以太网的基本知识

合集下载

以太网基础问答入门知识资料

以太网基础问答入门知识资料

问:如何实现单片以太网微控制器?答:诀窍是将微控制器、以太网媒体接入控制器(MAC)和物理接口收发器(PHY)整合进同一芯片,这样能去掉许多外接元器件。

这种方案可使MAC和PHY实现很好的匹配,同时还可减小引脚数、缩小芯片面积。

单片以太网微控制器还降低了功耗,特别是在采用掉电模式的情况下。

问:以太网MAC是什么?答:MAC就是媒体接入控制器。

以太网MAC由IEEE-802.3以太网标准定义。

它实现了一个数据链路层。

最新的MAC同时支持10Mbps和100Mbps两种速率。

通常情况下,它实现MII接口。

问:什么是MII?答:MII即媒体独立接口,它是IEEE-802.3定义的以太网行业标准。

它包括一个数据接口,以及一个MAC和PHY之间的管理接口(图1)。

数据接口包括分别用于发送器和接收器的两条独立信道。

每条信道都有自己的数据、时钟和控制信号。

MII数据接口总共需要16个信号。

管理接口是个双信号接口:一个是时钟信号,另一个是数据信号。

通过管理接口,上层能监视和控制PHY。

问:以太网PHY是什么?答:PHY是物理接口收发器,它实现物理层。

IEEE-802.3标准定义了以太网PHY。

它符合IEEE-802.3k中用于10BaseT(第14条)和100BaseTX(第24条和第25条)的规范。

问:造成以太网MAC和PHY单片整合难度高的原因是什么?答:PHY整合了大量模拟硬件,而MAC是典型的全数字器件。

芯片面积及模拟/数字混合架构是为什么先将MAC集成进微控制器而将PHY留在片外的原因。

更灵活、密度更高的芯片技术已经可以实现MAC和PHY的单芯片整合。

问:除RJ-45接口外,还需要其它元件吗?答:需要其它元件。

虽然PHY提供绝大多数模拟支持,但在一个典型实现中,仍需外接6、7只分立元件及一个局域网绝缘模块。

绝缘模块一般采用一个1:1的变压器。

这些部件的主要功能是为了保护PHY免遭由于电气失误而引起的损坏。

以太网工作原理42个知识点

以太网工作原理42个知识点

1.CSMA/CD(Carrier Sense Multiple Access withCollision Detection)—载波侦听多路访问/冲突检测,是一种在共享介质条件下实现多点通讯的方法。

其基本规则如下:(1)若介质空闲,发送数据;否则,转(2);(2)若介质忙,一直监听到信道空闲,然后立即发送数据;(3)若检测到冲突,即线路上电压的摆动值超过正常值一倍,则发出一个短小的干扰(jamming)信号,使得所有站点都知道发生了冲突并停止数据的发送;(4)发完干扰信号,等待一段随机的时间后,再次试图传输,回到(1)重新开始。

2.由于CSMA/CD算法的限制,10M半双工以太网帧的帧长不能小于64字节。

3.从共享式以太网发展到交换式以太网过渡时期,出现了中继器和集线器两种互连的网络设备。

4.网络范围扩大后,信号在传送的过程中容易失真,导致误码。

中继器的功能是恢复失真信号,并放大信号。

5.集线器(HUB)和中继器都是物理层上的连接设备。

6.集线器(HUB)就是这样一种基于CSMA/CD机制工作的以太网设备,其工作原理很简单:从任何一个接口收到的数据帧(不管是单播还是广播)不加选择地转发给其它的任何端口(除接收的那个端口外)。

7.故可以这样说集线器(HUB)和中继器仅仅改变了以太网的物理拓扑,其逻辑结构仍然是总线拓扑。

8.HUB没有用MAC地址,只是对数据进行复制转发,没有过滤功能。

9.由集线器(HUB)和中继器组建以太网的实质是一种共享式以太网,故共享式以太网所具有的弊端它基本上都有,存在以下缺陷:a)冲突严重b)广播泛滥c)无任何安全性10.交换机是工作在数据链路层的设备。

以太网交换机网桥需要完成二个基本功能:a)MAC地址学习;b)转发和过滤决定。

11.DMAC代表目的终端的MAC地址,SMAC代表源MAC地址,而LENGTH/TYPE字段则根据值的不同有不同的含义:当LENGHT/TYPE > 1500时,代表该数据帧的类型(比如上层协议类型),当LENGTH/TYPE < 1500时,代表该数据帧的长度。

以太网GMII介绍

以太网GMII介绍

以太网知识GMII / RGMII接口本文主要分析MII/RMII/SMII,以及GMII/RGMII/SGMII接口的信号定义,及相关知识,同时本文也对RJ-45接口进行了总结,分析了在10/100模式下和1000M模式下的连接方法。

1. GMII 接口分析GMII接口提供了8位数据通道,125MHz的时钟速率,从而1000Mbps的数据传输速率。

下图定义了RS层的输入输出信号以及STA的信号:图18 Reconciliation Sublayer (RS) and STA connections to GMII下面将详细介绍GMII接口的信号定义,时序特性等。

由于GMII接口有MAC和PHY模式,因此,将会根据这两种不同的模式进行分析,同时还会对RGMII/TBI/RTBI接口进行介绍。

4.1 GMII接口信号定义GMII接口可分为MAC模式和PHY模式,一般说来MAC和PHY对接,但是MAC和MAC也是可以对接的。

在GMII接口中,它是用8根数据线来传送数据的,这样在传送1000M数据时,时钟就会125MHz。

GMII接口主要包括四个部分。

一是从MAC层到物理层的发送数据接口,二是从物理层到MAC层的接收数据接口,三是从物理层到MAC层的状态指示信号,四是MAC层和物理层之间传送控制和状态信息的MDIO接口。

GMII接口的MAC模式定义:注意在表7中,信号GTX_CLK对于MAC来说,此时是Output信号,这一点和MII接口中的TX_CLK的Input特性不一致。

GMII接口PHY模式定义:表8注意在表8中,信号GTX_CLK对于PHY来说,此时是Input信号,这一点和MII接口中的TX_CLK的Output特性不一致。

4.2 GMII接口时序特性在GMII接口中,TX通道参考时钟是GTX_CLK,RX通道参考时钟是RX_CLK,802.3-2005定义了它们之间的关系。

图19 GMII signal timing at receiver input由图19可知,Spec只定义了TX通道和RX通道中接收端Setup时间和Hold时间。

以太网端口21个知识点

以太网端口21个知识点

1.以太网技术发展到100M速率以后,出现了一个如何与原10M以太网设备兼容的问题,自协商技术就是为了解决这个问题而制定的。

2.自协商功能允许一个网络设备将自己所支持的工作模式信息传达给网络上的对端,并接受对方可能传递过来的相应信息。

它使用修订过的10BASE-T来传递信息,自协商功能完全由物理层芯片设计实现,因此并不使用专用数据报文或带来任何高层协议开销。

3.自协商功能的基本机制就是将协商信息封装进一连串修改后的“10BASE-T连接测试收发波形”的连接整合性测试脉冲(快速连接脉冲FLP)。

每个网络设备必须能够在上电、管理命令发出、或是用户干预时发出此串脉冲。

快速连接脉冲包含一系列连接整合性测试脉冲组成的时钟/数字序列。

将这些数据从中提取出来就可以得到对端设备支持的工作模式,以及一些用于协商握手机制的其他信息。

4.当协商双方都支持一种以上的工作方式时,需要有一个优先级方案来确定一个最终工作方式。

100M优于10M,全双工优于半双工。

100BASE-T4之所以优于100BASE-TX是因为100BASE-T4支持的线缆的类型更丰富一些。

5.光纤以太网是不支持自协商的。

对光纤而言,链路两端的工作模式必须使用手工配置(速度、双工模式、流控等),如果光纤两端的配置不同,是不能正确通信的。

6.能使用3、4、5类非屏蔽双绞线(UTP)实现100BASE-T4,用到了双绞线4对中的全部。

100BASE-TX只能用5类非屏蔽双绞线(UTP)或者屏蔽双绞线(STP)实现,用到了双绞线4对中的2对。

7.网络拥塞一般是由于线速不匹配(如100M向10M端口发送数据)和突发的集中传输而产生的,它可能导致这几种情况:延时增加、丢包、重传增加,网络资源不能有效利用。

