料色散,波导色散)在光纤中传输的光信号,由于不同成分的光的传播时间不同而产生的一种物理效应。

光纤损耗类型:吸收损耗:主要是由二氧化硅材料引起的固有吸收和由杂质引起的吸收产生的,散射损耗:主要有材料微观密度不均匀引起的瑞丽散射和光纤结构缺陷引起的散射产生的。

光线的损耗是系统的传输距离受到限制,大损耗不利于长距离光纤通信。

光与物质作用三种形式:受激吸收,自发辐射,受激辐射。

LD(半导体激光器)产生激光的条件:hf>=Eg光电效应:在PN结界面上由于电子和空穴的扩散运动,形成内部电场。

内部电场是电子和空穴产生与扩散运动相反的漂移运动,最终是能带发生倾斜,在PN结界面附近形成耗尽层,当入射光作用在PN结时,如果光子的能量大于带隙,便发生受激吸收,在耗尽层由于内部电场的作用电子向N区运动空穴向P区运动形成光生漂移电流,在耗尽层两侧是没有电场的中性区,由于热运动,部分光生电子和空穴通过扩散运动可能进入耗尽层然后在电场的作用下,形成光生扩散电流,当与P层和N层连接的电路开路时,便在两端产生电动势,这就是光电效应.光无源器件:连接器和接头,光耦合器,光隔离器和光环形器,光调制器,光开关。

光纤通信名词解释

光纤通信名词解释

光纤通信,是指将要传送的语音、图像和数据信号等调制在光载波上,以光纤作为传输媒介的通信方式1.本征:是光纤的固有损耗,包括:瑞利散射,固有吸收等。

2.弯曲:光纤弯曲时部分光纤内的光会因散射而损失掉,造成的损耗。

3.挤压:光纤受到挤压时产生微小的弯曲而造成的损耗。

4.杂质:光纤内杂质吸收和散射在光纤中传播的光,造成的损失。

5.不均匀:光纤材料的折射率不均匀造成的损耗。

6.对接:光纤对接时产生的损耗,如:不同轴(单模光纤同轴度要求小于0.8μm),端面与轴心不垂直,端面不平,对接心径不匹配和熔接质量差等。

7.多模光纤:中心玻璃芯教粗(50或62.5μm),可传多种模式的光。

但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。

例如:600MB/KM的光纤在2KM时则只有300MB的带宽了。

因此,多模光纤传输的距离就比较近,一般只有几公里。

8.单模光纤:中心玻璃芯教细(芯径一般为9或10μm),只能传一种模式的光。

因此,其模间色散很小,适用于远程通讯,但其色度色散起主要作用,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好9.常规型光纤:光纤生产长家将光纤传输频率最佳化在单一波长的光上,如1300μm。

10.色散位移型光纤:光纤生产长家将光纤传输频率最佳化在两个波长的光上,如:1300μm和1550μm。

11.突变型光纤:光纤中心芯到玻璃包层的折射率是突变的。

其成本低,模间色散高。

适用于短途低速通讯,如:工控。

但单模光纤由于模间色散很小,所以单模光纤都采用突变型。

12.渐变型光纤:光纤中心芯到玻璃包层的折射率是逐渐变小,可使高模光按正弦形式传播,这能减少模间色散,提高光纤带宽,增加传输距离,但成本较高,现在的多模光纤多为渐变型光纤。

13.电发射端机主要任务是PCM编码和信号的多路复用。

多路复用是指将多路信号组合在一条物理信道上进行传输,到接收端再用专门的设备将各路信号分离出来,多路复用可以极大地提高通信线路的利用率。

光纤通信 知识点总结

光纤通信 知识点总结

光纤通信知识点总结引言光纤通信是一种通过光纤传输光信号的通信技术,它使用光纤作为传输媒质,通过光的反射、折射和传播来实现信息的传输。

光纤通信具有带宽大、传输速度快、抗干扰性强、安全可靠等优点,因此在现代通信中得到了广泛的应用。

本文将对光纤通信的相关知识点进行总结,包括光纤通信的基本原理、组成结构、传输特点、光纤通信系统的组成和工作原理、光纤通信的发展趋势等内容。

一、光纤通信的基本原理1. 光的特性光波是一种电磁波,具有波粒二象性,既可以表现为波动又可以表现为微粒。

光波的主要特性包括波长、频率、相速度、群速度等。

2. 光纤的基本原理光纤是一种通过光的全反射来传输光信号的一种传输媒质。

它的基本结构是由一根纤维芯和包覆在外的包层组成,通过这样的结构使得光信号可以沿着光纤的传输方向不断进行反射和传播。

二、光纤通信的组成结构1. 光纤的结构光纤由芯和包层构成,芯是由单质或复合材料制成,包层是由低折射率的材料构成,使得光可以在芯和包层的界面上发生全反射。

2. 光纤的连接器连接器是光纤通信中的重要部分,它用于将光纤连接在一起,保证光信号的传输质量。

3. 光纤的光源和接收器光源是产生光波的设备,用于向光纤中输入光信号;接收器是用于接收光纤传输过来的光信号,并将其转换为电信号。

三、光纤通信的传输特点1. 带宽大光纤通信的带宽远远大于传统的铜线通信,可以传输更多的信息。

2. 传输距离远光纤通信的传输距离远远大于铜线通信,可以满足更长距离的通信需求。

3. 传输速度快光纤通信的传输速度远远快于铜线通信,可以实现更快的数据传输。

4. 抗干扰性强光纤通信的信号传输过程中不受电磁干扰,抗干扰性能强。

5. 安全可靠光纤信号传输过程中不会泄露电磁波,安全可靠。

四、光纤通信系统的组成和工作原理1. 光纤通信系统的组成光纤通信系统由光源、光纤、接收器、调制解调器、复用器、解复用器等组成。

2. 光纤通信系统的工作原理光源产生光信号,光信号经过调制解调器进行调制,然后通过光纤进行传输,接收器接收光信号并将其转换为电信号,经过复用器和解复用器将多个信号合并或分解,最终传输到目标设备。

