采用图腾柱方式驱动MOSFET电路设计

合集下载

MOS管驱动电路要点及关断电路

MOS管驱动电路要点及关断电路

MOS管驱动电路要点及关断电路我们在应用MOS管和设计MOS管驱动的时候,有很多寄生参数,其中最影响MOS管开关性能的是源边感抗。

寄生的源边感抗主要有两种来源,第一个就是晶圆DIE和封装之间的Bonding线的感抗,另外一个就是源边引脚到地的PCB 走线的感抗(地是作为驱动电路的旁路电容和电源网络滤波网的返回路径)。

在某些情况下,加入测量电流的小电阻也可能产生额外的感抗。

mos管是什么?mos管是金属(metal)—氧化物(oxide)—半导体(semiconductor)场效应晶体管,或者称是金属—绝缘体(insulator)—半导体。

MOS管的source和drain是可以对调的,他们都是在P型backgate中形成的N型区。

在多数情况下,这个两个区是一样的,即使两端对调也不会影响器件的性能。

这样的器件被认为是对称的。

双极型晶体管把输入端电流的微小变化放大后,在输出端输出N沟道mos管符号一个大的电流变化。

双极型晶体管的增益就定义为输出输入电流之比(beta)。

另一种晶体管,叫做场效应管(FET),把输入电压的变化转化为输出电流的变化。

FET的增益等于它的transconductance,定义为输出电流的变化和输入电压变化之比。

市面上常有的一般为N沟道和P沟道,详情参考右侧图片(N沟道耗尽型MOS管)。

而P沟道常见的为低压mos管场效应管通过投影P沟道mos管符号一个电场在一个绝缘层上来影响流过晶体管的电流。

事实上没有电流流过这个绝缘体,所以FET管的GATE电流非常小。

最普通的FET用一薄层二氧化硅来作为GATE极下的绝缘体。

这种晶体管称为金属氧化物半导体(MOS)晶体管,或,金属氧化物半导体场效应管(MOSFET)。

因为MOS管更小更省电,所以他们已经在很多应用场合取代了双极型晶体管。

我们分析一下源边感抗带来的影响:1.使得MOS管的开启延迟和关断延迟增加由于存在源边电感,在开启和关段初期,电流的变化被拽了,使得充电和放电的时间变长了。

常见的MOSFET驱动方式驱动电路的参数计算

常见的MOSFET驱动方式驱动电路的参数计算

常见的MOSFET驱动方式,驱动电路的参数计算在简单的了解MOS管的基本原理以及相关参数后,如何在实际的电路中运用是我们努力的方向。

比如在实际的MOS驱动电路设计中,如何去根据需求搭建电路,计算参数,根据特性完善电路,根据实际需求留余量等等,在这些约束条件下搭建一个相对完善的电路。

参考了一些资料后,就我目前的需求和自身的理解力分享相关的一些笔记和理解。

1.常见的MOSFET驱动方式直接驱动:最简单的驱动方式,比如用单片机输出PWM信号来驱动较小的MOS。

使用这种驱动方式,应注意几点;一是实际PWM和MOS的走线距离必定导致寄生电感引起震荡噪声,二是芯片的驱动峰值电流,因为不同芯片对外驱动能力不一样。

三是MOS的寄生电容Cgs、Cgd如果比较大,导通就需要大的能量,没有足够的峰值电流,导通的速度就会比较慢。

图腾柱/推拉式驱动电路由两个三极管构成,上管是NPN型,下管是PNP型三极管,两对管共射联接处为输出端,结构类似于乙类推挽功率放大器。

利用这种拓扑放大驱动信号,增强电流能力。

(驱动IC内部也是集成了类似的结构)隔离式驱动电路为了满足安全隔离也会用变压器驱动。

如图其中R1抑制振荡,C1隔直流通交流同时防止磁芯饱和。

隔离式的驱动电路不太常见,就不做过多的了解。

小结:当然除以上驱动电路之外,还有很多其它形式的驱动电路。

对于各种各样的驱动电路并没有一种是最好的,只能结合具体应用,选择最合适的拓扑。

2.驱动电路的参数计算我的实际工作中碰到最多的驱动电路是以下这种能够控制开关速度的驱动电路,我就以它举例做进一步的分析。

如图,在驱动电阻Rg2上并联一个二极管。

其中D1常用快恢复二极管,使关断时间减小同时减小关断损耗,Rg1可以限制关断电流,R1为mos管栅源极的下拉电阻,给mos管栅极积累的电荷提供泄放回路。

(根据MOSFET栅极高输入阻抗的特性,一点点静电或者干扰都可能导致MOS管误导通,所以R1也起降低输入阻抗作用,一般取值在10k~几十k)Lp为驱动走线的杂散寄生电感,包括驱动IC引脚、MOS引脚、PCB走线的感抗,精确的数值很难确定,通常取几十nH。

