二合一移动电源原理图ETA9635
移动电源三合一方案解析
移动电源三合一方案解析
什幺是移动电源三合一方案?
移动电源三合一方案,是指主控芯片移动电源MCU无需外挂DC-DC芯片和充电管理芯片的移动电源方案,根据是否需要外加基准和运放,又可称为四合一或者五合一移动电源解决方案,芯海科技的移动电源SOC系列芯片,可以达到五合一,但为了通俗起见,我们统一称为移动电源三合一方案。
不同于HT4901,HT4902,CT6301,CT6302等硬件三合一方案,芯海移动电源SOC采用的是同步整流升压模式,效率高,发热低,特别在2A移动电源方案场合具有绝对的优势。
芯海SOC通过使用芯片自带的两路高速PWM(16M)和四路高性能ADC(12bit,死区小于3mV)以及特有的基准源数字校正专利技术,无需外围其他IC,即可实现同步整流三合一移动电源的基本功能,为移动电源客户提供了具备独特竞争力的单芯片解决方案。
芯海科技共有CSU8RP3119/CSU8RF3421/CSU8RF3422/CSU8RF3423全系列四颗芯片,用于移动电源三合一同步整流方案,其中,CSU8RP3422和CSU8RF3423可用于带LCD显示的移动电源三合一方案。
移动电源电路图:。
ETA9635
8 V+ 7 DD+ V-
383K 1% 6.8uH
1M 3
4
ETA9635
6 22uF x2
5
120K
36K
18650 锂电池 10uF
120K 1%
1nF
1-2.2nF
10K
100K
47K
就是这么简单!
ETA9635 PCB注意事项
1. 永远第一优先放置输出电容Cout (22uF x 2),使其距离
IC 输出(Pin5)和GND(Pin6) 越近越好。
2. IC底部散热焊盘覆铜面积越大越好,最好直接接到USB接
口的焊接点,将热量通过USB结构的金属件传递出去
ETA9635 焊接位
Cout Cout
3. 充电指示,请确保充电指示的红色LED的Vf小于充满指示 的绿色LED的Vf
完整、成熟、可量产的移动电源方案公模公板PCB文档提供免费下载!
上海钰泰科技
电源管理能效专家
产品介绍
ETA9635 Power SOC 移动电源应用介绍
上海钰泰提供完整的移动电源单芯片方案
产品特点
技术上领先国内同行 与国际品牌相当的性能 与国际品牌同步的技术 电源管理能效专家! 业界唯一单芯片,无外部MOSFET的移动电源解决方案!
ETA9635 Power SOC 移动电源方案
Power SOC
一颗芯片满足移动电源所有功能 不同于MCU方案,无需外接多个MOSFET 无需锂电保护IC和MOSFET,极大简化移动电源设计 没有DW01方案输出短路锁死问题 系统成本最低的解决方案,而性能优于其他方案
您只需要一颗ETA9635,其他均被动器件
二合一电源原理介绍
第二章LCD二合一电源原理介绍第一节IPL32L电源方案原理介绍主要的功能模块IC1、待机电源IC:FSQ510(Fairchild)2、PFC控制IC:L6563 (ST)3、24V PWM控制IC:FA5571N (FUJI)4、INVERTER高压控制IC:OZ9976(O2)屏的型号:FHD的型号:CAS_LC320WUE-SAA1;lamp:16;EEFL屏典型工作电流112mA,屏单端电压1030V,工作频率45KHz;点灯电压1100V(0℃),点灯时间2到3s。
HD的型号:CAS_LC320WXE-SBA1 ;lamp:12;EEFL屏典型工作电流93mA,屏单端电压1020V,工作频率63KHz;点灯电压1095V(0℃),点灯时间2到3s。
IPL32L电源控制信号IPL32L 电源内部功能模块框图工作时的上电顺序1:插上插头,通电AC220V。
3V3(standby MCU)正常工作。
待机功率约为0.14W。
2:联接器P2中的“P-ON”置高到3V3,那么继电器K1闭合,+24V的控制器IC2(FA5571N)开始工作。
+24V输出。
3:+24启动以后,PFC的控制IC1(L6563)开始工作。
水桶电容器C3、C4上的电压各约197~200V。
4:+24启动后,将联接器P2中的“BL-ON”置高到3V3。
高压INVERTER的控制IC10(OZ9976)开始工作。
但是高压还没有输出。
5:联接器P2中的“DIMP”设置到PWM调光状态。
高压INVERTER的控制IC10(OZ9976)开始工作在调光状态。
系统有高压输出。
能正常点亮屏。
IPL32L电源板故障快速排除流程图:待机电路工作原理(反激式单路稳压):在接通市电后,待机电路首先工作。
提供3.3V直流电压给MCU:经整流后的直流电压通过RB1接到IC3的8脚的内部启动电路,再通过5脚给CB3进行充电,当CB3达到VCC 启动电压阀值,IC3进入工作状态,次极绕组7脚的输出经DB11整流得到3.3V待机电压。
干货暴力拆解小米最新二合一充电宝
干货暴力拆解小米最新二合一充电宝2018年年底,也就是12月10号,小米二合一充电宝问世,它既是移动电源,又是充电器,给内部电池充电的同时还可为手机充电,实为出行必备神器,小米官方报价99元。
相信大家对二合一移动电源的内部构造很是感兴趣,EEWorld社区坛友Littleshrimp就拆解了小米的此款二合一充电宝,让大家一饱眼福。
内部包含2颗18650电芯,总容量为5000mAh,作为移动电源充电时支持5V/2.4A,9V/1.2A,12V/1三种输出,作为充电器时支持5V/3A,9V/2A,12V/1.5A最大输出功率能达到18W。
包装使用和小米其它产品一样的白色包装。
包装正面包装背面拆箱后里边一个电源和一张说明书,看来需要自己配USB充电线了。
拆箱电源正面只有一个电量检查按键看起来很简洁,侧面一侧为双USB口,可同时为2台设备充电,另一侧为市电接口,支持100V-240V 50/60Hz宽电源输入。
正面市电接口和标识USB面板USB面板与主壳体使用胶水粘接,没有螺丝,拆解过程比较暴力。
拆除USB面板过程拆开USB面板后,断开电池保护壳与主壳体的胶水才可以脱下外套。
内部正面内部背面内部侧面取下电池保护壳与PCB上的螺丝后可以看到完整的PCB背面,PCB背面主要用于放置开关电源部分的器件,包括一个高频变压器、2个USB口和几颗电容电感等器件,加上背面的几个IC就能在26mm*60mm*20mm的尺寸内能够实现18W的功率输出。
去掉电池螺丝后的背面去掉电池螺丝后的正面电路上最醒目的要属这颗INN2215K芯片,看标识应该是PI家族的一款电源芯片。
查询数据手册得知,INN2215K是一款集成了650 V MOSFET、同步整流、反馈和恒功率特性的适合USB-PD和 QC 3.0应用的离线式反激恒压/恒流开关IC,输出功率最大可达20W。
INN2215K数据手册从资料可以了解到INN2215K是PI家族的InnoSwitch™-CP系列IC,使用了磁隔离技术,非常适合小体积高功率密度的应用。
yl3022移动电源二合一方案芯片
LED2 熄灭 闪烁 长亮 长亮 长亮
LED3 熄灭 熄灭
闪烁 长亮 长亮
LED4 熄灭 熄灭
熄灭 闪烁 长亮
2、放电显示状态表
电池电量
LED1
75~100%
长亮
50~75% 25~50%
长亮 长亮
5~50%
长亮
0~5%
熄灭
LED2 长亮 长亮 长亮 熄灭 熄灭
LED3 长亮 长亮 熄灭 熄灭 熄灭
C2
L1 4.7uH
1
5 D2 D2 6
4
G2
R6 100K
U2B 9926A
3 S2
R9
10R
U1 YL3022
C4
1
VDD
GND
14
106
6
PWM_N BATV
13
5
PWM_P LAMP
10
12
CH_EN
COM
11
2
VIN
LED2
9
4
AUTO_ON LED1
8
3
5V_EN
I_SET
7
1 S1
10k R4 R12 0.056R
l
l
l
l
内置电池充电管理功能,涓流充电,恒流,恒 压充电,预设为4.2V充电电压,可设4.35V电 压版本
充电电流:1.0A -1.8A可调 放电输出电流:外驱MOS管,升压最大可输 出2.1A 输出电压: 5.0-5.2V 1A最高达 92%的放电效率 放电时当电池电压低于 3.2 V,LED1 以1HZ 频率闪烁提示,电压低于3.0V 后关闭 负载自动检测,负载接入时自动唤醒,当负
2 D1 G1 6 2 D1 G1 6 5 D2 G2 4 5 D2 G2 4
简单的充电宝电路图分析
简单的充电宝电路图分析
充电宝的输入USB端口一般接5V充电电压,输出USB端口输出5V电压给手机充电,下面我们来看一个简单的充电宝电路图。
FM6316FE构成的充电宝电路。
上图中的FM6316FE是一款新型充电宝专用IC,内部集成有锂电池充电电路、DC-DC升压电路及负载检测电路,并且带有充放电指示灯驱动电路。
该IC的充电电流可由外接电阻设置,最大为1A。
SOP-8封装的FM6316FE。
图1电路只是为了说明充电宝的工作过程,FM6316FE外围元件未完全画出,引脚功能亦未标出。
充电时,充电器输出的5V电压加至FM6316FE的电源端④脚,经内部充电电路处理后给充电宝内部的锂电池充电。
当充电宝给手机充电时,FM6316FE内部电路检测到有负载,使内部的DC-DC升压电路工作,将3.7V的锂电池电压升高至5V 给手机充电。
由于该IC在输入端接有5V充电电压时,会自动关闭内部的DC-DC升压电路,使输出无电压,故对于这类IC设计的充电宝,即使用充电线将输出端与输入端连接,也不会自己给自己充电。
矽力杰移动电源二合一芯片AN_SY6926_Fortuntech_Peter