光纤通信基础知识

光纤通信基础知识
பைடு நூலகம்
同步 TDM A1 B1 C1 D1 A2 B2 C2 D2
周期1 周期 周期2 周期
可用带宽
异步TDM 异步 A1 B1
周期1 周期
B2
周期2 周期
C2
ATM是一项数据传输技术。ATM是以信元为基础的一种分组交换和复用技术,它是一种 是一项数据传输技术。 是以信元为基础的一种分组交换和复用技术, 是一项数据传输技术 是以信元为基础的一种分组交换和复用技术 为了多种业务设计的通用的面向连接的传输模式。 为了多种业务设计的通用的面向连接的传输模式。 ATM的传送单元是固定长度 的传送单元是固定长度53byte的CELL(信元) 的传送单元是固定长度 的 (信元) ATM适配层(AAL)是把一特定的数据源转换成ATM通讯量的特定类型的服务,也就是说 适配层( )是把一特定的数据源转换成 通讯量的特定类型的服务, 适配层 通讯量的特定类型的服务 处理建立用户所要求的服务质量的机制。有四个被定义的类: 它 处理建立用户所要求的服务质量的机制。有四个被定义的类: A 级 - 固定比特率 固定比特率(CBR)业务 业务:ATM适配层 适配层1(AAL1),支持面向连接的业务 其比特率固 支持面向连接的业务,其比特率固 业务 适配层 支持面向连接的业务 常见业务为64Kbit/s话音业务 固定码率非压缩的视频通信及专用数据网的租用电 话音业务,固定码率非压缩的视频通信及专用数据网的租用电 定,常见业务为 常见业务为 话音业务 路。 B 级 - 可变比特率 可变比特率(VBR)业务 业务:ATM适配层 适配层2(AAL2)。支持面向连接的 业务 适配层 。 业务, 其 比特率是可变的。常见业务为压缩的分组语音通信 业务 比特率是可变的。 和压缩的视频传输。该业务具有传递介面延迟物性, 和压缩的视频传输。该业务具有传递介面延迟物性 其原因是 接收器需要重新组装原来的非压缩语音和视频信息。 接收器需要重新组装原来的非压缩语音和视频信息。 C 级 - 面向连接的数据服务 面向连接的数据服务:AAL3/4。该业务为面向连接的业务 适 。该业务为面向连接的业务,适 用于文件传递和数据网业务,其连接是在数据被传送以前建立 用于文件传递和数据网业务 其连接是在数据被传送以前建立 的。它是可变比特率的,但是没是介面传递延迟。 它是可变比特率的 但是没是介面传递延迟。 但是没是介面传递延迟 D 级 - 无连接数据业务 常见业务为数据报业务和数据网业务。 在 无连接数据业务:常见业务为数据报业务和数据网业务 常见业务为数据报业务和数据网业务。 传递数据前, 其连接不会建立。 均支持此业务。 传递数据前 其连接不会建立。AAL3/4或AAL5均支持此业务。 或 均支持此业务