MOSFET管经典驱动电路设计大全

MOSFET管经典驱动电路设计大全

在设计便携式设备和无线产品时,提高产品性能、延长电池工作时间是设计人员需要面对的两个问题。

DC-DC转换器具有效率高、输出电流大、静态电流小等优点,非常适用于为便携式设备供电。

目前DC-DC转换器设计技术发展主要趋势有:(1)高频化技术:随着开关频率的提高,开关变换器的体积也随之减小,功率密度也得到大幅提升,动态响应得到改善。

小功率DC-DC转换器的开关频率将上升到兆赫级。

(2)低输出电压技术:随着半导体制造技术的不断发展,微处理器和便携式电子设备的工作电压越来越低,这就要求未来的DC-DC变换器能够提供低输出电压以适应微处理器和便携式电子设备的要求。

这些技术的发展对电源芯片电路的设计提出了更高的要求。

首先,随着开关频率的不断提高,对于开关元件的性能提出了很高的要求,同时必须具有相应的开关元件驱动电路以保证开关元件在高达兆赫级的开关频率下正常工作。

其次,对于电池供电的便携式电子设备来说,电路的工作电压低(以锂电池为例,工作电压2.5~3.6V),因此,电源芯片的工作电压较低。

MOS管具有很低的导通电阻,消耗能量较低,在目前流行的高效DC-DC 芯片中多采用MOS管作为功率开关。

但是由于MOS管的寄生电容大,一般情况下NMOS开关管的栅极电容高达几十皮法。

这对于设计高工作频率DC-DC 转换器开关管驱动电路的设计提出了更高的要求。

在低电压ULSI设计中有多种CMOS、BiCMOS采用自举升压结构的逻辑电路和作为大容性负载的驱动电路。

这些电路能够在低于1V电压供电条件下正常工作,并且能够在负载电容1~2pF的条件下工作频率能够达到几十兆甚至上百兆赫兹。

本文正是采用了自举升压电路,设计了一种具有大负载电容驱动能力的,适合于低电压、高开关频率升压型DC-DC转换器的驱动电路。

电路基于Samsung AHP615 BiCMOS工艺设计并经过Hspice仿真验证,在供电电压1.5V ,负载电容为60pF时,工作频率能够达到5MHz以上。

高速MOSFET门极驱动电路的设计应用指南(有图完整版)

高速MOSFET门极驱动电路的设计应用指南(有图完整版)

高速MOSFET门极驱动电路的设计应用指南author Laszlo Baloghtranslator Justin Hu摘要本文主要演示了一种系统化的方法来设计高速开关装置的高性能门极驱动电路。

文章收集了大量one-stop-shopping 主题的信息来解决最普通的设计挑战。

因此它应当对各种水平的电力电子工程师都适用。

最常用的电路方案和它们的性能都经过了分析,包括寄生参数、瞬时和极端运行条件的影响。

文章首先回顾了MOSFET技术和开关运行模式,然后由简入繁地讨论问题。

详细的描述了参考地和高端门极驱动电路的设计程序、交流耦合和变压器隔离方案。

专门的一章用来介绍同步整流装置中MOSFET的门极驱动要求。

文章另举出了几个设计的实例,一步一步进行了说明。

Ⅰ.引言MOSTET是金属氧化物半导体场效应晶体管(Metal Oxide Semiconductor Field Effect Transistor)的缩写,是电子工业中高频、高效率开关装置的关键器件。