8.在实际的网络中,尤其是一般局域网,产生网络拥塞的情况极少,所以有的厂家的交换机并不支持流量控制。

高性能的交换机应支持半双工方式下的反向压力和全双工的IEEE802.3x流控。

Ethernet-基础知识

Ethernet-基础知识

Ethernet基础知识之一一、网卡、MAC控制器和MAC地址提到MAC不得不涉及网卡的工作原理,网卡工作在OSI参考模型的数据链路层和网络层。

这里又出现了一个概念“OSI参考模型”,在这个模型中定义了网络通讯是分层的,分别是物理层,数据链路层,网络层,传输层,会话层,表示层,应用层。

以太网数据链路层其实包含MAC(介质访问控制)子层和LLC (逻辑链路控制)子层。

物理层定义了数据传送与接收所需要的电与光信号、线路状态、时钟基准、数据编码和电路等,并向数据链路层设备提供标准接口。

数据链路层则提供寻址机构、数据帧的构建、数据差错检查、传送控制、向网络层提供标准的数据接口等功能。

以太网卡中数据链路层的芯片一般简称之为MAC控制器,物理层的芯片简称之为PHY。

许多网卡的芯片把MAC和PHY的功能做到了一颗芯片中,比如Intel 82559网卡的和3COM3C905网卡。

但是MAC和PHY的机制还是单独存在的,只是外观的表现形式是一颗单芯片。

当然也有很多网卡的MAC和PHY是分开做的,比如D-LINK的DFE-530TX等。

通常提到的MAC指狭义的MAC地址,其实在网卡中,一块以太网卡MAC芯片的作用不但要实现MAC 子层和LLC子层的功能,还要提供符合规范的PCI界面以实现和主机的数据交换。

以太网MAC芯片的一端接计算机PCI总线,另外一端就接到PHY芯片上。

MAC从PCI总线收到IP数据包(或者其他网络层协议的数据包)后,将之拆分并重新打包成最大1518Byte,最小64Byte的帧。

这个帧里面包括了目标MAC地址、自己的源MAC地址和数据包里面的协议类型(比如IP数据包的类型用80表示)。

最后还有一个DWORD(4Byte)的CRC码。

网卡上有一颗EEPROM芯片,通常是一颗93C46。

里面记录了网卡芯片的供应商ID、子系统供应商ID、网卡的MAC地址、网卡的一些配置,如SMI总线上PHY的地址,BOOTROM的容量,是否启用BOOTROM引导系统等东西。

以太网的工作原理

以太网的工作原理

以太网的工作原理
以太网是一种广泛使用的局域网技术,其工作原理是基于CSMA/CD(Carrier Sense Multiple Access with Collision Detection,带冲突检测的载波侦听多路访问)协议。

在以太网中,计算机通过物理介质(例如电缆)连接在一起,形成一个局域网。

每个计算机都被称为一个节点,每个节点都有一个唯一的MAC地址。

当一个节点想要发送数据时,它先检测物理介质上是否有其他节点正在发送数据。

如果没有其他节点发送数据,该节点就可以开始发送数据。

如果检测到其他节点正在发送数据,该节点将等待一段时间,直到物理介质空闲为止,然后才发送数据。

在数据发送过程中,如果两个节点同时发送数据导致碰撞发生,它们会立即停止发送,并等待一个随机的时间后重新发送。

这种碰撞检测和重传机制被称为CSMA/CD。

为了确保数据传输的可靠性和顺序性,以太网使用了帧格式。

数据被分割成小的数据包,每个数据包都有自己的起始标志、目标MAC地址、源MAC地址、数据内容和一些校验位。


据包通过物理介质传输时,其他节点可以根据帧格式的标志位来识别和接收自己需要的数据。

另外,以太网支持半双工和全双工通信。

在半双工通信中,节点只能同时进行发送或接收操作,不能同时进行两者;而在全双工通信中,节点可以同时进行发送和接收操作,提高了传输
效率。

总之,以太网通过CSMA/CD协议、帧格式和物理介质来实现多个节点之间的数据传输,并且支持可靠性、顺序性和双工通信。

这种工作原理使得以太网成为一种广泛应用于局域网的技术。

局域网组建方法以太网的基础知识和配置步骤

局域网组建方法以太网的基础知识和配置步骤

局域网组建方法以太网的基础知识和配置步骤局域网(Local Area Network,简称LAN)是指在一个相对较小范围内的局部地区内建立起的计算机网络。

以太网(Ethernet)是最常见和广泛应用的局域网技术之一。

那么,在局域网中如何组建以太网,以及其基础知识和配置步骤是什么呢?本文将详细解答这些问题。

一、以太网的基础知识以太网是一种基于共享传输介质的局域网技术,其传输速度通常为10Mbps、100Mbps或1000Mbps。

在以太网中,每个计算机连接到一个集线器(Hub)或者交换机(Switch),通过共享传输介质(如双绞线)进行通信。

该网络拓扑结构通常为总线型或星型。

1. 网卡(Network Interface Card,简称NIC):每台计算机都需要安装网卡才能进行以太网连接。

网卡负责将计算机内部数据转换为可以在局域网中传输的格式,并将外部数据转发给计算机。

2. MAC地址(Media Access Control Address):每个网卡都有一个唯一的MAC地址,由12位十六进制数表示。

MAC地址用于在局域网中识别每个计算机或设备,类似于一个身份证号码。

3. 集线器(Hub):集线器是以太网中常用的设备,用于连接多台计算机。

当一个计算机发送数据时,集线器会将数据广播给所有连接的设备,然后每个设备根据MAC地址识别出自己需要接收的数据。

4. 交换机(Switch):交换机也是局域网中常用的设备,其工作原理与集线器不同。

交换机会动态学习每个设备的MAC地址,并根据目标MAC地址将数据直接传输到目标设备,提高了网络的传输效率。

二、局域网以太网的配置步骤下面是局域网中组建以太网的配置步骤,以便帮助您更好地理解:1. 确定网络拓扑结构:根据网络规模和需求,选择适合的网络拓扑结构,如总线型或星型。

2. 购买和安装设备:购买所需的网卡、集线器或交换机等设备,并按照说明书正确安装。

3. 连接设备:将每台计算机的网卡与集线器或交换机进行连接。

以太网工作原理

以太网工作原理

以太网工作原理以太网是一种常见的局域网技术,它使用了一种称为CSMA/CD(载波监听多路访问/碰撞检测)的协议来控制数据传输。

在以太网中,数据被分割成帧,然后通过网络传输。

接下来,我们将详细介绍以太网的工作原理。

首先,以太网使用CSMA/CD协议来控制数据传输。

这意味着当一个设备想要发送数据时,它首先会监听网络,确保没有其他设备正在发送数据。

如果网络空闲,设备就会发送数据。

但是,如果多个设备同时发送数据,就会发生碰撞。

当检测到碰撞时,设备会随机等待一段时间,然后重新发送数据。

其次,以太网使用MAC地址来识别设备。

每个以太网设备都有一个唯一的MAC地址,它由48位二进制数组成。

当数据帧被发送到网络上时,它包含了目标设备的MAC地址,以太网设备会根据这个地址来决定是否接收数据。

此外,以太网使用了CSMA/CD协议来控制网络的拓扑结构。

在以太网中,常见的拓扑结构包括总线型、星型和树型。

总线型拓扑中,所有设备都连接到同一条总线上;星型拓扑中,所有设备都连接到一个中央设备上;树型拓扑则是将多个星型拓扑连接在一起。

最后,以太网使用了以太网交换机来提高网络性能。

交换机可以根据MAC地址来转发数据,而不是像集线器一样简单地将数据广播到整个网络上。

这样可以减少网络拥塞,提高数据传输效率。

总之,以太网是一种常见的局域网技术,它使用了CSMA/CD协议来控制数据传输,使用MAC地址来识别设备,使用不同的拓扑结构来搭建网络,同时利用以太网交换机来提高网络性能。

通过了解以太网的工作原理,我们可以更好地理解局域网的工作方式,从而更好地设计和管理网络。

以太网接口知识

以太网接口知识

以太⽹接⼝知识以太⽹接⼝知识本⽂主要分析MII/RMII/SMII,以及GMII/RGMII/SGMII接⼝的信号定义,及相关知识,同时本⽂也对RJ-45接⼝进⾏了总结,分析了在10/100模式下和1000M模式下的设计⽅法。

1. MII接⼝分析MII接⼝提供了MAC与PHY之间、PHY与STA(Station Management)之间的互联技术,该接⼝⽀持10Mb/s与100Mb/s的数据传输速率,数据传输的位宽为4位。

提到MII,就有可能涉及到RS,PLS,STA等名词术语,下⾯讲⼀下他们之间对应的关系。

所谓RS即Reconciliation sublayer,它的主要功能主要是提供⼀种MII和MAC/PLS之间的信号映射机制。

它们(RS与MII)之间的关系如下图:图1MII接⼝的Management Interface可同时控制多个PHY,802.3协议最多⽀持32个PHY,但有⼀定的限制:要符合协议要求的connector特性。

所谓Management Interface,即MDC信号和MDIO信号。

前⾯已经讲过RS与PLS的关系,以及MII接⼝连接的对象。

它们是通过MII接⼝进⾏连接的,⽰意图如下图。

由图可知,MII的Management Interface是与STA(Station Management)相连的。

MII接⼝⽀持10Mb/s以及100Mb/s,且在两种⼯作模式下所有的功能以及时序关系都是⼀致的,唯⼀不同的是时钟的频率问题。

802.3要求PHY不⼀定⼀定要⽀持这两种速率,但⼀定要描述,通过Management Interface反馈给MAC。

图2下⾯将详细介绍MII接⼝的信号定义,时序特性等。

由于MII接⼝有MAC和PHY模式,因此,将会根据这两种不同的模式进⾏分析,同时还会对RMII/SMII进⾏介绍。

1.1 MII接⼝信号定义MII接⼝可分为MAC模式和PHY模式,⼀般说来MAC和PHY对接,但是MAC和MAC也是可以对接的。

以太网芯片MAC和PHY知识详解

以太网芯片MAC和PHY知识详解

网口扫盲三:以太网芯片MAC和PHY的关系问:如何实现单片以太网微控制器?答:诀窍是将微控制器、以太网媒体接入控制器(MAC)和物理接口收发器(PHY)整合进同一芯片,这样能去掉许多外接元器件.这种方案可使MAC和PHY实现很好的匹配,同时还可减小引脚数、缩小芯片面积.单片以太网微控制器还降低了功耗,特别是在采用掉电模式的情况下. 问:以太网MAC是什么?答:MAC即Media Access Control,即媒体访问控制子层协议.该协议位于OSI七层协议中数据链路层的下半部分,主要负责控制与连接物理层的物理介质.在发送数据的时候,MAC协议可以事先判断是否可以发送数据,如果可以发送将给数据加上一些控制信息,最终将数据以及控制信息以规定的格式发送到物理层;在接收数据的时候,MAC协议首先判断输入的信息并是否发生传输错误,如果没有错误,则去掉控制信息发送至LLC层.该层协议是以太网MAC由IEEE-802.3以太网标准定义.最新的MAC同时支持10Mbps和100Mbps两种速率.以太网数据链路层其实包含MAC(介质访问控制)子层和LLC(逻辑链路控制)子层.一块以太网卡MAC芯片的作用不但要实现MAC子层和LLC子层的功能,还要提供符合规范的PCI界面以实现和主机的数据交换.MAC从PCI总线收到IP数据包(或者其他网络层协议的数据包)后,将之拆分并重新打包成最大1518Byte,最小64Byte的帧.这个帧里面包括了目标MAC地址、自己的源MAC地址和数据包里面的协议类型(比如IP数据包的类型用80表示).最后还有一个DWORD(4Byte)的CRC码. 可是目标的MAC地址是哪里来的呢?这牵扯到一个ARP协议(介乎于网络层和数据链路层的一个协议).第一次传送某个目的IP地址的数据的时候,先会发出一个ARP包,其MAC的目标地址是广播地址,里面说到:”谁是xxx.xxx.xxx.xxx这个IP地址的主人?”因为是广播包,所有这个局域网的主机都收到了这个ARP请求.收到请求的主机将这个IP地址和自己的相比较,如果不相同就不予理会,如果相同就发出ARP响应包.这个IP地址的主机收到这个ARP请求包后回复的ARP响应里说到:”我是这个IP地址的主人”.这个包里面就包括了他的MAC地址.以后的给这个IP地址的帧的目标MAC地址就被确定了.(其它的协议如IPX/SPX也有相应的协议完成这些操作.)IP地址和MAC地址之间的关联关系保存在主机系统里面,叫做ARP表,由驱动程序和操作系统完成.在Microsoft的系统里面可以用arp-a的命令查看ARP表.收到数据帧的时候也是一样,做完CRC以后,如果没有CRC效验错误,就把帧头去掉,把数据包拿出来通过标准的借口传递给驱动和上层的协议客栈,最终正确的达到我们的应用程序.还有一些控制帧,例如流控帧也需要MAC直接识别并执行相应的行为.以太网MAC芯片的一端接计算机PCI总线,另外一端就接到PHY芯片上,它们之间是通过MII 接口链接的.问:什么是MII?答:MII即媒体独立接口,它是IEEE-802.3定义的以太网行业标准."媒体独立"表明在不对MAC 硬件重新设计或替换的情况下,任何类型的PHY设备都可以正常工作.它包括一个数据接口,以及一个MAC和PHY之间的管理接口.∙数据接口包括分别用于发送器和接收器的两条独立信道.每条信道都有自己的数据,时钟和控制信号.MII数据接口总共需要16个信号,包括TX_ER,TXD<3:0>,TX_EN,TX_CLK, COL,RXD<3:0>,RX_EX,RX_CLK,CRS,RX_DV等.MII以4位半字节方式传送数据双向传输,时钟速率25MHz.其工作速率可达100Mb/s;∙MII管理接口是个双信号接口,一个是时钟信号,另一个是数据信号.通过管理接口,上层能监视和控制PHY.其管理是使用SMI(Serial Management Interface)总线通过读写PHY的寄存器来完成的.PHY里面的部分寄存器是IEEE定义的,这样PHY把自己的目前的状态反映到寄存器里面,MAC通过SMI总线不断的读取PHY的状态寄存器以得知目前PHY的状态,例如连接速度,双工的能力等.当然也可以通过SMI设置PHY的寄存器达到控制的目的,例如流控的打开关闭,自协商模式还是强制模式等.不论是物理连接的MII总线和SMI总线还是PHY的状态寄存器和控制寄存器都是有IEEE的规范的,因此不同公司的MAC和PHY一样可以协调工作.当然为了配合不同公司的PHY的自己特有的一些功能,驱动需要做相应的修改.MII支持10Mbps和100Mbps的操作,一个接口由14根线组成,它的支持还是比较灵活的,但是有一个缺点是因为它一个端口用的信号线太多,如果一个8端口的交换机要用到112根线,16端口就要用到224根线,到32端口的话就要用到448根线,一般按照这个接口做交换机,是不太现实的,所以现代的交换机的制作都会用到其它的一些从MII简化出来的标准,比如RMII,SMII,GMII等.RMII是简化的MII接口,在数据的收发上它比MII接口少了一倍的信号线,所以它一般要求是50MHz的总线时钟.RMII一般用在多端口的交换机,它不是每个端口安排收,发两个时钟,而是所有的数据端口公用一个时钟用于所有端口的收发,这里就节省了不少的端口数目.RMII的一个端口要求7个数据线,比MII少了一倍,所以交换机能够接入多一倍数据的端口.和MII一样,RMII支持10Mbps和100Mbps的总线接口速度.SMII是由思科提出的一种媒体接口,它有比RMII更少的信号线数目,S表示串行的意思.因为它只用一根信号线传送发送数据,一根信号线传输接受数据,所以为了满足100Mbps的总线接口速度的需求,它的时钟频率就达到了125MHz,为什么用125MHz,是因为数据线里面会传送一些控制信息.SMII一个端口仅用4根信号线完成100Mbps的传输,比起RMII差不多又少了一倍的信号线.SMII在工业界的支持力度是很高的.同理,所有端口的数据收发都公用同一个外部的125MHz时钟.GMII是千兆网的MII接口,这个也有相应的RGMII接口,表示简化了的GMII接口.MII总线在IEEE802.3中规定的MII总线是一种用于将不同类型的PHY与相同网络控制器(MAC)相连接的通用总线.网络控制器可以用同样的硬件接口与任何PHY .GMII(Gigabit MII)GMII采用8位接口数据,工作时钟125MHz,因此传输速率可达1000Mbps.同时兼容MII所规定的10/100 Mbps工作方式.GMII接口数据结构符合IEEE以太网标准.该接口定义见IEEE 802.3-2000.发送器:∙GTXCLK——吉比特TX..信号的时钟信号(125MHz)∙TXCLK——10/100Mbps信号时钟∙TXD[7..0]——被发送数据∙TXEN——发送器使能信号∙TXER——发送器错误(用于破坏一个数据包)注:在千兆速率下,向PHY提供GTXCLK信号,TXD,TXEN,TXER信号与此时钟信号同步.否则,在10/100Mbps速率下,PHY提供TXCLK时钟信号,其它信号与此信号同步.其工作频率为25MHz(100M网络)或2.5MHz(10M网络).接收器:∙RXCLK——接收时钟信号(从收到的数据中提取,因此与GTXCLK无关联)∙RXD[7..0]——接收数据∙RXDV——接收数据有效指示∙RXER——接收数据出错指示∙COL——冲突检测(仅用于半双工状态)管理配置∙MDC——配置接口时钟∙MDIO——配置接口I/O管理配置接口控制PHY的特性.该接口有32个寄存器地址,每个地址16位.其中前16个已经在"IEEE 802.3,2000-22.2.4 Management Functions"中规定了用途,其余的则由各器件自己指定. RMII(Reduced Media Independant Interface)简化媒体独立接口是标准的以太网接口之一,比MII有更少的I/O传输.RMII口是用两根线来传输数据的,MII口是用4根线来传输数据的,GMII是用8根线来传输数据的.MII/RMII只是一种接口,对于10Mbps线速,MII的时钟速率是2.5MHz就可以了,RMII则需要5MHz;对于100Mbps线速,MII需要的时钟速率是25MHz,RMII则是50MHz.MII/RMII用于传输以太网包,在MII/RMII接口是4/2bit的,在以太网的PHY里需要做串并转换,编解码等才能在双绞线和光纤上进行传输,其帧格式遵循IEEE 802.3(10M)/IEEE 802.3u(100M)/IEEE 802.1q(VLAN).以太网帧的格式为:前导符+开始位+目的mac地址+源mac 地址+类型/长度+数据+padding(optional)+32bitCRC如果有vlan,则要在类型/长度后面加上2个字节的vlan tag,其中12bit来表示vlan id,另外4bit 表示数据的优先级!问:以太网PHY是什么?答:PHY是物理接口收发器,它实现物理层.IEEE-802.3标准定义了以太网PHY.包括MII/GMII(介质独立接口)子层,PCS(物理编码子层),PMA(物理介质附加)子层,PMD(物理介质相关)子层,MDI 子层.它符合IEEE-802.3k中用于10BaseT(第14条)和100BaseTX(第24条和第25条)的规范. PHY在发送数据的时候,收到MAC过来的数据(对PHY来说,没有帧的概念,对它来说,都是数据而不管什么地址,数据还是CRC.对于100BaseTX因为使用4B/5B编码,每4bit就增加1bit的检错码),然后把并行数据转化为串行流数据,再按照物理层的编码规则把数据编码,再变为模拟信号把数据送出去.收数据时的流程反之.PHY还有个重要的功能就是实现CSMA/CD的部分功能.它可以检测到网络上是否有数据在传送,如果有数据在传送中就等待,一旦检测到网络空闲,再等待一个随机时间后将送数据出去.如果两个碰巧同时送出了数据,那样必将造成冲突,这时候,冲突检测机构可以检测到冲突,然后各等待一个随机的时间重新发送数据.这个随机时间很有讲究的,并不是一个常数,在不同的时刻计算出来的随机时间都是不同的,而且有多重算法来应付出现概率很低的同两台主机之间的第二次冲突.许多网友在接入Internt宽带时,喜欢使用”抢线”强的网卡,就是因为不同的PHY碰撞后计算随机时间的方法设计上不同,使得有些网卡比较”占便宜”.不过,抢线只对广播域的网络而言的,对于交换网络和ADSL这样点到点连接到局端设备的接入方式没什么意义.而且”抢线”也只是相对而言的,不会有质的变化.现在交换机的普及使得交换网络的普及,使得冲突域网络少了很多,极大地提高了网络的带宽.但是如果用HUB,或者共享带宽接入Internet的时候还是属于冲突域网络,有冲突碰撞的.交换机和HUB最大的区别就是:一个是构建点到点网络的局域网交换设备,一个是构建冲突域网络的局域网互连设备.除此之外PHY还提供了和对端设备连接的重要功能并通过LED灯显示出自己目前的连接的状态和工作状态让我们知道.当我们给网卡接入网线的时候,PHY不断发出的脉冲信号检测到对端有设备,它们通过标准的”语言”交流,互相协商并却定连接速度、双工模式、是否采用流控等.通常情况下,协商的结果是两个设备中能同时支持的最大速度和最好的双工模式.这个技术被称为AutoNegotiation或者NWAY,它们是一个意思–自动协商.具体传输过程为,发送数据时,网卡首先侦听介质上是否有载波(载波由电压指示),如果有,则认为其他站点正在传送信息,继续侦听介质.一旦通信介质在一定时间段内(称为帧间缝隙IFG=9.6微秒)是安静的,即没有被其他站点占用,则开始进行帧数据发送,同时继续侦听通信介质,以检测冲突.在发送数据期间,如果检测到冲突,则立即停止该次发送,并向介质发送一个“阻塞”信号,告知其他站点已经发生冲突,从而丢弃那些可能一直在接收的受到损坏的帧数据,并等待一段随机时间(CSMA/CD确定等待时间的算法是二进制指数退避算法).在等待一段随机时间后,再进行新的发送.如果重传多次后(大于16次)仍发生冲突,就放弃发送.接收时,网卡浏览介质上传输的每个帧,如果其长度小于64字节,则认为是冲突碎片.如果接收到的帧不是冲突碎片且目的地址是本地地址,则对帧进行完整性校验,如果帧长度大于1518字节(称为超长帧,可能由错误的LAN驱动程序或干扰造成)或未能通过CRC校验,则认为该帧发生了畸变.通过校验的帧被认为是有效的,网卡将它接收下来进行本地处理.问:造成以太网MAC和PHY单片整合难度高的原因是什么?答:PHY整合了大量模拟硬件,而MAC是典型的全数字器件.芯片面积及模拟/数字混合架构是为什么先将MAC集成进微控制器而将PHY留在片外的原因.更灵活、密度更高的芯片技术已经可以实现MAC和PHY的单芯片整合.问: 网卡上除RJ-45接口外,还需要其它元件吗?答:PHY和MAC是网卡的主要组成部分,网卡一般用RJ-45插口,10M网卡的RJ-45插口也只用了1,2,3,6四根针,而100M或1000M网卡的则是八根针都是全的.除此以外,还需要其它元件,因为虽然PHY提供绝大多数模拟支持,但在一个典型实现中,仍需外接6,7只分立元件及一个局域网绝缘模块.绝缘模块一般采用一个1:1的变压器.这些部件的主要功能是为了保护PHY 免遭由于电气失误而引起的损坏.另外,一颗CMOS制程的芯片工作的时候产生的信号电平总是大于0V的(这取决于芯片的制程和设计需求),但是这样的信号送到100米甚至更长的地方会有很大的直流分量的损失.而且如果外部网线直接和芯片相连的话,电磁感应(打雷)和静电,很容易造成芯片的损坏.再就是设备接地方法不同,电网环境不同会导致双方的0V电平不一致,这样信号从A传到B,由于A 设备的0V电平和B点的0V电平不一样,这样会导致很大的电流从电势高的设备流向电势低的设备.为了解决以上问题Transformer(隔离变压器)这个器件就应运而生.它把PHY送出来的差分信号用差模耦合的线圈耦合滤波以增强信号,并且通过电磁场的转换耦合到连接网线的另外一端.这样不但使网线和PHY之间没有物理上的连接而换传递了信号,隔断了信号中的直流分量,还可以在不同0V电平的设备中传送数据.隔离变压器本身就是设计为耐2KV~3KV的电压的.也起到了防雷感应(我个人认为这里用防雷击不合适)保护的作用.有些朋友的网络设备在雷雨天气时容易被烧坏,大都是PCB设计不合理造成的,而且大都烧毁了设备的接口,很少有芯片被烧毁的,就是隔离变压器起到了保护作用.隔离变压器本身是个被动元件,只是把PHY的信号耦合了到网线上,并没有起到功率放大的作用.那么一张网卡信号的传输的最长距离是谁决定的呢?一张网卡的传输最大距离和与对端设备连接的兼容性主要是PHY决定的.但是可以将信号送的超过100米的PHY其输出的功率也比较大,更容易产生EMI的问题.这时候就需要合适的Transformer与之配合.作PHY的老大公司Marvell的PHY,常常可以传送180~200米的距离,远远超过IEEE的100米的标准.RJ-45的接头实现了网卡和网线的连接.它里面有8个铜片可以和网线中的4对双绞(8根)线对应连接.其中100M的网络中1,2是传送数据的,3,6是接收数据的.1,2之间是一对差分信号,也就是说它们的波形一样,但是相位相差180度,同一时刻的电压幅度互为正负.这样的信号可以传递的更远,抗干扰能力强.同样的,3,6也一样是差分信号.网线中的8根线,每两根扭在一起成为一对.我们制作网线的时候,一定要注意要让1,2在其中的一对,3,6在一对.否则长距离情况下使用这根网线的时候会导致无法连接或连接很不稳定. 现在新的PHY支持AUTO MDI-X功能(也需要Transformer支持).它可以实现RJ-45接口的1,2上的传送信号线和3,6上的接收信号线的功能自动互相交换.有的PHY甚至支持一对线中的正信号和负信号的功能自动交换.这样我们就不必为了到底连接某个设备需要使用直通网线还是交叉网线而费心了.这项技术已经被广泛的应用在交换机和SOHO路由器上.在1000Basd-T网络中,其中最普遍的一种传输方式是使用网线中所有的4对双绞线,其中增加了4,5和7,8来共同传送接收数据.由于1000Based-T网络的规范包含了AUTOMDI-X功能,因此不能严格确定它们的传出或接收的关系,要看双方的具体的协商结果.一片网卡主要功能的实现就基本上是上面这些器件了.其他的,还有一颗EEPROM芯片,通常是一颗93C46.里面记录了网卡芯片的供应商ID,子系统供应商ID,网卡的MAC地址,网卡的一些配置,如SMI总线上PHY的地址,BOOTROM的容量,是否启用BOOTROM引导系统等东西.很多网卡上还有BOOTROM这个东西.它是用于无盘工作站引导操作系统的.既然无盘,一些引导用必需用到的程序和协议栈就放到里面了,例如RPL,PXE等.实际上它就是一个标准的PCI ROM.所以才会有一些硬盘写保护卡可以通过烧写网卡的BootRom来实现.其实PCI设备的ROM是可以放到主板BIOS里面的.启动电脑的时候一样可以检测到这个ROM并且正确识别它是什么设备的.AGP在配置上和PCI很多地方一样,所以很多显卡的BIOS也可以放到主板BIOS里面.这就是为什么板载的网卡我们从来没有看到过BOOTROM的原因.最后就是电源部分了.大多数网卡现在都使用3.3V或更低的电压.有的是双电压的.因此需要电源转换电路.而且网卡为了实现Wake on line功能,必须保证全部的PHY和MAC的极少一部分始终处于有电的状态,这需要把主板上的5V Standby电压转换为PHY工作电压的电路.在主机开机后,PHY 的工作电压应该被从5V转出来的电压替代以节省5V Standby的消耗.(许多劣质网卡没有这么做).有Wake on line功能的网卡一般还有一个WOL的接口.那是因为PCI2.1以前没有PCI设备唤醒主机的功能,所以需要着一根线通过主板上的WOL的接口连到南桥里面以实现WOL的功能.新的主板合网卡一般支持PCI2.2/2.3,扩展了PME#信号功能,不需要那个接口而通过PCI总线就可以实现唤醒功能.我们现在来看两个图MAC和PHY分开的以太网卡MAC和PHY集成在一颗芯片的以太网卡上图中各部件为:①RJ-45接口②Transformer(隔离变压器)③PHY芯片④MAC芯片⑤EEPROM⑥BOOTROM插槽⑦WOL接头⑧晶振⑨电压转换芯片⑩LED指示灯网卡的功能主要有两个:一是将电脑的数据封装为帧,并通过网线(对无线网络来说就是电磁波)将数据发送到网络上去;二是接收网络上其它设备传过来的帧,并将帧重新组合成数据,发送到所在的电脑中.网卡能接收所有在网络上传输的信号,但正常情况下只接受发送到该电脑的帧和广播帧,将其余的帧丢弃.然后,传送到系统CPU做进一步处理.当电脑发送数据时,网卡等待合适的时间将分组插入到数据流中.接收系统通知电脑消息是否完整地到达,如果出现问题,将要求对方重新发送.问:10BaseT和100BaseTX PHY实现方式不同的原因何在?答:两种实现的分组描述本质上是一样的,但两者的信令机制完全不同.其目的是阻止一种硬件实现容易地处理两种速度.10BaseT采用曼彻斯特编码,100BaseTX采用4B/5B编码.问:什么是曼彻斯特编码?答:曼彻斯特编码又称曼彻斯特相位编码,它通过相位变化来实现每个位(图2).通常,用一个时钟周期中部的上升沿表示“1”,下降沿表示“0”.周期末端的相位变化可忽略不计,但有时又可能需要将这种相位变化计算在内,这取决于前一位的值.问:什么是4B/5B编码?答:4B/5B编码是一种块编码方式.它将一个4位的块编码成一个5位的块.这就使5位块内永远至少包含2个“1”转换,所以在一个5位块内总能进行时钟同步.该方法需要25%的额外开销. 问:网卡的MAC和PHY间的关系?答:网卡工作在osi的最后两层,物理层和数据链路层,物理层定义了数据传送与接收所需要的电与光信号、线路状态、时钟基准、数据编码和电路等,并向数据链路层设备提供标准接口.物理层的芯片称之为PHY.数据链路层则提供寻址机构、数据帧的构建、数据差错检查、传送控制、向网络层提供标准的数据接口等功能.以太网卡中数据链路层的芯片称之为MAC控制器.很多网卡的这两个部分是做到一起的.他们之间的关系是pci总线接mac总线,mac接phy,phy接网线(当然也不是直接接上的,还有一个变压装置).PHY和MAC之间是如何传送数据和相互沟通的.通过IEEE定义的标准的MII/GigaMII(Media Independed Interfade,介质独立界面)界面连接MAC和PHY.这个界面是IEEE定义的.MII界面传递了网络的所有数据和数据的控制.ETHERNET的接口实质是MAC通过MII总线控制PHY的过程.问:网线上传输的是模拟信号还是数字信号?答:是模拟信号.因为它传出和接收是采用的模拟的技术.虽然它传送的信息是数字的(并不是传送的信息是数字的信号就可以叫做数字信号).简单的例子:我们知道电话是模拟信号,但是当我们拨号上网的时候,电话线里传送的是数字信息,但信号本身依旧是模拟的.然而ADSL同样是通过电话线传送的,却是数字信号.这取决于它传出和接受采用的技术.问:若操作系统没有加载网卡驱动,网卡虽然在系统设备树上,但网卡接口创建不了,那网卡实际能不能接收到数据?答:这里面有很多细节, 我根据Intel网卡的Spec大概写了写, 想尽量写的通俗一些,所以没有刻意用Spec里的术语,另外本文虽然讲的是MAC/PHY,但光口卡的(SERDES)也是类似的.1.PCI设备做reset以后进入D0uninitialized(非初始化的D0状态, 参考PCI电源管理规范),此时网卡的MAC和DMA都不工作,PHY是工作在一个特殊的低电源状态的;2.操作系统创建设备树时,初始化这个设备,PCI命令寄存器的Memory Access Enable orthe I/O Access Enable bit会被enable, 这就是D0active.此时PHY/MAC就使能了;3.PHY被使能应该就可以接收物理链路上的数据了,否则不能收到FLP/NLP, PHY就不能建立物理连接.但这类包一般是流量间歇发送的;4.驱动程序一般要通过寄存器来控制PHY, 比如自动协商speed/duplex, 查询物理链路的状态Link up/down;5.MAC被使能后, 如果没有驱动设置控制寄存器的一个位(CTRL.SLU )的话, MAC和PHY是不能通讯的, 就是说MAC不知道PHY的link已经ready, 所以收不到任何数据的.这位设置以后, PHY完成自协商, 网卡才会有个Link change的中断,知道物理连接已经Link UP了;6.即使Link已经UP, MAC还需要enable接收器的一个位(RCTL.RXEN ),包才可以被接收进来,如果网卡被reset,这位是0,意味着所有的包都会被直接drop掉,不会存入网卡的FIFO.老网卡在驱动退出前利用这位关掉接收.Intel的最新千兆网卡发送接收队列的动态配置就是依靠这个位的,重新配置的过程一定要关掉流量;7.无论驱动加载与否, 发生reset后,网卡EEPOM里的mac地址会写入网卡的MAC地址过滤寄存器, 驱动可以去修改这个寄存器,现代网卡通常支持很多MAC地址,也就是说,MAC地址是可以被软件设置的.例如,Intel的千兆网卡就支持16个单播MAC地址,但只有1个是存在EEPROM里的,其它是软件声称和设置的;8.但如果驱动没有加载,网卡已经在设备树上,操作系统完成了步骤1-2的初始化,此时网卡的PHY应该是工作的,但因为没有人设置控制位(CTRL.SLU)来让MAC和PHY建立联系,所以MAC是不收包的.这个控制位在reset时会再设置成0;9.PHY可以被软件设置加电和断电, 断电状态除了接收管理命令以外,不会接收数据.另外,PHY还能工作在Smart Power Down模式下,link down就进入省电状态;10.有些多口网卡,多个网口共享一个PHY, 所以BIOS里设置disbale了某个网口, 也未必会把PHY的电源关掉,反过来,也要小心地关掉PHY的电源;11.要详细了解PHY,最终还是要熟悉IEEE以太网的相关协议.。

计算机网络技术基础知识汇总

计算机网络技术基础知识汇总

计算机网络技术基础知识汇总计算机网络技术基础知识汇总一:网络基础知识1. 网络的定义和分类1.1 网络的定义1.2 网络的分类1.2.1 局域网(LAN)1.2.2 城域网(MAN)1.2.3 广域网(WAN)1.2.4 互联网(Internet)2. OSI参考模型2.1 OSI参考模型的概述2.2 OSI参考模型的七层结构2.2.1 物理层2.2.2 数据链路层2.2.3 网络层2.2.4 传输层2.2.5 会话层2.2.6 表示层2.2.7 应用层3. TCP/IP协议族3.1 TCP/IP协议族的概述3.2 TCP/IP协议族的层次结构3.2.1 网络接口层3.2.2 网际层3.2.3 传输层3.2.4 应用层二:网络设备和编址1. 网络设备1.1 网络设备的分类1.1.1 网卡1.1.2 集线器1.1.3 交换机1.1.4 路由器1.1.5 网关2. IP地址和子网掩码2.1 IP地址的作用和分类2.2 IP地址的组成和表示方式2.3 子网掩码的作用和计算方法三:网络传输协议1. TCP协议1.1 TCP的概述1.2 TCP的特点1.3 TCP的连接建立和终止1.4 TCP的可靠传输机制2. UDP协议2.1 UDP的概述2.2 UDP的特点2.3 UDP的应用场景四:局域网技术1. 以太网1.1 以太网的概述1.2 以太网的物理层和数据链路层1.3 以太网的帧结构和帧格式1.4 以太网的MAC地址和地址解析协议2. VLAN技术2.1 VLAN的概念和作用2.2 VLAN的实现方式和配置方法五:广域网技术1. PPP协议1.1 PPP的概述1.2 PPP的连接建立和认证过程1.3 PPP的帧格式和报文结构2. HDLC协议2.1 HDLC的概述2.2 HDLC的帧格式和报文结构2.3 HDLC的工作模式和帧同步方法六:网络安全1. 网络攻击和防御1.1 网络攻击的分类1.2 常见的网络安全威胁1.3 网络安全的防御措施2. 防火墙2.1 防火墙的概述2.2 防火墙的工作原理和分类2.3 防火墙的配置和管理七:网络管理和监控1. 网路管理协议1.1 SNMP协议1.2 MIB文件和MIB对象1.3 SNMP的工作原理和消息格式2. 网络性能监控2.1 网络性能监控的意义和目的2.2 常用的性能监控工具2.3 网络性能监控的指标和分析方法附件:1. 相关示意图和图表2. 实验数据和结果法律名词及注释:1. TCP/IP:传输控制协议/互联网协议,是一种用于互联网传输的协议族。

Internet基本知识

Internet基本知识

Internet基本知识什么是Internet?在英语中“Inter”的含义是“交互的”,“net”是指“网络”。

简单地讲,Internet 是一个计算机交互网络,又称网间网。

它是一个全球性的巨大的计算机网络体系,它把全球数万个计算机网络,数千万台主机连接起来,包含了难以计数的信息资源,向全世界提供信息服务,它的出现,是世界由工业化走向信息化的必然和象征,但这并不是对 Internet的一种定义,仅仅是对它的一种解释。

从网络通信的角度来看,Internet是一个以TCP/IP网络协议连接各个国家、各个地区、各个机构的计算机网络的数据通信网。

从信息资源的角度来看,Internet是一个集各个部门,各个领域的各种信息资源为一体,供网上用户共享的信息资源网。

今天的 Internet已经远远超过了一个网络的涵义,它是一个信息社会的缩影。

虽然至今还没有一个准确的定义来概括Internet,但是这个定义应从通信协议,物理连接,资源共享,相互联系,相互通信等角度来综合加以考虑。

一般认为,Internet的定义至少包含以下三个方面的内容:●Internet是一个基于TCP/IP协议簇的国际互联网络。

●Internet是一个网络用户的团体,用户使用网络资源,同时也为该网络的发展壮大贡献力量。

●Internet是所有可被访问和利用的信息资源的集合。

Internet的历史和发展Internet最早来源于美国国防部高级研究计划局DARPA(Defense advanced Research Projects Agency)的前身ARPA建立的ARPAnet,该网于1969年投入使用。

从60年代开始,ARPA就开始向美国国内大学的计算机系和一些私人有限公司提供经费,以促进基于分组交换技术的计算机网络的研究。

1968年,ARPA为ARPAnet网络项目立项,这个项目基于这样一种主导思想:网络必须能够经受住故障的考验而维持正常工作,一旦发生战争,当网络的某一部分因遭受攻击而失去工作能力时,网络的其它部分应当能够维持正常通信。

以太网基础40个知识点

以太网基础40个知识点

以太网发展简史:1.1973年,位于加利福尼亚Palo Alto 的Xerox公司提出并实现了最初的以太网。

Robert Metcalfe博士被公认为以太网之父,他研制的实验室原型系统运行速度是 2.94兆比特每秒(3Mb/s)。

2.1980年, Digital Equipment Corporation ,Intel,Xerox三家联合推出10Mbps DIX以太网标准[DIX80]。

IEEE 802.3标准规范则是基于这个最初的以太网技术制定的。

3.1995年,IEEE正式通过了802.3u快速以太网标准。

4.1998年,IEEE802.3z千兆以太网标准正式发布。

5.1999年,发布IEEE802.3ab标准,即1000BASE-T标准。

6.2002年7月18日,IEEE通过了802.3ae,即10Gbit/s以太网,又称为万兆以太网,它包括了10GBASE-R,10GBASE-W,10GBASE-LX4三种物理接口标准。

7.2004年3月,IEEE批准铜缆10G以太网标准802.3ak,新标准将作为10GBASE-CX4实施,提供双轴电缆上的10Gbps的速率。

8.在刚萌芽时期的以太网是共享式以太网,当时存在常见几种传输介质:9.10Base5:粗同轴电缆(5代表电缆的最大传输距离是500米)10.10Base2:细同轴电缆(2代表电缆的最大传输距离是200米)11.但是在共享式以太网之前,使用一种称为抽头的设备建立与同轴电缆的连接。

须用特殊的工具在同轴电缆里挖一个小洞,然后将抽头接入。

此项工作存在一定的风险:因为任何疏忽,都有可能使电缆的中心导体与屏蔽层短接,导致这个网络段的崩溃。

同轴电缆的致命缺陷是:电缆上的设备是串连的,单点的故障可以导致这个网络的崩溃。

12.80年代末期,非屏蔽双绞线(UTP)出现,并迅速得到广泛的应用。

UTP的巨大优势在于:价格低廉、制作简单,收发使用不同的线缆易于实现全双工工作模式。

(完整版)以太网知识(4)-TBI接口-tenbit

(完整版)以太网知识(4)-TBI接口-tenbit

以太网知识(4)-TBI接口-ten bit interface作者:luqiliang 日期:2010-5-14 15:36:41字体大小: 小中大本文主要分析MII/RMII/SMII,以及GMII/RGMII/SGMII接口的信号定义,及相关知识,同时本文也对RJ-45接口进行了总结,分析了在10/100模式下和1000M 模式下的连接方法。

6. TBI接口分析所为TBI,即Ten-Bit interface,10位接口(TBI)从千兆媒体独立接口(GMII)演化而来,它们都是千兆以太网的接口。

TBI与GMII接口的主要区别在于,GMII 接口还包括物理编码子层(PCS)功能,支持TBI接口的器件通常不包含上述功能,如图26中被方框圈起来的部分。

选择TBI还是GMII接口,主要取决于所采用的媒体访问控制器(MAC)以及是否具备必需的PCS功能,或收发器是否需要这些功能。

图26从图26可以看出,千兆以太网协议与10/100Mb/s以太网协议的差别仅仅在于物理层。

图中的PHY表示实现物理层协议的芯片;协调子层(Reconciliation sublayer)用于实现指令转换;MII(介质无关接口)/GMII(吉比特介质无关接口)是物理层芯片与实现上层协议的芯片的接口;MDI(介质相关接口)是物理层芯片与物理介质的接口;PCS、PMA和PMD则分别表示实现物理层协议的各子层。

在实际应用系统中,这些子层的操作细节将全部由PHY芯片实现,只需对MII和MDI接口进行设计与操作即可。

吉比特以太网的物理层接口标准主要有四种:GMII、RGMII(Reduced GMII)、TBI(Ten-Bit Interface)和RTBI(Reduced TBI)。

GMII是标准的吉比特以太网接口,它位于MAC层与物理层之间。

对于TBI接口,图26中PCS子层的功能将由MAC层芯片实现,在降低PHY芯片复杂度的同时,控制线也比GMII接口少。

POE以太网供电基础知识

POE以太网供电基础知识

什么是POE?能不能用不带POE功能的变压器?请问大侠两以太网供电(POE) 概述POE (Power Over Ethernet)指的是在现有的以太网Cat.5布线基础架构不作做何改动的情况下,在为一些基于IP的终端(如IP电话机、无线局域网接入点AP、网络摄像机等)传输数据信号的同时,还能为此类设备提供直流供电的技术。

POE技术能在确保现有结构化布线安全的同时保证现有网络的正常运作,最大限度地降低成本。

POE也被称为基于局域网的供电系统(POL, Power over LAN )或有源以太网( Active Ethernet),有时也被简称为以太网供电,这是利用现存标准以太网传输电缆的同时传送数据和电功率的最新标准规范,并保持了与现存以太网系统和用户的兼容性。

IEEE 802.3af标准是基于以太网供电系统POE的新标准,它在IEEE 802.3的基础上增加了通过网线直接供电的相关标准,是现有以太网标准的扩展,也是第一个关于电源分配的国际标准。

IEEE在1999年开始制定该标准,最早参与的厂商有3Com, Intel, PowerDsine, Nortel, Mitel和National Semiconductor。

但是,该标准的缺点一直制约着市场的扩大。

直到2003年6月,IEEE批准了802. 3af标准,它明确规定了远程系统中的电力检测和控制事项,并对路由器、交换机和集线器通过以太网电缆向IP电话、安全系统以及无线LAN接入点等设备供电的方式进行了规定。

IEEE 802.3af的发展包含了许多公司专家的努力,这也使得该标准可以在各方面得到检验。

一个典型的以太网供电系统如图1所示。

在配线柜里保留以太网交换机设备,用一个带电源供电集线器(Midspan HUB)给局域网的双绞线提供电源。

在双绞线的末端,该电源用来驱动电话、无线接入点、相机和其他设备。

为避免断电,可以选用一个UPS。

图1 一个典型的以太网供电系统POE的关键技术1、POE的系统构成及供电特性参数一个完整的POE系统包括供电端设备(PSE, Power Sourcing Equipment)和受电端设备(PD, Power Device)两部分。

以太网基础知识

以太网基础知识

以太网是当今现有局域网采用的最通用的通信协议标准,组建于七十年代早期。

Ethernet(以太网)是一种传输速率为10Mbps的常用局域网(LAN)标准。

在以太网中,所有计算机被连接一条同轴电缆上,采用具有冲突检测的载波感应多处访问(CSMA/CD)方法,采用竞争机制和总线拓朴结构。

基本上,以太网由共享传输媒体,如双绞线电缆或同轴电缆和多端口集线器、网桥或交换机构成。

在星型或总线型配置结构中,集线器/交换机/网桥通过电缆使得计算机、打印机和工作站彼此之间相互连接。

以太网具有的一般特征概述如下:共享媒体:所有网络设备依次使用同一通信媒体。

广播域:需要传输的帧被发送到所有节点,但只有寻址到的节点才会接收到帧。

CSMA/CD:以太网中利用载波监听多路访问/冲突检测方法(Carrier Sense Multiple Access/Collision Detection)以防止 twp 或更多节点同时发送。

MAC 地址:媒体访问控制层的所有 Ethernet 网络接口卡(NIC)都采用48位网络地址。

这种地址全球唯一。

Ethernet 基本网络组成:共享媒体和电缆:10BaseT(双绞线),10Base-2(同轴细缆),10Base-5(同轴粗缆)。

转发器或集线器:集线器或转发器是用来接收网络设备上的大量以太网连接的一类设备。

通过某个连接的接收双方获得的数据被重新使用并发送到传输双方中所有连接设备上,以获得传输型设备。

网桥:网桥属于第二层设备,负责将网络划分为独立的冲突域获分段,达到能在同一个域/分段中维持广播及共享的目标。

网桥中包括一份涵盖所有分段和转发帧的表格,以确保分段内及其周围的通信行为正常进行。

交换机:交换机,与网桥相同,也属于第二层设备,且是一种多端口设备。

交换机所支持的功能类似于网桥,但它比网桥更具有的优势是,它可以临时将任意两个端口连接在一起。

交换机包括一个交换矩阵,通过它可以迅速连接端口或解除端口连接。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
·交换机依据帧头的信息进行转发,因此说交换机是工作在数据链路层的网络设备
△ 交换机的分类:
依照交换机处理帧的不同的操作模式,主要可分为两类。
存储转发:交换机在转发之前必须接收整个帧,并进行检错,如无错误再将这一帧发向目的地址。帧通过交换机的转发时延随帧长度的不同而变化。
直通式:交换机只要检查到帧头中所包含的目的地址就立即转发该帧,而无需等待帧全部的被接收,也不进行错误校验。由于以太网帧头的长度总是固定的,因此帧通过交换机的转发时延也保持不变。
集线器的工作特点:
集线器多用于小规模的以太网,由于集线器一般使用外接电源(有源),对其接收的信号有放大处理。在某些场合,集线器也被称为“多端口中继器”。
集线器同中继器一样都是工作在物理层的网络设备。
共享式以太网存在的弊端:由于所有的节点都接在同一冲突域中,不管一个帧从哪里来或到哪里去,所有的节点都能接受到这个帧。随着节点的增加,大量的冲突将导致网络性能急剧下降。而且集线器同时只能传输一个数据帧,这意味着集线器所 有端口都要共享同一带宽。
△ 交换式以太网
交换式结构:
在交换式以太网中,交换机根据收到的数据帧中的MAC地址决定数据帧应发向交换机的哪个端口。因为端口间的帧传输彼此屏蔽,因此节点就不担心自己发送的帧在通过交换机时是否会与其他节点发送的帧产生冲突。
为什么要用交换式网络替代共享式网络:
·减少冲突:交换机将冲突隔绝在每一个端口(每个端口都是一个冲突域),避免了冲突的扩散。
△ 网桥
网桥概述:
依据帧地址进行转发的二层网络设备,可将数个局域网网段连接在一起。网桥可连接相同介质的网段也可访问不同介质的网段。网桥的主要作用是分割和减少冲突。它的工作原理同交换机类似,也是通过MAC地址表进行转发。因此,网桥同交换机没有本质的区别。在某些情况下,我们可以认为网桥就是交换机。
监听:不转发,检测BPDU,(临时状态)。
学习:不转发,学习MAC地址表(临时状态)。
转发:端口能转送和接受数据。
小知识:实际上,在真正使用交换机时还可能出现一种特殊的端口状态-Disable状态。这是由于端口故障或由于错误的交换机配置而导致数据冲突造成的死锁状态。如果并非是端口故障的原因,我们可以通过交换机重启来解决这一问题。
2、若没有帧听到任何信号,就传输数据
3、传输的时候继续帧听,如发现冲突则执行退避算法,随机等待一段时间后,重新执行步骤1(当冲突发生时,涉及冲突的计算机会发送一个拥塞序列,以警告所有的节点)
4、若未发现冲突则发送成功,计算机会返回到帧听信道状态。
注意:每台计算机一次只允许发送一个包,所有计算机在试图再一次发送数据之前,必须在最近一次发送后等待9.6微秒(以10Mbps运行)。
生成树的重计算:
当网络的拓扑结构发生改变时,生成树协议重新计算,以生成新的生成树结构。当所有交换机的端口状态变为转发或阻塞时,意味着重新计算完毕。这种状态称为会聚(Convergence)。
注意:在网络拓扑结构改变期间,设备直到生成树会聚才能进行通信,这可能会对 某些应用产生影响,因此一般认为可以使生成树运行良好的交换网络,不应该超过七层。此外可以通过一些特殊的交换机技术加快会聚的时间。
冲突(Collision):在以太网中,当两个数据帧同时被发到物理传输介质上,并完全或部分重叠时,就发生了数据冲突。当冲突发生时,物理网段上的数据都不再有效。
冲突域:在同一个冲突域中的每一个节点都能收到所有被发送的帧。
影响冲突产生的因素:冲突是影响以太网性能的重要因素,由于冲突的存在使得传统的以太网在负载超过40%时,效率将明显下降。产生冲突的原因有很多,如同一冲突域中节点的数量越多,产生冲突的可能性就越大。此外,诸如数据分组的长度(以太网的最大帧长度为1518字节)、网络的直径等因素也会影响冲突的产生。因此,当以太网的规模增大时,就必须采取措施来控制冲突的扩散。通常的办法是使用网桥和交换机将网络分段,将一个大的冲突域划分为若干小冲突域。
星型:管理方便、容易扩展、需要专用的网络设备作为网络的核心节点、需要更多的网线、对核心设的可靠性要求高。采用专用的网络设备(如集线器或交换机)作为核心节点,通过双绞线将局域网中的各台主机连接到核心节点上,这就形成了星型结构。星型网络虽然需要的线缆比总线型多,但布线和连接器比总线型的要便宜。此外,星型拓扑可以通过级联的方式很方便的将网络扩展到很大的规模,因此得到了广泛的应用,被绝大部分的以太网所采用。
△ 帧结构
以太网帧的概述:
以太网的帧是数据链路层的封装,网络层的数据包被加上帧头和帧尾成为可以被数据链路层识别的数据帧(成帧)。虽然帧头和帧尾所用的字节数是固定不变的,但依被封装的数据包大小的不同,以太网的长度也在变化,其范围是64~1518字节(不算8字节的前导字)。
△ 冲突/冲突域
△ 以太网的工作原理
以太网采用带冲突检测的载波帧听多路访问(CSMA/CD)机制。以太网中节点都可以看到在网络中发送的所有信息,因此,我们说以太网是一种广播网络。以太网的工作过程如下:
当以太网中的一台主机要传输数据时,它将按如下步骤进行:
1、帧听信道上收否有信号在传输。如果有的话,表明信道处于忙状态,就继续帧听,直到信道空闲为止。
以太网是当今现有局域网采用的最通用的通信协议标准。该标准定义了在局域网(LAN)中采用的电缆类型和信号处理方法。以太网在互联设备之间以10~100Mbps的速率传送信息包,双绞线电缆10 Base T以太网由于其低成本、高可靠性以及10Mbps的速率而成为应用最为广泛的以太网技术。直扩的无线以太网可达11Mbps,许多制造供应商提供的产品都能采用通用的软件协议进行通信,开放性最好。
集线器的工作原理:
集线器并不处理或检查其上的通信量,仅通过将一个端口接收的信号重复分发给其他端口来扩展物理介质。所有连接到集线器的设备共享同一介质,其结果是它们也共享同一冲突域、广播和带宽。因此集线器和它所连接的设备组成了一个单一的冲突域。如果一个节点发出一个广播信息,集线器会将这个广播传播给所有同它相连 的节点,因此它也是一个单一的广播域。
△ 路由器的简单介绍
什么是路由器:
路由器是使用一种或者更多度量因素的网络设备,它决定网络通信能够通过的最佳路径。路由器依据网络层信息将数据包从一个网络前向转发到另一个网络。
△ 广播/广播域
广播:在网络传输中,向所有连通的节点发送消息称为广播。
广播域:网络中能接收任何一设备发出的广播帧的所有设备的集合。
广播和广播域的区别:广播网络指网络中所有的节点都可以收到传输的数据帧,不管该帧是否是发给这些节点。非目的节点的主机虽然收到该数据帧但不做处理。
广播是指由广播帧构成的数据流量,这些广播帧以广播地址(地址的每一位都为“1”)为目的地址,告之网络中所有的计算机接收此帧并处理它。
·消除回路:当交换机包括一个冗余回路时,以太网交换机通过生成树协议避免回路的产生,同时允许存在后备路径。
交换机的工作特性:
·接的设备仍然在同一个广播域内,也就是说,交换机不隔绝广播(唯一的例外是在配有VLAN的环境中)。
注意:
直通式的转发速度大大快于存储转发模式,但可靠性要差一些,因为可能转发冲突 帧或带CRC错误的帧。
△ 生成树协议
消除回路:
在由交换机构成的交换网络中通常设计有冗余链路和设备。这种设计的目的是防止一个点的失败导致整个网络功能的丢失。虽然冗余设计可能消除的单点失败问题,但也导致了交换回路的产生,它会导致以下问题。
·提升带宽:接入交换机的每个节点都可以使用全部的带宽,而不是各个节点共享带宽。
△ 以太网交换机
交换机的工作原理:
·交换机根据收到数据帧中的源MAC地址建立该地址同交换机端口的映射,并将其写入MAC地址表中。
·交换机将数据帧中的目的MAC地址同已建立的MAC地址表进行比较,以决定由哪个端口进行转发。
△ 共享式以太网
共享式以太网的典型代表是使用10Base2/10Base5的总线型网络和以集线器(集线 器)为核心的星型网络。在使用集线器的以太网中,集线器将很多以太网设备集中到一台中心设备上,这些设备都连接到集线器中的同一物理总线结构中。从本质上讲,以集线器为核心的以太网同原先的总线型以太网无根本区别。
·广播风暴
·同一帧的多份拷贝
·不稳定的MAC地址表
因此,在交换网络中必须有一个机制来阻止回路,而生成树协议(Spanning Tree Protocol)的作用正在于此。
生成树的工作原理:
生成树协议的国际标准是IEEE802.1b。运行生成树算法的网桥/交换机在规定的间隔(默认2秒)内通过网桥协议数据单元(BPDU)的组播帧与其他交换机交换配置信息,其工作的过程如下:
以太网
以太网。指的是由Xerox公司创建并由Xerox,Intel和DEC公司联合开发的基带局域网规范。以太网络使用CSMA/CD(载波监听多路访问及冲突检测技术)技术,并以10M/S的速率运行在多种类型的电缆上。以太网与IEEE802·3系列标准相类似。
它不是一种具体的网络,是一种技术规范。
·通过比较网桥优先级选取根网桥(给定广播域内只有一个根网桥)。
·其余的非根网桥只有一个通向根交换机的端口称为根端口。
·每个网段只有一个转发端口。
·根交换机所有的连接端口均为转发端口。
注意:生成树协议在交换机上一般是默认开启的,不经人工干预即可正常工作。但这种自动生成的方案可能导致数据传输的路径并非最优化。因此,可以通过人工设置网桥优先级的方法影响生成树的生成结果。
·如数据帧中的目的MAC地址不在MAC地址表中,则向所有端口转发。这一过程称之为泛洪(flood)。
·广播帧和组播帧向所有的端口转发。
交换机的三个主要功能:
·学习:以太网交换机了解每一端口相连设备的MAC地址,并将地址同相应的端口映射起来存放在交换机缓存中的MAC地址表中。
相关文档
最新文档