光纤通信名词解释

光纤通信名词解释

光纤通信名词解释
光纤通信,也称为光纤通讯,是一种利用光与光纤传递资讯的方式,属于有线通信的一种。

光经过调变(modulation)后便能携带资讯,然后通过光纤传送至目的地。

光纤通信因其传输频带宽、容量大、损耗低、不受电磁干扰等优点而成为现代通信的主要支柱之一,在现代电信网中起着举足轻重的作用。

光纤即为光导纤维的简称,光纤通信是以光波作为信息载体,以光纤作为传输媒介的一种通信方式。

从原理上看,构成光纤通信的基本物质要素是光纤、光源和光检测器。

光纤除了按制造工艺、材料组成以及光学特性进行分类外,在应用中,光纤常按用途进行分类,可分为通信用光纤和传感用光纤。

传输介质光纤又分为通用与专用两种,而功能器件光纤则指用于完成光波的放大、整形、分频、倍频、调制以及光振荡等功能的光纤,并常以某种功能器件的形式出现。

简述光纤通信系统的结构和各部分功能

简述光纤通信系统的结构和各部分功能

简述光纤通信系统的结构和各部分功能光纤通信系统是一种基于光纤传输信号的通信系统,由多个部分组成,每个部分都有各自的功能。

下面将对光纤通信系统的结构和各部分功能进行简述。

一、光纤通信系统的结构光纤通信系统一般由光发射器、光纤传输介质、光接收器和光网络设备组成。

1. 光发射器:光发射器是光纤通信系统中的发送端,它将电信号转换成光信号并通过光纤传输介质发送出去。

光发射器的主要功能是将电信号转换为适合光纤传输的光信号,并能够调节光信号的强度和频率。

2. 光纤传输介质:光纤传输介质是光纤通信系统中的传输媒介,它能够将光信号传输到目标地点。

光纤传输介质具有高带宽、低损耗和抗干扰等特点,使得光信号能够在长距离传输过程中保持较高的质量。

3. 光接收器:光接收器是光纤通信系统中的接收端,它接收光纤传输介质中传输的光信号,并将其转换为电信号。

光接收器的主要功能是将光信号转换为电信号,并能够对电信号进行放大和解调等处理。

4. 光网络设备:光网络设备包括光纤交换机、光开关等,它们用于光纤通信系统的网络管理和控制。

光网络设备的主要功能是实现光信号的路由选择、调度和管理,以及对光信号进行调制和解调等处理。

二、各部分功能的详细描述1. 光发射器的功能:光发射器主要负责将电信号转换为适合光纤传输的光信号,并能够调节光信号的强度和频率。

它包括以下几个主要功能:- 光源发生器:产生光信号的光源,常见的有激光二极管、LED等。

- 调制电路:对电信号进行调制,将其转换为光信号。

- 驱动电路:控制光源的开关和调节光信号的强度。

2. 光纤传输介质的功能:光纤传输介质主要负责将光信号传输到目标地点,具有高带宽、低损耗和抗干扰等特点。

其主要功能包括:- 光纤芯:传输光信号的核心部分,由高折射率的材料构成。

- 光纤包层:包裹光纤芯,起到保护和传导光信号的作用。

- 光纤护套:保护光纤传输介质免受外界环境的影响。

3. 光接收器的功能:光接收器主要负责接收光纤传输介质中传输的光信号,并将其转换为电信号。

光纤通信的例子

光纤通信的例子

光纤通信的例子光纤通信是一种利用光的传输媒介进行信息传输的技术,具有高速、高带宽、低延迟等优点,被广泛应用于现代通信领域。

下面将从不同角度列举光纤通信的十个例子。

1. 光纤通信在互联网中的应用光纤通信是互联网的基础设施之一,通过光纤传输数据可以实现高速、稳定的互联网连接。

用户可以通过光纤接入网络,在家里或办公室里享受高速的互联网服务。

2. 光纤通信在电信网络中的应用光纤通信在电信网络中被广泛应用,可以实现电话、宽带、电视等多种业务的传输。

用户可以通过光纤接入电信网络,实现高质量的通信服务。

3. 光纤通信在数据中心中的应用大型数据中心使用光纤通信来连接服务器、存储设备等设备,实现高速、可靠的数据传输。

光纤通信可以满足数据中心对带宽和速度的要求,保证数据中心的正常运行。

4. 光纤通信在医疗领域中的应用光纤通信在医疗领域中被广泛应用,可以实现医学图像的传输、远程医疗的实现等。

光纤通信可以保证医疗数据的高速、高质量传输,提高医疗服务的效率和质量。

5. 光纤通信在安防监控中的应用安防监控系统中使用光纤通信可以实现视频数据的传输和监控设备的联网。

光纤通信可以保证视频数据的高清晰、高稳定传输,提高安防监控的效果和效率。

6. 光纤通信在交通运输中的应用光纤通信在交通运输领域中被广泛应用,可以实现交通信号的传输、智能交通系统的建设等。

光纤通信可以提供高速、可靠的传输服务,提高交通运输的效率和安全性。

7. 光纤通信在金融领域中的应用金融领域对数据传输的速度和安全性要求很高,光纤通信可以满足这些要求。

金融机构可以使用光纤通信建立高速、安全的网络连接,实现交易数据的快速传输和保护。

8. 光纤通信在教育领域中的应用光纤通信在教育领域中被广泛应用,可以实现远程教育、网络教室等教育模式。

光纤通信可以提供高速、稳定的网络连接,为学生和教师提供更好的教育资源。

9. 光纤通信在广播电视中的应用光纤通信在广播电视领域中可以实现高清晰、高质量的音视频传输。

光纤通信的概念

光纤通信的概念

光纤通信的概念随着信息技术的快速发展,人们对于通信的需求也越来越高。

而光纤通信作为一种高速、稳定、可靠的通信方式,已经成为了现代通信领域的重要组成部分。

本文将从光纤通信的概念、原理、应用、发展等方面进行阐述。

一、光纤通信的概念光纤通信是一种利用光纤作为传输介质,将信息以光信号的形式传输的通信方式。

光纤通信的本质是将信息信号转换成光信号,然后通过光纤进行传输,最后再将光信号转换成信息信号。

光纤通信的优点在于传输速度快、传输距离远、传输质量高、抗干扰能力强等。

二、光纤通信的原理光纤通信的核心在于光纤的传输原理。

光纤通信采用的是全内反射原理,即当光线从一种密度较高的介质射向密度较低的介质时,光线会被全部反射回来。

在光纤中,光线被反射的次数越多,传输距离就越远,传输质量也就越好。

因此,光纤通信的传输质量与光纤的品质和制作工艺有着密切的关系。

三、光纤通信的应用光纤通信的应用非常广泛,涉及到电信、网络、广播电视、医疗、工业、军事等多个领域。

其中,电信领域是光纤通信的主要应用领域,包括电话、宽带、移动通信等。

网络领域也是光纤通信的重要应用领域,包括数据中心、云计算、物联网等。

广播电视领域则是光纤通信的新兴应用领域,通过光纤的高速传输和高清画质,可以实现更加高效、精准的广播电视服务。

四、光纤通信的发展随着信息技术的不断发展,光纤通信也在不断的发展和完善。

首先,光纤通信的传输速度和传输距离不断提高,传输速度已经达到了数十个Gbps,传输距离也已经超过了数百公里。

其次,光纤通信的应用领域不断扩展,应用范围不断拓宽。

最后,光纤通信的技术不断革新,新型光纤材料和制作工艺不断涌现,使得光纤通信的质量和性能不断提高。

总之,光纤通信作为一种高速、稳定、可靠的通信方式,已经成为了现代通信领域的重要组成部分。

随着信息技术的不断发展,光纤通信的应用前景将会更加广阔,也将会为人们的生活和工作带来更多的便利和效益。

光纤通信技术

光纤通信技术

光的全反射与光纤的导光原理
光的全反射
当光线从一种介质射入另一种介质时,如果入射角大于某一临界角,光波将在第二种介质表面发生全 反射,即所有的光线都将被反射回第一种介质,而不会进入第二种介质。全反射是光纤导光的物理基 础。
光纤的导光原理
光线在光纤中传播时,由于光的全反射作用,光波被限制在光纤的纤芯中传播,从而实现光的定向传 输。光纤的导光原理是光纤通信中的核心技术之一。
光子集成电路与光子晶体光纤
总结词
光子集成电路和光子晶体光纤是光纤通信技术的两个重 要发展方向。
详细描述
光子集成电路是一种集成了多种光器件的光子回路,具 有高度集成、低能耗、高速传输等优点。而光子晶体光 纤则是一种新型的光纤结构,具有高非线性、高色散等 特性,为光通信带来了新的可能性。
光纤网络的可靠性、稳定性与安全性
光检测器与光接收机
光检测器
光检测器是光纤通信系统的接收端,用于将光信号转换为电信号。常用的光检 测器有光电二极管和雪崩光电二极管。
光接收机
光接收机是将光信号转换为电信号的设备,它包括光检测器、信号处理电路和 放大器等。
光纤与光缆
光纤
光纤是光纤通信系统的传输介质,用于传输光信号。光纤由纤芯和包层组成,纤 芯负责传输光信号,包层则起到保护和折射的作用。
物联网与智能交通
实时数据传输
光纤通信技术能够为智能 交通系统提供实时、可靠 的数据传输服务,支持交 通流量的监控和调度。
车辆安全与控制
光纤通信技术可以用于实 现车辆之间的信息交互, 提高车辆行驶的安全性和 控制精度。
智能停车系统
光纤通信技术可以支持智 能停车系统的建设,实现 车位信息的实时更新和车 辆快速定位。
光纤通信技术的发展历程