令人惊叹的是,场效应晶体管技术发明于1930年,比双极性晶体管早了大约20年。

第一个信号级别的场效应晶体管20世纪50年代末期被制造出来,功率级别的MOSFET在20世纪70年代中期出现。

而今天无数的MOSFET被集成到现代电子器件中,无论是微处理器还是分立的功率晶体管。

本文所关注的是功率MOSFET在各种各样的开关模式功率变换器装置中门极驱动的要求。

Ⅱ.MOSFET技术双极型和MOSFET晶体管都使用了同样的工作原理。

从根本上讲,这两种晶体管都是电荷控制的器件,这就意味着它们的输出电流和控制电极在半导体中建立的电荷成比例。

当这些器件用作开关时,它们都必须被一个低阻抗的电源驱动,电源要能提供足够的充放电电流来使它们快速建立或释放控制电荷。

从这一点来看,MOSFET在开关过程中必须和双极性晶体管一样通过“硬”驱动才能获得类似的开关速度。

理论上,双极型和MOSFET器件的开关速度几乎一样,由载流子运动经过半导体区域所需要的时间决定。

PWM控制芯片SG3525功能简介

PWM控制芯片SG3525功能简介

PWM控制芯片SG3525功能简介1.1 PWM控制芯片SG3525功能简介随着电能变换技术的发展,功率MOSFET在开关变换器中开始广泛使用,为此美国硅通用半导体公司(Silicon General)推出SG3525。

SG3525是用于驱动N沟道功率MOSFET。

其产品一推出就受到广泛好评。

SG3525系列PWM控制器分军品、工业品、民品三个等级。

下面我们对SG3525特点、引脚功能、电气参数、工作原理以及典型应用进行介绍。

SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。

在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。

由于结构上有电压环和电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。

1.1.1 SG3525引脚功能及特点简介其原理图如图4.13下:1.Inv.input(引脚1):误差放大器反向输入端。

在闭环系统中,该引脚接反馈信号。

在开环系统中,该端与补偿信号输入端(引脚9)相连,可构成跟随器。

2.Noninv.input(引脚2):误差放大器同向输入端。

在闭环系统和开环系统中,该端接给定信号。

根据需要,在该端与补偿信号输入端(引脚9)之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型的调节器。

3.Sync(引脚3):振荡器外接同步信号输入端。

该端接外部同步脉冲信号可实现与外电路同步。

4.OSC.Output(引脚4):振荡器输出端。

5.CT(引脚5):振荡器定时电容接入端。

6.RT(引脚6):振荡器定时电阻接入端。

7.Discharge(引脚7):振荡器放电端。

该端与引脚5之间外接一只放电电阻,构成放电回路。

8.Soft-Start(引脚8):软启动电容接入端。

该端通常接一只5 的软启动电容。

MOS管驱动电路

MOS管驱动电路

MOS管驱动电路总结在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。

这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。

下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。

包括MOS管的介绍,特性,驱动以及应用电路。

1、MOS管种类和结构MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。

至于为什么不使用耗尽型的MOS管,不建议刨根问底。

对于这两种增强型MOS管,比较常用的是NMOS。

原因是导通电阻小,且容易制造。

所以开关电源和马达驱动的应用中,一般都用NMOS。

下面的介绍中,也多以NMOS为主。

MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。

寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。

在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。

这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。

顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。

2、MOS管导通特性导通的意思是作为开关,相当于开关闭合。

NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。

PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。

但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。

3、MOS开关管损失不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。

图腾柱电路解析整理

图腾柱电路解析整理

再谈图腾柱驱动电路之一、之二、之三汇总(注:根据davida的建议,觉得还是把这个三个帖子综合起来跟方便大家探讨。

)一、驱动电路之一由于本人最近接触才saber,仿真能力有限,本想仿真,但实在是由于有关saber的基础东西还很多不会呢,所以只能请教大家了1、问:(1)在下面电路中,VCC的选择和哪些因素有关系?VCC和后级的mos管的Vgs电压相等吗?(2) NPN、PNP管子的选取的依据?三极管的电流Ic要满足什么样的条件才能驱动后端的mos?在下帖/bbs/2169.html15楼 胡庄主 曾提到“1)首先要确定的是你需要多少的驱动能力?要驱动的负载(一般可认为是功率管)有多少?以MOSFET为例,驱动其实就是对MOS的门级电容的充放电,这就要考虑你有几个MOS并联,门级电容有多大?MOS的Rg 有多大,加上驱动回路寄生电感等,其实就是一个LRC串联回路。