Application Notes: AN_SY69265VIN, 5A, Bi-directional Regulator for Single Cell Li-Ion Battery Power Bank ApplicationGeneral DescriptionSY6926 is a 4.1-6.5VIN up to 18VIN surge bidirectional regulator designed for single cell Li-Ion battery power bank application. Advanced bidirectional energy flow control with automatic input power source detection is adopted to achieve battery charging mode and battery power supply mode alternately. If the external power supply is present, SY6926 runs in battery charging mode with fully protection function; if the external power supply is absent, SY6926 runs in battery power supply mode with output current capability up to 2.5A. SY6926 has an integrated reverse blocking switch to prevent current leaking from the system side or battery side to the input side and an integrated linear switch to achieve over voltage/current protection at the system side. A half bridge with 1MHz switching frequency is integrated to achieve power conversion for battery charging mode and battery power supply mode. All of them adopt N-channel MOSFETs with 18V rating and extremely low RDS(ON) to optimize operation efficiency and extend battery life-time. SY6926 is available in QFN4x4 package to minimize the PCB layout size for wide portable applications.FeaturesLow Profile Package QFN4x4 for Portable Applications Integrated N-Channel MOSFETs with 18V Voltage Rating and Extremely Low RDSON 1MHz Switching Frequency to Minimize Peripheral Circuit Design Trickle Current / Constant Current / Constant Voltage Charging Mode Maximum 5A Battery Charging Current Maximum 2.5A Sys current in Battery power supplement mode Automatic Input Power Source Detection Programmable SYS Voltage for Battery Power Supply Mode Programmable Constant Current Charging Programmable Over Current Limit for SYS load in Battery power supplement mode Programmable Battery Charging Timeout Programmable Input Current DPM Programmable Input Voltage DPM Charging shutdown control Charging mode CV tolerance +/-0.5% Charging mode CV voltage selectable between 4.2V&4.35V Host Enable Control for Standby Mode Over Temperature Protection Charge Status IndicationOrdering Number SY6926QYC.C onTemperature Code Package Code Optional Spec Code Package type QFN4x4-20FC NotefidSY6926 □(□□)□enOrdering Informationtia l-P re pSiler gyAN_SY6926 Rev0.1Co rpSilergy Corp. Confidential- Prepared for Internal Use Onlyar edApplicationsSingle cell Li-Ion Power Bank Battery power path managementforFortu ntec h1AN_SY6926Typical ApplicationsCo rp.C onfidenSiler gyAN_SY6926 Rev0.1Silergy Corp. Confidential- Prepared for Internal Use Onlytia l-P re pFigure 1. Schematic Diagramar edforFortu n2tec hAN_SY6926Pinout (Top view)Top Mark: AXVxyz (device code: AXV, x=year code, y=week code, z= lot number code)Siler gyAN_SY6926 Rev0.1Co rp.C onfidSilergy Corp. Confidential- Prepared for Internal Use Onlyentia l-P re p(QFN4x4-20FC)ar edforFortu n3tec hAN_SY6926Name SIN IN SYS BUS PGND LX BST EN1 EN2 PIN Number 1 2 3 4 5 6 7 8 9 Description Signal Input supply pin. Positive power supply input pin. VIN ranges from 4.1V to 6.5V for normal operation and up to 18V surge. Connect a MLCC from this pin to ground to decouple high frequency noise. System load pin. Connect a MLCC from this pin to ground to decouple the high frequency noise. Connection point for reverse blocking FET and bypass linear switch. Connect a MLCC from this pin to ground to decouple the high frequency noise . Power ground pin. Switch node pin. Connect an external inductor from this pin to BAT pin. Boot strap pin. Connect a MLCC from this pin to LX. Enable control pin for linear FET. Pull down EN1 to shutdown linear FET. Enable control pin for linear FET and sync-boost converter both. If the external power source is present, the function of EN2 is disabled all. If the external power source is absent, pull down EN2 to shutdown linear FET and sync-boost converter both to save the leakage power from battery. Charging status indication pin. It is open drain output pin and can be used to turn on a LED to indicate the charge in process. When the charge is done, LED is off. Input DPM voltage program pin. The regulated input voltage equals to 1.19*(1+RDPM1/RDPM2) Input current limit program pin. Constant input current reference is programmed by a resistor connected from this pin to ground. Charging time limit pin. Connect this pin with a capacitor to ground. Internal current source charge the capacitor to set the charging time limit both for the Trickle Current mode, CV mode and Constant Current mode. Trickle current charging time limit is about 1/9 of Constant current and CV charging time. Thermal protection pin. UTP threshold is about 61.6%VBUS and OTP threshold is about 30%VBUS. Pulling it down lower than 0.3V to disable charger. Battery charging current program pin. Constant current charging reference is programmed by a resistor connected from this pin to ground. The trickle charging current would be 1/10 of the constant charging current. System over current limit program pin. Connect a resistor from ISYS pin to ground to program the over current limit for system load. It has the max internal default limit. Charge voltage selection pin. Open or pull low for 