简述光纤通信的优点和缺点。

简述光纤通信的优点和缺点。

简述光纤通信的优点和缺点。

光纤通信是一种利用光纤传输信号的通信方式,具有传输速度快、传输距离远、抗干扰能力强等优点,同时也存在一些缺点。

优点:
1.带宽大:光纤通信可以提供极高的带宽,每根光纤都可以传输大量的信息,适合于高速数据传输和大规模数据传输。

2.传输距离远:光纤通信的传输损耗较低,可以实现长距离的传输,适合于大型网络和远程通信。

3.抗干扰能力强:光纤通信不受电磁干扰,信号传输稳定可靠,适合于高可靠性的通信系统。

4.保密性好:光纤通信传输的信号不易被窃听,适合于保密通信系统。

5.线径细、重量轻,节省材料:光纤通信使用的是石英材料,线径细、重量轻,不需要大量的金属材料,适合于资源节约型社会的需求。

缺点:
1.成本高:光纤通信设备和材料价格较高,初期投资较大,需要较长时间才能回收投资。

2.安装和维护难度大:光纤通信需要专业人员进行安装和维护,安装和维护难度较大,需要较高的技术水平和设备支持。

3.光纤易受损:光纤通信对环境要求较高,容易受到机械损伤和化学腐蚀,需要特别注意保护。

光纤的应用领域和用途

光纤的应用领域和用途

光纤的应用领域和用途光纤的应用领域和用途引言:光纤作为一种用于传输光信号的高效传输介质,具有高速、大带宽、低延迟等优势,因此在许多领域得到了广泛的应用。

在本文中,我们将深入探讨光纤的应用领域和用途,并分享对其的观点和理解。

一、通信领域1. 光纤通信光纤通信是目前主流的通信技术,其高速传输、大容量和长距离传输的特点使其成为现代通信系统的基石。

光纤通信广泛应用于电信、宽带互联网、移动通信等领域,实现了全球的信息交流与传输。

2. 光纤到户(FTTH)光纤到户是指将光纤网络延伸到用户住宅或办公室,提供高速和稳定的宽带接入。

光纤到户技术大幅提高了用户的上网速度和体验,支持高清视频、在线游戏和云计算等应用。

二、医疗和生物领域1. 医学成像光纤在医学成像领域有着广泛的应用,如内窥镜、光学相干断层扫描(OCT)和光声成像等技术。

光纤的灵活性和小尺寸使其可以进入人体内部,实现无创或微创的检查和治疗,为医生提供更准确、清晰的影像信息。

2. 生物传感器光纤传感器的应用也得到了生物医学领域的关注。

通过将生物传感材料与光纤结合,可以实现对生物体内特定生化指标的实时检测和监测,为疾病的早期诊断和治疗提供了有力的手段。

三、工业自动化和控制1. 光纤传感技术光纤传感技术在工业自动化和控制系统中发挥着关键作用。

通过光纤传感器可以实现对温度、压力、形变等参数的监测和测量,提高工业生产过程的安全性和可靠性。

2. 光纤激光器光纤激光器广泛应用于材料加工、激光切割、激光焊接等工业领域。

光纤激光器具有体积小、能耗低、光束质量高等优势,为工业生产提供了高效、精确的激光能源。

四、能源领域1. 光伏发电光纤在光伏发电领域的应用可提高光电转换效率、降低系统成本,并便于监测和维护系统状态。

光纤传感技术可以实时监测光伏板上的温度和功率输出,以提高光伏发电系统的运行效率。

2. 光纤传感监测光纤传感监测在能源领域也有广泛的应用。

通过光纤传感器可以实时监测电力输送线路、油气管道等能源设施的温度、形变等参数,提高设施的安全性和运行效率。

光纤通信

光纤通信

填空题;1. 光纤通信是以光波为载波,以光纤为传输介质的通信方式。

2. 目前光纤通信常用的窗口有: 0.85um , 1.31um , 1.55um 。

3. 光纤的主要材料是:石英(slo)2。

4. 光纤中,导引模的截止条件为: w=0 或 u=0 。

5. 单模光纤中不存在模间色散,仅存在模内色散,具体来讲,可分为材料色散,和波导色散。

6. 在单模光纤中,由于光纤的双折射特性使两个正交偏正振分量以不同的群速度传输,也将导致光脉冲展宽,这种现象称为偏振模色散。

7. 单模传输条件是归一化参量 v<2.405 。

8. 光缆大体上由缆芯,加强原件和护层三部分组成。

9. 散射损耗与光纤材料及光纤中的结构缺陷有关。

10. 数值孔径越大,光纤接收光线的能力就越强,光纤与光源的耦合效率就越高。

11. 光纤固定接头的方法有熔接法, v型槽法和套管法。

12. 影响两光纤对接损耗的结构参数有数值孔径, 折射率分布,和纤芯直径。

13. 光纤与光纤的连接方法有两大类,一类是活动连接,另一类是固定连接。

14. 影响光纤耦合器性能的主要因素有插入损耗,附加损耗 , 分光比,和间隔度。

15. 在一根光纤中同时传输多个不同波长的光载波信号称为光波分复用。

1. 段开销可分为再生段开销和复用段开销。

2. 构成SDH网络的基本网络单元成为网元。

该设备有 TM , ADM , DXC ,和 REG 四种。

4. PIN二极管的特点包括耗尽层很宽,偏置电压很小及附加噪声。

5.衡量光电监测性能的主要技术指标有以下几项:暗电流,响应度,响应特性,雪崩倍增因子,渡越时间,光灵敏度,光谱效应。

6. 数字接收机的灵敏度定义为接收机工作于信号质量/误码率的BER所要求的最小平均接收功率。

7. LD是一种阈值器件,它通过受激发光,具有输出功率高输出光发射角窄,与单模光纤耦合功率高,辐射光线谱线窄等优点。

8. 温度升高时,LED光源线宽变宽峰值波长向长波长方向移动。

光纤通信

光纤通信

发送:CPU通过专用 IC芯片将并行数据串行化,并根据通信格式插入相应位码(起始、停止、校验位等), 由输出端 TXD将信号送入光纤接插件(即定插头),再由光纤接插件中的光源进行电—光转换,转换后的光信号 通过光纤动插头向光纤发送光信号,光信号在光纤中向前传播。