2)驱动能力用个简化的公式来算就是I=C*Du/Dt,MOS的门级电容先确定,再来考虑你准备要几V的门级电压,然后就是这个电压建立和消除的时间,也就牵涉到MOS的开通关断速度,这会直接影响到功率管的损耗及其它问题,如应力等。

这几个想好了,所要的驱动电流也就出来了。

3)得到这个所要的驱动电流,再考虑上驱动回路的一堆寄生参数等,也就可以推出你图腾柱电路需提供多少驱动电流(注意这是个脉冲电流)。

”针对上边的内容我有些疑问:1、MOS属于单级型电压驱动器件,是栅极电压来控制漏极电流的,如果从表面理解的话,是不是只要保证栅极的电压达到Vgs就可以?和电流没有关系??2、MOS管的门极电容是怎么确定的?是下图这些参数吗?二、驱动电路之二问:1、图中的C18的作用?二极管D是否有必要加?要加的话,起作用?2、R15、R16加与不加?R15、R16在一般电路中,是并接在mos的GS端,起消除Cgs累计电荷的作用,防止mos处于开始处于导通或者状态不明确的情况。

MOSFET驱动电路分析与设计

MOSFET驱动电路分析与设计

MOSFET驱动电路分析与设计包尔恒【摘要】文中介绍了驱动电流、驱动功耗的计算方法;分析了MOSFET开关过程中电流电压的变化规律;最后对常用的驱动电路解决方案及其优缺点、设计中需要注意的问题等进行了分析总结.根据MOSFET门级驱动电路的特点及设计过程中需要考虑的影响因素,为可靠、高性能的MOSFET应用设计提供参考.【期刊名称】《通信电源技术》【年(卷),期】2013(030)002【总页数】4页(P34-37)【关键词】MOSFET;驱动电流;开通关断;驱动电路【作者】包尔恒【作者单位】深圳麦格米特电气股份有限公司,广东深圳518057【正文语种】中文【中图分类】U270;TN86功率场效应晶体管(简称Power Mosfet)是所有全控型电力电子器件中工作频带最宽的一种,因此在高频化进程中得到广泛应用。

MOSFET使用中驱动电路的设计显得尤为关键,它直接关系到MOSFET的性能发挥及整体电路的效率和可靠性。

1 MOSFET开关模型及驱动基本要求1.1 MOSFET开关特性模型MOSFET的开关特性模型可用图1表示,开关特性取决于下述三个极间电容的电压变化速度有多快:CGD =CRSS CRSS:反馈电容CGS =CISS-CRSS CISS:输入电容CDS =COSS-CRSS COSS:输出电容图1 MOSFET的开关特性模型快速开关需要栅极驱动电路的负载能力足够大,以在要求时间内完成对等效栅极电容(CEI)的充电。

这里需要注意几个容易忽略的问题:(1)内部引线栅极输入电阻RGI,降低了开关速度和dv/dt耐受能力;(2)栅极门槛电压UTH具有负温度系数特性,通常为–7 mV/℃,高温时门槛电压会降低,在逻辑电平设计应用中需要考虑,这一特性降低了高温下UGS的抗干扰能力而易引起误导通,同时也使得在更低的门极电压下才能可靠关断;(3)源极引线电感LS和漏极引线电感LD在开关过程中会引起应力问题,如UGS负压等,设计中尽量从布局方面减小引线电感。

利用MOSFET管自举升压驱动电路

利用MOSFET管自举升压驱动电路

利用MOSFET管自举升压驱动电路MOS管最显著的特性是开关特性好,所以被广泛应用在需要电子开关的电路中,常见的如开关电源和马达驱动,也有照明调光。

现在的MOS驱动,有几个特别的需求,1,低压应用当使用5V电源,这时候如果使用传统的图腾柱结构,由于三极管的be有0.7V左右的压降,导致实际最终加在gate上的电压只有4.3V。

这时候,我们选用标称gate电压4.5V的MOS管就存在一定的风险。

同样的问题也发生在使用3V或者其他低压电源的场合。

2,宽电压应用输入电压并不是一个固定值,它会随着时间或者其他因素而变动。

这个变动导致PWM电路提供给MOS管的驱动电压是不稳定的。

为了让MOS管在高gate电压下安全,很多MOS管内置了稳压管强行限制gate电压的幅值。

在这种情况下,当提供的驱动电压超过稳压管的电压,就会引起较大的静态功耗。

同时,如果简单的用电阻分压的原理降低gate电压,就会出现输入电压比较高的时候,MOS管工作良好,而输入电压降低的时候gate电压不足,引起导通不够彻底,从而增加功耗。