4.2V. Pull high for 4.35V SYS voltage feedback pin. Program the external resistor divider to program the bus voltage. Vsys=1.19*(1+RFB1/RFB2).The maximum sys Voltage set is 6V. Battery positive pin. Also connect to inductor terminal. Signal ground pin.IIN12TIM13NTC ICHG14 15ISYS CV FBBAT SGNDCo rpSiler gyAN_SY6926 Rev0.1.C on16171819 20fidSilergy Corp. Confidential- Prepared for Internal Use Onlyentia l-P re par edVDPM11foSTAT10rFortu ntec h4AN_SY6926Absolute Maximum Ratings (Note 1)STAT, LX, BUS, FB, BAT, NTC, SYS, EN1, EN2, ---------------------------------------------------------------- -0.5- 18V IN, SIN, --------------------------------------------------------------------------------------------------------------------- -0.5- 18V ICHG, ISYS,IIN, VDPM, CV, ----------------------------------------------------------------------------------------- -0.5-18V TIM,BST-LX, ---------------------------------------------------------------------------------------------------------------- -0.5-4V Power Dissipation, PD @ TA = 25°C, ------------------------------------------------------------------------------------ 2.5 W Package Thermal Resistance (Note 2) θ JA-------------------------------------------------------------------------------------------------------------- 40 °C/W θ JC ------------------------------------------------------------------------------------------------------------- 20 °C/W Junction Temperature Range --------------------------------------------------------------------------------- -40°C to +150°C Lead Temperature (Soldering, 10 sec.) ---------------------------------------------------------------------------------- 260°C Storage Temperature Range ------------------------------------------------------------------------------------ -65°C to 125°CSiler gyAN_SY6926 Rev0.1Co rp.C onfidSilergy Corp. Confidential- Prepared for Internal Use Onlyentia l-P re par edSTAT, LX, BUS, FB, BAT, NTC, SYS, EN1, EN2, -------------------------------------------------------------------- 0-16V IN, SIN, ------------------------------------------------------------------------------------------------------------------------ 4-6.5V ICHG, ISYS, IIN, VDPM , CV, -------------------------------------------------------------------------------------------- 0-16V TIM,BST-LX, ----------------------------------------------------------------------------------------------------------------- 0-4V Junction Temperature Range ---------------------------------------------------------------------------------- -20°C to 100°C Ambient Temperature Range ----------------------------------------------------------------------------------- -40°C to 85°CforForRecommended Operating Conditions (Note 3)tu ntec h5AN_SY6926Electrical CharacteristicsTA=25°C, TA=TJ, VIN=5V, GND=0V, CIN=20uF, LB=0.68uH, CTIM=330nF, COUT=20uF, CBUS=20uF, CSYS=10uF, RFB1=43k, RFB2=13k, RDM1=27k, RDM2=10k, RISYS=50k, unless otherwise specified. Symbol Parameter Quiescent Current IBAT Battery discharge current IIN Input quiescent current Conditions EN1 and EN2 pull down, FB pull high to BUS , NTC=0V. VBAT=4.35V,ISYS=0A, RNOR=100k, Remove RFB1 , Remove EN1 、 EN2 pull down resistor.Converter switching. VIN=5V Rising edge Falling edge Min Typ Max 10 1.5 Unit uA mAIBOOSTBoost null-load quiescent currenttec h1.5 3.9 10 100 4.1 100 5 0.7 1700 2.5 5.6 -20% 4.3 5.8 500 2.0 2.3 2.6 6.0 20% 162 4.5 6.7 7 500 0.5 4.5 30 30 30 1.0 6.5 7.4 0.425 3.825 0.575 5.175 4.328 4.179 50 4.35 4.2 100 4.372 4.221 150mAAutomatic Input Power Supply Detection IDIS Input discharge current TDIS Input discharge time interval VINUVLO Input voltage UVLO threshold VUVHYS Input voltage UVLO hysteresis System Short Circuit Protection TREC Recovery time interval TRECP Recovery period IRECP Recovery current peak Linear FET ISYSMAX Maximum system load current VSYSMAX Maximum system voltage System current limit accuracy Charging Current for SYS voltage ISYSUP ramp up System short circuit protection VSHORTSYS threshold Half-bridge in Charge Mode Voltage and Current Bias VBUSBAT Charging mode voltage threshold VBUS Supply voltage for battery charging VINOVP Input voltage over voltage protection VINOVPHYS Input voltage OVP hysteresis Timer TTC Trickle current charge timeout Constant current and CV charge TCC timeout TMC Charge mode change delay time TTERM Termination delay time TRCHG Recharge time delay Switching Frequency fSWBK Buck Switching frequency Battery Chargingortu nar edfomA ms V mV ms s mA A V mA V.C onfidentia l-P re pRISYS=72k, boost modeVBUS=5V, VSYS<90%VBUSVBUS-VBAT ,rising edge Rising edge Falling edge CTIM=330nFrFCo rpmV V V mV hour hour ms ms ms MHz V V mVSiler gyBattery 4.35V CV