接收:来自光纤的光信号经光纤接插件的动插头,向定插头的接收器发送,接收器将接受到的光信号进行 光—电还原,从而得到相应的电信号,该电信号送入到专用的 IC芯片的RXD输入端,经专用 IC芯片将串行数据 改为并行数据后,再向 CPU传送。
光纤通信
专业名称
01 专业概述
03 发展
目录
02 专业设置 04 趋势
光纤通信技术(optical fiber communications)从光通信中脱颖而出,已成为现代通信的主要支柱之一, 在现代电信网中起着举足轻重的作用。光纤通信作为一门新兴技术,其近年来发展速度之快、应用面之广是通信 史上罕见的,也是世界新技术革命的重要标志和未来信息社会中各种信息的主要传送工具。
从事光纤通信线路工程和接入网的设计、施工、概预算编制和工程监理;光纤通信设备的安装、调试和操作 维护;通信网络规划设计、施工、监理等工作。
发展
光纤通信是现代通信网的主要传输手段,已经历三代:短波长多模光纤、长波长多模光纤和长波长单模光 纤.采用光纤通信是通信史上的重大变革,美、日、英、法等20多个国家已宣布不再建设电缆通信线路,而致力 于发展光纤通信.中国光纤通信已进入实用阶段.
专业设置
主要课程
培养Байду номын сангаас标
就业方向
本专业培养能从事光纤网络工程的规划建设、SDH系统的调测维护、电信核心网络和接入网络的工程维护等 工作的应用型人才。具有较强的电缆、光缆设计与施工、线路规划概预算的能力以及在光纤通信设备安装、调试 与维护及其相关领域从业的综合职业能力。

光纤通信的原理和应用

光纤通信的原理和应用

光纤通信的原理和应用随着科技的发展和提高生活质量的不断要求,通信技术已经成为一种必备的生活方式。

通信技术的发展带动了电子、信息领域和科技的进步。

而光纤通信作为目前最先进的通信技术,其在大家的日常生活中得到了广泛的应用,具有明显的优势。

一、光纤通信的原理介绍光纤通信是一种利用光纤传输信号的高速通信技术,利用纯净材料制成的线材,可以将几百倍于铜线的信号传输,甚至可以接受地球上的语音或数字信号。

光纤通信传输信号的基本原理是光的反射原理。

利用“全反射”原理,在光纤管内部的光线反复地被反射,从而传输信号。

通信中使用的光纤通常由圆形截面的单根光纤或几根光纤组成,可以承载更广泛的波长范围,信号质量比传统的通信方式高,不受电磁场干扰,与通信的速度没有直接关系。

二、光纤通信的应用1.网络通信如今,这种技术的应用已经不限于电话领域-光纤网络正越来越受欢迎。

光纤通信技术在因特网中的广泛应用,不仅提供了更快的上网速度,更同时提供了丰富的多媒体应用,如在线视频会议,网络游戏,高清电影etc。

它的无损传输特性保证了信息内容的完整性,从而大大增强了数据安全性。

2.医疗领域在医疗领域,光纤通信技术也逐渐得到广泛应用。

例如,使用光纤技术的内窥镜,可以使医生们便捷地诊断胃部内聚集的异物或检查人体内部器官,尤其是在一些夜间或拍摄角度局限且难以接触的情况下,内窥镜可以像一个“天眼”一样快速地定位所需的病灶区域,从而显著提高诊断准确性和操作性。

3.交通运输在交通运输领域,光纤通信技术的应用也非常广泛,如全球定位系统(GPS)。

GPS不需要导航仪的上层系统就可以定位及记录位置信息,由于它的高精度及可靠性,因此被广泛应用于全球船舶、车辆和人员定位。

三、光纤通信技术的发展趋势在未来几年中,传统的铜缆线将被逐渐替代,光纤通信正逐渐成为流行的通信技术。

随着通信需求的不断增长,未来将会有更多的光纤投入使用,以更快速,更优质的方式进行数据传输。

同时,无缝衔接传输和更全面的应用场景也将成为未来重要的发展方向。

光纤通信技术教案

光纤通信技术教案

第1章 光纤通信概述1.1光纤通信的基本概念 1.光纤通信光纤通信是利用光纤来传输携带信息的光波以达到通信的目的。

2.光波特性 (1)光速:① 在真空中:v f ,oc f (8c 310m /s )② 在介质中:v c /n (n 是折射率) (2)光是电磁波:TM、TE、TEM (3)光具有二重性① 波动性(宏观):光具有反射、折射、衍射和干涉等。

② 粒子性(微观):光具有能量、 动量和质量等。

3.电磁波谱1.1光纤通信的特点 1.优点(1)传输频带宽,通信容量大 (2)传输损耗小 (3)抗电磁干扰(4)光纤线径细、重量轻 (5)制作光纤的资源丰富 2.缺点(1)光纤弯曲半径不宜过小(2)光纤的切断和连接操作技术要求高 (3)分路、耦合操作繁琐1.3 光纤通信系统的基本组成目前光纤通信系统多采用强度调制/直接检波(IM/DD)。

1.光发射机光发射机的主要作用是将电信号转换成光信号耦合进光纤。

光发射机中的重要器件是能够完成电-光转换的半导体光源,目前主要采用半导体激光器(LD)或半导体发光二极管(LED)。

2.光接收机光接收机中的重要部件是能够完成光/电转换任务的光电检测器,目前主要采用光电二极管(PIN)和雪崩光电二极管(APD)。

3.光中继器光纤通信中光中继器的形式主要有两种,一种是光-电-光转换形式的中继器,另一种是在光信号上直接放大的光放大器。

1.4 光纤通信的发展趋势1.向超高速光纤系统发展2.向超大容量WDM系统发展3.向光传送网方向发展4.向G.655光纤发展5.向宽带光纤接入网方向发展(FTTH)第2章 光导纤维2.1 光纤的结构和分类2.1.1 光纤的结构1.纤芯层(1)位置:光纤的中心部位,折射率为n1。