3,双电压应用在一些控制电路中,逻辑部分使用典型的5V或者3.3V数字电压,而功率部分使用12V甚至更高的电压。

两个电压采用共地方式连接。

这就提出一个要求,需要使用一个电路,让低压侧能够有效的控制高压侧的MOS管,同时高压侧的MOS管也同样会面对1和2中提到的问题。

在这三种情况下,图腾柱结构无法满足输出要求,而很多现成的MOS驱动IC,似乎也没有包含gate电压限制的结构。

于是我设计了一个相对通用的电路来满足这三种需求。

电路图如下:图1用于NMOS的驱动电路图2用于PMOS的驱动电路这里我只针对NMOS驱动电路做一个简单分析:Vl和Vh分别是低端和高端的电源,两个电压可以是相同的,但是Vl不应该超过Vh。

Q1和Q2组成了一个反置的图腾柱,用来实现隔离,同时确保两只驱动管Q3和Q4不会同时导通。

R2和R3提供了PWM电压基准,通过改变这个基准,可以让电路工作在PWM信号波形比较陡直的位置。

MOS管工作原理详细讲解

MOS管工作原理详细讲解

详细讲解MOSFET管驱动电路在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS 的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。

这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。

下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。

包括MOS管的介绍,特性,驱动以及应用电路。

1,MOS管种类和结构MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P 沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。

至于为什么不使用耗尽型的MOS管,不建议刨根问底。

对于这两种增强型MOS管,比较常用的是NMOS。

原因是导通电阻小,且容易制造。

所以开关电源和马达驱动的应用中,一般都用NMOS。

下面的介绍中,也多以NMOS为主。

MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。

寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。

在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。

这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。

顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。

2,MOS管导通特性导通的意思是作为开关,相当于开关闭合。

NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。

PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。

但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。

3,MOS开关管损失不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。

详解MOSFET驱动电路的设计

详解MOSFET驱动电路的设计

详细讲解MOSFET管驱动电路作者:来源:电源网关键字:MOSFET结构开关驱动电路在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。

这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。

下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创。

包括MOS 管的介绍,特性,驱动以及应用电路。

1,MOS管种类和结构MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。

至于为什么不使用耗尽型的MOS管,不建议刨根问底。

对于这两种增强型MOS管,比较常用的是NMOS。

原因是导通电阻小,且容易制造。

所以开关电源和马达驱动的应用中,一般都用NMOS。

下面的介绍中,也多以NMOS为主。

MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。

寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。

在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管。

这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。

顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。

2,MOS管导通特性导通的意思是作为开关,相当于开关闭合。

NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。

PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。

但是,虽然P MOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。

推挽电路——图腾柱式输出

推挽电路——图腾柱式输出

推挽电路——图腾柱式输出推挽电路——图腾柱式输出解释:什么是图腾柱(Totem Pole)输出电路由于此结构画出的电路图有点儿象印第安人的图腾柱,所以叫图腾柱式输出(也叫图腾式输出)。

输出级分别采用一个NPN型晶体管和一个PNP型晶体管。

NPN管集电极接正电源(或接地),发射极接下面PNP管的发射极,同时输出;PNP管的集电极接地(或负电源)。

两管的基极同时接前级的控制端。

就是上下两个输出管,从直流角度看是串联,而从交流看是并联,两管发射极连接处为输出端,实际是一对射极跟随器。

追随输入电平,上管导通、下管截止输出高电平,下管导通、上管截止输出低电平,如果上下两管均截止则输出为高阻态。

在开关电源中,类似的电路常称为“半桥”。

++++++++++++++++++++++++++++++++1.输出极采用一个上拉电阻接一个NPN型晶体管的集电极,这个管子的发射极接PNP管子的发射极同时输出;下管的发射极接地.两管的基极分别接前级的控制.就是上下两个输出管,从直流角度看是串联,两管联接处为输出端.上管导通下管截止输出高电平,下管导通上管截止输出低电平,如果电路逻辑可以上下两管均截止则输出为高阻态.其实也是用NPN和PNP管子的搭配使用,当上升沿的时候NPN 工作打开,当下降沿的时候PNP工作关闭,依次循环。