charging mode VCV Battery 4.2V CV charging mode ∆VRCH Battery voltage threshold hysteresis0°C <=TA<=70°C, voltage on BAT pin 0°C <=TA<=70°C, voltage on BAT pin 0°C<=TA<=70°C,fallingAN_SY6926 Rev0.1Silergy Corp. Confidential- Prepared for Internal Use Only6AN_SY6926for recharge Battery trickle charging mode voltage VTRK threshold ICCMAX Maximum constant charge current VBTOVP Battery voltage OVP threshold Charging current accuracy for ICC Constant Current Mode Charging current accuracy for Trickle ITC Current Mode Charging current accuracy for ITERM Termination Current Battery Short Circuit Protection Battery short circuit protection VSHORTBT threshold fFBK Frequency fold back edge 0°C<=TA<=70°C,rising edge 2.6 5 105% ICC=(1V/RICHG)*16k -20% 10% 2.8 110% 3.0 115% 20% Icc Icc V A VCVtu nFalling edge VBAT<2Vtec h1.8510%2.1V fOSCCo rpEnable VENH Enable voltage rising threshold VENL Enable voltage falling threshold Half-bridge in Boost Mode Voltage and Current Bias VSYSREF Feedback reference of SYS voltage VBUSCLP BUS voltage clamping VBATDIS Battery discharging clamping Battery discharging maximum IDSBAT current limit VBOVP Bus voltage over voltage protection VBOVPHYS Bus voltage OVP hysteresis Switching Frequency fSWBST Boost Switching frequency Other General Parameters Battery Thermal Protection NTCar edVIN_LIMInput voltage limit accuracyVIN_LIM=1.19*(1+ RDPM1/RDPM2)foInput Dynamic Power Management Input current accuracy for Constant IIN_LIM Input Current ModeRIN=2KrFor-10 -1.512.5 % 10 1.5% %tia l-P re p1.4 0.4V Ven1.166 5.6 2.5 6.51.19 5.8 2.621.214 6 2.75V V V Afid.C onFalling edge9.5 400 1.0V mV MHzUnder temperature protectionRising edge Falling edge Falling edge Rising edge Falling edge60 % 5% 28% 1.5%UTP61.6 % 7% 30% 2.2%63.5 % 9% 32% 3%0.3 VUnder temperature protection hysteresis Over temperature protection OTP Over temperature protection hysteresis VSHUTDOWN Pull NTC low to shutdown charger Power MOSFET RHSFT RDS(ON) of High-Side NFET RBKFT RDS(ON) of reverse blocking NFET RLSFT RDS(ON) of Low-Side NFET RLNFT RDS(ON) of the linear NFET ILM Half Bridge FET current limitSiler gy20 20 30 30 8.0mΩ mΩ mΩ mΩ AAN_SY6926 Rev0.1Silergy Corp. Confidential- Prepared for Internal Use Only7AN_SY6926Note 1: Stresses beyond the “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Note 2: θ JA is measured in the natural convection at TA = 25°C on a low effective four-layer thermal conductivity test board of JEDEC 51-3 thermal measurement standard. Note 3: The device is not guaranteed to function outside its operating conditionsSiler gyAN_SY6926 Rev0.1Co rp.C onfidSilergy Corp. Confidential- Prepared for Internal Use Onlyentia l-P re par edforFortu n8tec hAN_SY6926Typical Performance Characteristics(TA=25°C, VIN=5V , unless otherwise specified.)Efficiency vs. Charging Voltage (CC mode)99.0 97.5 VIN=5V, Ichg=2.5A VIN=5V, Ichg=5.0AEfficiency (%)Efficiency (%)96.0 94.5 93.0 91.5 90.0 88.5 3rF3.2or3.4tu n3.6 3.8 4 4.2 4.4VBAT (V)fo tia l-P re pRDS(ON) (mΩ)LNFET RDS(ON) vs. Tempenfidar ed40 35 30 25 20 15 10 5 0 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120Siler gyAN_SY6926 Rev0.1Co rp.C onTemp (°C)Silergy Corp. Confidential- Prepared for Internal Use Onlytec h9AN_SY6926forFor ar ed tia l-P re p .C on fid en Co rp Sil er gyAN_SY6926 Rev0.1Boost mode EN2 OFFtu nEN2 2V/div BUS 2V/div SYS ISYS 2V/div 0.5A/divTime (10ms/div)SYS ShortISYSTime (200ms/div)Silergy Corp. Confidential- Prepared for Internal Use Onlytec h1A/div10AN_SY6926Siler gyAN_SY6926 Rev0.1Co rp.C onfidSilergy Corp. Confidential- Prepared for Internal Use Onlyentia l-P re par edforFortu n11tec hAN_SY6926General Function DescriptionAutomatic Input Power Supply Detection Automatic input power supply detection in SY6926 adopts an internal current source with 10mA maximum capability to discharge the SIN pins for 100ms once VSIN exceeds input UVLO threshold. If the external power supply is present normally, VSIN should keep being higher than the input voltage UVLO even after 100ms discharging. Programmable Input Current Dynamic Power Management The input current limit is programmable by Rin. Once input current reaches Iin_lim, the input current will be limited in Iin_lim by regulating the duty of Buck convertor. Programmable Input Voltage Dynamic Power Management The input voltage limit is programmable by RDM1,RDM2. Once input voltage drops to VIN_lim, the input voltage will be limited in VIN_lim by regulating the duty of Buck convertor. SYS Over Current Limit Protection Description During the half-bridge operating as synchronous boost mode, SY6926 has BUS over voltage protection, SYS short circuit protection, BAT over discharging protection, and