(2)尺寸:单模光纤的直径d1=2a=4μm~10μm,多模光纤的直径d1=50μm。

(3)材料:高纯度SiO2,掺有极少量的掺杂剂。

2.包层(1)位置:位于纤芯的周围,折射率为n2。

什么是光的光纤和光纤通信

什么是光的光纤和光纤通信

什么是光的光纤和光纤通信?光纤是一种由高纯度玻璃或塑料制成的细长柔软的传输介质,可以用于将光信号传输到远距离。

光纤通信是利用光纤作为信息传输的基础,实现高速、远距离和大容量的通信系统。

下面我将详细解释光纤和光纤通信的原理和应用。

1. 光纤的原理:光纤是基于光的全内反射原理工作的。

光在进入光纤时,会由于光纤的高折射率而发生全内反射,从而沿着光纤传输。

光纤由两部分组成:纤芯和包层。

纤芯是光的传输介质,包层则用于保护纤芯并减少光信号的损失。

光纤具有以下特点:-光纤具有较低的传输损耗,可以将光信号传输到较远的距离。

-光纤具有较高的带宽,可以传输大量的信息。

-光纤具有较小的尺寸和重量,便于安装和布线。

-光纤具有较高的抗干扰性和安全性,不易受到电磁干扰和窃听。

2. 光纤通信的原理:光纤通信是利用光纤作为信息传输的媒介,通过调制光信号的强度、频率或相位来传输信息。

光纤通信系统由三个主要部分组成:光源、光纤传输和光接收。

光纤通信具有以下步骤:-光源产生光信号,可以是激光器或发光二极管。

-光信号经过调制,将信息编码到光信号中。

-光信号通过光纤传输,在传输过程中保持光的强度和波形。

-光信号到达光接收端,通过光电探测器将光信号转换为电信号。

-电信号经过解调和处理,恢复出原始的信息。

光纤通信的应用:-光纤通信广泛应用于长距离通信,如城市间和跨洲际通信。

-光纤通信也在局域网和广域网中使用,提供高速和可靠的数据传输。

-光纤通信在电信、互联网和移动通信等行业发挥着重要作用。

-光纤通信还应用于医疗、军事、航天等领域,实现高速数据传输和传感器网络。

光纤和光纤通信是现代通信领域的重要技术,它们提供了高速、长距离和大容量的通信方式。

深入了解光纤和光纤通信的原理和应用可以为通信技术的发展和应用提供基础和指导。

光纤通信

光纤通信

第一章习题•1.1什么是光纤通信?简述光纤通信的发展历程?•解:光纤通信是以光波作为传输信息的载波、以光纤作为传输介质的一种通信方式。

也就是说,光纤通信是将待传送的语音、图像和数据等信号调制在光载波上,然后通过光纤进行传输的一种通信方式。

光纤通信的发展粗略分为如下几个阶段(1)第一阶段(1966-1976年),从基础研究到商业应用的开发时期。

在这个时期,实现了短波长(0.85μm)低速率(45-140Mb/s)多模光纤通信系统,无中继传输距离约10km。

(2)第二阶段(1976-1986年),这是以提高传输速率和增加传输距离为研究目标和大力推广应用的大发展时期。

在这个时期,光纤从多模发展到单模,工作波长从短波长发展到长波长(1.31μm和1.55μm),实现了工作波长为1.31μm、传输速率为140-565Mb/s的单模光纤通信系统,无中继传输距离为10-50km。

(3)第三阶段(1986-1996年),这是以超大容量超长距离为目标、全面深入开展新技术研究的时期。

在这个时期,实现了1.55μm色散移位单模光纤通信系统。

采用外调制技术,传输速率可达2.5-10Gb/s,无中继传输距离可达100-150km。

(4)第四阶段(1996年-至今),开展研究光纤通信新技术。

采用光放大器增加中继距离和采用波分复用增加传输容量。

现在10Gb/s、40Gb/s的系统也已商用化。

1.2 光纤通信为什么能够成为一种主要的通信方式?解:光纤通信能够成为现代的主要通信方式,是归因于光纤通信具有以下突出的优点:①通信速率高(单波长速率已达10Gb/s以上),传输容量大(光波具有很高的频率,约1014Hz,一根光纤可同时传输几十个波长) ;②损耗低(单模已低达0.2dB/km)、传输距离远(中继距离可达50-100Km);③抗干扰能力强(抗强电、雷电和核辐射干扰),保密性好(光纤由石英玻璃制成,由于是绝缘材料,不受电磁场干扰;在光纤中传输的光泄漏非常微弱);④质量轻(是传输相同信息量电缆重量的1/10-1/30),体积小(是相同容量电缆外径的1/3-1/4),敷设方便;⑤耐腐蚀,耐高温(石英玻璃熔点在2000 C以上),可在恶劣环境中工作,寿命长;⑥节约金属材料,有利于资源合理使用(制造同轴电缆和波导管的铜、铝、铅等金属材料,在地球上的储存量是有限的;而制造光纤的石英(SiO2)在地球上基本上是取之不尽的材料)1.3 光纤通信系统的组成主要包括哪些部分?试画出简图予以说明。