2.1)首先要确定的是你需要多少的驱动能力?要驱动的负载(一般可认为是功率管)有多少?以MOSFET为例,驱动其实就是对MOS 的栅极电容的充放电,这就要考虑你有几个MOS并联,门级电容有多大?MOS的Rg 有多大,加上驱动回路寄生电感等,其实就是一个LRC串联回路。

2)驱动能力用个简化的公式来算就是I=C*Du/Dt,MOS的门级电容先确定,再来考虑你准备要几V的门级电压,然后就是这个电压建立和消除的时间,也就牵涉到MOS的开通关断速度,这会直接影响到功率管的损耗及其它问题,如应力等。

这几个想好了,所要的驱动电流也就出来了。

图腾柱电路解析整理1

图腾柱电路解析整理1

再谈图腾柱驱动电路之一、之二、之三汇总(注:根据davida的建议,觉得还是把这个三个帖子综合起来跟方便大家探讨。

)一、驱动电路之一由于本人最近接触才saber,仿真能力有限,本想仿真,但实在是由于有关saber的基础东西还很多不会呢,所以只能请教大家了1、问:(1)在下面电路中,VCC的选择和哪些因素有关系?VCC和后级的mos管的Vgs电压相等吗?(2) NPN、PNP管子的选取的依据?三极管的电流Ic要满足什么样的条件才能驱动后端的mos?在下帖/bbs/2169.html15楼胡庄主曾提到“1)首先要确定的是你需要多少的驱动能力?要驱动的负载(一般可认为是功率管)有多少?以MOSFET为例,驱动其实就是对MOS的门级电容的充放电,这就要考虑你有几个MOS并联,门级电容有多大?MOS的Rg 有多大,加上驱动回路寄生电感等,其实就是一个LRC串联回路。

2)驱动能力用个简化的公式来算就是I=C*Du/Dt,MOS的门级电容先确定,再来考虑你准备要几V的门级电压,然后就是这个电压建立和消除的时间,也就牵涉到MOS的开通关断速度,这会直接影响到功率管的损耗及其它问题,如应力等。

这几个想好了,所要的驱动电流也就出来了。

3)得到这个所要的驱动电流,再考虑上驱动回路的一堆寄生参数等,也就可以推出你图腾柱电路需提供多少驱动电流(注意这是个脉冲电流)。

”针对上边的内容我有些疑问:1、MOS属于单级型电压驱动器件,是栅极电压来控制漏极电流的,如果从表面理解的话,是不是只要保证栅极的电压达到Vgs就可以?和电流没有关系??2、MOS管的门极电容是怎么确定的?是下图这些参数吗?二、驱动电路之二问:1、图中的C18的作用?二极管D是否有必要加?要加的话,起作用?2、R15、R16加与不加?R15、R16在一般电路中,是并接在mos的GS端,起消除Cgs累计电荷的作用,防止mos处于开始处于导通或者状态不明确的情况。

详细讲解MOS管工作原理

详细讲解MOS管工作原理

详细讲解MOSFET管驱动电路在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些因素。

这样的电路也许是可以工作的,但并不是优秀的,作为正式的产品设计也是不允许的。

下面是我对MOSFET及MOSFET驱动电路基础的一点总结,其中参考了一些资料,非全部原创.包括MOS管的介绍,特性,驱动以及应用电路。

1,MOS管种类和结构MOSFET管是FET的一种(另一种是JFET),可以被制造成增强型或耗尽型,P沟道或N沟道共4种类型,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。

至于为什么不使用耗尽型的MOS管,不建议刨根问底。

对于这两种增强型MOS管,比较常用的是NMOS。

原因是导通电阻小,且容易制造。

所以开关电源和马达驱动的应用中,一般都用NMOS。

下面的介绍中,也多以NMOS为主。

MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的。

寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。

在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管.这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。

顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的.2,MOS管导通特性导通的意思是作为开关,相当于开关闭合.NMOS的特性,Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。

PMOS的特性,Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。

但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。

3,MOS开关管损失不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。

一种图腾柱式驱动电路参数优化设计方法

一种图腾柱式驱动电路参数优化设计方法
航应用领域ꎬ相比于集成电路实现的自举驱动方式
而言具有更强的适用性. 因而依然被广泛应用于空
间机电伺服产品中 [2] .
本文以高端 PMOS 图腾柱式驱动方式为背景ꎬ
管一端接负载ꎬ一端接地. 由于负载端电压处于浮动
针对驱动电 路 设 计 过 程 中ꎬ电 路 参 数 多 而 导 致 不
状态ꎬ因此高端不能像低端驱动一样以地端为参考.
式驱动电路如图 4 所示ꎬ驱动电路的主要器件选型
如表 1 所示. 该电路的典型特征为:由一个 NPN 型
三极管和一个 PNP 型三极管组成图腾柱式输出ꎬ为
PMOS 的开通和关断提供通路ꎬ其本质是一个推挽
Fig. 1 Equivalent PMOS model
1 PMOS 图腾柱式驱动电路
1. 1 PMOS 工作过程分析
在电机控制中ꎬMOSFET 工作在电流变化的感
性负载电路中ꎬ其模型电路如图 2 所示ꎬ其中ꎬ L1 为
电机的一相绕组ꎬ VD1 为其续流二极管ꎬ C gs 、C gd 、C ds
分别为 PMOS 各极间的等效电容ꎬ L s 、L d 为源极和漏
图 3 PMOS 开通、关断过程波形
Fig. 3 Sketch of turn ̄on and turn ̄off waveforms of PMOS
1. 2 PMOS 图腾柱式驱动电路
永磁同步电动机三相全桥上桥臂 PMOS 图腾柱
实现其机电伺服功能的关键. 基于功率场效应晶体
管( MOSFET) 的功率桥驱动已经被广泛用于电机驱
动领域
[1]
.
由 MOSFET 组成的三相功率桥高端驱动是指
开关管一端接电源ꎬ一端接负载ꎬ低端驱动则是开关
目前ꎬ在高端驱动方面存在多种方案:一种是上桥臂

图腾柱电路解析整理

图腾柱电路解析整理

图腾柱电路解析整理再谈图腾柱驱动电路之一、之二、之三汇总(注:根据davida的建议,觉得还是把这个三个帖子综合起来跟方便大家探讨。

)一、驱动电路之一由于本人最近接触才saber,仿真能力有限,本想仿真,但实在是由于有关saber的基础东西还很多不会呢,所以只能请教大家了1、问:(1)在下面电路中,VCC的选择和哪些因素有关系?VCC和后级的mos管的Vgs电压相等吗?(2) NPN、PNP管子的选取的依据?三极管的电流Ic要满足什么样的条件才能驱动后端的mos?在下帖15楼胡庄主曾提到“1)首先要确定的是你需要多少的驱动能力?要驱动的负载(一般可认为是功率管)有多少?以MOSFET为例,驱动其实就是对MOS的门级电容的充放电,这就要考虑你有几个MOS并联,门级电容有多大?MOS的Rg 有多大,加上驱动回路寄生电感等,其实就是一个LRC串联回路。

2)驱动能力用个简化的公式来算就是I=C*Du/Dt,MOS的门级电容先确定,再来考虑你准备要几V的门级电压,然后就是这个电压建立和消除的时间,也就牵涉到MOS的开通关断速度,这会直接影响到功率管的损耗及其它问题,如应力等。

这几个想好了,所要的驱动电流也就出来了。

3)得到这个所要的驱动电流,再考虑上驱动回路的一堆寄生参数等,也就可以推出你图腾柱电路需提供多少驱动电流(注意这是个脉冲电流)。

”针对上边的内容我有些疑问:1、MOS属于单级型电压驱动器件,是栅极电压来控制漏极电流的,如果从表面理解的话,是不是只要保证栅极的电压达到Vgs就可以?和电流没有关系??2、MOS管的门极电容是怎么确定的?是下图这些参数吗?二、驱动电路之二问:1、图中的C18的作用?二极管D是否有必要加?要加的话,起作用?2、R15、R16加与不加?R15、R16在一般电路中,是并接在mos的GS端,起消除Cgs累计电荷的作用,防止mos处于开始处于导通或者状态不明确的情况。