thermal protection for the Li-Ion battery and the device itself both. Thermal Protection-Thermal protection for battery is achieved through NTC pin in charging and discharging mode. The basic scheme is shown in application information. Thermal shutdown is active for the device itself. IC recovers to normal work when the temperature returns into normal range again. Charging timer stops and maintains the result without reset. Short Circuit Protection- There are BAT short circuit protection and SYS short circuit protection in SY6926. When VSYS is lower than VSHORTSYS, the linear FET modulates the current to be saw tooth shape from 0A to 1.7A for short circuit protection recovery. SY6926 tries recovery for 5ms per 0.7s.In charging mode once VBAT is lower than VSHORTBT, the switching frequency is fold back to 12.5% of the default value. Over Voltage Protection- When VBUS or VBAT is higher than the over voltage protection threshold, the half bridge stops boost operation or buck operation immediately. It recovers to normal work when the monitored voltage backs to normal level. Input voltage has UVLO and OVP, which would make the device shutdown and recover to normal work when the VSIN backs to normal range. Battery Over discharge protection IN battery supplement mode, once battery voltage is lower than VBATDIS , SY6926 will latch off. Only repower IC, or Bus higher than Bat can reset the latch off logic. Timeout ProtectionProgrammable timeout protection for the Trickle Current Charge Mode and the Constant Current and CV Charge Mode both. Once timeout is active, the device stops the charge operation and latch-off. Only re-plug in power source can reset the latch logic and restart the normal charging work.In boost mode, once SYS current exceeds the set SYS current limit the SYS current is limited in the set SYS current limit by regulating the duty of Boost converter . Charging mode Enable controlCharging Status Indication Description Charging-In-Process – Pull and keep STAT pin to Low; 2. Charging Done – Pull and keep STAT pin to High; 3. Fault Mode – Output high and low voltage alternatively with 0.7Hz frequency, fault mode includes VIN OVP, BAT OVP, BAT SCP, BAT UTP/OTP, charging time out. Connect a LED from IN to STAT pin, LED ON indicates Charging-in-Process, LED OFF indicates Charging Done, LED Flash indicates Fault Mode. 1.Siler gyAN_SY6926 Rev0.1Co rp.C onfidOnce NTC is lower than 0.3V, Charging is disabled and is not recognized as a fault.Silergy Corp. Confidential- Prepared for Internal Use Onlyentia l-P re par edforFortu ntec h12AN_SY6926Applications InformationBecause of the high integration of SY6926, the application circuit based on this regulator IC is rather simple. Only input capacitor CIN, bus capacitor CBUS, battery capacitor CBAT, inductor L, NTC resistors R1, R2, charging current program resistor RICHG, System over current limit program resistor RISYS , SYS voltage program resistor RFB1, RFB2, VIN DPM program resistor RDM1, RDM2, Input current limit program resistor RIN, Battery over discharging voltage program resistor RDIS1, RDIS2, and timer capacitor CTIM need to be selected for the targeted applications specifications.NTC resistor:R1 = 2.3(R2 + ROT )Charging current program resistor RICHGThe charging current program resistor RICHG is calculated as below:R ICHG = (1 / ICC ) × 16 ,Unit: KohmWhile the ICC is the constant charge current,unit is ampere.System over current limit program resistor RISYStia l-P re pSY6926 monitors battery temperature by measuring the BUS voltage and NTC voltage. The controller triggers the UTP or OTP when the rate K (K= VNTC/VBUS) reaches the threshold of UTP (KUT) or OTP (KOT). The temperature sensing network is showed as below. Choose R1 and R2 to program the proper UTP and OTP points.R ISYS = 72 / Isys ,While the ISYS Unit is ampere.ar edSYS voltage program resistor RFB1, RFB2SYS voltage is programmed as below:VSYS = 1.19 × (1 +forForThe system over current limit program resistor RISYS is calculated as below: Unit: Kohm is the limited SYSTEM load current,tu ntec hR FB1 ) R FB2Unit: VInput current limit program resistor RINInput current limit is programmed as below:enRin =2 IIN _ limUnit: KohmfidWhile Iin_lim, Unit is ampere.VIN DPM program resistor RDM1, RDM2Co rpThe calculation steps of figure a are: 1. Define KUT, KUT =60.1~63.1% 2. Define KOT, KOT =28~32% 3. Assume the resistance of the battery NTC thermistor is RUT at UTP threshold and ROT at OTP threshold. 