光纤通信的优势及发展前景

光纤通信的优势及发展前景

光纤通信的优势及发展前景光纤通信作为现代通信技术中的一项重要成果,以其高速、高带宽、低延迟等优势,正逐渐取代传统的铜缆通信成为主要的通信方式。

本文将探讨光纤通信的优势及其发展前景。

一、光纤通信的优势1. 高速传输:相比传统的铜缆通信,光纤通信利用光信号进行传输,传输速度大大提高。

光纤通信可以达到光速的约30%—40%,可以满足现代社会对高速通信的需求。

2. 高带宽:由于光纤传输的是光信号,其带宽远远高于传统的铜缆。

光纤通信可以同时传输多路高容量的数据,支持高清视频、大容量文件的传输,满足了人们对大带宽的需求。

3. 低延迟:光纤通信的光信号传输速度快,延迟较低。

光纤通信在互联网、移动通信等领域的应用中,能够实现更快的响应速度,提高了用户体验。

4. 抗干扰性强:与铜缆相比,光纤通信能够更好地抵御电磁干扰和外界干扰。

光纤传输过程中不受电磁干扰的影响,保证了通信的稳定性和可靠性。

5. 长距离传输:光纤通信能够实现长距离的传输,信号衰减小。

光信号在光纤中传输时损耗小,适合跨越大地理距离的通信需求。

二、光纤通信的发展前景随着信息社会的快速发展,对通信技术的需求也越来越高。

光纤通信作为一种高速、高带宽的通信方式,具有广阔的发展前景。

1. 互联网+时代的发展:随着物联网、云计算等新兴技术的蓬勃发展,对通信网络的需求更加迫切。

光纤通信具备满足大数据传输、云存储等需求的能力,将在互联网+时代扮演重要角色。

2. 移动通信的进一步发展:移动通信已经成为人们生活中不可或缺的一部分,对传输速度和带宽的要求越来越高。

光纤通信的高速、高带宽特性能满足移动通信的需求,未来将在5G通信等领域得到广泛应用。

3. 视频娱乐产业的繁荣:随着高清视频、VR技术的快速发展,对通信网络的性能要求日益提高。

光纤通信具备传输大容量视频信号的能力,有望在视频娱乐产业中发挥重要作用。

4. 新兴应用的蓬勃发展:随着物联网、人工智能等技术的快速发展,对通信网络的要求更加多样化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光纤通信的优点(1)通信容量大、传输距离远;一根光纤的潜在带宽可达20THz。

采用这样的带宽,只需一秒钟左右,即可将人类古今中外全部文字资料传送完毕。

目前400Gbit/s 系统已经投入商业使用。

光纤的损耗极低,在光波长为1.55μm附近,石英光纤损耗可低于0.2dB/km,这比目前任何传输媒质的损耗都低。

因此,无中继传输距离可达几十、甚至上百公里。

(2)信号串扰小、保密性能好; (3)抗电磁干扰、传输质量佳,电通信不能解决各种电磁干扰问题,唯有光纤通信不受各种电磁干扰。

(4)光纤尺寸小、重量轻,便于敷设和运输; (5)材料来源丰富,环境保护好,有利于节约有色金属铜。

(6)无辐射,难于窃听,因为光纤传输的光波不能跑出光纤以外。

(7)光缆适应性强,寿命长。

光纤通信系统百科名片本词条主要介绍光纤通信系统光纤通信系统是以光为载波,利用纯度极高的玻璃拉制成极细的光导纤维作为传输媒介,通过光电变换,用光来传输信息的通信系统。

随着国际互联网业务和通信业的飞速发展,信息化给世界生产力和人类社会的发展带来了极大的推动。

光纤通信作为信息化的主要技术支柱之一,必将成为21世纪最重要的战略性产业。

光纤光纤通信技术和计算机技术是信息化的两大核心支柱,计算机负责把信息数字化,输入网络中去;光纤则是担负着信息传输的重任。

当代社会和经济发展中,信息容量日益剧增,为提高信息的传输速度和容量,光纤通信被广泛的应用于信息化的发展,成为继微电子技术之后信息领域中的重要技术。

基本光纤通信系统最基本的光纤通信系统由数据源、光发送端、光学信道和光接收机组成。

其中数据源包括所有的信号源,它们是话音、图象、数据等业务经过信源编码所得到的信号;光发送机和调制器则负责将信号转变成适合于在光纤上传输的光信号,先后用过的光波窗口有0.85、1.31和1.55。

光学信道包括最基本的光纤,还有中继放大器EDFA等;而光学接收机则接收光信号,并从中提取信息,然后转变成电信号,最后得到对应的话音、图象、数据等信息。

数字光纤通信系统光纤传输系统是数字通信的理想通道。

与模拟通信相比较,数字通信有很多的优点,灵敏度高、传输质量好。

因此,大容量长距离的光纤通信系统大多采用数字传输方式。

在光纤通信系统中,光纤中传输的是二进制光脉冲"0"码和"1"码,它由二进制数字信号对光源进行通断调制而产生。

而数字信号是对连续变化的模拟信号进行抽样、量化和编码产生的,称为PCM(pulse code modulation),即脉冲编码调制。

这种电的数字信号称为数字基带信号,由PCM电端机产生。

光纤通信系统基本构成(1)光发信机光发信机是实现电/光转换的光端机。

它由光源、驱动器和调制器组成。

其功能是将来自于电端机的电信号对光源发出的光波进行调制,成为已调光波,然后再将已调的光信号耦合到光纤或光缆去传输。

电端机就是常规的电子通信设备。

(2)光收信机光收信机是实现光/电转换的光端机。

它由光检测器和光放大器组成。

其功能是将光纤或光缆传输来的光信号,经光检测器转变为电信号,然后,再将这微弱的电信号经放大电路放大到足够的电平,送到接收端的电端汲去。

(3)光纤或光缆光纤或光缆构成光的传输通路。

其功能是将发信端发出的已调光信号,经过光纤或光缆的远距离传输后,耦合到收信端的光检测器上去,完成传送信息任务。

(4)中继器中继器由光检测器、光源和判决再生电路组成。

它的作用有两个:一个是补偿光信号在光纤中传输时受到的衰减;另一个是对波形失真的脉冲近行政性。

(5)光纤连接器、耦合器等无源器件由于光纤或光缆的长度受光纤拉制工艺和光缆施工条件的限制,且光纤的拉制长度也是有限度的(如1Km)。

因此一条光纤线路可能存在多根光纤相连接的问题。

于是,光纤间的连接、光纤与光端机的连接及耦合,对光纤连接器、耦合器等无源器件的使用是必不可少的。

备用系统与辅助设备了确保系统的畅通,通常设置都有备用系统,就好比对磁盘的备份。

正常情况下只有主系统工作,一旦主要系统出现故障,就可以立即切换到备用系统,这样就可以保障通信的畅通和正确无误。

辅助设备是对系统的完善,它包括监控管理系统、公务通信系统、自动倒换系统、告警处理系统、电源供给系统等。

其中,监控管理系统可对组成光纤传输系统的各种设备自动进行性能和工作状态的监测,发生故障时会自动告警并予以处理,对保护倒换系统实行自动控制。

对于设有多个中继站的长途通信线路及装有通达多方向、多系统的线路维护中心局来说,集中监控是必须采用的维护手段。

光纤通信的发展趋势1、光纤到家庭(FTTH)的发展FTTH可向用户提供极丰富的带宽,所以一直被认为是理想的接入方式,对于实现信息社会有重要作用,还需要大规模推广和建设。