在这里,采用了,脉变驱动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

采用图腾柱方式驱动MOSFET的电路分析
1、原理图
上图为典型的图腾柱输出方式驱动MOSFET的电路。

由于前端I/O口的对外驱动能力(一般为十几或者二十几mA)有限,为了提高对MOSFET的驱动能力,因此采用图腾柱电路。

由于MOSFET是压控型器件,则GS两端电压只要大于4.5V(导通时的阈值电压)时即可导通,为了使MOSFET可靠导通,则一般要求GS两端的电压要大于12V(不同型号的管子该电压不同),因此要求MOSFET的驱动电压幅值至少要大于12V。

此外,由于MOSFET的GS两端存在寄生电容,驱动MOSFET 的过程就是对该电容充放电的过程,充电的快慢反应MOSFET导通或关断的速度,而开关的速度又影响了MOSFET的开关损耗及EMI等内容,同时,充电的快慢又由充电电流的大小决定。

综上所述,要想驱动MOSFET正常导通和关断,则要考虑驱动幅值电压及对GS两端电容充电电流的大小。

因此,下面分别从驱动MOSFET的幅值电压及充电电流(驱动能力)的大小两个方面来分析该电路。

而幅值电压及充电电流与图中的驱动方波的幅值、电源电压V cc、电阻R2及电阻R3等有关。

因此,以下主要通过改变这些参数来验证电路设计的合理性。

2、电路分析
(1)驱动方波幅值为15V、电源电压为10V、电阻R2=0R。

电路如下图所示:
10V
下图为仿真测试波形:流过R3的驱动电流波形
E点驱动电压波形
Q1的ce两端的电压波形R1两端的电压波形最低0V:完全饱和导通
放电波形
充电波形R1两端有5V压降
Q1饱和导通时,
其E极电压为10V
从以上波形可知,在驱动波形为高电平(15V)时,Q1完全饱和导通,其ce间的压降为0V,此时电源电压直接加在点E处,即MOSFET的驱动电压幅值为10V,而不是驱动波形的射极跟随电压14.3V,这样存在的问题是,如果电源电压再小的话,则MOSFET的驱动电压幅值会更低。

同时,在驱动波形刚变为高电平时,流过电阻R3有一个尖峰电流,该电流就是对MOSFET的GS端电容充电的电流波形,由于C gs电容很小,因此充电时间很短,充满后就不存在充电电流,因此该电流波形在很短的时间内为尖峰。

(2)驱动方波幅值为15V、电源电压为15V、电阻R2=0R。

电路如下图所示:
15V
下图为仿真测试波形:
从以上波形可知,在驱动波形为高电平(15V )时,Q1完全饱和导通,其ce 间的压降为0V ,此时电源电压直接加在点E 处,即MOSFET 的驱动电压幅值为15V ,能满足MOSFET 的驱动要求。

(3)驱动方波幅值为15V 、电源电压为18V 、电阻R2=0R 。

电路如下图所示:
流过R3的驱动电流波形
放电波形
充电波形
E 点驱动电压波形
Q1饱和导通时,其E 极电压为15V
Q1的ce 两端的电压波形
最低接近0V :饱和
18V
下图为仿真测试波形:
从以上波形可知,在驱动波形为高电平(15V )时,Q1处于放大区,其ce 间的压降约为3V ,而观察E 点波形发现,其幅值为14.3V ,跟随Q1的b 极驱动波形的幅值。

而ce 间的压降即为电源电压与E 点之间的压差,该压差加在Q1的ce 两端会增加Q1的损耗。

流过R3的驱动电流波形
放电波形
充电波形
E 点驱动电压波形
Q1放大区时,其E 极电压为15V
Q1的ce 两端的电压波形
最低接近3V :工作于放大区
(4)驱动方波幅值为15V 、电源电压为18V 、电阻R2=10K 。

电路如下图所示:
18V
下图为仿真测试波形:
从以上波形可知,在驱动波形为高电平(15V )时,Q1处于饱和状态,其ce 间的压降约为0V ,而点E 的波形为慢速上升的过程,最终充电电压为12V ,
流过R3的驱动电流波形放电波形
充电波形
E 点驱动电压波形
充电时间慢,限制了电压跟随,仅为10V
Q1的ce 两端的电压波形
最低0V :Q1饱和
流过R2的电流波形
R2两端的电压波形
最低8VZ 左右。

相关文档
最新文档