4. Calculate R2.C onInput voltage limit is programmed as below:VIN _ lim = 1.19 × (1 +Timer capacitor CTIMR DM1 ) R DM2Unit: VSiler gyR2 =KOT(1 − KUT)RUT − KUT(1 − KOT)ROT KUT - KOTThe charger also provides a programmable charging timer. The charging time is programmed by the capacitor connected between the TIM pin and GND. The capacitance is given by the formula:5.Calculate R1R1 = (1/K OT − 1)(R2 + ROT)CTIM=2*10-11TCCUnit: FIf choose the typical values KUT =61.6% and KOT=30%, thenTCC is the target constant charging time, unit is second. Input capacitor CIN:R2 = 0.365RUT − 1.365ROTInput capacitor reduces the surge current drawn from the input and the switching noise from the device. The input capacitor impedance at the switching frequency should be less than the input sourceAN_SY6926 Rev0.1Silergy Corp. Confidential- Prepared for Internal Use Only13AN_SY6926impedance to prevent high-frequency-switching current from passing to the input. To minimize the potential noise problem, place a typical X7R or better grade ceramic capacitor really close to the IN and GND pins. Care should be taken to minimize the loop area formed by CIN, and IN/GND pins. At least 20uF ceramic capacitor are suggested. Bus capacitor CBUS: 1. Buck mode The capacitor acts as the input capacitor of the buck converter. The input current ripple rms value is larger than: Inductor selection trades off between cost, size, and efficiency. A lower inductance value corresponds with smaller size, but results in higher ripple currents, higher magnetic hysteretic losses, and higher output capacitances. However, a higher inductance value benefits from lower ripple current and smaller output filter capacitors, but results in higher inductor DC resistance (DCR) loss. An inductor must not saturate under the worst-case condition. 1.Buck mode 1) Choose the inductance to provide the desired ripple current. It is suggested to choose the ripple current to be about 40% of the average input current. The inductance is calculated as:ICBUS_RMS =tia l-P re p∆I 2 3While ∆I is the current ripple of inductor. At least 20uF ceramic capacitor are suggested.ar edWhile ICHG is the charge current. 2. Boost mode CBUS is the output capacitor of boost converter. CBUS reduces the bus voltage ripple and ensures the stability of boost. The output current ripple rms value is :Where FSW is the switching frequency and ICHG,MAX is the maximum charge current. SY6926 is quite tolerant of different ripple current amplitude. Consequently, the final choice of inductance can be slightly off the calculation value without significantly impacting the performance. 2) The saturation current rating of the inductor must be selected to be greater than the peak inductor current under full load conditions.foL=rFICIN_MIN = ICHG D (1 − D )L=VBAT(1 − VBAT/VIN, MAX) FSW × ICHG, MAX × 40%orCo rpBattery capacitor CBAT: 1. Buck mode Battery capacitor acts as the output capacitor of Buck converter. CBAT is selected to handle the output ripple noise requirements. Both steady state ripple and transient requirements must be taken into consideration when selecting this capacitor. For the best performance, it is recommended to use X7R or better grade ceramic capacitor. The output voltage ripple is calculated as below:fidenISAT, MIN > ICHG, MAX +VRipple_BAT _Buck =er gy(1 − D) × VBAT 2 8C BAT FSW L3) The DCR of the inductor and the core loss at the switching frequency must be low enough to achieve the desired efficiency requirement. 2. Boost mode 1) Choose the inductance to provide the desired ripple current. It is suggested to choose the ripple current to be about 40% of the average input current. The inductance is calculated as:.C onSilWhere FSW is the switching frequency. 2. Boost mode CBAT acts as the input capacitor of Boost converter. The input voltage ripple is calculated as below:VBAT(1 − VBAT/VBUS_MAX) FSW × IDIS, MAX × 40%VRipple_BAT _Boost =D × VBAT 2 8C BAT FSW LWhere FSW is the switching frequency and IDIS,MAX is the maximum discharge current. SY6926 is quite tolerant of different ripple current amplitude. Consequently, the final choice of inductance can be slightly off the calculation value without significantly impacting the performance. 2) The saturation current rating of the inductor must be selected to be greater than the peak inductor current under full load conditions.Where FSW is the switching frequency. At least 20uF ceramic capacitor are suggested. Inductor L:AN_SY6926 Rev0.1Silergy Corp. Confidential- Prepared for Internal Use Onlytu ntec hVBAT(1 − VBAT/VIN MAX) 2 × FSW × L14AN_SY6926ISAT, MIN > IDIS, MAX +3)VBAT(1 − VBAT/VBUS_MAX) 2 × FSW × L2) CIN must be close to Pins IN and GND, CBUS must get close to Pins BUS and GND. The loop area formed by CIN and GND, CBUS and GND must be minimized. Following figure is the recommended layout design.Siler gyAN_SY6926 Rev0.1Co rp.C onfidSilergy Corp. Confidential- Prepared for Internal Use Onlyentia l-P re par ed1) It is desirable to maximize the PCB copper area connecting to GND pin to achieve the best thermal and noise performance. If the board space allowed, a ground plane is highly desirable.4) The capacitor CTIM and the trace connecting to the TIM pin must not be adjacent to the LX net on the PCB layout to avoid the noise problem. It should be better to ground CTIM to the output capacitor’s ground. 