FTTH所需要的光纤可能是现有已敷光纤的2~3倍。

过去由于FTTH成本高,缺少宽带视频业务和宽带内容等原因,使FTTH还未能提到日程上来,只有少量的试验。

近来,由于光电子器件的进步,光收发模块和光纤的价格大大降低;加上宽带内容有所缓解,都加速了FTTH的实用化进程。

发达国家对FTTH的看法不完全相同:美国AT&T认为FTTH市场较小,在0F62003宣称:FTTH在20-50年后才有市场。

美国运行商Verizon和Sprint比较积极,要在10—12年内采用FTTH改造网络。

日本NTT发展FTTH 最早,现在已经有近200万用户。

目前中国FTTH处于试点阶段。

◆FTTH[遇到的挑战:现在广泛采用的ADSL技术提供宽带业务尚有一定优势。

与FTTH相比:①价格便宜②利用原有铜线网使工程建设简单③对于目前1Mbps—500kbps影视节目的传输可满足需求。

FTTH目前大量推广受制约。

对于不久的将来要发展的宽带业务,如:网上教育,网上办公,会议电视,网上游戏,远程诊疗等双向业务和HDTV高清数字电视,上下行传输不对称的业务,AD8L就难以满足。

尤其是HDTV,经过压缩,目前其传输速率尚需19.2Mbps。

正在用H.264技术开发,可压缩到5~6Mbps。

通常认为对QOS有所保证的ADSL 的最高传输速串是2Mbps,仍难以传输HDTV。

可以认为HDTV是FTTH的主要推动力。

即HDTV业务到来时,非FTTH不可。

◆FTTH的解决方案:通常有P2P点对点和PON无源光网络两大类。

F2P方案一一优点:各用户独立传输,互不影响,体制变动灵活;可以采用廉价的低速光电子模块;传输距离长。

缺点:为了减少用户直接到局的光纤和管道,需要在用户区安置1个汇总用户的有源节点。

PON方案——优点:无源网络维护简单;原则上可以节省光电子器件和光纤。

缺点:需要采用昂贵的高速光电子模块;需要采用区分用户距离不同的电子模块,以避免各用户上行信号互相冲突;传输距离受PON分比而缩短;各用户的下行带宽互相占用,如果用户带宽得不到保证时,不单是要网络扩容,还需要更换PON和更换用户模块来解决。

(按照目前市场价格,PEP 比PON经济)。

PON有多种,一般有如下几种:(1)APON:即ATM-PON,适合ATM交换网络。

(2)BPON:即宽带的PON。

(3)OPON:采用通用帧处理的OFP-PON。

(4)EPON:采用以太网技术的PON,0EPON是千兆毕以太网的PON。

(5)WDM-PON:采用波分复用来区分用户的PON,由于用户与波长有关,使维护不便,在FTTH中很少采用。

发达国家发展FTTH的计划和技术方案,根据各国具体情况有所不同。

美国主要采用A-PON,因为ATM交换在美国应用广泛。

日本NTT有一个B-FLETts计划,采用P2P-MC、B-PON、G-EPON、SCM-PON等多种技术。

SCM-PON:是采用副载波调制作为多信道复用的PON。

中国ATM使用远比STM的SDH少,一般不考虑APON。

我们可以考虑的是P2P、GPON和EPON。

P2P方案的优缺点前面已经说过,目前比较经济,使用灵活,传输距离远等;宜采用。

而比较GPON和EPON,各有利弊。

GPON:采用GFP技术网络效率高;可以有电话,适合SDH网络,与IP结合没有EPON好,但目前GPON技术不很成熟。

EPON:与IP结合好,可用户电话,如用电话需要借助lAD技术。

目前,中国的FTTH试点采用EPON比较多。

FTTH 技术方案的采用,还需要根据用户的具体情况不同而不同。

近来,无线接入技术发展迅速。

可用作WLAN的IEEE802.11g协议,传输带宽可达54Mbps,覆盖范围达100米以上,目前已可商用。

如果采用无线接入WLAN作用户的数据传输,包括:上下行数据和点播电视VOD的上行数据,对于一般用户其上行不大,IEEES02.11g是可以满足的。

而采用光纤的FTTH主要是解决HDTV宽带视频的下行传输,当然在需要时也可包含一些下行数据。

这就形成“光纤到家庭+无线接入”(FTTH+无线接入)的家庭网络。

这种家庭网络,如果采用PON,就特别简单,因为此PON无上行信号,就不需要测距的电子模块,成本大大降低,维护简单。

如果,所属PON的用户群体,被无线城域网WiMAX(1EEE802.16)覆盖而可利用,那么可不必建设专用的WLAN。

接入网采用无线是趋势,但无线接入网仍需要密布于用户临近的光纤网来支撑,与FTTH相差无几。

FTTH+无线接入是未来的发展趋势。

2、光交换的发展什么是通信?实际上可表示为:通信输+交换。

光纤只是解决传输问题,还需要解决光的交换问题。

过去,通信网都是由金属线缆构成的,传输的是电子信号,交换是采用电子交换机。

现在,通信网除了用户末端一小段外,都是光纤,传输的是光信号。

合理的方法应该采用光交换。

但目前,由于目前光开关器件不成熟,只能采用的是“光-电-光”方式来解决光网的交换,即把光信号变成电信号,用电子交换后,再变还光信号。

显然是不合理的办法,是效串不高和不经济的。

正在开发大容量的光开关,以实现光交换网络,特别是所谓ASON-自动交换光网络。

通常在光网里传输的信息,一般速度都是xGbps的,电子开关不能胜任。

一般要在低次群中实现电子交换。

而光交换可实现高速XGbDs的交换。

当然,也不是说,一切都要用光交换,特别是低速,颗粒小的信号的交换,应采用成熟的电子交换,没有必要采用不成熟的大容量的光交换。

当前,在数据网中,信号以“包”的形式出现,采用所谓“包交换”。

包的颗粒比较小,可采用电子交换。

然而,在大量同方向的包汇总后,数量很大时,就应该采用容量大的光交换。

目前,少通道大容量的光交换已有实用。

如用于保护、下路和小量通路调度等。

一般采用机械光开关、热光开关来实现。

目前,由于这些光开关的体积、功耗和集成度的限制,通路数一般在8—16个。

电子交换一般有“空分”和“时分”方式。

相关文档
最新文档