5) In high current applications, a RC snubber circuit should be placed between LX and GND for better EMI.forFLayout Design: The layout design of SY6926 regulator is relatively simple. For the best efficiency and minimum noise problems, we should place the following components close to the IC: CIN, CBUS,L.or3) The PCB copper area associated with LX pin must be minimized to avoid the potential noise problem.tu ntec h15The DCR of the inductor and the core loss at the switching frequency must be low enough to achieve the desired efficiency requirement. Icc(A) L(uH) 2 1 5 0.68AN_SY6926 QFN4x4-20 Package Outline DrawingSiler gyCo rp.C onfidenNotes:All dimension in MM and exclude mold flash & metal burrAN_SY6926 Rev0.1Silergy Corp. Confidential- Prepared for Internal Use Onlytia l-P re pBottom Viewar edTop ViewSide ViewforFortu n16tec h。
电动车充电器电源原理图与解析之欧阳育创编
常用电动车充电器根据电路结构可大致分为两种。
第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。
其电原理图和元件参数见(图表1)220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。
U1 为TL3842脉宽调制集成电路。
其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。
2脚为电压反馈,可以调节充电器的输出电压。
4脚外接振荡电阻R1,和振荡电容C1。
T1为高频脉冲变压器,其作用有三个。
第一是把高压脉冲将压为低压脉冲。
第二是起到隔离高压的作用,以防触电。
第三是为uc3842提供工作电源。
D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V稳压二极管, U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。
调整w2(微调电阻)可以细调充电器的电通电开始时,C11上有300v左右电压。
此电压一路经T1加载到Q1。
第二路经R5,C8,C3, 达到U1的第7脚。
强迫U1启动。
U1的6脚输出方波脉冲,Q1工作,电流经R25到地。
同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。
T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。
此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。
第二路经R14,D5,C9, 为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。
D9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚。
正常充电时,R27上端有0.15-0.18V左右电压,此电压经R17加到LM358第三脚,从1脚送出高电压。
此电压一路经R18,强迫Q2导通,D6(红灯)点亮,第二路注入LM358的6脚,7脚输出低电压,迫使Q3关断,D10(绿灯)熄灭,充电器进入恒流充电阶段。
移动电源设计讲解
---------------------------------------------------------------最新资料推荐------------------------------------------------------移动电源设计讲解移动电源的讲解这段时间,关于移动电源的虚标以及各种安全问题,已经引起了消费者的强烈关注,作为设计师怎样才能设计出好的移动电源,而作为消费者我们又应该如何选择移动电源,请关注我们这篇关于移动电源的文章。
智能手机配置越来越高,耗电也越来越凶,像 iPhone 等部分手机电池更是不可更换,遇到缺电的情况下只有通过移动电源(也称作充电宝或外置电池等)来救急,因此造就了目前手机移动电源市场销售的火爆。
很多消费者在选择移动电源时,注意力只放在外观、容量以及价格上,往往很难了解到移动电源内部的状况,今天我们给大家介绍一下移动电源,首先从电源的电芯开始。
移动电源的内部构造首先简单了解一下移动电源的构成: 1、外壳,主要是产品封装,以及实现造型美观、保护等作用,常见为塑胶和金属,一些较好的产品往往塑胶也是采用了防火材料; 2、电芯,也就是我们常见的电池,是移动电源的电量储存仓库; 3、电路板,主要用于实现电压、电流控制、输入和输出控制,以及实现其它各种功能。
电芯是移动电源中成本最高的组成部分,最常见的一种是 18650 电芯,另一种是聚合物电芯,这两种电芯统治了锂电池行业内绝大份额的市场。
1/ 3618650 电芯---------------------------------------------------------------最新资料推荐------------------------------------------------------ 18650 锂离子电池 18650 是行内叫法,指电池直径为 18mm,长度为65mm,圆柱体型的电池,像国际大厂三洋,松下,三星、索尼等都有这块业务,而国内也有不少厂家在生产和销售 18650 电芯,市场上见到的移动电源,大多数采用 18650 电芯,而为了拼成本,基本都用的是国内产的产品,甚少有采用进口大厂的 18650 电芯。
(A8826)2A进3A出同步二合一芯片(输出限流功能)
ICHG
K ISET RISET RSNS
理论上升压输出端的电容越大越好,但是考虑到整体 PCBA 成本,建议输出端加 2 个 22uF 的贴片电容。如 果成本要求更低,建议升压输出电容做到 20uF。 11、升压限流 ASC8826 通过 ILIM 管脚外接电阻进行升压限流设置。 ILIM 外接电阻越大则 VILIM 越高,则升压限流值越大。 ASC8826 的限流原理是当 RSNS 上的电流超过设定值 时,关掉 Q1(图 1 所示),所以实际上是通过限制电池输 出电流达到限制升压输出电流的目的。因此,设定电流
______
I/O O O O I I O I O O O O I I I O O NMOS 管驱动管脚
描述
漏极输出,外接红色 LED 灯,正常充电下拉,指示充电状态 内部供电电源,外接 1uF 电容稳压 地 升压输出反馈端 外接电阻到地设置升压输出限流 升压使能管脚,无 5V 电源输入且该管脚为高则升压使能 与地之间外接电阻,设置恒流充电电流 充饱电压微调管脚 充电环路补偿管脚,外接 470nF 电容到地 升压环路补偿管脚,通过 10K 电阻串联 4.7nF 电容到地 电流检测正端输入. 在 SNS 与 BAT 管个脚之间连接检流电阻 RSNS 电池输入端 模拟电源输入 5V 升压输出端口 PMOS 管驱动管脚
V1.1 AUG.2014
2
ASC8826
ASC8826-移动电源升压、充电二合一芯片
电学参数
参数 充电管理电学参数,VIN=5V, TA=25℃. 输入电压范围 静态电流 电池反灌电流(升压不工作) 充饱电压 恒流充电 恒流充电电流范围 恒流充电设置电压 恒流充电电流设定比例 预充电电流、充饱电流 预充电电池电压阈值 预充电电流/恒流充电电流 电池充饱转灯电流 PWM 振荡器频率 电池保护 输出短路检测电压 VSHORT 2 V fOSC 500 550 600 KHz VLOWV KPRE ITERM 3 1/5 100 mA V ICC VISET KISET
电动车充电器原理及带电路图维修之欧阳家百创编
常用电动车充电器根据电路结构可大致分为两种。
第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。
其电原理图和元件参数见图表1)欧阳家百(2021.03.07)图表 1 220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。
U1 为TL3842脉宽调制集成电路。
其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。
2脚为电压反馈,可以调节充电器的输出电压。
4脚外接振荡电阻R1,和振荡电容C1。
T1为高频脉冲变压器,其作用有三个。
第一是把高压脉冲将压为低压脉冲。
第二是起到隔离高压的作用,以防触电。
第三是为uc3842提供工作电源。
D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。
调整w2(微调电阻)可以细调充电器的电压。
D10是电源指示灯。
D6为充电指示灯。
R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)。
通电开始时,C11上有300v左右电压。
此电压一路经T1加载到Q1。
第二路经R5,C8,C3, 达到U1的第7脚。
强迫U1启动。
U1的6脚输出方波脉冲,Q1工作,电流经R25到地。
同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。
T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。
此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。
第二路经R14,D5,C9, 为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。
D9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚。
二合一移动电源专用IC芯片
应用说明
温充电模式
CH8813 内部集成了温度反馈环路,充电时,如果芯片内 部的温度升高到 120℃,充电电流会随着芯片的温度升高 而降低,从而减小系统功耗,降低温升,当温度升高到 140℃时,充电电流减小为零,由于温度反馈控制, IC 工作温度最终会稳定在 120℃~140℃之间的某个值。该 功能允许用户提高给定电路板功率处理能力的上限而没 有损坏 IC 的风险。在保证充电器将在最坏情况条件下自 动减小电流的前提下,可根据典型(而不是最坏情况) 环境温度来设定充电电流。
PCB 设计参考
1、5V 输出端的 USB 外壳不能接 GND,需浮空; 2、整个 PCB 建议敷铜散热,散热面积尽量大; 3、BAT 电容靠近 IC,BAT+和 BAT-需先经过 BAT 电容 再到 IC,各 GND 走线要尽量粗,空余的地方全部走 GND; 4、电容 C3 到电感 L1 再到 SW 的路径走线要尽量短且 线要粗; 5、电感 L1,SS34 与电容形成的环路走线要短,环面积 要小; 6、大电流通路,如 BAT+、L1 到 SW 引脚的通路,BAT+、 L1、D1 、负载到 OUTN 引脚的通路路径短且粗,尽量不 要过过孔; 7、芯片底部散热焊盘同时也是芯片的 GND,需与 PCB 有良好焊接。
VBAT=3.7V ILOAD=1A 温度上升 ILED=5mA
4.8
10 5.2
升压电路工作频率 FOSC 注 2 :预设电池充电电压有 4.2V 和 4.35V 两种规格
Ver1.1
Nanjing chiphighlights Electronics
4
CH8813 南京芯亮点电子有限公司充放电双灯指示小体积移动电源解决方案
应用
三合一移动电源电路图
注解:
D
Q1 2301
R1 100K C1 106 R8 2 20R C2 106
C3 4 7 0uf
C
三合一是现在移动电源的流行趋向,它 不但成本低(BOM成本低于2块钱)而且效率 高(1A放电时效率>93%)。 三合一只是硬件的组合形式,而它的功 能与性能,稳定性等,完全取决于软件,软件 的质量取决于工程师的经验与水平。所以同样 大家都是一个硬件电路,质量却存在很大的差 别。 我们选用了ST的单片机,这款单片机能 自动生成一对死区可调的互补PWM,无需要 中断中处理,所以运行时软件完全可以不考虑 MOS的驱动问题。大大地减化了软件的设计难 度,从而提高了可靠性与稳定性。 如有疑问请QQ:327444825
+5V
C
R18
4 .7K
பைடு நூலகம்
D 1 L ED D 2 L ED D 3 L ED D 4 L ED
B
B
A
A
深圳市三足通讯技术有限公司
Title <Title>
三合一移动电源
Rev V01 Sheet
1
Size Do cu ment Number Cu sto m Da te:
5 4 3 2
We d n e sd a y, July 02, 2014
5
4
3
2
1
+5V 1 2 3 4 J1 u sb-micro R2 9 .1K Q2 8050 Q1 2301 R7 1M R9 33K C6 104 C5 105 C7 104 R11 220R Q3 2300 R1 3 10K C8 2 2 0uf R12 10K U2 0 3 f3 PWM _N P WM_P CTR L_C S W1 J3 1 2 3 4 C ON4 +5V VCC R17 1 00R C1 6 106 C17 105 9 8 VDD VCAP PC7/MISO PC5/SPIclk +5V C13 104 RST2 C14 104 SWIM 10 4 18 7 PA3 RST PD1/swim VSS PB4 PB5 PD4 PC4/Ain2 12 11 1 14 17 15 R19 2.4K C15 104 16 13 2 PC6/MOSI PC3 PD5/Ain5 PD3/Ain4 PA2 PD2/Ain3 PD6/Ain6 PA1 20 6 19 3 5 A IN_VBT D -G AIN_ Iout R16 33K C11 104 R18 C1 2 104 4 .7K Vbt C10 104 R6 R14 10K C9 106 BT1 BATTERY R10 100K L1 6 .8 UH Q3 2300 1 2 3 4 R3 C4 1M 105 Vbt J2 usb-a
充电宝layout及工作原理图解
PIC12301 CCOC11CCOC22CCOC33 PWMP PIC12302 22uF/6.3V/X5R
PWMN
PIC601
CCOC66
PIC602 22uF/6.3V/X5R
RCO2R233 50mRF/1206 Current PIQ1502
CUOSUBSB22 OUT1
PIR401 COR40
CROR3322
CROR3311 1KJ/0603
PIR3101
PIR3102
100RJ/0603 CUOU22
CQOQ1177 CQOQ1188
PIR3202 PIC1302
PIU4204 PIU5205 CCOC1133 PIU6206
NC OC VDD CSI VSS OD
PIU3203 PIU2202 PIU1201
PIQ417804 PIQ517805
G2 D
PIC1301 104 DW01AZ
PIQ617806 G1
S2 PIQ317803 D PIQ217802 S1 PIQ117801
VSS
BAT- PIBAT001
MT8205-SOT23-6
BAT-
PIC1201 1N5819
CUOU11
VDDPIU1101
Vin-
D G
S
R2
COR2
PIQ301
COR3
PIR201
PIR302
Vin-T
Charge
R3 10KJ/0603
1-1
PCCIOCC88082 P1IC58001 PF/NPO
CLOL11
PIDCDO3D303A
SPIKD330K4
BAT+
移动电源工作原理
深圳市九五风科技有限公司
内部培训文档
微博:/yddy360
4.LED 照明电路:此电路为单片机控制。长按 3S 可以打开高亮 LED 照明功能,充满电一次可连续工作 300 小时以上。再长按 3S 关闭。
5.电池保护电路:此功能为单片机控制。当电池出现放电时过 流,放电时电压过低,充电时电压过高这几种异常情况下,电池 保护电路就会关闭电池与外部的连接,保护电池的安全。移动电 源使用的都是锂电池,这种电池不能充放电过流,否则发热量过
DC/DC 升压电路
5V 输出
高精度 基准电压
智能管理
手电 LED
电量显示电路
充电指示电路
பைடு நூலகம்深圳市九五风科技有限公司
内部培训文档
微博:/yddy360
下图是 X44 电路板具体描述。
各部分电路功能详细介绍如下: 1.充电控制电路:利用 5V 输入,如电脑 USB,充电器等 5V 电压 源,对移动电源里的电池进行充电。X44 移动电源输入充电电流 设计指标为 1A。当电池电压小于 3V 时,充电电路会依照 100mA 的电流对电池充电,专业的讲法:涓流充电。涓流充电的好处 是,可以可靠的恢复过放电的电池,而不会导致电池大电流充坏 报废。当电池电压大于 3V 时,X44 充电电路就会用 1A 大电流恒 流充电池。这段时间充电是最快的。当电池电压充到 4.20V 左右
零售市场常见的移动电源,还会增加电量指示电路,实现电 芯剩余能量的精确指示。
X44 移动电源本质上就是一个可以对外放电的电池体,只是 设计为精确 5V 输出而已。它由输入充电控制电路,输出 DC/DC 转换电路, 电池电量检测显示电路,充电指示电路,电池保护 和智能管理电路等组成。如下图:
2021年电动车充电器原理及带电路图维修
常用电动车充电器根据电路结构可大致分为两种。
第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。
其电原理图和元件参数见图表1)欧阳光明(2021.03.07)图表 1 220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。
U1 为TL3842脉宽调制集成电路。
其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。
2脚为电压反馈,可以调节充电器的输出电压。
4脚外接振荡电阻R1,和振荡电容C1。
T1为高频脉冲变压器,其作用有三个。
第一是把高压脉冲将压为低压脉冲。
第二是起到隔离高压的作用,以防触电。
第三是为uc3842提供工作电源。
D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。
调整w2(微调电阻)可以细调充电器的电压。
D10是电源指示灯。
D6为充电指示灯。
R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)。
通电开始时,C11上有300v左右电压。
此电压一路经T1加载到Q1。
第二路经R5,C8,C3, 达到U1的第7脚。
强迫U1启动。
U1的6脚输出方波脉冲,Q1工作,电流经R25到地。
同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。
T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。
此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。
第二路经R14,D5,C9, 为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。
D9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚。