高中数学幂函数、指数函数与对数函数(经典练习题)
湘教版高中数学必修第一册课后习题 第4章 幂函数、指数函数和对数函数 4.1.1--4.1.2
第4章 幂函数、指数函数和对数函数4.1 实数指数幂和幂函数4.1.1 有理数指数幂 4.1.2 无理数指数幂必备知识基础练1.(天津滨海新区高一期中)下列运算正确的是( ) A.a 2·a 3=a 6 B.(3a)3=9a 3 C.√a 88=aD.(-2a 2)3=-8a 62.若a<0,则化简a √-1a得( ) A.-√-a B.√-a C.-√aD.√a3.(福建福州三中高一期中)已知x 2+x -2=3,则x+x -1的值为( ) A.√5B.1C.±√5D.±14.(112)0-(1-0.5-2)÷(278)23的值为( )A.-13B.13C.43D.735.若√4a 2-4a +1=1-2a,则a 的取值范围是 .关键能力提升练6.(河北张家口张垣联盟高一联考)将根式√a √a √aa(a>0)化简为指数式是( ) A.a -18B.a 18C.a -78D.a -347.已知x 2+x -2=2√2,且x>1,则x 2-x -2的值为( ) A.2或-2 B.-2 C.√6D.28.(多选题)下列根式与分数指数幂的互化正确的是( ) A.-√x =(-x )12B.√y 26=y 12(y<0)C.x-13=√x3(x≠0)D.[√(-x )23]34=x 12(x>0)9.若a>0,b>0,则化简√b 3a√a2b6的结果为 .10.化简:(2-a)[(a-2)-2(-a )12]12= . 11.化简求值:(1)0.125-13−(98)0+[(-2)2]32+(√2×√33)6;(2)(5116)0.5+√(-10)2-2√3×√276-4π0÷(34)-1.学科素养创新练12.(黑龙江大庆实验中学高一期末)已知实数x 满足3×16x +2×81x =5×36x ,则x 的值为 . 答案:1.D a 2·a 3=a 5,故A 错误;(3a)3=27a 3,故B 错误;√a 88=|a|={a ,a ≥0,-a ,a <0,故C错误;(-2a 2)3=-8a 6,故D 正确.故选D.2.A ∵a<0,∴a √-1a=-√a 2×√-1a=-√a 2(-1a)=-√-a .故选A.3.C 由(x+x -1)2=x 2+x -2+2=5,可得x+x -1=±√5.故选C.4.D 原式=1-(1-22)÷(32)2=1-(-3)×49=73.故选D.5.(-∞,12] ∵√4a 2-4a +1=√(2a -1)2=|2a-1|=1-2a,∴2a-1≤0,即a≤12.6.A√a √a √aa=a 12+14+18-1=a -18,故选A.7.D (方法1)∵x>1,∴x 2>1. 由x -2+x 2=2√2,可得x 2=√2+1, ∴x 2-x -2=√2+1-√2+1=√2+1-(√2-1)=2.(方法2)令x 2-x -2=t,① ∵x -2+x 2=2√2,②∴由①2-②2,得t 2=4.∵x>1,∴x 2>x -2, ∴t>0,于是t=2,即x 2-x -2=2,故选D. 8.CD 对于选项A,因为-√x =-x 12(x≥0), 而(-x )12=√-x (x≤0),所以A 错误;对于选项B,因为√y 26=-y 13(y<0),所以B 错误; 对于选项C,x-13=√x3(x≠0),所以C 正确;对于选项D,[√(-x )23]34=x 2×13×34=x 12(x>0),所以D 正确.9.1 √b 3a√a 2b 6=√b 3a(a 2b 6)12=√b 3a ab 3=1. 10.(-a )14由已知条件知a≤0, 则(a-2)-2=(2-a)-2,所以原式=(2-a)[(2-a)-2·(-a )12]12=(2-a)(2-a)-1(-a )14=(-a )14.11.解(1)根据指数幂与根式的运算,化简可得0.125-13−(98)0+[(-2)2]32+(√2×√33)6=[(2)-3]-13−(98)0+(22)32+(212×313)6=2-1+8+(212)6(313)6=2-1+8+8×9 =81.(2)由分数指数幂及根式的运算,化简可得(5116)0.5+√(-10)2-2√3×√276-4π0÷(34)-1=[(32)4]0.5+10-2√3×(33)16-4×34=94+10-2√3×√3-3 =94+10-6-3=134.12.0或12因为3×16x +2×81x =5×36x ,所以3×24x +2×34x =5×(2×3)2x ,则3×24x +2×34x =5×22x ×32x ,所以3×24x +2×34x -5×22x ×32x =0,即(3×22x -2×32x )(22x -32x )=0,所以3×22x -2×32x =0,或22x -32x =0,解得x=12或x=0.。
高中数学考点6指数函数、对数函数、幂函数(含近年年高考试题)新人教A版[1]
考点6 指数函数、对数函数、幂函数一、选择题1.(2016·全国卷Ⅰ高考理科·T8)若a〉b〉1,0〈c〈1,则()A。
a c〈b c B。
ab c<ba cC.alog b c〈blog a cD.log a c〈log b c【解析】选C。
对A:由于0<c<1,所以函数y=x c在R上单调递增,因此a>b〉1⇔a c>b c,A错误.对B:由于—1〈c-1<0,所以函数y= 1c x-在(1,+∞)上单调递减,所以a>b>1⇔1c a-<1c b-⇔ba c〈ab c,B错误。
对C:要比较alog b c和blog a c,只需比较alnclnb 和blnclna,只需比较lncblnb和lncalna,只需比较blnb和alna,构造函数f(x)=xlnx(x>1),则f'(x)=lnx+1>1>0,f(x)在(1,+∞)上单调递增,因此f(a)〉f(b)>0⇔alna〉blnb>0⇔1alna <1 blnb.又由0<c〈1得lnc<0,所以lncalna >lncblnb⇔blog a c>alog b c,C正确。
对D:要比较log a c和log b c,只需比较lnclna 和lnclnb,而函数y=lnx在(1,+∞)上单调递增,故a>b〉1⇔lna>lnb>0⇔1lna <1lnb。
又由0〈c<1得lnc<0,所以lnclna 〉lnclnb⇔log a c>log b c,D错误.2。
(2016·全国卷Ⅰ高考文科·T8)若a>b 〉0,0<c 〈1,则 ( ) A.log a c<log b c B.log c a 〈log c bC 。
a c<b cD.c a>c b【解析】选B 。
专题 幂、指数、对数函数(七大题型)(解析版)
专题幂、指数、对数函数(七大题型)目录:01幂函数的相关概念及图像02幂函数的性质及应用03指数、对数式的运算04指数、对数函数的图像对比分析05比较函数值或参数值的大小06指数、对数(函数)的实际应用07指数、对数函数的图像与性质综合及应用01幂函数的相关概念及图像1(2024高三·全国·专题练习)若幂函数y=f x 的图象经过点2,2,则f16=()A.2B.2C.4D.12【答案】C【分析】利用已知条件求得幂函数解析式,然后代入求解即可.【解析】设幂函数y=f x =xα,因为f x 的图象经过点2,2,所以2α=2,解得α=1 2,所以f x =x 12,所以f16=1612=4.故选:C2(2024高三·全国·专题练习)结合图中的五个函数图象回答问题:(1)哪几个是偶函数,哪几个是奇函数?(2)写出每个函数的定义域、值域;(3)写出每个函数的单调区间;(4)从图中你发现了什么?【答案】(1)答案见解析;(2)答案见解析;(3)答案见解析;(4)答案见解析.【分析】根据已知函数图象,数形结合即可求得结果.【解析】(1)数形结合可知,y =x 2的图象关于y 轴对称,故其为偶函数;y =x ,y =x 3,y =1x的图象关于原点对称,故都为奇函数.(2)数形结合可知:y =x 的定义域是0,+∞ ,值域为0,+∞ ;y =x ,y =x 3的定义域都是R ,值域也是R ;y =1x的定义域为-∞,0 ∪0,+∞ ,值域也为-∞,0 ∪0,+∞ ;y =x 2的定义域为R ,值域为0,+∞ .(3)数形结合可知:y =x 的单调增区间是:0,+∞ ,无单调减区间;y =x ,y =x 3的单调增区间是:R ,无单调减区间;y =1x的单调减区间是:-∞,0 和0,+∞ ,无单调增区间;y =x 2的单调减区间是-∞,0 ,单调增区间是0,+∞ .(4)数形结合可知:幂函数均恒过1,1 点;幂函数在第一象限一定有图象,在第四象限一定没有图象.对幂函数y =x α,当α>0,其一定在0,+∞ 是单调增函数;当α<0,在0,+∞ 是单调减函数.3(2022高一上·全国·专题练习)如图所示是函数y =x mn(m 、n ∈N *且互质)的图象,则()A.m ,n 是奇数且mn<1 B.m 是偶数,n 是奇数,且m n<1C.m 是偶数,n 是奇数,且mn>1 D.m ,n 是偶数,且mn>1【答案】B【分析】根据图象得到函数的奇偶性及0,+∞ 上单调递增,结合m 、n ∈N *且互质,从而得到答案.【解析】由图象可看出y =x mn为偶函数,且在0,+∞ 上单调递增,故m n ∈0,1 且m 为偶数,又m 、n ∈N *且互质,故n 是奇数.故选:B02幂函数的性质及应用4(2023高三上·江苏徐州·学业考试)已知幂函数f x =m 2+2m -2 x m 在0,+∞ 上单调递减,则实数m 的值为()A.-3 B.-1C.3D.1【答案】A【分析】根据幂函数的定义,求得m =-3或m =1,结合幂函数的单调性,即可求解.【解析】由函数f x =m 2+2m -2 x m 为幂函数,可得m 2+2m -2=1,即m 2+2m -3=0,解得m =-3或m =1,当m =-3时,函数f x =x -3在0,+∞ 上单调递减,符合题意;当m =1时,函数f x =x 在0,+∞ 上单调递增,不符合题意.故选:A .5(23-24高三上·安徽·阶段练习)已知幂函数f x =m 2-5m +5 x m -2是R 上的偶函数,且函数g x =f x -2a -6 x 在区间1,3 上单调递增,则实数a 的取值范围是()A.-∞,4B.-∞,4C.6,+∞D.-∞,4 ∪6,+∞【答案】B【分析】根据幂函数的定义与奇偶性求出m 的值,可得出函数f x 的解析式,再利用二次函数的单调性可得出关于实数a 的不等式,即可解得实数a 的取值范围.【解析】因为幂函数f x =m 2-5m +5 x m -2是R 上的偶函数,则m 2-5m +5=1,解得m =1或m =4,当m =1时,f x =x -1,该函数是定义域为x x ≠0 的奇函数,不合乎题意;当m =4时,f x =x 2,该函数是定义域为R 的偶函数,合乎题意.所以,f x =x 2,则g x =x 2-2a -6 x ,其对称轴方程为x =a -3,因为g x 在区间1,3 上单调递增,则a -3≤1,解得a ≤4.故选:B .6(23-24高三上·上海静安·阶段练习)已知a ∈-1,2,12,3,13,若f x =x a为奇函数,且在0,+∞ 上单调递增,则实数a 的取值个数为()A.1个 B.2个C.3个D.4个【答案】B【分析】a =-1时,不满足单调性,a =2或a =12时,不满足奇偶性,当a =3或a =13时,满足要求,得到答案.【解析】当a =-1时,f x =x -1在0,+∞ 上单调递减,不合要求,当a =2时,f -x =-x 2=x 2=f x ,故f x =x 2为偶函数,不合要求,当a =12时,f x =x 12的定义域为0,+∞ ,不是奇函数,不合要求,当a =3时,f -x =-x 3=-x 3=-f x ,f x =x 3为奇函数,且f x =x 3在0,+∞ 上单调递增,满足要求,当a =13时,f -x =-x 13=-x 13=-f x ,故f x =x 13为奇函数,且f x =x 13在0,+∞ 上单调递增,满足要求.故选:B7(22-23高三下·上海·阶段练习)已知函数f x =x 13,则关于t 的表达式f t 2-2t +f 2t 2-1 <0的解集为.【答案】-13,1 【分析】利用幂函数的性质及函数的奇偶性和单调性即可求解.【解析】由题意可知,f x 的定义域为-∞,+∞ ,所以f -x =-x 13=-x 13=-f x ,所以函数f x 是奇函数,由幂函数的性质知,函数f x =x 13在函数-∞,+∞ 上单调递增,由f t 2-2t +f 2t 2-1 <0,得f t 2-2t <-f 2t 2-1 ,即f t 2-2t <f 1-2t 2 ,所以t 2-2t <1-2t 2,即3t 2-2t -1<0,解得-13<t <1,所以关于t 的表达式f t 2-2t +f 2t 2-1 <0的解集为-13,1 .故答案为:-13,1 .8(23-24高三上·河北邢台·期中)已知函数f x =m 2-m -1 x m 2+m -3是幂函数,且在0,+∞ 上单调递减,若a ,b ∈R ,且a <0<b ,a <b ,则f a +f b 的值()A.恒大于0B.恒小于0C.等于0D.无法判断【答案】B【分析】由幂函数的定义与性质求得函数解析式,确定其是奇函数,然后利用单调性与奇偶性可判断.【解析】由m 2-m -1=1得m =2或m =-1,m =2时,f (x )=x 3在R 上是增函数,不合题意,m =-1时,f (x )=x -3,在(0,+∞)上是减函数,满足题意,所以f (x )=x -3,a <0<b ,a <b ,则b >-a >0,f (-a )>f (b ),f (x )=-x 3是奇函数,因此f (-a )=-f (a ),所以-f (a )>f (b ),即f (a )+f (b )<0,故选:B .9(2023·江苏南京·二模)幂函数f x =x a a ∈R 满足:任意x ∈R 有f -x =f x ,且f -1 <f 2 <2,请写出符合上述条件的一个函数f x =.【答案】x 23(答案不唯一)【分析】取f x =x 23,再验证奇偶性和函数值即可.【解析】取f x =x 23,则定义域为R ,且f -x =-x 23=x 23=f x ,f -1 =1,f 2 =223=34,满足f -1 <f 2 <2.故答案为:x 23.10(2022高三·全国·专题练习)已知函数f (x )=x 2,g (x )=12x-m(1)当x ∈[-1,3]时,求f (x )的值域;(2)若对∀x ∈0,2 ,g (x )≥1成立,求实数m 的取值范围;(3)若对∀x 1∈0,2 ,∃x 2∈[-1,3],使得g (x 1)≤f (x 2)成立,求实数m 的取值范围.【答案】(1)[0,9];(2)m ≤-34;(3)m ≥-8.【分析】(1)由二次函数的性质得出值域;(2)将问题转化为求g (x )在0,2 的最小值大于或等于1,再根据指数函数的单调性得出实数m 的取值范围;(3)将问题转化为g (x )在0,2 的最大值小于或等于f (x )在[-1,3]上的最大值9,从而得出实数m 的取值范围.【解析】(1)当x ∈[-1,3]时,函数f (x )=x 2∈[0,9]∴f (x )的值域0,9(2)对∀x ∈0,2 ,g (x )≥1成立,等价于g (x )在0,2 的最小值大于或等于1.而g (x )在0,2 上单调递减,所以12 2-m ≥1,即m ≤-34(3)对∀x 1∈0,2 ,∃x 2∈[-1,3],使得g (x 1)≤f (x 2)成立,等价于g (x )在0,2 的最大值小于或等于f (x )在[-1,3]上的最大值9由1-m ≤9,∴m ≥-803指数、对数式的运算11(23-24高三上·山东泰安·阶段练习)(1)计算14-124ab -1 30.1-1⋅a 3⋅b -312的值;.(2)log 37+log 73 2-log 949log 73-log 73 2; (3)log 39+12lg25+lg2-log 49×log 38+2log 23-1+ln e 【答案】(1)85;(2)2;(3)4【分析】根据指数幂运算公式和对数运算公式计算即可.【解析】(1)原式=412⋅4ab -13210⋅a 32b -32=2⋅8a 32b-3210⋅a 32b-32=85;(2)原式=log 37+log 73 2-log 73 2-log 3272×log 37=log 37×log 37+2log 73 -log 37×log 37=log 37×2log 73=2;(3)原式=log 31232+lg5+lg2-log 2232×log 323+2log 23×2-1+ln e12=4+1-3+32+12=4.12(23-24高一上·湖北恩施·期末)(1)计算:lg 12-lg 58+lg12.5-log 89⋅log 278.(2)已知a 12+a -12=3,求a +a -1+2a 2+a -2-2的值.【答案】(1)13;(2)15【分析】(1)根据对数的运算法则和运算性质,即可求解;(2)根据实数指数幂的运算性质,准确运算,即可求解.【解析】(1)由对数的运算公式,可得原式=-lg2-lg5-3lg2 +3lg5-1-23log 32×log 23=13.(2)因为a 12+a -12=3,所以a +a -1+2=9,可得a +a -1=7,所以a 2+a -2+2=49,可得a 2+a -2=47,所以a +a -1+2a 2+a -2-2=7+247-2=15.04指数、对数函数的图像对比分析13(2024·四川·模拟预测)已知函数y =x a ,y =b x ,y =log c x 在同一平面直角坐标系的图象如图所示,则()A.log 12c <b a <sin bB.log 12c <sin b <b aC.sin b <b a <log 12cD.sin b <log 12c <b a【答案】B【分析】根据幂函数,指数与对数函数的性质可得a ,b ,c 的取值范围,进而根据指对数与三角函数的性质判断即可.【解析】因为y =x a 图象过1,1 ,故由图象可得a <0,又y =b x 图象过0,1 ,故由图象可得0<b <1,又y =log c x 图象过1,0 ,故由图象可得c >1.故log 12c <log 121=0,0<sin b <1,b a >b 0=1,故log 12c <sin b <b a .故选:B14(2024高三·全国·专题练习)在同一平面直角坐标系中,函数y =1a x,y =log a x +12 (a >0,且a ≠1)的图象可能是()A. B.C. D.【答案】D 【解析】略15(2024·陕西·模拟预测)已知函数f x 的部分图象如图所示,则f x 的解析式可能为()A.f x =e x -e -xB.f x =1-2e x+1C.f x =x xD.f x =x ln x 2+2【答案】D【分析】结合指数函数的图象与性质即可判断AB 选项错误,对C 代入x =2判断C 错误,则可得到D 正确.【解析】根据函数f (x )的图象,知f (1)≈1,而对A 选项f 1 =e -e -1>2排除A ;对B 选项f x =1-2e x +1,因为e x +1>1,则2e x +1∈0,2 ,则f x =1-2e x +1∈-1,1 ,但图象中函数值可以大于1,排除B ;根据C 选项的解析式,f (2)=22≈2.8,而根据函数f (x )的图象,知f (2)≈1,排除C . 故选:D .16(23-24高三上·山东潍坊·期中)已知指数函数y =a x ,对数函数y =log b x 的图象如图所示,则下列关系成立的是()A.0<a <b <1B.0<a <1<bC.0<b <1<aD.a <0<1<b【答案】B【分析】根据题意,由指数函数以及对数函数的单调性即可得到a ,b 的范围,从而得到结果.【解析】由图象可得,指数函数y =a x 为减函数,对数函数y =log b x 为增函数,所以0<a <1,b >1,即0<a <1<b .故选:B17(23-24高三上·黑龙江哈尔滨·阶段练习)函数f (x )=x 22x -2-x 的图象大致为()A. B.C. D.【答案】A【分析】利用函数的性质和特值法对不符合题意的选项加以排除,即可得出答案.【解析】因为2x -2-x ≠0,所以x ≠0,定义域为-∞,0 ∪0,+∞ ;因为f (x )=x 22x -2-x ,所以f -x =x 22-x -2x ,故f x =-f -x ,所以f x 为奇函数,排除B ,当x 趋向于正无穷大时,x 2、2x -2-x 均趋向于正无穷大,但随x 变大,2x -2-x 的增速比x 2快,所以f x 趋向于0,排除D ,由f 1 =23,f 12 =24,则f 1 >f 12,排除C .故选:A .05比较函数值或参数值的大小18(2024·全国·模拟预测)已知a =12a,12b=log a b ,a c=log12c ,则实数a ,b ,c 的大小关系为()A.a <b <cB.a <c <bC.c <b <aD.c <a <b【答案】D【分析】由函数单调性,零点存在性定理及画出函数图象,得到a ,b ,c ∈0,1 ,得到log a b <1=log a a ,求出b>a ,根据单调性得到c =12 a c<12a=a ,从而得到答案.【解析】令f x =12x-x ,其在R 上单调递减,又f 0 =1>0,f 1 =12-1=-12<0,由零点存在性定理得a ∈0,1 ,则y =log a x 在0,+∞ 上单调递减,画出y 1=12x与y =log a x 的函数图象,可以得到b ∈0,1 ,又y 2=a x 在R 上单调递减,画出y 2=a x 与y 3=log 12x 的函数图象,可以看出c∈0,1,因为12b<12 0=1,故log a b<1=log a a,故b>a,因为a,c∈0,1,故a c>a1=a,由a c=log12c得,c=12a c<12 a=a.综上,c<a<b.故选:D.【点睛】指数和对数比较大小的方法有:(1)画出函数图象,数形结合得到大小关系;(2)由函数单调性,可选取适当的“媒介”(通常以“0”或“1”为媒介),分别与要比较的数比较大小,从而间接地得出要比较的数的大小关系;(3)作差(商)比较法是比较两个数值大小的常用方法,即对两值作差(商),看其值与0(1)的关系,从而确定所比两值的大小关系.19(2023·江西赣州·二模)若log3x=log4y=log5z<-1,则()A.3x<4y<5zB.4y<3x<5zC.4y<5z<3xD.5z<4y<3x【答案】D【分析】设log3x=log4y=log5z=m<-1,得到x=3m,y=4m,z=5m,画出图象,数形结合得到答案.【解析】令log3x=log4y=log5z=m<-1,则x=3m,y=4m,z=5m,3x=3m+1,4y=4m+1,5z=5m+1,其中m+1<0,在同一坐标系内画出y=3x,y=4x,y=5x,故5z<4y<3x故选:D20(2024高三下·全国·专题练习)已知函数f x =e x,g x =ln x,正实数a,b,c满足f a =ga ,fb g b =g a ,gc +f g a c=0,则()A.b<a<cB.c<a<bC.a<c<bD.c<b<a【答案】B【分析】由f a =g a 可得0<a <1,结合f b g b =g a 可判断b 的范围,再由g c +f g a c =0可得ln c +a c =0,结合e a =1a 可判断a ,c 大小关系,进而可得答案.【解析】由题得,g x =1x ,由f a =g a ,得e a =1a ,即1a>1,所以0<a <1.由f b g b =g a ,得e b ln b =ln a ,因为ln a <0,e b >0,所以ln b <0,又e b >1,所以ln a =e b ln b <ln b ,所以0<a <b <1.由g c +f g a c =0,得ln c +e ln a c=0,即ln c +a c =0.易知a c >0,所以ln c <0,所以0<c <1,故a <a c .又e a =1a,所以a =-ln a ,所以-ln c =a c >a =-ln a ,所以ln c <ln a ,所以c <a ,所以c <a <b .故选:B .【点睛】思路点睛:比较大小常用方法:(1)同构函数,利用单调性比较;(2)取中间值进行比较;(3)利用基本不等式比较大小;(4)利用作差法比较大小.21(2023·浙江绍兴·二模)已知f x 是定义域为R 的偶函数,且在(-∞,0)上单调递减,a =f ln2.04 ,b =f -1.04 ,c =f e 0.04 ,则()A.a <b <cB.a <c <bC.c <b <aD.c <a <b【答案】A【分析】令g x =e x -x -1,利用导数求得g x 在(0,1)单调递增,得到g x >g 0 =0,得到e 0.04>1.04,再由对数函数的性质,得到ln2.04<1.04<e 0.04,再由函数f x 的单调性与奇偶性f ln2.04 <f 1.04 <f e 0.04 ,即可求解.【解析】令g x =e x -x -1,x ∈(0,1),可得g x =e x -1>0,所以g x 在(0,1)单调递增,又由g 0 =0,所以g x >g 0 =0,即g 0.04 >0,可得e 0.04>0.04+1=1.04,又由ln2.04∈(0,1),所以ln2.04<1.04<e 0.04,因为f x 是定义域为R 的偶函数,且在(-∞,0)上单调递减,则f x 在(0,+∞)上单调递增,且b =f -1.04 =f (1.04),所以f ln2.04 <f 1.04 <f e 0.04 ,即f ln2.04 <f -1.04 <f e 0.04 ,所以a <b <c .故选:A .06指数、对数(函数)的实际应用22(2024·安徽合肥·二模)常用放射性物质质量衰减一半所用的时间来描述其衰减情况,这个时间被称做半衰期,记为T (单位:天).铅制容器中有甲、乙两种放射性物质,其半衰期分别为T 1,T 2.开始记录时,这两种物质的质量相等,512天后测量发现乙的质量为甲的质量的14,则T 1,T 2满足的关系式为()A.-2+512T1=512T2B.2+512T1=512T2C.-2+log2512T1=log2512T2D.2+log2512T1=log2512T2【答案】B【分析】设开始记录时,甲乙两种物质的质量均为1,可得512天后甲,乙的质量,根据题意列出等式即可得答案.【解析】设开始记录时,甲乙两种物质的质量均为1,则512天后,甲的质量为:1 2512T1,乙的质量为:12 512T2,由题意可得12512T2=14⋅12 512T1=12 2+512T1,所以2+512T1=512T2.故选:B.23(2024·黑龙江哈尔滨·一模)酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL血液中酒精含量达到20~79mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了0.6mg/mL.如果停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少经过几个小时才能驾驶?( )(结果取整数,参考数据:lg3≈0.48,lg7≈0.85)A.1B.2C.3D.4【答案】D【分析】设经过x个小时才能驾驶,则0.6×100×1-30%x<20,再根据指数函数的性质及对数的运算计算可得.【解析】设经过x个小时才能驾驶,则0.6×100×1-30%x<20即0.7x<1 3 .由于y=0.7x在定义域上单调递减,x>log0.713=lg13lg0.7=lg1-lg3lg7-1=-0.480.85-1=0.480.15=3.2.他至少经过4小时才能驾驶.故选:D.07指数、对数函数的图像与性质综合及应用24(2024·山东聊城·二模)已知函数f x 为R上的偶函数,且当x>0时,f x =log4x-1,则f-223=()A.-23B.-13C.13D.23【答案】A【分析】根据偶函数的定义可得f-22 3=f223 ,结合函数解析式和对数的运算性质即可求解.【解析】因为f(x)为偶函数,所以f(-x)=f(x),则f-22 3=f223 =log4223-1=log22223-1=log2213-1=13-1=-23.故选:A25(2023·江西南昌·三模)设函数f x =a x0<a<1,g x =log b x b>1,若存在实数m满足:①f (m )+g (m )=0;②f (n )-g (n )=0,③|m -n |≤1,则12m -n 的取值范围是()A.-12,-14B.-12,-3-54C.-34,-12D.-3+54,-12【答案】D【分析】由①f (m )+g (m )=0,②f (n )-g (n )=0解出0<m <1,n >1,解出12m -n <-12;结合③转化为线性规划问题解出z >-3+54.【解析】函数f x =a x 0<a <1 ,g x =log b x b >1 ,若存在实数m 满足:①f (m )+g (m )=0;②f (n )-g (n )=0,即a m =-log b m ,且a n =log b n ,则a n -a m =log b mn <0,则0<mn <1,且0<m <1,n >1,所以12m -n <-12,又因为③|m -n |≤1,则0<mn <1m -n ≤1 ,令z =12m -n ,不防设x =m ,y =n ,则转化为线性规划问题,在A 点处z 取最小值.由y =1xy =x +1 解得x =-1+52y =5+12,代入解得z >-3+54.故选:D .26(2022高三·全国·专题练习)已知函数f x =log a ax +9-3a (a >0且a ≠1).(1)若f x 在1,3 上单调递增,求实数a 的取值范围;(2)若f 3 >0且存在x 0∈3,+∞ ,使得f x 0 >2log a x 0成立,求a 的最小整数值.【答案】(1)1,92 (2)7【分析】(1)设g x =ax +9-3a ,得到g x 在1,3 上是增函数,且g 1 >0,即可求解;(2)由f 3 >0,的得到a >1,把不等式f x 0 >2log a x 0,转化为a >x 0+3,结合题意,即可求解.【解析】(1)解:由函数f x =log a ax +9-3a ,设g x =ax +9-3a ,由a >0且a ≠1,可得函数g x 在1,3 上是增函数,所以a >1,又由函数定义域可得g 1 =9-2a >0,解得a <92,所以实数a 的取值范围是1,92.(2)解:由f 3 =log a 9>0,可得a >1,又由f x 0 >2log a x 0,可得log a ax 0+9-3a >log a x 20,所以ax 0+9-3a >x 20,即a >x 0+3,因为存在x 0∈3,+∞ ,使得f x 0 >2log a x 0成立,可得a >6,所以实数a 的最小整数值是7.27(23-24高二下·湖南·阶段练习)已知函数f x =x 2+x ,-2≤x ≤14log 12x ,14<x ≤c ,若f (x )的值域是[-2,2],则c 的值为()A.2B.22C.4D.8【答案】C【分析】画出函数图像,由分段函数中定义域的范围分别求出值域的取值范围再结合二次函数和对数运算可得正确结果.【解析】当-2≤x ≤14时,f x =x 2+x =x +12 2-14∈-14,2,因为f x 的值域是-2,2 ,又f x =log 12x 在14,c上单调递减,所以log 12c =-2,∴c =4.故选:C .28(22-23高一上·辽宁本溪·期末)若不等式x -1 2<log a x (a >0,且a ≠1)在x ∈1,2 内恒成立,则实数a 的取值范围为()A.1,2B.1,2C.1,2D.2,2【答案】B【分析】分析出0<a <1时,不成立,当a >1时,画出f x =log a x ,g x =x -1 2的图象,数形结合得到实数a 的取值范围.【解析】若0<a <1,此时x ∈1,2 ,log a x <0,而x -1 2≥0,故x -1 2<log a x 无解;若a >1,此时x ∈1,2 ,log a x >0,而x -1 2≥0,令f x =log a x ,g x =x -1 2,画出两函数图象,如下:故要想x -1 2<log a x 在x ∈1,2 内恒成立,则要log a 2>1,解得:a ∈1,2 .故选:B .29(2022高二下·浙江·学业考试)已知函数f x =3⋅2x +2,对于任意的x 2∈0,1 ,都存在x 1∈0,1 ,使得f x 1 +2f x 2+m =13成立,则实数m 的取值范围为.【答案】log 216,log 213 【分析】双变量问题,转化为取值范围的包含关系,列不等式组求解【解析】∵f x 1 ∈5,8 ∴13-f x 1 2∈52,4,∴f x 2+m =3⋅2x 2+m+2∈3⋅2m +2,3⋅21+m +2 ,由题意得3⋅2m +2≥523⋅2m +1+2≤4⇒2m≥162m +1≤23⇒log 216≤m ≤log 213 故答案为:log 216,log 21330(21-22高三上·湖北·阶段练习)已知函数p (x )=m x -4+1(m >0且m ≠1)经过定点A ,函数-∞,2 且a ≠1)的图象经过点A .(1)求函数y =f (2a -2x )的定义域与值域;(2)若函数g x =f (2x λ)⋅f (x 2)-4在14,4上有两个零点,求λ的取值范围.【答案】(1)定义域为(-∞,2),值域为(-∞,2);(2)[1,+∞)【分析】(1)根据对数函数的性质,求得定点A (4,2),代入函数f x =log a x ,求得a =2,进而求得y =f (2a -2x )=log 2(4-2x ),结合对数函数的性质,求得函数的定义域与值域;(2)由(1)知,化简得到函数g x =2λ(log 2x )2+2log 2x -4,设t =log 2x ,则t ∈[-2,2],转化为h x =2λt 2+2t -4在[-2,2]上有两个零点,结合二次函数的性质,分类讨论,即可求解.【解析】(1)解:令x -4=0,解得x =4,所以p (4)=m 0+1=2,所以函数p (x )过点A (4,2),将点A 的坐标代入函数f x =log a x ,可得log a 4=2,解得a =2,又由函数y =f (2a -2x )=log 2(4-2x ),由4-2x >0,解得x <2,所以函数y =f (2a -2x )的定义域为(-∞,2),又由0<4-2x <4,所以函数y =f (2a -2x )的值域为(-∞,2).(2)解:由(1)知,函数g x =f (2x λ)⋅f (x 2)-4=log 2(2x λ)⋅log 2x 2-4=2λ(log 2x )2+2log 2x -4在14,4上有两个零点,设t =log 2x ,则t ∈[-2,2],因为t 为关于x 的单调递增函数,所以g x 在14,4有两个零点,等价于函数h x =2λt 2+2t -4在[-2,2]上有两个零点,①当λ=0时,由h x =2t -4=0,可得t =2,函数h x 只有一个零点,所以λ=0不合题意;②当λ>0时,由Δ=4+32λ>0-2<-12λ<2h -2 =8λ-8≥0h 2 =8λ≥0,解得λ≥1;③当λ<0时,由Δ=4+32λ>0-2<-12λ<2h -2 =8λ-8≤0h 2 =8λ≤0,此时不等式组的解集为空集,综上可得,实数λ的取值范围是[1,+∞).一、单选题1(2024·黑龙江·二模)已知函数y =a 12|x |+b 的图象经过原点,且无限接近直线y =2,但又不与该直线相交,则ab =()A.-1 B.-2C.-4D.-9【答案】C【分析】由题意可得a +b =0且b =2,求出a ,即可求解.【解析】因为函数y =f (x )=a 12 x +b 图象过原点,所以a 12+b =0,得a +b =0,又该函数图象无限接近直线y =2,且不与该直线相交,所以b =2,则a =-2,所以ab =-4.故选:C2(2024·上海闵行·二模)已知y =f (x ),x ∈R 为奇函数,当x >0时,f (x )=log 2x -1,则集合{x |f (-x )-f (x )<0}可表示为()A.(2,+∞)B.(-∞,-2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(2,+∞)【答案】D【分析】利用函数奇偶性可得不等式f (-x )-f (x )<0等价于f (x )>0,再求出函数解析式,利用对数函数单调性解不等式可得结果.【解析】因为y =f (x )为奇函数,所以f (-x )-f (x )<0等价于-2f (x )<0,即f (x )>0;当x >0时,f (x )=log 2x -1,即f (x )=log 2x -1>0,解得x >2;当x <0时,-x >0,可得f (-x )=-f x =log 2-x -1,所以f x =1-log 2-x ,解不等式f x =1-log 2-x >0,可得-2<x <0,综上可得集合{x |f (-x )-f (x )<0}可表示为(-2,0)∪(2,+∞).故选:D3(2024·北京通州·二模)某池塘里原有一块浮萍,浮萍蔓延后的面积S (单位:平方米)与时间t (单位:月)的关系式为S =a t +1(a >0,且a ≠1),图象如图所示.则下列结论正确的个数为()①浮萍每个月增长的面积都相等;②浮萍蔓延4个月后,面积超过30平方米;③浮萍面积每个月的增长率均为50%;④若浮萍蔓延到3平方米、4平方米、12平方米所经过的时间分别是t 1,t 2,t 3,则t 1+t 2=t 3.A.0B.1C.2D.3【答案】B【分析】由已知可得出S =2t +1,计算出萍蔓延1月至2月份增长的面积和2月至3月份增长的面积,可判断①的正误;计算出浮萍蔓延4个月后的面积,可判断②的正误;计算出浮萍蔓延每个月增长率,可判断③的正误;利用指数运算可判断④的正误.【解析】由已知可得a 1=2,则S =2t +1.对于①,浮萍蔓延1月至2月份增长的面积为23-22=4(平方米),浮萍蔓延2月至3月份增长的面积为24-23=8(平方米),①错;对于②,浮萍蔓延4个月后的面积为25=32(平方米),②对;对于③,浮萍蔓延第n 至n +1个月的增长率为2n +2-2n +12n +1=1,所以,浮萍蔓延每个月增长率相同,都是100%,③错;对于④,若浮萍蔓延到3平方米、4平方米、12平方米所经过的时间分别是t 1,t 2,t 3,则2t 1+1=3,2t 2+1=4,2t 3+1=12=3×4=2t 1+1⋅2t 2+1=2t 1+t 2+2,所以t 3=t 1+t 2+1,④错.故选:B .4(2024·天津红桥·二模)若a =2313,b =log 1225,c =3-14,则a ,b ,c 的大小关系为()A.a >b >cB.b >c >aC.b >a >cD.a <b <c【答案】C【分析】根据给定条件,利用幂函数、对数函数性质,并借助媒介数比较大小.【解析】b =log 1225>log 1212=1,a =23 13=23 4 112=1681 112>381 112=1314=c ,而a =2313<1,所以a ,b ,c 的大小关系为b >a >c .故选:C5(2024·全国·模拟预测)已知函数f (x )=log a x 3-ax 2+x -2a (a >0且a ≠1)在区间(1,+∞)上单调递减,则a 的取值范围是()A.0,23 B.23,1C.(1,2]D.[2,+∞)【答案】A【分析】对数函数的单调性与底数有关,分0<a <1和a >1两种情况讨论,此外还要注意对数函数的定义域,即真数为正;复合函数单调性满足“同增异减”,根据对数函数单调性结合题干中“在区间(1,+∞)上单调递减”得到真数部分函数的单调性,从而求得a 的取值范围.【解析】设函数g x =x 3-ax 2+x -2a ,则g x =3x 2-2ax +1.①若0<a <1,则y =log a x 在定义域上单调递减.又f x =log a x 3-ax 2+x -2a 在区间1,+∞ 上单调递减,所以g x 在区间1,+∞ 上单调递增,故gx ≥0对任意的x ∈1,+∞ 恒成立.又g 1 =4-2a ≥0,所以对任意的x ∈1,+∞ ,g x ≥0显然成立.又因为g x >0对任意x ∈1,+∞ 恒成立,所以g 1 =2-3a ≥0,故0<a ≤23.②若a >1,则y =log a x 在定义域上单调递增.又f x =log a x 3-ax 2+x -2a 在区间1,+∞ 上单调递减,所以g x 在区间1,+∞ 上单调递减,故gx ≤0对任意的x ∈1,+∞ 恒成立.因为抛物线y =3x 2-2ax +1的开口向上,所以g x ≤0不可能对任意的x ∈1,+∞ 恒成立.所以a 的取值范围为0,23.故选:A .6(2024·宁夏固原·一模)已知函数f x 的部分图像如图所示,则f x 的解析式可能为()A.f x =e x -e -x 4x -3 B.f x =e x -e -x3-4x C.f x =e x +e -x4x -3D.f x =x x -1【答案】A【分析】利用f x 在1,+∞ 上的值排除B ,利用奇偶性排除排除C ,利用f x 在1,+∞ 上的单调性排除D ,从而得解.【解析】对于B ,当x >1时,f x =e x -e -x 3-4x,易知e x -e -x >0,3-4x <0,则f x <0,不满足图象,故B 错误;对于C ,f x =e x +e -x 4x -3,定义域为-∞,-34 ∪-34,34 ∪34,+∞ ,又f (-x )=e -x +e x 4-x -3=e x +e -x4x -3=f (x ),则f x 的图象关于y 轴对称,故C 错误;对于D ,当x >1时,f x =x x -1=x x -1=1+1x -1,由反比例函数的性质可知,f x 在1,+∞ 上单调递减,故D 错误;检验选项A ,f x =e x -e -x4x -3满足图中性质,故A 正确.故选:A .7(2024·陕西西安·模拟预测)已知函数f x =12x +1,x <01x +2,x ≥0,则不等式f a 2-1 >f 3 的解集为()A.-2,2B.0,+∞C.-∞,0D.-∞,-2 ∪2,+∞【答案】A【分析】判断函数f x 的单调性,再利用单调性解不等式即可.【解析】f x =12x +1,x <01x +2,x ≥0,易知y =12x +1在-∞,0 单调递减,y =1x +2在0,+∞ 单调递减,且f x 在x =0处连续,故f x 在R 上单调递减,由f a 2-1 >f 3 ,则a 2-1<3,解得-2<a <2,故不等式f a 2-1 >f 3 的解集为-2,2 .故选:A8(2024·甘肃兰州·一模)已知y =f x 是定义在R 上的奇函数,且对于任意x 均有f x +1 +f x -1 =0,当0<x ≤1时,f x =2x -1,若f [ln (ea )]>f (ln a )(e 是自然对数的底),则实数a 的取值范围是()A.e -1+2k <a <e 1+2k (k ∈Z )B.e -32+k <a <e 12+2k(k ∈Z )C.e -1+4k <a <e 1+4k (k ∈Z ) D.e-32+4k <a <e 12+4k(k ∈Z )【答案】D【分析】首先分析函数的周期性与对称性,画出函数在-2,2 上的函数图象,结合图象可知在-2,2 内要满足f [ln (ea )]>f (ln a ),只需-32<ln a <12,即可求出a 的范围,再结合周期性即可得解.【解析】因为y =f x 是定义在R 上的奇函数,所以f 0 =0且图象关于原点对称,又f x +1 +f x -1 =0,所以f x +1 =-f x -1 =f 1-x ,所以f x +4 =f 1-x +3 =-f 2+x =-f 1-x +1 =-f -x =f x ,f -1+x =f 3+x =f 1-2+x =f -1-x ,f 2+x =f -2+x =-f 2-x ,所以函数的周期为4且函数图象关于x =1+2k k ∈Z 和2k ,0 k ∈Z 对称,又当0<x ≤1时,f x =2x -1,所以f x 在区间-2,2 上的图象如下所示:由图可知,在-2,2 内要满足f [ln (ea )]=f (1+ln a )>f (ln a ),则-32<ln a <12,即e -32<a <e 12,再根据函数的周期性可知e -32+4k <a <e12+4k(k ∈Z ).故选:D【点睛】关键点点睛:本题关键是由题意分析出函数的周期为4且函数图象关于x =1+2k k ∈Z 和2k ,0 k ∈Z 对称,再结合函数在-2,2 上的图象.二、多选题9(2024·河南洛阳·模拟预测)下列正确的是()A.2-0.01>2-0.001B.log 23>log 2π-1C.log 1.85<log 1.75D.log 33.01>e -0.01【答案】BCD【分析】利用指数函数的性质判断A ;由对数函数的性质判断B ,C ;由对数函数的性质可得log 33.01>1,由指数函数的性质可得e -0.01<1,即可判断.【解析】解:对于A ,因为-0.01<-0.001,所以2-0.01<2-0.001,所以A 错误;对于B ,因为log 23>log 2π2=log 2π-1,所以B 正确;对于C ,因为log 1.85>0,log 1.75>0,所以log 1.85=ln5ln1.8<ln5ln1.7=log 1.75,所以C 正确;对于D ,因为log 33.01>log 33=1,e -0.01<e 0=1,所以log 33.01>e -0.01,所以D 正确.故选:BCD .10(2024·全国·模拟预测)已知实数a ,b 满足log 3a +log b 3=log 3b +log a 4,则下列关系式中可能正确的是()A.∃a ,b ∈(0,+∞),使|a -b |>1B.∃a ,b ∈(0,+∞),使ab =1C.∀a ,b ∈(1,+∞),有b <a <b 2D.∀a ,b ∈(0,1),有b <a <b【答案】ABC【分析】由原方程可得log 3b -1log 3b=log 3a -1log 4a ,构适函数,由函数的单调性得出值域,根据函数的值域判断A ;令ab =1,代入原方程转化为判断(ln b )2=ln3×ln122是否有解即可判断B ;条件变形放缩后构造函数,利用函数的单调性得出a ,b 大小,判断CD .【解析】由log 3a +log b 3=log 3b +log a 4得log 3b -1log 3b=log 3a -1log 4a ,令f (x )=log 3x -1log 3x ,则f (x )分别在(0,1)和(1,+∞)上单调递增,令g (x )=log 3x -1log 4x,则g (x )分别在(0,1)和(1,+∞)上单调递增,当x ∈(0,1)时,f x 的值域为R ,当x ∈(2,+∞)时,g (x )的值域为log 32-2,+∞ ,所以存在b ∈(0,1),a ∈(2,+∞),使得f (b )=g (a );同理可得,存在b ∈(2,+∞),a ∈(0,1),使得f (b )=g (a ),因此∃a ,b ∈(0,+∞),使|a -b |>1,故选项A 正确.令ab =1,则方程log 3a +log b 3=log 3b +log a 4可化为log b 3+log b 4=2log 3b ,由换底公式可得(ln b )2=ln3×ln122>0,显然关于b 的方程在(0,+∞)上有解,所以∃a ,b ∈(0,+∞),使ab =1,故选项B 正确.当a ,b ∈(1,+∞)时,因为log 3b -1log 3b =log 3a -1log 4a <log 3a -1log 3a ,所以f (b )<f (a ).又f x 在(1,+∞)上单调递增,所以b <a .因为log 3b -1log 3b=log 3a -1log 4a >log 4a -1log 4a ,令h (x )=x -1x,则h (x )在(0,+∞)上单调递增.因为h log 3b >h log 4a ,所以log 3b >log 4a ,从而log 3b >log 4a =log 2a >log 3a ,所以b >a .综上所述,b <a <b 2,故选项C 正确.当a ,b ∈(0,1)时,因为log 3b -1log 3b =log 3a -1log 4a >log 3a -1log 3a ,所以f (b )>f (a ).又f x 在(0,1)上单调递增,所以b >a .因为log 3b -1log 3b=log 3a -1log 4a <log 4a -1log 4a .令h (x )=x -1x,则h (x )在(0,+∞)上单调递增,因为h log 3b <h log 4a ,所以log 3b <log 4a ,从而log 3b <log 4a =log 2a <log 3a ,所以b <a .综上所述,b 2<a <b ,故选项D 错误.故选:ABC .【点睛】关键点点睛:本题的关键是根据对数式的运算规则和对数函数的单调性求解.11(2024·重庆·三模)已知函数f x =log 62x +3x ,g x =log 36x -2x .下列选项正确的是()A.f 12<g 12 B.∃x 0∈0,1 ,使得f x 0 =g x 0 =x 0C.对任意x ∈1,+∞ ,都有f x <g xD.对任意x ∈0,+∞ ,都有x -f x ≤g x -x【答案】BCD【分析】根据2+3>6,3>6-2即可判断A ;根据2x 0+3x 0=6x 0,令h x =6x -2x -3x ,结合零点的存在性定理即可判断B ;由f x -x =log 613 x +12 x 、g x -x =log 32x-23 x ,结合复合函数的单调性可得f x -x 和g x -x 的单调性,即可判断C ;由选项BC 的分析可得6f x-6x =3x -3g x,分类讨论当x ∈0,x 0 、x ∈x 0,+∞ 时x -f x 与g x -x 的大小,进而判断D .【解析】A :因为2+3 2=5+26>6 2,所以2+3>6,3>6- 2.因为f 12 =log 62+3 >log 66=12,g 12 =log 36-2 <log 33=12,所以f 12 >g 12,故A 错误;B :若f x 0 =g x 0 =x 0,则f x 0 =log 62x 0+3x 0=x 0=log 66x 0,即2x 0+3x 0=6x,g x 0 =log 36x 0-2x 0 =x 0=log 33x 0,可得6x 0-2x 0=3x 0,令h x =6x -2x -3x ,因为h 0 =-1,h 1 =1,所以∃x 0∈0,1 ,使得h x 0 =0,即2x 0+3x 0=6x 0,故B 正确;C :因为f x -x =log 62x +3x -log 66x =log 62x +3x 6x =log 613 x +12 x ,且y =13 x +12 x 在1,+∞ 上单调递减,所以f x -x 也单调递减,可得f x -x <log 612+13<0,因为g x -x =log 36x -2x -log 33x =log 36x -2x 3x =log 32x -23 x .又y =2x -23 x 在1,+∞ 上单调递增,所以g x -x 也单调递增,得g x -x >log 32-23>0,即f x -x <g x -x ,因此,对于任意的x ∈1,+∞ ,都有f x <g x ,故C 正确;D :由B 可知:∃x 0∈0,1 ,使得h x 0 =0,结合C 的结论,可知当x ∈0,x 0 ,f x >x ,g x <x ,即g x <x <f x ,当x ∈x 0,+∞ 时,f x <x ,g x >x ,即f x <x <g x ,因为6f x =2x +3x ,3g x =6x -2x ,得2x =6f x -3x =6x -3g x ,即6f x -6x =3x -3g x ,当x ∈0,x 0 时,有6x 6f x -x -1 =3g x 3x -g x -1 ,因为6x >3g x ,所以6f x -x -1<3x -g x -1,所以0<f x -x <x -g x ,因此可得g x -x ≤x -f x <0,即x -f x ≤g x -x ,当x ∈x 0,+∞ ,有6f x 6x -f x -1 =3x 3g x -x -1 ,因为6f x >3x ,所以6x -f x -1<3g x -x -1,可得0<x -f x <g x -x ,即x -f x ≤g x -x ,因此,对于任意的x ∈0,+∞ ,都有x -f x ≤g x -x ,故D 正确.故选:BCD .【点睛】方法点睛:证明不等式的恒成立问题的求解策略:形如f x ≥g x 的恒成立的求解策略:1、构造函数法:令F x =f x -g x ,利用导数或基本函数的单调性求得函数F x 的单调性与最小值,只需F x min ≥0恒成立即可;2、参数分离法:转化为a ≥φx 或a ≤φx 恒成立,即a ≥φx max 或a ≤φx min 恒成立,只需利用导数求得函数φx 的单调性与最值即可;3,数形结合法:结合函数y =f x 的图象在y =g x 的图象的上方(或下方),进而得到不等式恒成立.三、填空题12(2023·河南·模拟预测)已知幂函数f x =m 2-6m +9 x m 满足f 1 =2,则f 2 =.【答案】4【分析】由幂函数的定义结合导数求得m ,进而可得答案.【解析】由幂函数的定义可得m 2-6m +9=1,解得m =2或m =4,当m =2时,f x =x 2,f x =2x ,f 1 =2符合题意;当m =4时,f x =x 4,f x =4x 3,f 1 =4,不符合题意.故f x =x 2,f 2 =4.故答案为:4.13(2024·全国·模拟预测)已知函数f x =x x -1,g x =e x -1-e -x +1+1,则f x 与g x 的图象交点的纵坐标之和为.【答案】2【分析】分析函数的奇偶性,由图象的平移变换求解即可.【解析】对于f x =x x -1=1x -1+1,可以把f x 的图象看作:由f 1x =1x -1的图象向上平移1个单位长度得到,而f 1x 的图象可看作由f 2x =1x 的图象向右平移1个单位长度得到;对于g x =e x -1-e -x +1+1=e x -1-1e x -1+1的图象可看作由g 1x =e x -1-1e x -1的图象向上平移1个单位长度得到,而g 1x 的图象可看作由g 2x =e x -1e x 的图象向右平移1个单位长度得到.易知f 2x =1x 与g 2x =e x -1ex 都为奇函数,公众号:慧博高中数学最新试题则易知f 2x 与g 2x 的图象共有两个关于原点对称的交点,且交点的纵坐标之和为0.因为将函数图象向右平移不改变f 1x 与g 1x 两函数图象交点处函数值的大小,所以f 1x 与g 1x 的图象交点的纵坐标之和为0,又将函数图象向上平移1个单位长度会使得原交点处的函数值都增加1,则f x 与g x 的图象的两个交点的纵坐标与f 1x 与g 1x 的图象两个交点的纵坐标相比都增加1,故f x 与g x 的图象交点的纵坐标之和为2.故答案为:214(2024·全国·模拟预测)已知定义在-∞,0 ∪0,+∞ 上的函数f x ,对于定义域内任意的x ,y ,都有f xy =f x +f y ,且f x 在0,+∞ 上单调递减,则不等式f x <log 2x +12的解集为.【答案】x x <-1 或x >1【分析】由f xy =f x +f y ,利用赋值法,得到函数f x 的奇偶性,构造函数F x =f x -log 2x +12,研究其单调性和奇偶性,再由F 1 =0,将不等式f x <log 2x +12转化为F x <F 1 求解.【解析】由f xy =f x +f y ,令x =y =1,得f 1 =f 1 +f 1 ,所以f 1 =0.令x =y =-1,得f -1 =0.令y =-1,得f -x =f x +f -1 =f x ,所以函数f x 为偶函数.构造函数F x =f x -log 2x +12,因为F -x =F x ,所以F x 为偶函数,且在0,+∞ 上为减函数.因为F 1 =f 1 -log 21+12=0,所以不等式f x <log 2x +12等价于F x =f x -log 2x +12<0=F 1 ,所以F x <F 1 ,即x >1,所以x <-1或x >1,故不等式f x <log 2x +12的解集为x |x <-1 或x >1 .故答案为:x |x <-1 或x >1 .。
高考数学历年(2018-2022)真题按知识点分类(指数函数、对数函数、幂函数)练习
高考数学历年(2018-2022)真题按知识点分类(指数函数、对数函数、幂函数)练习一、单选题1.(2022ꞏ天津ꞏ统考高考真题)化简()()48392log 3log 3log 2log 2++的值为( ) A .1B .2C .4D .62.(2022ꞏ天津ꞏ统考高考真题)已知0.72a =,0.713b ⎛⎫= ⎪⎝⎭,21log 3c =,则( )A .a c b >>B .b c a >>C .a b c >>D .c a b >>3.(2022ꞏ浙江ꞏ统考高考真题)已知825,log 3ab ==,则34a b -=( )A .25B .5C .259 D .534.(2022ꞏ全国ꞏ统考高考真题)已知910,1011,89m m m a b ==-=-,则( ) A .0a b >>B .0a b >>C .0b a >>D .0b a >>5.(2022ꞏ北京ꞏ统考高考真题)已知函数1()12xf x =+,则对任意实数x ,有( ) A .()()0f x f x -+= B .()()0f x f x --= C .()()1f x f x -+=D .1()()3f x f x --=6.(2022ꞏ北京ꞏ统考高考真题)在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T 和lg P 的关系,其中T 表示温度,单位是K ;P 表示压强,单位是bar .下列结论中正确的是( )A .当220T =,1026P =时,二氧化碳处于液态B .当270T =,128P =时,二氧化碳处于气态C .当300T =,9987P =时,二氧化碳处于超临界状态D .当360T =,729P =时,二氧化碳处于超临界状态7.(2022ꞏ全国ꞏ统考高考真题)设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c<a<bD .a c b << 8.(2021ꞏ天津ꞏ统考高考真题)设0.3212log 0.3,log 0.4,0.4a b c ===,则a ,b ,c 的大小关系为( ) A .a b c <<B .c<a<bC .b<c<aD .a c b <<9.(2021ꞏ天津ꞏ统考高考真题)若2510a b ==,则11a b+=( ) A .1- B .lg 7 C .1D .7log 1010.(2021ꞏ天津ꞏ统考高考真题)函数2ln ||2x y x =+的图像大致为( ) A . B .C .D .11.(2021ꞏ全国ꞏ统考高考真题)已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( )A .c b a <<B .b a c <<C .a c b <<D .a b c <<12.(2021ꞏ全国ꞏ统考高考真题)设2ln1.01a =,ln1.02b =,1c =-.则( ) A .a b c <<B .b<c<aC .b a c <<D .c<a<b13.(2021ꞏ全国ꞏ高考真题)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录表的数据V 的满足5lg L V =+.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为( )( 1.259≈) A .1.5 B .1.2 C .0.8 D .0.614.(2021ꞏ全国ꞏ统考高考真题)下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .2y 22x x -=+D .4ln ln y x x=+15.(2020ꞏ山东ꞏ统考高考真题)函数()1lg f x x=的定义域是( ) A .()0,∞+ B .()()0,11,+∞C .[)()0,11,+∞UD .()1,+∞16.(2020ꞏ山东ꞏ统考高考真题)已知函数()y f x =是偶函数,当(0,)x ∈+∞时,()01x y a a =<<,则该函数在(,0)-∞上的图像大致是( )A .B .C .D .17.(2020ꞏ海南ꞏ高考真题)已知函数2()lg(45)f x x x =--在(,)a +∞上单调递增,则a 的取值范围是( )A .(2,)+∞B .[2,)+∞C .(5,)+∞D .[5,)+∞18.(2020ꞏ天津ꞏ统考高考真题)设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .b<c<aD .c<a<b19.(2020ꞏ全国ꞏ统考高考真题)若2233x y x y ---<-,则( ) A .ln(1)0y x -+>B .ln(1)0y x -+<C .ln ||0x y ->D .ln ||0x y -<20.(2020ꞏ全国ꞏ统考高考真题)已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( )A .a <b <cB .b <a <cC .b <c <aD .c <a <b21.(2020ꞏ全国ꞏ统考高考真题)Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t --+,其中K 为最大确诊病例数.当I (*t )=0.95K 时,标志着已初步遏制疫情,则*t 约为( )(ln19≈3)A .60B .63C .66D .6922.(2020ꞏ全国ꞏ统考高考真题)设3log 2a =,5log 3b =,23c =,则( ) A .a c b <<B .a b c <<C .b<c<aD .c<a<b23.(2020ꞏ全国ꞏ统考高考真题)设3log 42a =,则4a -=( ) A .116B .19C .18D .1624.(2020ꞏ全国ꞏ统考高考真题)设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,2-∞-单调递增D .是奇函数,且在1(,)2-∞-单调递减25.(2019ꞏ全国ꞏ高考真题)已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c<a<bD .b<c<a26.(2019ꞏ全国ꞏ高考真题)若a >b ,则 A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0D .│a │>│b │27.(2019ꞏ北京ꞏ高考真题)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足212152–lg E m m E =,其中星等为mk 的星的亮度为Ek (k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为A .1010.1B .10.1C .lg10.1D .10.110-28.(2019ꞏ天津ꞏ高考真题)已知2log 7a =,3log 8b =,0.20.3c =,则,,a b c 的大小关系为A .c b a <<B .a b c <<C .b<c<aD .c<a<b29.(2019ꞏ天津ꞏ高考真题)已知5log 2a =,0.5log 0.2b =,0.20.5c =,则,,a b c 的大小关系为A .a c b <<B .a b c <<C .b<c<aD .c<a<b30.(2018ꞏ天津ꞏ高考真题)已知2log a e =,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为A .a b c >>B .b a c >>C .c b a >>D .c a b >>31.(2018ꞏ全国ꞏ高考真题)设0.2log 0.3a =,2log 0.3b =,则 A .0a b ab +<< B .0ab a b <+< C .0a b ab +<<D .0ab a b <<+32.(2018ꞏ全国ꞏ高考真题)下列函数中,其图像与函数ln y x =的图像关于直线1x =对称的是A .ln(1)y x =-B .ln(2)y x =-C .ln(1)y x =+D .ln(2)y x =+33.(2018ꞏ天津ꞏ高考真题)已知13313711log ,(),log 245a b c ===,则,,a b c 的大小关系为A .a b c >>B .b a c >>C .c b a >>D .c a b >>二、多选题34.(2020ꞏ海南ꞏ统考高考真题)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑ ,定义X 的信息熵21()log ni i i H X p p ==-∑.( )A .若n =1,则H (X )=0B .若n =2,则H (X )随着1p 的增大而增大C .若1(1,2,,)i p i n n== ,则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,,m ,且21()(1,2,,)j m j P Y j p p j m +-==+= ,则H (X )≤H (Y )三、填空题35.(2020ꞏ山东ꞏ统考高考真题)若212log log 40x -=,则实数x 的值是______.36.(2020ꞏ北京ꞏ统考高考真题)函数1()ln 1f x x x =++的定义域是____________. 37.(2020ꞏ江苏ꞏ统考高考真题)已知y =f (x )是奇函数,当x ≥0时,()23 f x x = ,则f (-8)的值是____.38.(2018ꞏ全国ꞏ高考真题)已知函数()()22log f x x a =+,若()31f =,则=a ________.四、双空题39.(2022ꞏ全国ꞏ统考高考真题)若()1ln 1f x a b x++-=是奇函数,则=a _____,b =______.参考答案1.B【要点分析】根据对数的性质可求代数式的值.【答案详解】原式2233111(2log 3log 3)(log 2log 2)232=⨯++2343log 3log 2232=⨯=, 故选:B2.C【要点分析】利用幂函数、对数函数的单调性结合中间值法可得出a 、b 、c 的大小关系. 【答案详解】因为0.70.7221120log 1log 33⎛⎫>>=> ⎪⎝⎭,故a b c >>.故答案为:C.3.C【要点分析】根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出.【答案详解】因为25a=,821log 3log 33b ==,即323b =,所以()()22323232452544392a aa bb b -====. 故选:C.4.A【要点分析】法一:根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出. 【答案详解】[方法一]:(指对数函数性质)由910m=可得9lg10log 101lg 9m ==>,而()222lg 9lg11lg 99lg 9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=. 又()222lg8lg10lg80lg8lg10lg 922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg 9lg10lg8lg 9>,即8log 9m >, 所以8log 989890m b =-<-=.综上,0a b >>. [方法二]:【最优解】(构造函数)由910m =,可得9log 10(1,1.5)m =∈.根据,a b 的形式构造函数()1(1)m f x x x x =--> ,则1()1m f x mx -'=-, 令()0f x '=,解得110m x m -= ,由9log 10(1,1.5)m =∈ 知0(0,1)x ∈ .()f x 在 (1,)+∞ 上单调递增,所以(10)(8)f f > ,即 a b > ,又因为9log 10(9)9100f =-= ,所以0a b >> .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用,a b 的形式构造函数()1(1)m f x x x x =-->,根据函数的单调性得出大小关系,简单明了,是该题的最优解.5.C【要点分析】直接代入计算,注意通分不要计算错误.【答案详解】()()1121112121212x xx x x f x f x --+=+=+=++++,故A 错误,C 正确; ()()11212121121212122121x x x x x x x x f x f x ----=-=-==-++++++,不是常数,故BD 错误; 故选:C .6.D【要点分析】根据T 与lg P 的关系图可得正确的选项.【答案详解】当220T =,1026P =时,lg 3P >,此时二氧化碳处于固态,故A 错误. 当270T =,128P =时,2lg 3P <<,此时二氧化碳处于液态,故B 错误.当300T =,9987P =时,lg P 与4非常接近,故此时二氧化碳处于固态,对应的是非超临界状态,故C 错误.当360T =,729P =时,因2lg 3P <<, 故此时二氧化碳处于超临界状态,故D 正确. 故选:D7.C【要点分析】构造函数()ln(1)f x x x =+-, 导数判断其单调性,由此确定,,a b c 的大小.【答案详解】方法一:构造法设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++, 当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增, 所以1((0)09f f <=,所以101ln 099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln +01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11xx x g x x x x -+'=+=--, 令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当01x <<时,()0h x '<,函数2()e (1)+1x h x x =-单调递减,11x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增, 又(0)0h =,所以当01x <<时,()0h x <,所以当01x <<时,()0g x '>,函数()e ln(1)x g x x x =+-单调递增, 所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c > 故选:C. 方法二:比较法 解: 0.10.1a e = , 0.110.1b =- , ln(10.1)c =-- , ①ln ln 0.1ln(10.1)a b -=+- ,令 ()ln(1),(0,0.1],f x x x x =+-∈ 则 1()1011x f x x x-'=-=<-- , 故 ()f x 在 (0,0.1] 上单调递减,可得 (0.1)(0)0f f <= ,即 ln ln 0a b -< ,所以 a b < ;②0.10.1ln(10.1)a c e -=+- ,令 ()ln(1),(0,0.1],x g x xe x x =+-∈则 ()()()1111'11x xxx x e g x xe e x x+--=+-=-- , 令 ()(1)(1)1x k x x x e =+-- ,所以 2()(12)0x k x x x e '=--> ,所以 ()k x 在 (0,0.1] 上单调递增,可得 ()(0)0k x k >> ,即 ()0g x '> ,所以 ()g x 在 (0,0.1] 上单调递增,可得 (0.1)(0)0g g >= ,即 0a c -> ,所以 .a c > 故 .c a b <<8.D【要点分析】根据指数函数和对数函数的性质求出,,a b c 的范围即可求解. 【答案详解】22log 0.3log 10<= ,<0a ∴,122225log 0.4log 0.4log log 212=-=>= ,1b ∴>, 0.3000.40.41<<= ,01c ∴<<, a c b ∴<<. 故选:D.9.C【要点分析】由已知表示出,a b ,再由换底公式可求. 【答案详解】 2510a b ==,25log 10,log 10a b ∴==, 251111lg 2lg 5lg101log 10log 10a b ∴+=+=+==. 故选:C.10.B【要点分析】由函数为偶函数可排除AC ,再由当()0,1∈x 时,()0f x <,排除D ,即可得解.【答案详解】设()2ln ||2x y f x x ==+,则函数()f x 的定义域为{}0x x ≠,关于原点对称, 又()()()2ln ||2x f x f x x --==-+,所以函数()f x 为偶函数,排除AC ;当()0,1∈x 时,2ln 0,20x x + ,所以()0f x <,排除D.故选:B.11.C【要点分析】对数函数的单调性可比较a 、b 与c 的大小关系,由此可得出结论.【答案详解】5881log 2log log log 32a b =<==<=,即a c b <<. 故选:C.12.B【要点分析】利用对数的运算和对数函数的单调性不难对a ,b 的大小作出判定,对于a 与c ,b 与c 的大小关系,将0.01换成x ,分别构造函数()()2ln 11f x x =+,()()ln 121g x x =++,利用导数要点分析其在0的右侧包括0.01的较小范围内的单调性,结合f (0)=0,g (0)=0即可得出a 与c ,b 与c 的大小关系. 【答案详解】[方法一]:2ln1.01a =2ln1.01=()2ln 10.01=+()2ln 120.010.01=+⨯+ln1.02b >=,所以b a <;下面比较c 与,a b 的大小关系.记()()2ln 11f x x =+,则()00f =,()2121x f x x -='=+, 由于()()2214122x x x x x x +-+=-=-所以当0<x <2时,()21410x x +-+>()1x >+,()0f x ¢>,所以()f x 在[]0,2上单调递增,所以()()0.0100f f >=,即2ln1.011>,即a c >;令()()ln 121g x x =++,则()00g =,()212212x g x x --==+' 由于()2214124x x x +-+=-,在x >0时,()214120x x +-+<,所以()0g x '<,即函数()g x 在[0,+∞)上单调递减,所以()()0.0100g g <=,即ln1.021<,即b <c ;综上,b<c<a , 故选:B. [方法二]:令()21ln 1(1)2x f x x x ⎛⎫+=--> ⎪⎝⎭()()221-01x f x x =+'-<,即函数()f x 在(1,+∞)上单调递减()10,ff b c <=∴<令()232ln 1(13)4x g x x x ⎛⎫+=-+<< ⎪⎝⎭()()()21303x x g x x --+'=>,即函数()g x 在(1,3)上单调递增()10,gg a c =∴综上,b<c<a , 故选:B.【名师点睛】本题考查比较大小问题,难度较大,关键难点是将各个值中的共同的量用变量替换,构造函数,利用导数研究相应函数的单调性,进而比较大小,这样的问题,凭借近似估计计算往往是无法解决的.13.C【要点分析】根据,L V 关系,当 4.9L =时,求出lg V ,再用指数表示V ,即可求解. 【答案详解】由5lg L V =+,当 4.9L =时,lg 0.1V =-, 则10.110110100.81.259V --===≈≈. 故选:C.14.C【要点分析】根据二次函数的性质可判断A 选项不符合题意,再根据基本不等式“一正二定三相等”,即可得出,B D 不符合题意,C 符合题意.【答案详解】对于A ,()2224133y x x x =++=++≥,当且仅当=1x -时取等号,所以其最小值为3,A 不符合题意;对于B ,因为0sin 1x <≤,4sin 4sin y x x=+≥=,当且仅当sin 2x =时取等号,等号取不到,所以其最小值不为4,B 不符合题意;对于C ,因为函数定义域为R ,而20x >,2422242x x xx y -=+=+≥=,当且仅当22x =,即1x =时取等号,所以其最小值为4,C 符合题意; 对于D ,4ln ln y x x=+,函数定义域为()()0,11,+∞ ,而ln x R ∈且ln 0x ≠,如当ln 1x =-,5y =-,D 不符合题意.故选:C .【名师点睛】本题解题关键是理解基本不等式的使用条件,明确“一正二定三相等”的意义,再结合有关函数的性质即可解出.15.B【要点分析】根据题意得到0lg 0x x >⎧⎨≠⎩,再解不等式组即可.【答案详解】由题知:0lg 0x x >⎧⎨≠⎩,解得0x >且1x ≠.所以函数定义域为()()0,11,+∞ . 故选:B16.B【要点分析】根据偶函数,指数函数的知识确定正确选项.【答案详解】当(0,)x ∈+∞时,()01xy a a =<<,所以()f x 在()0,∞+上递减,()f x 是偶函数,所以()f x 在(),0∞-上递增. 注意到01a =, 所以B 选项符合. 故选:B17.D【要点分析】首先求出()f x 的定义域,然后求出2()lg(45)f x x x =--的单调递增区间即可. 【答案详解】由2450x x -->得5x >或1x <- 所以()f x 的定义域为(),1(5,)-∞-⋃+∞因为245y x x =--在(5,)+∞上单调递增 所以2()lg(45)f x x x =--在(5,)+∞上单调递增 所以5a ≥ 故选:D【名师点睛】在求函数的单调区间时一定要先求函数的定义域.18.D【要点分析】利用指数函数与对数函数的性质,即可得出,,a b c 的大小关系. 【答案详解】因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<. 故选:D.【名师点睛】本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围. 比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:x y a =,当1a >时,函数递增;当01a <<时,函数递减; (2)利用对数函数的单调性:log a y x =,当1a >时,函数递增;当01a <<时,函数递减; (3)借助于中间值,例如:0或1等.19.A【要点分析】将不等式变为2323x x y y ---<-,根据()23t tf t -=-的单调性知x y <,以此去判断各个选项中真数与1的大小关系,进而得到结果. 【答案详解】由2233x y x y ---<-得:2323x x y y ---<-,令()23t tf t -=-,2x y = 为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数, x y ∴<,0y x ->Q ,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -Q 与1的大小不确定,故CD 无法确定.故选:A.【名师点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到,x y 的大小关系,考查了转化与化归的数学思想.20.A【要点分析】由题意可得a 、b 、()0,1c ∈,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b =,得85b =,结合5458<可得出45b <,由13log 8c =,得138c =,结合45138<,可得出45c >,综合可得出a 、b 、c 的大小关系. 【答案详解】由题意可知a 、b 、()0,1c ∈,()222528log 3lg 3lg81lg 3lg8lg 3lg8lg 241log 5lg 5lg 522lg 5lg 25lg 5a b ⎛⎫⎛⎫++⎛⎫==⋅<⋅==<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,a b ∴<; 由8log 5b =,得85b =,由5458<,得5488b <,54b ∴<,可得45b <; 由13log 8c =,得138c =,由45138<,得451313c <,54c ∴>,可得45c >.综上所述,a b c <<. 故选:A.【名师点睛】本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.21.C【要点分析】将t t *=代入函数()()0.23531t K I t e--=+结合()0.95I tK *=求得t*即可得解.【答案详解】()()0.23531t K I t e--=+ ,所以()()0.23530.951t K I t K e**--==+,则()0.235319t e*-=,所以,()0.2353ln193t *-=≈,解得353660.23t *≈+≈. 故选:C.【名师点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.22.A【要点分析】分别将a ,b 改写为331log 23a =,351log 33b =,再利用单调性比较即可.【答案详解】因为333112log 2log 9333a c =<==,355112log 3log 25333b c =>==,所以a c b <<. 故选:A.【点晴】本题考查对数式大小的比较,考查学生转化与化归的思想,是一道中档题.23.B【要点分析】根据已知等式,利用指数对数运算性质即可得解【答案详解】由3log 42a =可得3log 42a=,所以49a =,所以有149a-=, 故选:B.【名师点睛】本题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目.24.D【要点分析】根据奇偶性的定义可判断出()f x 为奇函数,排除AC ;当11,22x ⎛⎫∈- ⎪⎝⎭时,利用函数单调性的性质可判断出()f x 单调递增,排除B ;当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,利用复合函数单调性可判断出()f x 单调递减,从而得到结果.【答案详解】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-, ()f x \为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈- ⎪⎝⎭时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x \在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ;当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+- 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确.故选:D.【名师点睛】本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据()f x -与()f x 的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.25.B【要点分析】运用中间量0比较,a c ,运用中间量1比较,b c【答案详解】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,<<=则01,c a c b <<<<.故选B .【名师点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.26.C【要点分析】本题也可用直接法,因为a b >,所以0a b ->,当1a b -=时,ln()0a b -=,知A 错,因为3x y =是增函数,所以33a b >,故B 错;因为幂函数3y x =是增函数,a b >,所以33a b >,知C 正确;取1,2a b ==-,满足a b >,12a b =<=,知D 错.【答案详解】取2,1a b ==,满足a b >,ln()0a b -=,知A 错,排除A ;因为9333a b =>=,知B 错,排除B ;取1,2a b ==-,满足a b >,12a b =<=,知D 错,排除D ,因为幂函数3y x =是增函数,a b >,所以33a b >,故选C .【名师点睛】本题主要考查对数函数性质、指数函数性质、幂函数性质及绝对值意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断.27.A【解析】由题意得到关于12,E E 的等式,结合对数的运算法则可得亮度的比值. 【答案详解】两颗星的星等与亮度满足12125lg 2E m m E -=,令211.45,26.7m m =-=-, ()10.111212222lg( 1.4526.7)10.1,1055E E m m E E =⋅-=-+==. 故选A.【名师点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及指数对数运算.28.A【要点分析】利用利用0,1,2等中间值区分各个数值的大小.【答案详解】0.200.30.31c =<=;22log 7log 42>=;331log 8log 92<<=. 故c b a <<. 故选A .【名师点睛】利用指数函数、对数函数的单调性时要根据底数与1的大小区别对待.29.A【解析】利用10,,12等中间值区分各个数值的大小.【答案详解】551log 2log 2a =<<, 0.50.5log 0.2log 0.252b =>=, 10.200.50.50.5<<,故112c <<, 所以a c b <<. 故选A .【名师点睛】本题考查大小比较问题,关键选择中间量和函数的单调性进行比较.30.D【答案详解】要点分析:由题意结合对数函数的性质整理计算即可求得最终结果. 答案详解:由题意结合对数函数的性质可知: 2log e >1a =,()21ln 20,1log ==∈b e ,12221log log 3log 3c e ==>, 据此可得:c a b >>. 本题选择D 选项.名师点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.31.B【答案详解】要点分析:求出0.2211log0.3,0.3log a b ==,得到11a b+的范围,进而可得结果.答案详解:.0.30.3log0.2,2a b log == 0.2211log0.3,0.3log a b∴== 0.3110.4log a b∴+= 1101a b∴<+<,即01a bab +<< 又a 0,b 0><ab 0∴<即ab a b 0<+<故选B.名师点睛:本题主要考查对数的运算和不等式,属于中档题.32.B【答案详解】要点分析:确定函数y lnx =过定点(1,0)关于x=1对称点,代入选项验证即可.答案详解:函数y lnx =过定点(1,0),(1,0)关于x=1对称的点还是(1,0),只有()y ln 2x =-过此点. 故选项B 正确名师点睛:本题主要考查函数的对称性和函数的图像,属于中档题.33.D【答案详解】要点分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a ,b ,c 的大小关系.答案详解:由题意可知:3337392log log log <<,即12a <<,13111044⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭=,即01b <<, 133317552log log log =>,即c a >,综上可得:c a b >>.本题选择D 选项. 名师点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.34.AC【要点分析】对于A 选项,求得()H X ,由此判断出A 选项;对于B 选项,利用特殊值法进行排除;对于C 选项,计算出()H X ,利用对数函数的性质可判断出C 选项;对于D 选项,计算出 ()(),H X H Y ,利用基本不等式和对数函数的性质判断出D 选项.【答案详解】对于A 选项,若1n =,则11,1i p ==,所以()()21log 10H X =-⨯=,所以A 选项正确.对于B 选项,若2n =,则1,2i =,211p p =-, 所以()()()121121X log 1log 1H p p p p =-⋅+-⋅-⎡⎤⎣⎦, 当114p =时,()221133log log 4444H X ⎛⎫=-⋅+⋅ ⎪⎝⎭,当13p 4=时,()223311log log 4444H X ⎛⎫=-⋅+⋅ ⎪⎝⎭,两者相等,所以B 选项错误. 对于C 选项,若()11,2,,i p i n n== ,则 ()222111log log log H X n n n n n ⎛⎫=-⋅⨯=-= ⎪⎝⎭,则()H X 随着n 的增大而增大,所以C 选项正确.对于D 选项,若2n m =,随机变量Y 的所有可能的取值为1,2,,m ,且 ()21j m j P Y j p p +-==+( 1,2,,j m = ).()2222111log log m mi i i i i iH X p p p p ===-⋅=⋅∑∑ 122221222122121111log log log log m m m mp p p p p p p p --=⋅+⋅++⋅+⋅ . ()H Y =()()()122221212122211111log log log m m m m m m m m p p p p p p p p p p p p -+-++⋅++⋅+++⋅+++ 12222122212221221121111log log log log m m m m m mp p p p p p p p p p p p ---=⋅+⋅++⋅+⋅++++ 由于()01,2,,2i p i m >= ,所以 2111i i m i p p p +->+,所以 222111log log i i m ip p p +->+, 所以222111log log i i i i m ip p p p p +-⋅>⋅+, 所以()()H X H Y >,所以D 选项错误. 故选:AC【名师点睛】本小题主要考查对新定义“信息熵”的理解和运用,考查要点分析、思考和解决问题的能力,涉及对数运算和对数函数及不等式的基本性质的运用,属于难题.35.14【要点分析】根据对数运算化简为2log 2x =-,求解x 的值. 【答案详解】21222log log 40log log 40x x -=⇔+=, 即2log 2x =-,解得:14x =. 故答案为:1436.(0,)+∞【要点分析】根据分母不为零、真数大于零列不等式组,解得结果.【答案详解】由题意得010x x >⎧⎨+≠⎩,0x ∴> 故答案为:(0,)+∞【名师点睛】本题考查函数定义域,考查基本要点分析求解能力,属基础题.37.4-【要点分析】先求(8)f ,再根据奇函数求(8)f - 【答案详解】23(8)84f ==,因为()f x 为奇函数,所以(8)(8)4f f -=-=-故答案为:4-【名师点睛】本题考查根据奇函数性质求函数值,考查基本要点分析求解能力,属基础题. 38.-7【答案详解】要点分析:首先利用题的条件()31f =,将其代入解析式,得到()()2391f log a =+=,从而得到92a +=,从而求得7a =-,得到答案.答案详解:根据题意有()()2391f log a =+=,可得92a +=,所以7a =-,故答案是7-. 名师点睛:该题考查的是有关已知某个自变量对应函数值的大小,来确定有关参数值的问题,在求解的过程中,需要将自变量代入函数解析式,求解即可得结果,属于基础题目.39. 12-; ln 2. 【要点分析】根据奇函数的定义即可求出.【答案详解】[方法一]:奇函数定义域的对称性若0a =,则()f x 的定义域为{|1}x x ≠,不关于原点对称 0a ∴≠ 若奇函数的1()||1f x ln a b x =++-有意义,则1x ≠且101a x +≠- 1x ∴≠且11x a ≠+,函数()f x 为奇函数,定义域关于原点对称, 111a ∴+=-,解得12a =-, 由(0)0f =得,102ln b +=,2b ln ∴=, 故答案为:12-;2ln . [方法二]:函数的奇偶性求参111()111a ax ax a f x ln a b ln b ln b x x x -+--=++=+=+--- 1()1ax a f x ln b x++-=++ 函数()f x 为奇函数11()()2011ax a ax a f x f x ln ln b x x--++∴+-=++=-+ 2222(1)201a x a lnb x -+∴+=- 22(1)1210112a a a a +∴=⇒+=⇒=- 1222241,22b ln b ln a b ln ln-==-⇒=∴=-= [方法三]:因为函数()1ln 1f x a b x ++-=为奇函数,所以其定义域关于原点对称. 由101a x+≠-可得,()()110x a ax -+-≠,所以11a x a +==-,解得:12a =-,即函数的定义域为()()(),11,11,-∞-⋃-⋃+∞,再由()00f =可得,ln 2b =.即()111ln ln 2ln 211x f x x x+=-++=--,在定义域内满足()()f x f x -=-,符合题意. 故答案为:12-;ln 2.。
高一数学必修1第三章《指数函数、对数函数和幂函数》测练题及解析
高一数学必修1第三章《指数函数、对数函数和幂函数》测练题(满分:150分;考试时间:100分钟)一、选择题(本大题共10小题. 每小题5分,共50分.在每小题给出的四个选项中,只有一个项是符合题目要求的) 1.指数函数y=a x 的图像经过点(2,16)则a 的值是 ( )A .41 B .21C .2D .4 2.化简)31()3)((656131212132b a b a b a ÷-的结果 ( )A .a 6B .a -C .a 9-D .29a3.在区间),0(+∞上不是增函数的是 ( )A.2x y =B.x y log 2=C.xy 2= D.122++=x x y 4.式子82log 9log 3的值为 ( ) A .23 B .32C .2D .3 5.已知0ab >,下面四个等式中:①lg()lg lg ab a b =+; ②lg lg lg a a b b=-;③b ab a lg )lg(212= ;④1lg()log 10ab ab =.其中正确命题的个数为 ( )A .0B .1C .2D .36.已知2log 0.3a =,0.32b =,0.20.3c =,则c b a ,,三者的大小关系是( ) A .a c b >> B .c a b >> C .c b a >> D .a b c >> 7.已知函数)(x f y =的反函数)21(log )(211-=-x x f,则方程1)(=x f 的解集是( )A .{1}B .{2}C .{3}D .{4} 8.图中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =, l g d y o x =的图象,,,,a b c d 的关系是( )A. 0<a <b <1<d<cB. 0<b<a <1<c<dC. 0<d<c<1<a<bD. 0<c<d <1<a<b9.函数y= | lg (x-1)| 的图象是 ( )xyOy=log a xy=log x y=log c x y=log d x110.给出幂函数①f (x )=x ;②f (x )=x 2;③f (x )=x 3;④f (x )=;⑤f (x )=1x .其中满意条件f 12()2x x + >12()()2f x f x + (x 1>x 2>0)的函数的个数是 ( )A .1个B .2个C .3个D .4个二、填空题(.每小题5分,共20分) 11.函数21()log (2)f x x =-的定义域是 .12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .13.函数)x 2x (log y 221-=的单调递减区间是_________________.14.关于函数21()lg (0,R)||x f x x x x +=≠∈有下列命题:①函数()y f x =的图象关于y 轴对称;②在区 间(,0)-∞上,函数()y f x =是减函数;③函数()y f x =的最小值为lg 2;④在区间(1,)+∞上,函 数()y f x =是增函数.其中正确命题序号为_______________. 三、解答题(6小题,共80分)15.(本小题满分12分)4160.250321648200549-+---)()()16. (本小题满分12分)设函数421()log 1x x f x x x -⎧<=⎨>⎩,求满意()f x =41的x 的值.C17.(本小题满分14分)已知()2xf x =,()g x 是一次函数,并且点(2,2)在函数[()]f g x 的图象上,点(2,5)在函数[()]g f x 的图象上,求()g x 的解析式.18.(本小题满分14分)若0≤x ≤2,求函数y=523421+⨯--x x 的最大值和最小值.19.(本小题满分14分)光线通过一块玻璃,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为x 块玻璃后强度为y .(1)写出y 关于x 的函数关系式;(2)通过多少块玻璃后,光线强度减弱到原来的13以下? ( lg30.4771)≈20.(本小题满分14分)已知定义域为R 的函数12()22x x bf x +-+=+是奇函数.(1)求b 的值;(2)推断函数()f x 的单调性;(3)若对随意的R t ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围.高一数学必修1第三章《指数函数、对数函数和幂函数》测练题参考答案及解析一、选择题1.D 解析:由a 2=16且a >0得a =42.C 解析:原式a ab ba9990653121612132-=-=-=-+-+3.C 解析:依据反比例函数的性质4.A 解析:因log 89=22232log 32log 3log 23=,故原式=23 5.B 解析:ab >0,故a 、b 同号;当a 、b 同小于0时,①②不成立;当ab =1时,④不成立,故只有③对。
高一数学幂函数、指数函数和对数函数练习题(含答案)
高一数学幂函数、指数函数和对数函数练习题1、下列函数一定是指数函数的是 ( ) A、12+=x y B 、3x y = C 、x y -=3 D 、x y 23⋅=2、已知ab >0,下面四个等式中,正确命题的个数为 ( ) ①lg (ab )=lg a +lg b ②lg b a =lg a -lg b ③b a b a lg )lg(212= ④lg (ab )=10log 1ab A .0 B .1 C .2 D .33、已知x =2+1,则lo g 4(x 3-x -6)等于 ( )A .23 B .45 C .0 D .21 4、已知m >0时10x =lg (10m )+lg m 1,则x 的值为 ( ) A .2 B .1 C .0 D .-15、下列图像正确的是 ( )A B C D6、若log a b ·log 3a =5,则b 等于 ( )A .a 3B .a 5C .35D .537、5、已知031log 31log >>b a ,则a 、b 的关系是 ( ) A .1<b <a B .1<a <b C .0<a <b <1 D .0<b <a <1 8、若函数)1,0(1≠>-+=a a m a y x 的图象在第一、三、四象限内,则 ( )A 、1>aB 、1>a 且0<mC 、010><<m a 且D 、10<<a9、函数x y -=1)21(的单调递增区间是 ( ) A 、),(+∞-∞ B 、),0(+∞ C 、),1(+∞ D 、)1,0(10、 如图1—9所示,幂函数αx y =在第一象限的图象,比较1,,,,,04321αααα的大小( )A .102431<<<<<ααααB .104321<<<<<ααααC .134210αααα<<<<<D .142310αααα<<<<< 11、下列函数中既是偶函数又是( ) A . B . C . D .12、 函数R x x x y ∈=|,|,满足 ( )A .奇函数是减函数B .偶函数又是增函数C .奇函数又是增函数D .偶函数又是减函数13、若01<<-x ,则下列不等式中成立的是 ( )A 、 x x x 5.055<<-B 、 x x x -<<55.05C 、x x x 5.055<<-D 、 x x x 555.0<<-14、下列命题中正确的是( ) A .当0=α时函数αx y =的图象是一条直线B .幂函数的图象都经过(0,0)和(1,1)点C .若幂函数αx y =是奇函数,则αx y =是定义域上的增函数D .幂函数的图象不可能出现在第四象限15、若2<x ,则|3|442x x x --+-的值是_____ _____.16、满足等式lg (x -1)+lg (x -2)=lg2的x 集合为______ _______。
苏教版高中数学必修第一册第6章幂函数、指数函数和对数函数测试卷(含答案)
苏教版高中数学必修第一册第6章幂函数、指数函数和对数函数测试卷(满分150分,时间120分钟)班级姓名评价一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数f (x )2(3x +1)的定义域为()A.-13,+∞B.-∞,C.-13D.-13,12.设a =log 42.4,b =log 32.9,c =log 32.4,则a ,b ,c 的大小关系为()A.b >c >aB.b >a >cC.c >b >aD.a >c >b3.已知0<m <n <1,则指数函数①y =m x 和②y =n x 的图象为()A.B. C. D.4.已知函数f (x )=log 3(x -1),若f (a )=2,则实数a 的值为()A.3B.8C.9D.105.函数y 2+2的增区间为()A.(-∞,0)B.(-∞,-1]C.[-1,+∞)D.[-2,+∞)6.不论a 为何值,函数y =(a -1)2x-2恒过一定点,则这个定点为()A.1,B.1C.-1,D.-17.已知函数f (x )=log a x (0<a <1),则函数y =f (|x |+1)的图象大致是()A. B. C. D.8.春末夏初,南京玄武湖公园荷花池中的荷花枝繁叶茂,已知每天新长出的荷叶覆盖水面的面积是前一天的两倍,若荷叶20天可以完全长满荷花池水面,则当荷叶刚好覆盖水面面积18时,荷叶已生长了()A.4天B.15天C.17天D.18天二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.下列函数中定义域和值域相同的是()A.y = 23B.y = 15C.y =-xD.y =3x10.已知函数f (x )=log 3( -2), >2,3 -1, ≤2,则下列各式正确的是()A.f (5)=1B.f (f (5))=1C.f (3)=9D.f (f (3))=1311.设函数f (x )=(3-2 ) -1, ≤1,, >1,其中a >0且a ≠1,下列关于函数f (x )的说法正确的是()A.若a =2,则f (log 23)=3B.若f (x )在R 上是增函数,则1<a <32C.若f (0)=-1,则a =32D.函数f (x )为R 上的奇函数12.已知函数f (x )=lo g 12x ,下列四个命题正确的是()A.函数f (|x |)为偶函数B.若f (a )=|f (b )|,其中a >0,b >0,a ≠b ,则ab =1C.函数f (-x 2+2x )在(1,3)上为增函数D.若0<a <1,则|f (1+a )|<|f (1-a )|三、填空题:本题共4小题,每小题5分,共20分.其中第15题第一个空2分,第二个空3分.13.若幂函数y =f (x 2,则f .14.设函数f (x )=lg x ,若f (2x )<f (2),则实数x 的取值范围是.15.函数f (x )=a 2-x-1(a >0,a ≠1)恒过定点,当0<a <1时,f (x 2)的增区间为.16.已知函数f (x )=x 2+log 2|x |,则不等式f (x -1)-f (1)<0的解集为.四、解答题:本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤.17.(10分)比较下列各组数的大小:(1)1.8,2.2;(2)0.70.8,0.80.7.18.(12分)已知关于x 的方程5x=15- 有负根,求实数a 的取值范围.19.(12分)已知函数f (x )=log a (-x 2+2x +3)(其中a >0且a ≠1)的值域为[-2,+∞).(1)求实数a 的值;(2)求函数f (x )的单调区间.20.(12分)已知函数f (x )=(a 2-a +1)x a +1为幂函数,且为奇函数.(1)求实数a 的值;(2)求函数g (x )=f (x )+1-2 ( )在0.21.(12分)设函数f (x )=lg (ax )·lg2.(1)当a =0.1时,求f (1000)的值;(2)若f (10)=10,求实数a 的值;(3)若对一切正实数x 恒有f (x )≤98,求实数a 的取值范围.22.(12分)为了预防流感,某学校对教室用药薰消毒法进行消毒,已知药物释放过程中,室内每立方米空气中的含药量y (单位:mg )与t 时间(单位:h )成正比,药物释放完毕后,y 与t之间的函数关系式为y 2+0.9 +(a 为常数),其图象如图所示,根据图中提供的信息回答下列问题:(1)从药物释放开始,求每立方米空气中的含药量y 与时间t 之间的函数关系式.(2)据测定,当空气中每立方米的含药量降低到116mg 以下时,学生方可进入教室,那么从药物释放开始至少需要经过多少小时,学生才可以回到教室?(第22题)参考答案1.D2.A3.C4.D5.B6.C7.A8.C9.BC 10.ABD 11.AB 12.ABD 13.-214.(0,1)15.(2,0)[0,+∞)16.(0,1)∪(1,2)17.(1)1.82.2(2)0.70.8<0.80.718.方程5x=15- 有负根,即0<15-<1,解得a <4,即a ∈(-∞,4)19.(1)a =12(2)函数f (x )的减区间为(-1,1],增区间为[1,3)20.(1)a =0(2)g (x )=x +1-2 ,x ∈0t =1-2 ,t ∈[0,1],则g (t )=t +1- 22=-12(t -1)2+1,所以12≤g (t )≤121.(1)f (1000)=-14(2)f (10)=lg (10a )·lg 100=(1+lg a )(lg a -2)=(lg a )2-lg a -2=10,即(lg a )2-lg a -12=0,解得lg a =4或-3,即a =104或10-3(3)因为对一切正实数x 恒有f (x )≤98,所以lg (ax )·lg 2≤98在(0,+∞)上恒成立,即(lg a +lg x )(lg a -2lg x )≤98,即2(lg x )2+lg a ·lg x -(lg a )2+98≥0在(0,+∞)上恒成立.因为x >0,所以lg x ∈R .由二次函数的性质可知,Δ=(lg a )2-8-(lg )2+,所以(lg a )2≤1,则-1≤lg a ≤1,所以110≤a ≤1022.(1)当0≤t ≤1时,设y =kt ,将点(0.1,1)代入得k =10,所以y =10t ,再将点(0.1,1)代入y 2+0.9 +,得a =-0.1,所以y 0≤ ≤1,2+0.9 -0.1, >1(2)2+0.9 -0.1≤116,所以( 2+0.9 -0.1),所以5(t 2+0.9t -0.1)≥4,所以10t 2+9t -9≥0,所以t ≥35或t ≤-32(舍去),所以学生要在0.6h 后才可以进入教室。
指对幂函数经典练习题
精选文档高一数学期末复习幂函数、指数函数和对数函数1、假设函数 y (a23a 3)a x是指数函数,那么有〔〕A、a1或a2B、a1C、a2D、a0且a12、以下所给出的函数中,是幂函数的是〔〕A.y x3B.yx3C.y2x3D.yx313、1.指数式b c=a〔b>0,b≠1〕所对应的对数式是〔〕A.logca=b B.logcb=a C.logab=c D.logba=c4、假设100a5,10b 2,那么2ab=〔〕A、0B、1C、2D、35、假设xy0,那么等式4x2y32xyy建立的条件是〔〕A、x0,y0B、x0,y0C、x0,y0D、x0,y06、函数y=log1(2x1)的定义域为〔〕2A.〔1,+∞〕B.[1,+∞)C.〔1,1]D.〔-∞,1〕227、假设函数log2(kx2+4kx+3)的定义域为R,那么k的取值范围是〔〕A.0,3B.0,3C.0,3D.(,0]3,444448、函数y x3的图象是〔〕第9题A.B.C.D.9、图中曲线是对数函数y=logax的图象,a取3,4,3,1四个值,那么相应于C1,C2,C,C 的a值挨次为3510〔〕34A.3,4,3,1B.3,4,1,3C.4,3,3,1D.4,3,1,33510231053510310510、函数y=lg〔-1〕的图象对于〔〕1xA.x轴对称B.y轴对称C.原点对称D.直线y=x对称11、假设对于x的方程5x a 3有负根,那么实数a的取值范围是_____________.a312、当x0时,函数y(a28)x的值恒大于1,那么实数a的取值范围是______.精选文档精选文档13、函数y 4x2x 1 1 的值域是 . 14、设2a5b10,那么11。
a x 11a b15、函数y (a 0且a 1)的图象必经过定点. 16、假设a 3a 4(a0,a1),那么a 的取值范围是.17、函数f 〔x 〕=|lgx|,那么f 〔1〕,f 〔1〕,f 〔2〕的大小关系是18、a xx43au ,此中a >0,xR ,试用u 将以下各式分别表示出来:xx3x 3x〔1〕a 2a 2;〔2〕a 2a 2.19、求log 2.56.25+lg1+ln e +21log 23的值.10020、假设2x4y4 0,z4x 24y 5,求z 的取值范围.21、函数y 4x 32x3的值域为[7,43],试确立x 的取值范围.精选文档作业1、以下函数必定是指数函数的是〔〕A、y2x1B 、yx 3C 、y3xD 、y32x2、ab>0,下边四个等式中,正确命题的个数为〔〕①lg 〔ab 〕=lga+lgb②lg a=lga -lgb③1lg(a )2lga④lg 〔ab 〕= 1b2bblog ab 10A .0B .1C .2D .33、x=2+1,那么log 4〔x 3-x -6〕等于〔〕3 5C .01A .B .D .241,那么x 的值为24、m>0时10x =lg 〔10m 〕+lg〔〕mA .2B .1C .0D .-15、以下列图像正确的选项是〔 〕6、假设logAa=5,那么b 等于BCD〕b ·log〔a 3A .a 3B .a 5C .35D .537、5、11〔〕log a 30,那么a 、b 的关系是logb3A .1<b <aB .1<a <bC .0<a <b <1D .0<b <a <18、假设函数ya xm1(a0,a 1)的图象在第一、三、四象限内,那么〔〕A 、a1 B、a1且m 0 C 、0a1且m0D、0a19、函数y(1)1x的单一递加区间是 〔〕12A 、(,) B 、(0,)C 、(1, )D 、(0,1)10、如图1—9所示,幂函数y x 在第一象限的图象,4比拟0,1,2, 3,4,1的大小〔〕A .1342 12B .0131 23 4C . 2 4 0 3 1 1D .3241111、以下函数中既是偶函数又是( ,0)上是增函数的是〔 〕精选文档43C.yx21A.yx3B.yx2D.yx412、函数y x|x|,x R,知足〔〕A.奇函数是减函数B.偶函数又是增函数C.奇函数又是增函数D.偶函数又是减函数13、假设1x0,那么以下不等式中建立的是〔〕A、5x5x xB、5x x5xC、5x5x xD、x5x5x14、以下命题中正确的选项是〔〕A.当0时函数y x的图象是一条直线B.幂函数的图象都经过〔0,0〕和〔1,1〕点C.假设幂函数y x是奇函数,那么y x是定义域上的增函数D.幂函数的图象不行能出此刻第四象限15、假设x2,那么x24x4|3x|的值是__________.16、知足等式lg〔x-1〕+lg〔x-2〕=lg2的x会合为_____________。
人教B版(2019)高中数学必修第二册 第四章指数函数、对数函数与幂函数指数函数与对数函数的关系习题
4.3 指数函数与对数函数的关系知识点一反函数的概念1.函数y=e2x(x∈R)的反函数为( )A.y=2ln x(x>0) B.y=ln (2x)(x>0)C.y=12ln x(x>0) D.y=12ln (2x)(x>0)2.已知函数y=log3(3-x)(0≤x<3),则它的反函数是( ) A.y=3-3x(x≥0) B.y=3+3x(x≤1) C.y=3+3x(x≥0) D.y=3-3x(x≤1)3.函数f(x)=12x2+1(x>2)的反函数是( )A.y=2x-2(1≤x<3) B.y=2x-2(x>3) C.y=-2x-2(1≤x<3) D.y=-2x-2(x>3)4.已知函数y=3x-2a的反函数是y=bx+23,则( )A.a=-6,b=13B.a=1,b=13C.a=6,b=-13D.a=23,b=-135.已知函数f(x)=x2,x∈D的值域是{1,4,9},且函数f(x)存在反函数,这样的f(x)共有________个.6.若函数f(x)=2x+1x+a的反函数是其本身,则实数a=________.7.已知函数f(x)是以2为周期的偶函数,当0≤x≤1时,f(x)=lg (x+1),令函数g(x)=f(x)(x∈[1,2]),则g(x)的反函数为________________.8.已知函数f(x)=x2-2ax+2,x∈[-1,1].(1)当a =-12时,判定此函数有没有反函数,并说明理由;(2)当a 为何值时,此函数存在反函数?并求出此函数的反函数f -1(x ). 知识点二 反函数的图像与性质 9.函数y =log 212x -1的反函数的定义域为( ) A .(-∞,+∞) B .(0,+∞)C .(-∞,0)D .(-∞,0)∪(0,+∞)10.已知x >0,f (x )=log 3x 2的值域是[-1,1],则它的反函数f -1(x )的值域是( )A .[-1,1]B .(0,+∞)C.⎣⎢⎡⎦⎥⎤-3,-13∪⎣⎢⎡⎦⎥⎤13,3 D.⎣⎢⎡⎦⎥⎤13,3 11.如图,已知函数f (x )=3x -1,则它的反函数y =f -1(x )的大致图像是( )12.已知函数y =f (x )的反函数为y =f -1(x ),则函数y =f (-x )与y =-f -1(x )的图像( )A .关于y 轴对称B .关于原点对称C .关于直线x +y =0对称D .关于直线x -y =0对称13.给出下列命题:(1)若奇函数存在反函数,则其反函数也是奇函数;(2)函数f (x )在区间[a ,b ]上存在反函数的充要条件是f (x )在区间[a ,b ]上是单调函数;(3)函数f (x )在定义域D 上的反函数为f -1(x ),则对于任意的x 0∈D 都有f (f-1(x 0))=f -1(f (x 0))=x 0成立. 其中正确的命题为( ) A .(1) B .(1)(2) C .(1)(3)D .(1)(2)(3)14.已知点(3,9)在函数f (x )=1+a x 的图像上,则f (x )的反函数f -1(x )=________.15.若函数y =f (x )是函数y =g (x )=a 2x 的反函数(a >0,且a ≠1),且f (4)=1,则a =________.16.若函数y =f (x )的图像过点(0,1),则函数g (x )=f (4-x )的反函数的图像过点________.17.已知f (x )=x -1,其反函数为f -1(x ),若f -1(x )-a =f (x +a )有实数根,则a 的取值范围为________.知识点三 指数函数与对数函数的综合应用 18.设a ,b ,c 均为正数,且2a=,⎝ ⎛⎭⎪⎫12b =,⎝ ⎛⎭⎪⎫12c =log 2c ,则( ) A .a <b <c B .c <b <a C .c <a <bD .b <a <c19.(多选)已知函数f (x )=log a (a x -1)(a >0,a ≠1),则下列说法正确的是( )A .函数f (x )的图像在y 轴的一侧B .函数f (x )为奇函数C .函数f (x )为定义域上的增函数D .函数f (x )在定义域内有最大值 20.已知函数f (x )=log 2(1-2x ). (1)求函数f (x )的定义域和值域;(2)求证函数y=f(x)的图像关于直线y=x对称.易错点一对反函数的定义理解不清而致误已知函数y=f(x+1)与函数y=g(x)的图像关于直线y=x对称,且g(x)的图像过定点(1,2020),则y=f-1(x+1)的图像过定点________.易错点二不能将问题合理转化致误设α,β分别是关于x的方程log2x+x-4=0和2x+x-4=0的根,则α+β=________.一、单项选择题1.函数y=2x+1(x∈R)的反函数是( )A.y=1+log2x(x>0)B.y=log2(x-1)(x>1)C.y=-1+log2x(x>0)D.y=log2(x+1)(x>-1)2.把函数y=log a x(a>0且a≠1)的图像绕原点逆时针旋转90°后,新图像的函数解析式是( )A.y=-a x B.y=a-xC.y=log a(-x) D.y=-log a x3.已知f(x)=-4-x2的反函数为f-1(x)=4-x2,则f(x)的定义域为( )A.(-2,0) B.[-2,2]C.[-2,0] D.[0,2]4.当0<a<1时,方程log a x=a x的实数解( )A.有且只有一个B.可能无解C .可能有3个D .一定有3个5.若函数y =a x (a >0,且a ≠1)的反函数的图像过点(a ,a ),则a 的值为( )A .2B .12C .2或12D .36.函数y =1-xx(x ≠0)的反函数的图像大致是( )7.已知函数y =f (x )的定义域是[-1,1],其图像如图所示,则不等式-1≤f-1(x )≤12的解集是( )A.⎣⎢⎡⎦⎥⎤-1,12B.⎣⎢⎡⎦⎥⎤-2,12C .[-2,0)∪⎣⎢⎡⎦⎥⎤12,1D .[-1,0]∪⎣⎢⎡⎦⎥⎤12,18.已知函数f (x )=3x ,函数g (x )是f (x )的反函数,若正数x 1,x 2,…,x 2020满足x 1x 2…x 2020=81,则g (x 21)+g (x 22)+…+g (x 22020)的值等于( )A .4B .8C .16D .64二、多项选择题9.下列说法中正确的是( )A .一次函数y =kx +b (k ≠0)一定存在反函数B .若函数f (x )在其定义域内不是单调函数,则f (x )不存在反函数C .若函数y =f (x )的图像位于第一、二象限,则它的反函数y =f -1(x )的图像位于第一、四象限D .若函数f (x )存在反函数f -1(x ),则f -1(x )与f (x )图像的公共点必在直线y =x 上10.在同一直角坐标系下,函数y =a x 与y =log a x (a >0,a ≠1)的大致图像如图所示,则实数a 的可能值为( )A.32 B .43 C.75D .10711.如果一个点是一个指数函数的图像与一个对数函数的图像的公共点,那么称这个点为“好点”,在下面的四个点中,是“好点”的有( )A .(1,2)B .(2,1)C .(2,2)D .(2,0.5)12.下列说法正确的是( )A .函数y =a x 与y =⎝ ⎛⎭⎪⎫1a x 图像关于y 轴对称B .函数y =log a x 与y =图像关于x 轴对称C .函数y =a x 与y =log a x 图像关于直线y =x 对称D .函数y =a x 与y =log a x 图像关于y 轴对称 三、填空题13.函数f (x )=-x 2(x ∈(-∞,-2])的反函数f -1(x )=________. 14.已知函数f (x )=a x -k 的图像过点(1,3),其反函数y =f -1(x )的图像过点(2,0),则f (x )的表达式为________.15.已知函数f (x )与函数g (x )=的图像关于直线y =x 对称,则函数f (x 2+2x )的单调增区间是________.16.已知函数f (x )=log a x -bx +b (a >0,b ≠0),则f (x )的值域为____________,f (x )的反函数f -1(x )的解析式为________________.四、解答题17.若不等式4x -log a x <0,当x ∈⎝ ⎛⎭⎪⎫0,12时恒成立,求实数a 的取值范围.18.已知f (x )=1-3x 1+3x ,求f-1⎝ ⎛⎭⎪⎫45的值. 19.已知y =f (x )是R 上的增函数,点A (-1,1),B (1,3)在它的图像上,y =f -1(x )是它的反函数,解不等式|f -1(log 2x )|<1.20.已知f (x )=a ·2x -12x +1(a ∈R ),f (0)=0.(1)求a 的值,并判断f (x )的奇偶性; (2)求f (x )的反函数;(3)对任意的k ∈(0,+∞),解不等式f -1(x )>log 21+xk.4.3 指数函数与对数函数的关系知识点一 反函数的概念1.函数y=e2x(x∈R)的反函数为( )A.y=2ln x(x>0) B.y=ln (2x)(x>0)C.y=12ln x(x>0) D.y=12ln (2x)(x>0)答案 C解析y=e2x>0,2x=ln y,x=12ln y,∴y=e2x的反函数为y=12ln x,x>0.2.已知函数y=log3(3-x)(0≤x<3),则它的反函数是( ) A.y=3-3x(x≥0) B.y=3+3x(x≤1) C.y=3+3x(x≥0) D.y=3-3x(x≤1)答案 D解析∵0≤x<3,∴y≤1.又3-x=3y,∴x=3-3y.∴y=log3(3-x)的反函数为y=3-3x,x≤1.3.函数f(x)=12x2+1(x>2)的反函数是( )A.y=2x-2(1≤x<3) B.y=2x-2(x>3) C.y=-2x-2(1≤x<3) D.y=-2x-2(x>3)答案 B解析令y=12x2+1.∵x>2,∴y=12x2+1>3.对调函数中的x和y得x=12y2+1,解得y=2x-2.∴所求反函数为y=2x-2(x>3).4.已知函数y=3x-2a的反函数是y=bx+23,则( )A.a=-6,b=13B.a=1,b=13C.a=6,b=-13D.a=23,b=-13答案 B解析∵函数y=3x-2a,∴x=y+2a3,互换x,y,得函数y=3x-2a的反函数是y =13x +23a ,x ∈R .∵函数y =3x -2a 的反函数是y =bx +23,∴⎩⎪⎨⎪⎧b =13,2a 3=23,解得a =1,b =13.故选B.5.已知函数f (x )=x 2,x ∈D 的值域是{1,4,9},且函数f (x )存在反函数,这样的f (x )共有________个.答案 8解析 当x 2=1时,x =±1;当x 2=4时,x =±2;当x 2=9时,x =±3.若函数f (x )存在反函数,则一个y 只能对应一个x ,列举如下:⎩⎪⎪⎪⎨⎪⎪⎪⎧x =1,y =1,⎩⎪⎨⎪⎧ x =2,y =4,⎩⎨⎧ x =3,y =9,x =-3,y =9,x =-2,y =4,⎩⎨⎧ x =3,y =9,x =-3,y =9,x =-1,y =1,⎩⎪⎨⎪⎧x =2,y =4,⎩⎨⎧ x =3,y =9,x =-3,y =9,x =-2,y =4,⎩⎨⎧ x =3,y =9,x =-3,y =9.故这样的f (x )共有8个. 6.若函数f (x )=2x +1x +a的反函数是其本身,则实数a =________. 答案 -2解析 函数y =f (x )=2x +1x +a 的反函数为x =2y +1y +a ,即y =1-axx -2,因为函数f (x )=2x +1x +a 的反函数是其本身,所以2x +1x +a =1-axx -2,所以a =-2. 7.已知函数f (x )是以2为周期的偶函数,当0≤x ≤1时,f (x )=lg (x +1),令函数g (x )=f (x )(x ∈[1,2]),则g (x )的反函数为________________.答案 g -1(x )=3-10x (0≤x ≤lg 2)解析 当-1≤x ≤0时,0≤-x ≤1,∴f (x )=f (-x )=lg (-x +1);当1≤x ≤2时,-1≤x -2≤0,∴f (x )=f (x -2)=lg [-(x -2)+1]=lg (-x +3).∴g (x )=lg (-x +3)(1≤x ≤2),∴-x +3=10g (x ),∴x =3-10g (x ).故反函数为g -1(x )=3-10x (0≤x ≤lg 2).8.已知函数f (x )=x 2-2ax +2,x ∈[-1,1].(1)当a =-12时,判定此函数有没有反函数,并说明理由;(2)当a 为何值时,此函数存在反函数?并求出此函数的反函数f -1(x ). 解 (1)当a =-12时,f (x )=x 2+x +2=⎝ ⎛⎭⎪⎫x +122+74,x ∈[-1,1],显然函数不单调,所以此时没有反函数.(2)函数存在反函数时必须在[-1,1]上单调,而f (x )=(x -a )2+2-a 2,x ∈[-1,1],对称轴x =a ,所以a ≥1或a ≤-1.当a ≥1时,f -1(x )=a -x +a 2-2,x ∈[3-2a,3+2a ];当a ≤-1时,f -1(x )=a +x +a 2-2,x ∈[3+2a,3-2a ].知识点二 反函数的图像与性质 9.函数y =log 212x -1的反函数的定义域为( ) A .(-∞,+∞) B .(0,+∞)C .(-∞,0)D .(-∞,0)∪(0,+∞)答案 A解析 反函数的定义域即为原函数的值域.由12x -1>0可得log 212x -1∈R ,所以原函数的值域为R ,故它的反函数的定义域为R .故选A.10.已知x >0,f (x )=log 3x 2的值域是[-1,1],则它的反函数f -1(x )的值域是( )A .[-1,1]B .(0,+∞)C.⎣⎢⎡⎦⎥⎤-3,-13∪⎣⎢⎡⎦⎥⎤13,3D.⎣⎢⎡⎦⎥⎤13,3 答案 D解析 ∵f (x )=log 3x 2的值域是[-1,1],∴-1≤log 3x 2≤1,即13≤x 2≤3,而x >0,∴x ∈⎣⎢⎡⎦⎥⎤13,3.∵反函数的值域为原函数的定义域,∴反函数f -1(x )的值域是⎣⎢⎡⎦⎥⎤13,3. 11.如图,已知函数f (x )=3x -1,则它的反函数y =f -1(x )的大致图像是( )答案 C解析 由f (x )=3x -1可得f -1(x )=log 3x +1,∴图像为C.12.已知函数y =f (x )的反函数为y =f -1(x ),则函数y =f (-x )与y =-f -1(x )的图像( )A .关于y 轴对称B .关于原点对称C .关于直线x +y =0对称D .关于直线x -y =0对称 答案 D解析 函数y =f (-x )与y =-f -1(x )互为反函数,图像关于直线x -y =0对称.故选D.13.给出下列命题:(1)若奇函数存在反函数,则其反函数也是奇函数;(2)函数f (x )在区间[a ,b ]上存在反函数的充要条件是f (x )在区间[a ,b ]上是单调函数;(3)函数f (x )在定义域D 上的反函数为f -1(x ),则对于任意的x 0∈D 都有f (f-1(x 0))=f -1(f (x 0))=x 0成立. 其中正确的命题为( ) A .(1) B .(1)(2) C .(1)(3) D .(1)(2)(3)答案 A解析 (1)设奇函数f (x )的反函数为f -1(x ),∵f (x )是奇函数,∴f (x )的值域关于原点对称,即f -1(x )的定义域关于原点对称.假设f (x )=y ,则f (-x )=-y .∴f -1(y )=x ,f -1(-y )=-x .∴f -1(-y )=-f -1(y ),即f -1(-x )=-f -1(x ).∴f -1(x )是奇函数.故(1)正确;(2)函数f (x )在区间[a ,b ]上存在反函数,不一定f (x )在区间[a ,b ]上是单调函数,比如f (x )=⎩⎨⎧1-x ,x ≤1,x ,x >1存在反函数,但f (x )在R 上不单调,故(2)不正确;(3)x 0不一定属于f (x )的值域,即f -1(x 0)不一定存在,故(3)不正确.故选A.14.已知点(3,9)在函数f (x )=1+a x 的图像上,则f (x )的反函数f -1(x )=________.答案 log 2(x -1)(x >1)解析 ∵(3,9)在函数f (x )上,∴1+a 3=9,解得a =2,∴f (x )=1+2x ,又f (x )>1,∴f -1(x )=log 2(x -1)(x >1).15.若函数y =f (x )是函数y =g (x )=a 2x 的反函数(a >0,且a ≠1),且f (4)=1,则a =________.答案 2解析 由y =f (x )与y =g (x )互为反函数,且f (4)=1,得g (1)=4,所以a 2=4,a =2.16.若函数y =f (x )的图像过点(0,1),则函数g (x )=f (4-x )的反函数的图像过点________.答案 (1,4)解析 ∵y =f (x )的图像过点(0,1),∴f (4-x )的图像过点(4,1),∴g (x )=f (4-x )的反函数的图像过点(1,4).17.已知f (x )=x -1,其反函数为f -1(x ),若f -1(x )-a =f (x +a )有实数根,则a 的取值范围为________.答案 ⎣⎢⎡⎦⎥⎤34,+∞解析 因为y =f -1(x )-a 与y =f (x +a )互为反函数,所以二者关于y =x 对称.若y =f -1(x )-a 与y =f (x +a )有实数根,则y =f (x +a )与y =x 有交点,所以x +a -1=x ,即a =x 2-x +1=⎝⎛⎭⎪⎫x -122+34≥34.知识点三 指数函数与对数函数的综合应用 18.设a ,b ,c 均为正数,且2a=,⎝ ⎛⎭⎪⎫12b =,⎝ ⎛⎭⎪⎫12c =log 2c ,则( ) A .a <b <c B .c <b <a C .c <a <b D .b <a <c答案 A解析 在同一平面直角坐标系中,画出函数y =2x,y =⎝ ⎛⎭⎪⎫12x,y =log 2x ,y =的图像,如图所示,则a ,b ,c 分别为两个图像交点的横坐标,根据图像可知a <b <c .19.(多选)已知函数f (x )=log a (a x -1)(a >0,a ≠1),则下列说法正确的是( )A .函数f (x )的图像在y 轴的一侧B .函数f (x )为奇函数C .函数f (x )为定义域上的增函数D .函数f (x )在定义域内有最大值 答案 AC解析 ∵函数f (x )=log a (a x -1)(a >0,a ≠1),当a >1时,由a x -1>0,可得x >0,此时,函数的图像仅在y 轴的右侧;当0<a <1时,由a x -1>0,可得x <0,此时,函数的图像仅在y 轴的左侧,故A 正确.由于f (-x )=log a (a -x -1)=log a ⎝ ⎛⎭⎪⎫1a x -1≠-f (x ),故函数不是奇函数,故B 不正确.由于函数y =log a t 和函数t =a x 的单调性相同,即同是增函数或同是减函数,根据复合函数的单调性可得f (x )=log a (a x -1)在它的定义域内一定是增函数,故C 正确.由于t =a x -1无最值,故y =log a t 无最值,故D 不正确.故选AC.20.已知函数f (x )=log 2(1-2x ). (1)求函数f (x )的定义域和值域;(2)求证函数y =f (x )的图像关于直线y =x 对称. 解 (1)要使函数f (x )=log 2(1-2x )有意义, 则1-2x>0,即2x<1. 故x <0,此时0<1-2x <1, ∴f (x )=log 2(1-2x )<0,故函数f (x )的定义域为(-∞,0),值域为(-∞,0).(2)证明:由y =f (x )=log 2(1-2x )可得1-2x =2y ,解得x =log 2(1-2y ),故原函数的反函数为f -1(x )=log 2(1-2x ),与原函数相同,所以函数f (x )的图像关于直线y =x 对称.易错点一 对反函数的定义理解不清而致误已知函数y =f (x +1)与函数y =g (x )的图像关于直线y =x 对称,且g (x )的图像过定点(1,2020),则y =f -1(x +1)的图像过定点________.易错分析 本题容易误认为f (x +1)与f -1(x +1)互为反函数.答案(0,2021)正解∵g(x)的图像过定点(1,2020),∴f(x+1)的图像过定点(2020,1).又f(x)的图像可以看作由f(x+1)的图像向右平移一个单位长度得到的,∴f(x)过定点(2021,1).又f(x)与f-1(x)互为反函数,∴f-1(x)的图像过定点(1,2021).再结合f-1(x)与f-1(x+1)的关系可知,f-1(x+1)的图像过定点(0,2021).易错点二不能将问题合理转化致误设α,β分别是关于x的方程log2x+x-4=0和2x+x-4=0的根,则α+β=________.易错分析本题的易错之处为不能正确将问题转化为函数y=log2x,y=2x,y=4-x三个图像之间的关系进行求解.答案 4正解如图,分别作出函数y=log2x,y=2x,y=4-x的图像,相交于点P,Q.∵log2α=4-α,2β=4-β.而y=log2x(x>0)与y=2x互为反函数,直线y=4-x与直线y=x互相垂直,∴点P与Q关于直线y=x对称.∴α=2β=4-β.∴α+β=4.一、单项选择题1.函数y =2x +1(x ∈R )的反函数是( ) A .y =1+log 2x (x >0) B .y =log 2(x -1)(x >1) C .y =-1+log 2x (x >0) D .y =log 2(x +1)(x >-1) 答案 C解析 由y =2x +1⇒x +1=log 2y ⇒x =-1+log 2y ,又因原函数的值域{y |y >0},故其反函数是y =-1+log 2x (x >0).2.把函数y =log a x (a >0且a ≠1)的图像绕原点逆时针旋转90°后,新图像的函数解析式是( )A .y =-a xB .y =a -xC .y =log a (-x )D .y =-log a x答案 B解析 函数的图像绕坐标原点逆时针旋转90°后,得到的函数与原函数的反函数的图像关于y 轴对称.函数y =log a x (a >0且a ≠1)的反函数为y =a x ,其关于y 轴对称的函数解析式为y =a -x .故选B.3.已知f (x )=-4-x 2的反函数为f -1(x )=4-x 2,则f (x )的定义域为( )A .(-2,0)B .[-2,2]C .[-2,0]D .[0,2]答案 D解析 ∵原函数的定义域就是反函数的值域,原函数的值域就是反函数的定义域.∴⎩⎨⎧4-x 2≥0,f-1x ≥0,解得⎩⎨⎧-2≤x ≤2,x ≥0,即0≤x ≤2.故f (x )的定义域为[0,2].故选D.4.当0<a <1时,方程log a x =a x 的实数解( ) A .有且只有一个 B .可能无解 C .可能有3个 D .一定有3个答案 C解析 考虑函数y =log a x 与函数y =a x 的图像公共点,易知B ,D 两项不对.又y =和y =⎝ ⎛⎭⎪⎫116x 的图像除了在直线y =x 上存在一个公共点外,还存在⎝ ⎛⎭⎪⎫12,14和⎝ ⎛⎭⎪⎫14,12两个公共点.故选C. 5.若函数y =a x (a >0,且a ≠1)的反函数的图像过点(a ,a ),则a 的值为( )A .2B .12C .2或12D .3答案 B解析 解法一:函数y =a x (a >0,且a ≠1)的反函数即y =log a x ,故y =log a x 的图像过点(a ,a ),则a =log a a =12.解法二:由题意得,函数y =a x (a >0,且a ≠1)的反函数的图像过点(a ,a ),则函数y =a x (a >0,且a ≠1)的图像过点(a ,a ),即a a =a =,故a =12.6.函数y =1-xx(x ≠0)的反函数的图像大致是( )答案 B 解析 y =1-xx(x ≠0)的反函数为y =11+x (x ≠-1),其图像为y =1x的图像向左平移1个单位长度.7.已知函数y =f (x )的定义域是[-1,1],其图像如图所示,则不等式-1≤f-1(x )≤12的解集是( )A.⎣⎢⎡⎦⎥⎤-1,12B.⎣⎢⎡⎦⎥⎤-2,12C .[-2,0)∪⎣⎢⎡⎦⎥⎤12,1D .[-1,0]∪⎣⎢⎡⎦⎥⎤12,1答案 C解析 由题意,可得-1≤f -1(x )≤12的解集即为f (x )在⎣⎢⎡⎦⎥⎤-1,12上的值域.当-1≤x <0时,由题图可知f (x )∈[-2,0),当0≤x ≤12时,由题图可知f (x )∈⎣⎢⎡⎦⎥⎤12,1.故不等式-1≤f -1(x )≤12的解集为[-2,0)∪⎣⎢⎡⎦⎥⎤12,1.8.已知函数f (x )=3x ,函数g (x )是f (x )的反函数,若正数x 1,x 2,…,x 2020满足x 1x 2…x 2020=81,则g (x 21)+g (x 22)+…+g (x 22020)的值等于( )A .4B .8C .16D .64答案 B解析 由函数f (x )=3x ,函数g (x )是f (x )的反函数,则g (x )=log 3x ,所以g (x 21)+g (x 22)+…+g (x 22020)=log 3(x 1x 2…x 2020)2=2log 3(x 1x 2…x 2020)=2log 381=8.故选B.二、多项选择题9.下列说法中正确的是( )A .一次函数y =kx +b (k ≠0)一定存在反函数B .若函数f (x )在其定义域内不是单调函数,则f (x )不存在反函数C .若函数y =f (x )的图像位于第一、二象限,则它的反函数y =f -1(x )的图像位于第一、四象限D .若函数f (x )存在反函数f -1(x ),则f -1(x )与f (x )图像的公共点必在直线y =x 上答案 AC解析 对于A ,一次函数y =kx +b (k ≠0)为单调函数,一定存在反函数,故正确;对于B ,因为函数f (x )=1x在定义域上不单调,但函数f (x )存在反函数,故错误;对于C ,因为原函数与它的反函数的图像关于y =x 对称,所以将y =f (x )的图像沿y =x 翻折后,会落在第一、四象限,故正确;对于D ,比如函数y =-x +1与其反函数y =x 2-1(x ≤0)的交点坐标有(-1,0),(0,-1),显然交点不在直线y =x 上,故错误.故选AC.10.在同一直角坐标系下,函数y =a x 与y =log a x (a >0,a ≠1)的大致图像如图所示,则实数a 的可能值为( )A.32 B .43 C.75 D .107答案 BC解析 由图像可知a >1且a 2<log a 2.⎝ ⎛⎭⎪⎫322=94>2=94>2,故A 错误;⎝ ⎛⎭⎪⎫432=169<2=169<2,故B 正确;⎝ ⎛⎭⎪⎫752=4925<2=4925<2,故C 正确;⎝ ⎛⎭⎪⎫1072=10049>2=10049>2,故D 错误.综上,选BC.11.如果一个点是一个指数函数的图像与一个对数函数的图像的公共点,那么称这个点为“好点”,在下面的四个点中,是“好点”的有( )A .(1,2)B .(2,1)C .(2,2)D .(2,0.5)答案 CD解析 当x =1时,对数函数y =log a x (a >0,a ≠1)恒过(1,0)点,故(1,2)一定不是好点;当y =1时,指数函数y =a x (a >0,a ≠1)恒过(0,1)点,故(2,1)也一定不是好点;而(2,2)是函数y =(2)x 与的交点;(2,0.5)是函数y =⎝⎛⎭⎪⎫12x与y =log 4x 的交点;故选CD. 12.下列说法正确的是( )A .函数y =a x 与y =⎝ ⎛⎭⎪⎫1a x 图像关于y 轴对称B .函数y =log a x 与y =图像关于x 轴对称C .函数y =a x 与y =log a x 图像关于直线y =x 对称D .函数y =a x 与y =log a x 图像关于y 轴对称 答案 ABC解析 令a =2,分别作出对应的图像,由图像可知,对于A ,∵函数y =a x与y =⎝ ⎛⎭⎪⎫1a x图像关于y 轴对称,故A 正确;对于B ,∵函数y =log a x 与y =图像关于x 轴对称,故B 正确;对于C ,D ,∵函数y =a x 与y =log a x 图像关于直线y =x 对称,故C 正确,D 不正确.故选ABC.三、填空题13.函数f (x )=-x 2(x ∈(-∞,-2])的反函数f -1(x )=________. 答案 --x ,x ∈(-∞,-4]解析 由y =-x 2,x ∈(-∞,-2],得y ∈(-∞,-4],∴x =--y ,即f -1(x )=--x ,x ∈(-∞,-4].14.已知函数f (x )=a x -k 的图像过点(1,3),其反函数y =f -1(x )的图像过点(2,0),则f (x )的表达式为________.答案 f (x )=2x +1解析 ∵y =f -1(x )的图像过点(2,0),∴f (x )的图像过点(0,2),∴2=a 0-k ,∴k =-1,∴f (x )=a x +1.又f (x )的图像过点(1,3),∴3=a 1+1,∴a =2,∴f (x )=2x +1.15.已知函数f (x )与函数g (x )=的图像关于直线y =x 对称,则函数f (x 2+2x )的单调增区间是________.答案 (-∞,-1]解析 由题意得f (x )=⎝ ⎛⎭⎪⎫12x ,∴f (x 2+2x )=,∵f (x )在R 上是减函数,∴由同增异减的原则可知,所求函数的单调增区间即为t =x 2+2x 的单调减区间,即(-∞,-1].16.已知函数f (x )=log a x -b x +b(a >0,b ≠0),则f (x )的值域为____________,f (x )的反函数f -1(x )的解析式为________________.答案 (-∞,0)∪(0,+∞) f -1(x )=b ·1+a x1-a x 解析 ∵b ≠0,∴x -b x +b ≠1,∴f (x )=log a x -b x +b ≠0.由y =log a x -b x +b ,化为x -b x +b =a y ,解得x =b ·1+a y 1-a y .把x 与y 互换可得y =b ·1+a x 1-ax ,∴f (x )的反函数f -1(x )=b ·1+a x1-a x. 四、解答题17.若不等式4x -log a x <0,当x ∈⎝⎛⎭⎪⎫0,12时恒成立,求实数a 的取值范围.解 要使不等式4x <log a x 在x ∈⎝ ⎛⎭⎪⎫0,12时恒成立,即函数y =log a x 的图像在⎝ ⎛⎭⎪⎫0,12内恒在函数y =4x 图像的上方,而y =4x 的图像过点⎝ ⎛⎭⎪⎫12,2. 由图可知,log a 12≥2,显然这里0<a <1,∴函数y =log a x 递减.又log a 12≥2=log a a 2,∴a 2≥12, 又0<a <1,∴a ≥22. ∴所求的a 的取值范围为⎣⎢⎡⎭⎪⎫22,1. 18.已知f (x )=1-3x1+3x ,求f -1⎝ ⎛⎭⎪⎫45的值. 解 令y =1-3x 1+3x ,∴y +y ·3x =1-3x ,∴3x =1-y 1+y , ∴x =log 31-y 1+y ,∴f -1(x )=log 31-x 1+x. ∴f -1⎝ ⎛⎭⎪⎫45=log 31-451+45=log 319=-2. 19.已知y =f (x )是R 上的增函数,点A (-1,1),B (1,3)在它的图像上,y =f -1(x )是它的反函数,解不等式|f -1(log 2x )|<1.解 ∵y =f (x )是R 上的增函数,∴y =f -1(x )在R 上也是增函数.∵f (-1)=1,f (1)=3,∴f -1(1)=-1,f -1(3)=1.由|f -1(log 2x )|<1,得-1<f -1(log 2x )<1,∴f -1(1)<f -1(log 2x )<f -1(3),∴1<log 2x <3,∴2<x <8,即所求不等式的解集为{x |2<x <8}.20.已知f (x )=a ·2x -12x +1(a ∈R ),f (0)=0.(1)求a 的值,并判断f (x )的奇偶性;(2)求f (x )的反函数;(3)对任意的k ∈(0,+∞),解不等式f -1(x )>log 21+x k .解 (1)由f (0)=0,得a =1,所以f (x )=2x -12x +1(x ∈R ). 因为f (x )+f (-x )=2x -12x +1+2-x -12-x +1=2x -12x +1+1-2x1+2x =0, 所以f (-x )=-f (x ),即f (x )为奇函数.(2)因为f (x )=y =2x -12x +1=1-22x +1, 所以2x =1+y 1-y(-1<y <1), 所以f -1(x )=log 21+x 1-x(-1<x <1). (3)因为f -1(x )>log 21+x k ,即log 21+x 1-x >log 21+x k ,所以⎩⎨⎧ 1+x 1-x >1+x k ,-1<x <1,所以⎩⎨⎧ x >1-k ,-1<x <1,当0<k <2时,原不等式的解集为{x |1-k <x <1}; 当k ≥2时,原不等式的解集为{x |-1<x <1}.。
高中数学 第四章 指数函数、对数函数与幂函数综合测试训练(含解析)新人教B版必修第二册-新人教B版高
第四章综合测试(时间:120分钟 满分150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若n ∈N ,a ∈R ,给出下列式子:①4-42n;②4-42n +1;③5a 4;④4a 5.其中恒有意义的式子的个数是( B )A .1B .2C .3D .4 [解析] 根据根指数是偶数时,被开方数非负,可知②无意义;当a <0时,④无意义;恒有意义的是①③.故选B .2.函数y =log 12x -3的定义域为( C )A .(-∞,18]B .[18,+∞)C .(0,18]D .(0,8][解析] 要使函数y =log 12x -3有意义,应满足log 12x -3≥0, ∴log 12x ≥3,∴⎩⎪⎨⎪⎧x >0x ≤⎝ ⎛⎭⎪⎫123=18,∴0<x ≤18,故选C .3.下列不等式中正确的是( C ) A .lg 0.1>lg 0.2 B .0.20.1<0.20.2C .0.20.1>lg 0.1D .0.10.2<lg 0.2[解析] lg 0.1<0,0.20.1>0,∴0.20.1>lg 0.1,故选C . 4.已知函数f (x )=⎩⎪⎨⎪⎧log 3x x >0⎝ ⎛⎭⎪⎫12xx ≤0,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫127=( D ) A .-18B .18C .-8D .8[解析] f ⎝ ⎛⎭⎪⎫127=log 3127=log 33-3=-3,f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫127=f (-3)=⎝ ⎛⎭⎪⎫12-3=8,故选D .5.若a >b >1,0<c <1,则( C ) A .a c<b cB .ab c <ba cC .a log b c <b log a cD .log a c <log b c[解析] 令a =4,b =2,c =12,则a c =412 =2,b c =212 =2,∴a c >b c,排除A ;ab c =42,ba c =4,∴ab c >ba c ,排除B ;log a c =log 412=-12,log b c =log 212=-1,∴log a c >log b c ,排除D ,故选C .6.已知f (x )是函数y =log 2x 的反函数,则y =f (1-x )的图像是( C )[解析] 因为函数y =log 2x 的反函数是y =2x ,所以f (x )=2x .故f (1-x )=21-x,因为此函数在R 上是减函数,且过点(0,2).因此选C .7.下列函数中,满足“f (x +y )=f (x )f (y )”的增函数是( B ) A .f (x )=x 3B .f (x )=3xC .f (x )=x 12D .f (x )=⎝ ⎛⎭⎪⎫12x[解析] 对于函数f (x )=x 3,f (x +y )=(x +y )3,f (x )f (y )=x 3·y 3,而(x +y )3≠x 3y 3,所以f (x )=x 3不满足f (x +y )=f (x )f (y ),故A 错误; 对于函数f (x )=3x,f (x +y )=3x +y=3x ·3y =f (x )f (y ),因此f (x )=3x满足f (x +y )=f (x )f (y ),且f (x )=3x是增函数,故B 正确;对于函数f (x )=x 12 ,f (x +y )=(x +y )12 ,f (x )f (y )=x 12 y 12 =(xy )12 ,而(x +y )12 ≠(xy )12 ,所以f (x )=x 12 不满足f (x +y )=f (x )f (y ),故C错误;对于函数f (x )=⎝ ⎛⎭⎪⎫12x ,f (x +y )=⎝ ⎛⎭⎪⎫12x +y =⎝ ⎛⎭⎪⎫12x ·⎝ ⎛⎭⎪⎫12y=f (x )·f (y ),因此f (x )=⎝ ⎛⎭⎪⎫12x 满足f (x +y )=f (x )f (y ),但f (x )=⎝ ⎛⎭⎪⎫12x不是增函数,故D 错误.8.设函数f (x )=⎩⎪⎨⎪⎧3x -1x <12xx ≥1,则满足f [f (a )]=2f (a )的a 的取值X 围是( C )A .[23,1]B .[0,1]C .[23,+∞)D .[1,+∞)[解析] 由f [f (a )]=2f (a )可得f (a )≥1,故有⎩⎪⎨⎪⎧a <13a -1≥1或⎩⎪⎨⎪⎧a ≥12a≥1,二者取并集即得a 的取值X 围是⎣⎢⎡⎭⎪⎫23,+∞,故选C .二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得5分,选对但不全的得3分,有选错的得0分)9.已知实数a ,b 满足等式3a=6b,给出下列四个关系式:①a =b ;②0<b <a ;③a <b <0;④b <0<A .其中可能成立的是( ABC )A .①B .②C .③D .④[解析] 在同一个坐标系中画出函数y =3x,y =6x的图象如图所示.由图像,可知当a =b =0时,3a=6b,故①可能成立;作出直线y =k ,如图所示,当k >1时,若3a=6b,则0<b <a ,故②可能成立;当0<k <1时,若3a=6b,则a <b <0,故③可能成立.故选ABC .10.对于0<a <1,下列四个不等式中成立的是( BD )A .log a (1+a )<log a ⎝⎛⎭⎪⎫1+1a B .log a (1+a )>log a ⎝ ⎛⎭⎪⎫1+1aC .a1+a<a1+1aD .a1+a>a1+1a[解析] 因为0<a <1,所以a <1a ,从而1+a <1+1a,所以log a (1+a )>log a ⎝ ⎛⎭⎪⎫1+1a .又因为0<a <1,所以a1+a>a1+1a.11.设函数f (x )=2x,对于任意的x 1,x 2(x 1≠x 2),下列命题中正确的是( ACD ) A .f (x 1+x 2)=f (x 1)·f (x 2)B .f (x 1·x 2)=f (x 1)+f (x 2) C .f x 1-f x 2x 1-x 2>0D .f ⎝ ⎛⎭⎪⎫x 1+x 22<f x 1+f x 22[解析] 2x 1·2x 2=2x 1+x 2,所以A 成立,2x 1+2x 2≠2x 1·x 2,所以B 不成立,函数f (x )=2x,在R 上是单调递增函数,若x 1>x 2则f (x 1)>f (x 2),则f x 1-f x 2x 1-x 2>0,若x 1<x 2,则f (x 1)<f (x 2),则f x 1-f x 2x 1-x 2>0,故C 正确;f ⎝⎛⎭⎪⎫x 1+x 22<f x 1+f x 22说明函数是凹函数,而函数f (x )=2x是凹函数,故ACD 正确.12.关于函数f (x )=|ln |2-x ||,下列描述正确的有( ABD ) A .函数f (x )在区间(1,2)上单调递增 B .函数y =f (x )的图像关于直线x =2对称 C .若x 1≠x 2,但f (x 1)=f (x 2),则x 1+x 2=4 D .函数f (x )有且仅有两个零点[解析] 函数f (x )=|ln |2-x ||的图像如图所示:由图可得:函数f (x )在区间(1,2)上单调递增,A 正确;函数y =f (x )的图像关于直线x =2对称,B 正确;若x 1≠x 2,但f (x 1)=f (x 2),则当x 1,x 2>2时,x 1+x 2>4,C 错误;函数f (x )有且仅有两个零点,D 正确.三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上) 13.设函数f (x )=x -a (其中a 为常数)的反函数为f -1(x ),若函数f -1(x )的图像经过点(0,1),则方程f -1(x )=2的解为__1__.[解析] 由y =f (x )=x -a ,得x -a =y 2(y ≥0)把点(0,1)代入得a =1. 所以f -1(x )=x 2+1(x ≥0).由f -1(x )=2,得x 2+1=2,即x =1.14.设f (x )=⎩⎪⎨⎪⎧2e x -1,x <2log 32x-1,x ≥2,则f [f (2)] =__2__.[解析] 因为f (2)=log 3(22-1)=1, 所以f [f (2)]=f (1)=2e1-1=2.15.已知函数f (x )=b -2x2x +1为定义在区间[-2a,3a -1]上的奇函数,则a =__1__,f ⎝ ⎛⎭⎪⎫12=__22-3__.[解析] 因为f (x )是定义在[-2a,3a -1]上的奇函数. 所以定义域关于原点对称, 即-2a +3a -1=0,所以a =1, 因为函数f (x )=b -2x2x +1为奇函数, 所以f (-x )=b -2-x 2-x +1=b ·2x -11+2x =-b -2x1+2x ,即b ·2x-1=-b +2x,所以b =1, 所以f (x )=1-2x1+2x ,所以f ⎝ ⎛⎭⎪⎫12=1-212 1+212 =1-21+2=22-3.16.下列说法中,正确的是__①④__. ①任取a >0,均有3a >2a, ②当a >0,且a ≠1,有a 3>a 2, ③y =(3)-x是增函数,④在同一坐标系中,y =2x与y =2-x的图像关于y 轴对称. [解析] ∵幂函数y =x a ,当a >0时, 在(0,+∞)上是增函数, ∵3>2,∴3a>2a,故①正确;当a =0.1时,0.13<0.12,故②错; 函数y =(3)-x=⎝⎛⎭⎪⎫33x是减函数,故③错; 在同一坐标系中,y =2x 与y =2-x=(12)x 的图像关于y 轴对轴,故④正确.四、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)计算下列各式的值. (1)⎝ ⎛⎭⎪⎫23-2+(1-2)0+⎝ ⎛⎭⎪⎫27823 ; (2)2lg 2+lg 31+12lg 0.36+13lg 8.[解析] (1)⎝ ⎛⎭⎪⎫23-2+(1-2)0+⎝ ⎛⎭⎪⎫27823 =94+1+94=112.(2)2lg 2+lg 31+12lg 0.36+13lg 8=lg 4+lg 31+lg 0.6+lg 2=lg 12lg 12=1.18.(本小题满分12分)已知函数f (x )=2x -1+a (a 为常数,且a ∈R )恒过点(1,2).(1)求a 的值;(2)若f (x )≥2x,求x 的取值X 围.[解析] (1)f (1)=20+a =1+a =2,解得a =1. (2)由f (x )=2x -1+1=2x 2+1≥2x ,得2x2≤1,即2x -1≤1=20,即x -1≤0,解得x ≤1,因此,实数x 的取值X 围是(-∞,1].19.(本小题满分12分)求函数y =(2x )2-2×2x+5,x ∈[-1,2]的最大值和最小值. [解析] 设2x=t ,因为x ∈[-1,2],所以2x=t ∈⎣⎢⎡⎦⎥⎤12,4则y =t 2-2t +5为二次函数,图像开口向上,对称轴为t =1, 当t =1时,y 取最小值4,当t =4时,y 取最大值13.20.(本小题满分12分)已知幂函数y =f (x )的图像过点(8,m )和(9,3). (1)求m 的值;(2)若函数g (x )=log a f (x )(a >0,a ≠1)在区间[16,36]上的最大值比最小值大1,某某数a 的值.[解析] (1)由题意,y =f (x )是幂函数,设f (x )=x α,图像过点(8,m )和(9,3)可得9α=3,所以α=12,故f (x )=x 12 ,所以m =f (8)=22,故m 的值为22.(2)函数g (x )=log a f (x ),即为g (x )=log a x , 因为x 在区间[16,36]上,所以x ∈[4,6], ①当0<a <1时,g (x )min =log a 6,g (x )max =log a 4, 由log a 4-log a 6=log a 23=1,解得a =23.②当a >1时,g (x )min =log a 4,g (x )max =log a 6,由log a 6-log a 4=log a 32=1,解得a =32,综上可得,实数a 的值为23或32.21.(本小题满分12分)一片森林原来的面积为a ,计算每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到森林面积的一半时,所用时间是10年.为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22.(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已被砍伐了多少年? (3)今后最多还能砍伐多少年?[解析] (1)设每年砍伐面积的百分比为x (0<x <1),则a (1-x )10=12a ,即(1-x )10=12,解得x =1-(12)110 .(2)设经过m 年剩余面积为原来的22, 则a (1-x )m=22a , 即(12)m 10 =(12)12 ,m 10=12,解得m =5, 故到今年为止,该森林已被砍伐5年. (3)设从今年开始,以后最多能砍伐n 年,则n 年后剩余面积为22a (1-x )n . 令22a (1-x )n ≥14a ,即(1-x )n ≥24, (12)n 10 ≥(12)32 ,n 10≤32,解得n ≤15. 故今后最多还能砍伐15年.22.(本小题满分12分)已知函数f (x )=log 2⎝ ⎛⎭⎪⎫12x +a .(1)若函数f (x )是R 上的奇函数,求a 的值;(2)若函数f (x )的定义域是一切实数,求a 的取值X 围;(3)若函数f (x )在区间[0,1]上的最大值与最小值的差不小于2,某某数a 的取值X 围. [解析] (1)函数f (x )是R 上的奇函数,则f (0)=0,求得a =0. 又此时f (x )=-x 是R 上的奇函数,所以a =0为所求. (2)函数f (x )的定义域是一切实数,则12x +a >0恒成立.即a >-12x 恒成立,由于-12x ∈(-∞,0).故只要a ≥0即可.(3)由已知函数f (x )是减函数,故f (x )在区间[0,1]上的最大值是f (0)=log 2(1+a ).最小值是f (1)=log 2⎝ ⎛⎭⎪⎫12+a .由题设log 2(1+a )-log 2⎝ ⎛⎭⎪⎫12+a ≥2⇒⎩⎪⎨⎪⎧a +12>0a +1≥4a +2.故-12<a ≤-13为所求.。
(完整版)幂函数、指数函数、对数函数专练习题(含答案)
精心整理1.函数f(x)= . 1 2x的定义域是A. ( —x, 0]B.[0,+x)C. ( —X, 0)D. (―^,+呵2•函数y . log2 x的定义域是A. (0,1]B.(0,+x)C.(1,+x)D.[1,+x)3. 函数y Jog2 ^2的定义域是A.(3,+x )B.[3,+x )C.(4,+x )D.[4,+x)4. 若集合M {y | y 2x}, N {y | y . x 1},贝"M NA.{y|y 1}B.{y|y 1} C{y|y 0}D.{y|y 0}5. 函数y二-1的图象是x 16. 函数y=1 ——,则下列说法正确的是x 1A.y在(—1,+x)内单调递增B.y在(—1,+x)内单调递减Cy在(1,+x)内单调递增 D.y在(1,+x)内单调递减7. 函数y Jog°.5(3 x)的定义域是A.(2,3)B.[2,3) C[2, )D.( ,3)8. 函数f(x) x 在(0,3]上是xA.增函数B.减函数C在(0,1]上是减函数,[1,3]上是增函数。
.在(0,1]上是增函数,[1,3]上是减函数9. 函数y \ lg (2 x)的定义域是A.(-x, +X)B.(-x, 2)C.(-x, 0]D(-x, 1]— 2 x1,(x 0)10. 设函数f(x) 若f(X o) 1,则X o的取值范围是V x (x 0)11. 函数y |x|2A.是偶函数,在区间(-x ,0)上单调递增B.是偶函数,在区间(-x ,0)上单调递减C是奇函数,在区间(0,+x)上单调递增D.是奇函数,在区间(0,+x)上单调递减精心整理12. 函数y "―1)—的定义域是13. 函数y log i (3x 2)的定义域是A.[1, )B.(3, )C.[|,1]D.(3,1]14. 下列四个图象中,函数f(x) x 1的图象是x15. 设A、B是非空集合,定义A X B={x| x € A U B且x A A B}.已知A={x| y= 2x x2},B={y| y=2x,x>0},则A X B 等于A. :0,1)U (2,u)B. :0,1]U[ 2,+乂)C. :0,1]D. :0,2]16. 设a=20.|,b=0.32,c=log2.|,则Aa> c> bB.a> b> cC.b> c> aD.c> b> a17. 已知点「八3)在幕函数y f(x)的图象上,贝S f(x)的表达式是3 9「J-i 广一”:八, /■/1A. f(x) 3xB. f(x) x3C.f (x) x 2D. f (x)(一厂218. 已知幕函数f(x) x的部分对应值如下表:则不等式f (|x) 1的解集是A. x0 x 42B. x|o x 4C. 弋2 x V2D. x 4 x 419.已知函数f(x) x ax 3a 9的值域为[0,),则f (1)的值为A.3B.4C.5D.6I I \ 、指数函数习题一、选择题1. 定义运算a?b= ?a< b?,b?a>b?)),则函数f(x) =1?2x的图象大致为()2 .函数f (x) = x2- bx+ c 满足f (1 + x) = f (1 —x)且f (0) = 3,则f ( b x)与f (c x)的大小关系是()A. f(b x) <f (c x) 精心整理精心整理B. f(b x) >f(c x)C. f(b x)>f(c x)D. 大小关系随x的不同而不同3. 函数y = |2x- 1|在区间(k —1, k +1)内不单调,则k的取值范围是()A. ( —1,+切B.(―汽1)C. ( —1,1)D. (0,2)4. 设函数f(x) =ln[( x —1)(2 —x)]的定义域是A,函数g(x) = lg( —1)的定义域是B. 若A?B,则正数a的取值范围()A. a>3B. a>3C. a>D. a>5. 已知函数f (x)=若数列{a n}满足a n = f(n)( n€ N*),且{a n}是递增数列,则实数a 的取值范围是()A. [ , 3)B. (, 3)C. (2,3)D. (1,3)6. 已知a>0且a z 1, f (x) = x2—a x,当x € ( —1,1)时,均有f (x)v,则实数a的取值范围是()A. (0 , ] U [2 ,+乂)B. [ , 1) U (1,4]C. [ , 1) U (1,2]D. (0 , ) U [4 ,+ = )二、填空题7. ___________________________________________________________________ 函数y=a x( a>0,且a z 1)在[1,2]上的最大值比最小值大,则a的值是__________________ .8. _____________________________________________________________ 若曲线|y| = 2x+ 1与直线y= b没有公共点,则b的取值范围是 ____________________ .9. (2011 •滨州模拟)定义:区间[X1, X2](X1«2)的长度为X2—心已知函数y = 2|x|的定义域为[a, b],值域为[1,2],则区间[a, b]的长度的最大值与最小值的差为6、1、已知3a 2,那么log 3 8 2log 3 6用a 表示是()A 、 a 2B 、 2、 2叽(皿 5a 2C 3a (1 a)2D 3a a 2Iog a N ,则M的值为() 2N) log a MA 、 3、 丄B 4C 1D 4 或 14已知 x 2 y 21,x 0, yA ,0,且 log a (1 x)m,log a ----------- n,则 log a y 等于()1 xA 、m n B m n C 、1 m 24、 A 、如果方程 lg 2x (Ig5 Ig 7)lg x丄35Ig5gg7 B 、lg35 C 35D 5、 A 、 1一 m n2lg5 clg 7 0的两根是,,贝卩g 的值是()1已知 Iog 7【log 3(log 2 x )] 0,那么 x 2 等于()1B > LC LD 1一3 2 ; 3 2.2 3*3 函数y Ig 2 1的图像关于()x 轴对称B 、y 轴对称C 、原点对称D 直线y x 对称 精心A 、11. (2011 •银川模拟)若函数y = a 2^2a x — 1(a >0且1)在x € [ —1,1]上的最大值 为14,求a 的值.12.已知函数 f (x ) = 3x , f (a + 2) = 18, g (x ) = X ・3ax — 4x 的定义域为[0,1]. (1)求a 的值;⑵ 若函数g (x )在区间[0,1]上是单调递减函数,求实数 入的取值范围.对数与对数函数同步练习、选择题 三、解答题 10.求函数y = 2x 3x4的定义域、值域和单调区间.7、函数y log(2x 1) .3r~2的定义域是()2 1A -,1 U 1, B、,1 U 1,3 2C、2, D !,3 2&函数y log1 (x26x 17)的值域是()2A、R B 8, C , 3 D 3,9、若log m9 log n9 0,那么m,n满足的条件是()A、m n 1B、n m 1C、0 n m 1D 0 m n 110、log a2 1,则a的取值范围是()3A、0, — U 1,B、2,C、—,1 D> 0,—U -2,3 3 3 3 311、下列函数中,在0,2上为增函数的是()A、y log1 (x 1)B、y log2、x2121 2C、y log2—D y log 1 (x 4x 5)x忑12、已知g(x) log a|x+1| (a 0且a 1)在1,0 上有g(x) 0,则f(x)是()A、在,0上是增加的B、在,0上是减少的C、在,1上是增加的D在,0上是减少的二、填空题13、若log a 2 m,log a 3 n,a2m n。
高考数学专题指数函数、对数函数、幂函数试题及其答案
指数函数、 对数函数、曷函数专题1.函数 f(x) 3x (0 x w 2)值域为( A. (0,) B. (1,9] C. (0,1) D. [9,2.给出以下三个等式:f (xy) f(x) f(y), f(x y) f(x)f(y), f (x y)f (x) f(y)以下1 f(x)f(y)函数中不满足其中任何一个等式的是 A. f(x) 3x B. f (x) sin x C.f (x) log 2 x D . f(x) tan x3. 以下四个数中的最大者是( A . (ln2) 2 B. In (ln2)C. ln<2D. ln24. 假设 A= { x Z |2 B={x R||log 2x| 1},那么 A (C R B)的元素个数为(5. A . 0个设f(x)1gsB, 1个C. 2个D. 3个6. 假: a)是奇函数,那么使 f (x) 0的x 的取值范围是 A. ( 1,0)对于函数①f(x)命题甲: 命题乙: 命题丙: B. (0,1)C.(,0)D.(,0) (1,)lg(x 2| 1),②f(x 2)是偶函数; f(x)在(,)上是减函数, f(x 2) f(x)在(,f(x) (x在(2,2)2 ,③ f (x))上是增函数; )上是增函数. 能使命题甲、乙、丙均为真的所有函数的序号是 A.①③ B.①② 7.函数y=- 2 (A)奇函数 (B)偶函数 (C)既奇又偶函数cos(x2),判断如下三个命题的真(D)非奇非偶函数8.设a,b,c 均为正数,且 2alog 1 a,2log 1 b, 12 2log 2 c,那么A. a b cB. c b aC. cD. b一 ........... 1 9 .函数f(x) ___________ ^的定义域为 M, g(x) ln(1 x)的定义域为N,那么M N (),1 xA. XX 1B. xx 1C. x 1 x 1D.10 .设a { — 1,1, 1, 3},那么使函数y=x a 的定义域为R 且为奇函数的所有 a 值为()2A. 1, 3B, - 1, 1C. - 1, 3D, -1, 1, 311 .设函数f(x)定义在实数集上,它的图象关于直线 x =1对称,且当x 1时,f(x)=3x 1 ,那么有()A. f(l) f(3) f(-)B. f(-)f(3) f(1)vQ 7 'O'VQ 7vQ 7'O'VQ 732 33 2 3 213 3 2 1 C. f(-) f(-)f(-) D,f(-) f(-) f(-) 33 2 23 34x 4, x 1 12.函数f x 2的图象和函数g x log 2x 的图象的交点个数是()x 4x 3, x 1A. 4B. 3C. 2D. 1A. J2 B, 2 C, 2<2 D, 415.假设a 1 ,且a x log a x a y log a y ,那么x 与y 之间的大小关系是()A. x y 0B. x y 0C. y x 0D.无法确定13.函数f (x) =1 log 2x 与g(x) = 2 x 1在同一直角坐标系下的图象大致是()14.设a 1,函数f(x)=log a x 在区间[a,2a ]上的最大值与最小值之差为;,那么a =()16.函数y e |lnx| |x 1 |的图象大致是()17.函数y f (x)的图象与函数y log3x (x 0)的图象关于直线y x对称,那么f(x)lg 4 x ....................函数f x ------- ----------的定义域为 x 3设函数y 4 log 2(x 1)(x > 3),那么其反函数的定义域为24.将函数y log 2 x 的图象向左平移一个单位,得到图象 C I ,再将C I 向上平移一个单位得到图象 C 2,那么C 2的解析式为假设函数y=lg (ax 2+2x+1)的值域为R,那么实数a 的取值范围为 假设函数y=log 2 (kx 2+4kx+3)的定义域为 R,那么实数k 的取值范围是 给出以下四个命题: xxa (a 0且a 1)与函数y log a a (a 0且a 1)的定乂域相同;(x 1)2与y 2x1在区间[0,)上都是增函数.四点,那么这四点从上到下的排列次序是 18. 19. 20.方程9x6 3x7 0的解是21. 假设函数f(x) e (x)2................................................. ..... .) (e 是自然对数的底数)的最大值是,且f(x)是偶函数,那么m22. 函数y(a 0且a 1)的图象如图,那么函数x的图象可能是23. 设 f (x) log a x (a 0且 a 1),假设 f (x 1) f (x 2)F R , i 1,2, ,n),那么 f(x 13) f(x 23)一, 3、f(% )的值等于25.26. 27. ②函数x 3和y 3x 的值域相同;③函数1 1匚——x —与 y2 2x 1(1 2x )x?2x 2一都是奇函①函数④函数其中正确命题的序.(把你认为正确的命题序号都填上)28. 直线x a ( a 0)与函数y 2x 、y 10x 的图像依次交于 A 、B 、C 、D29.假设关于x 的方程25 |x 1| 4?5 |x1|m 有实根,那么实数 m 的取值范围是Ixlax ..30.lgx+lgy=2lg (x —2y),求log 区一的值.y................................... _ x x . . 31 .根据函数y |2 1|的图象判断:当实数m为何值时,方程|2 1 | m无解?有一解?有两解?32.x1是方程xlgx=2021的根,x2是方程x - 10x=2021的根,求x1x2的值.33.实数a、b、c满足2b=a+c,且满足21g (b—1) =lg (a+1) +lg (c— 1),同时a+b+c=15,求实数a、b、c的值.. 1 x34.f(x) log a------------------- (a 0,a 1).1 x(1)求f(x)的定义域;(2)判断f (x)的奇偶性;(3)求使f(x).. ........................... 1、〜35.函数f(x) 1 f(—)?10g2乂. x(1)求函数f(x)的解析式;(2)求f(2)的值;(3)解方程f(x)36.函数f (x) log a(a a x) ( a 1).(1)求f(x)的定义域、值域;(2)判断f(x)的单调性;(3)解不等式f 1(x2 2) f(x).0的x的取值范围. f(2)o指数函数、对数函数、曷函数专题1 .函数 f (x) 3x(0 xw 2)值域为()A. (0, )B..9]C. (01)D. [9,)B;[解析]函数f (x) 3x (0 xW 2)的反函数的定义域为原函数的值域,原函数的值域为(1,9].2 .给出以下三个等式: f(xy) f (x) f(y), f (x y) f (x)f(y), f(x y) fx-fiy) .下1 f(x)f(y)列函数中不满足其中任何一个等式的是()xA. f (x) 3B. f(x) sinxC. f(x) log 2xD. f (x) tan xB ;[解析]依据指、对数函数的性质可以发现A 满足f (x y) f(x) f (y) ,C 满足f(xy) f (x) f(y), 而D 满足f(x y) f (x) f (y), B 不满足其中任何一个等式.1 f(x)f(y)3 .以下四个数中的最大者是( )A. (ln2) 2B. ln (ln2)C. ln 〞D. ln2D;[解析]:. ln2 1 , ln (ln2) <0, (ln2) 2<ln2 ,而 ln 72 =工 ln2<ln2 , • .最大的数是 ln2.2[考点透析]根据对数函数的根本性质判断对应函数值的大小关系,一般是通过介值( 0, 1等一些特殊值)结合对数函数的特殊值来加以判断.4 .假设 A={x Z |2 22 x 8}, B={x R||log 2x| 1},那么 A (C R B)的元素个数为( )A.0个B. 1个C. 2个D. 3个2 xC ;[解析]由于 A={x Z |2 2 8} ={x Z|1 2 x 3} ={x Z| 1 x 1} = {0, 1},而 一 _一一—1 ,、B={x R||log 2x| 1} ={x R|0 x—或x 2},那么 A (C R B) = {0, 1},那么 A(C R B)的兀素个2数为2个.[考点透析]从指数函数与对数函数的单调性入手,解答相关的不等式,再根据集合的运算加以分析和 判断,得出对应集合的元素个数问题.25.设f(x) lg(—— a)是奇函数,那么使f (x) 0的x 的取值范围是()1 x A. ( 1,0) B. (0,1)C. (,0) D. (,0)U(1,)1 x 1 x1 xA;[解析]由 f(0) 0得a1, f(x) lg —— 0,得 ।x1 x1 x 1 x[考点透析]根据对数函数中的奇偶性问题,结合对数函数的性质,求解相关的不等式问题,要注意首要 条件是对数函数的真数必须大于零的前提条件.6.对于函数① f(x) lg(x 2 1),②f(x) (x 2)2,③f(x) cos(x 2),判断如下三个命题 的真假: 命题甲:f(x 2)是偶函数;命题乙:f(x)在(,)上是减函数,在(2,)上是增函数; 命题丙:f(x 2) f (x)在(,)上是增函数.能使命题甲、乙、丙均为真的所有函数的序号是( )A.①③B.①②C.③D.②2…•2) cos(x 2)不是偶函数,排除函数③,只有函数② f (x) (x 2)符合要求.[考点透析]根据对数函数、哥函数、三角函数的相关性质来分析判断相关的命题,也是高考中比拟常见 的问题之一,正确处理对应函数的单调性与奇偶性问题.7.函数y=-21. 1一 b 1 ,由一 log 2 c 可知 c 0 2 2D ;[解析]函数①f(x) lg(x 2 1),函数f(x2) = lg(|x| 1)是偶函数;且f (x)在(,)上是 减函数,在(2,)上是增函数;但对命题丙:f(x 2)f(x) = lg(|x| 1) lg(| x 2| 1)lg|x| 1 |x 2| 1在…一⑼时,1g(|f^1g工2lg(1 ^^)为减函数,排除函数①,对于函数③, x 3f (x) cos(x 2)函数 f (x(A)奇函数(B)偶函数(C)既奇又偶函数b...........-a ,18.设a,b,c 均为正数,且2a log 1 a,一2 2c1log 1 b, - log 2C,贝U2 2A. a b cB. c b aC. c a bA ;[解析]由2a log 1 a 可知a 022a 1log 1 a 12(D)非奇非偶函数 ) D. b a cb- 1 . 10 a -,由 一 log 1b 可知2 2〞b 0 0 log 1 b 120 log 2 c 1[考点透析]根据指、对数函数的性质及其相关的知识来处理一些数或式的大小关系是全面考察多个基 本初等函数比拟常用的方法之一.关键是掌握对应函数的根本性质及其应用.,一,,一、 1 ............. .................................................. 一 9 .函数f(x) , 的定义域为 M, g(x) ln(1 x)的定义域为N,那么M N (),1 xA. XX 1B. xx 1C. x 1 x 1D.1 C ;[解析]依题息可彳#函数 f(x) / 的7E 义域M={x|1 x 0}二{x|x 1},,1 xg(x) ln(1 x)的定义域N={x|1 x 0}={x|x 1},[考点透析]此题以函数为载体,重点考查募函数与对数函数的定义域,集合的交集的概念及其运算等 根底知识,灵活而不难.10 .设a { — 1,1, 1, 3},那么使函数y=x a 的定义域为R 且为奇函数的所有 a 值为()2A. 1, 3 B, - 1, 1 C. - 1, 3D, -1, 1, 3A ;[解析]观察四种哥函数的图象并结合该函数的性质确定选项.[考点透析]根据募函数的性质加以比拟,从而得以判断.熟练掌握一些常用函数的图象与性质,可以 比拟快速地判断奇偶性问题.特别是指数函数、对数函数、哥函数及其一些简单函数的根本性质.11 .设函数f(x)定义在实数集上,它的图象关于直线 x =1对称,且当x 1时,f(x)=3x 1,那么有()132 23 1 A. f(-)f ㈠ f(-) B. f(-)f(3) f(-) 3 2 3 3 2 3 C. f(2)f(1) f(3) D. f(-)f(-) f(1) 3322 3 3B;[解析]当x 1时,f(x) =3x 1,其图象是函数 y 3x 向下平移一个单位而得到的x 1时图象部分,如下图,又函数f (x)的图象关于直线x =1对称,那么函数f (x)的图象如以下图中的实线局部,所以 M N={x | x 1}{ x | x1}= x1x1.即函数f (x)在区间(,1)上是单调减少函数,3. 1 1 又 f (2)= f (2),而 32 ,那么有f (;) f (1) f (旨,即 f (-2) f e f (3)•根据以上图形,可以判断两函数的图象之间有三个交点.[考点透析]作出分段函数与对数函数的相应图象,根据对应的交点情况加以判断. 指数函数与对数函数的图象既是函数性质的一个重要方面,又能直观地反映函数的性质,在解题过程中,充分发挥图象的工 具作用.特别注意指数函数与对数函数的图象关于直线 y X 对称.在求解过程中注意数形结合可以使解题过程更加简捷易懂.13.函数f (X ) =1 唠2*与g(x) = 2 X 1在同一直角坐标系下的图象大致是()log 2x 的图象向上平移1个单位而得来的;又由于g(x) = 2 X 1 = 2 (X 1) ,那么函数g(x)=2 X 1的图象是由函数y 2 x 的图象向右平移1个单位而得来的; 故两函数在同一直角坐标系下的图象大致是:Co[考点透析 的性质关利用指数函数的图象结合题目中相应的条件加以分析,通过图象可以非常直观地判断对应 12.函数f4x 2X4, 4X X 3,x的图象和函数g X log 2X 的图象的交点个数是(A. 4B.B ;[解析] 函数f3 4X 2X4, 4X X 3,x C. 21D. 1的图象和函数gX log 2X 的图象如下:1] C;[解析]函数f (X ) = 1 log 2*的图象是由函数 y[考点透析]根据函数表达式与根本初等函数之间的关系,结合函数图象的平移法那么,得出相应的正确 判断. 、— -, ,一、1,、 14.设a 1 ,函数f(x)=log a x 在区间[a,2 a ]上的最大值与最小值之差为那么a =()A.应B. 2C. 2yp2D. 41D ;[解析]由于a 1,函数f(x) = log a X 在区间[a,2a ]上的最大值与最小值之差为-,111c那么 log a 2a log a a =—,即 log a 2 = _ ,解得 a 22 ,即 a =4.2 2[考点透析]根据对数函数的单调性,函数 f(x)=log a X 在区间[a,2a ]的端点上取得最值,由 a 1知 函数在对应的区间上为增函数.15 .假设a 1 ,且a x log a x a y log a y ,那么x 与y 之间的大小关系是()A. x y 0B. x y 0C. y x 0D.无法确定A;[解析]通过整体性思想,设 f(x) a x log a x ,我们知道当 a 1时,函数y 1 a x 与函数y log a x 在区间(0,)上都是减函数,那么函数f(x) a x log a x 在区间(0,)上也是减函数,那么问题就转化为 f(x) f(y),由于函数f(x) a x log a x 在区间(0,)上也是减函数,那么就有[考点透析]这个不等式两边都由底数为 a 的指数函数与对数函数组成,且变量又不相同,一直很难下 手.通过整体思维,结合指数函数与对数函数的性质加以分析,可以巧妙地转化角度,到达判断的目的. 16 .函数y e |lnx| |x 1 |的图象大致是()又当0 x 1时,y 0 ,可排除(B),应选(D).[考点透析]把相应的含有指数函数和对数函数的关系式,加以巧妙转化,转化成相应的分段函数,结D ;[解析]函数y e |lnx| |x 1|可转化为y1-1 0x1,— ................................ .x 1, 0 x[根据解析式可先排除(A),(C), 1, x 1b合分段函数的定义域和根本函数的图象加以分析求解和判断.17 .函数y f(x)的图象与函数y log 3 x (x 0)的图象关于直线 y x 对称,那么f(x) .x ,f (x) 3 (x R);[解析]函数y f(x)的图象与函数y log 3 x (x 0)的图象关于直线y x 对 称,那么f(x)与函数y log 3x (x 0)互为反函数,f (x) 3x (x R) o[考点透析]对数函数与指数函数互为反函数, 它们的图象关于直线 y=x 对称,在实际应用中经常会碰到, 要加以重视.lg 4 x ) 18 .函数f x ---------- ------------的定义域为.x 3厂4 x 0 । 厂x x 4 且 x 3 ;[解析]x x 4且 x 3 .x 3 0[考点透析]考察对数函数中的定义域问题,关键是结合对数函数中的真数大于零的条件,结合其他相 关条件来分析判断相关的定义域问题.19 .设函数y 4 log 2(x 1)(x > 3),那么其反函数的定义域为 .[5, +8);[解析]反函数的定义即为原函数的值域,由 x>3得x-1>2,所以log 2(x 1) 1 ,所以y >5,反函数的定义域为[5, +°°),填[5, +8).[考点透析]根据互为反函数的两个函数之间的性质: 反函数的定义即为原函数的值域, 结合对应的对数函数的值域问题分析相应反函数的定义域问题. xx20 .方程96 37 0的解是.x log 37;[解析](3x )2 6 3x 7 03x 7或3x1 (舍去),x 10g 37.[考点透析]求解对应的指数方程,要根据相应的题目条件,转化为对应的方程加以分析求解,同时要注 意题目中对应的指数式的值大于零的条件.值是m10 1,又f(x)是偶函数,那么 0,,me[考点透析]根据函数的特征,结合指数函数的最值问题,函数的奇偶性问题来解决有关的参数,进而 解得对应的值.研究指数函数性质的方法,强调数形结合,强调函数图象研究性质中的作用 ,注意从特殊到一般的思想方法的应用,渗透概括水平的培养.1 |x 22 .函数 y a |x| (a 0且a 1)的图象如图,那么函数 y — 的图象可能是 .a21.假设函数f(x) e (x )2 ( e 是自然对数的底数)的最大值是 m ,且f (x)是偶函数,那么m(x )2( )2I 1;[解析]f (x) e一 ,仅 t xet 0,此时f(x)』t 是减函数,那么最大e1 IXD;[解析]根据函数y a3的图象可知a 1,那么对应函数y —的图象是D.a[考点透析]根据对应指数函数的图象特征,分析对应的底数a 1 ,再根据指数函数的特征分析相应的图象问题.23 .设f (x) log a x ( a 0且a 1),假设f (x1) f (x2) f (x n) 1 ( x i R , i 1,2, ,n ),一,3、,3、, 3、那么f(x1 ) f(x2 ) f (x n )的值等于3;[解析]由于f(x1) f(x2) f (x n) = log a x1 log a x2 log a x n = log a(x1x2 xj =1 ,而3 3 3 3 3 33f(x1 ) f(x2 ) f(x n ) = log a x1 log a x2 log a x n =log a(x1x2 x n) =3log a ('x? x n) =3[考点透析]根据对数函数的关系式,以及对数函数的特征加以分析求解对应的对数式问题, 关键是加以合理地转化.24 .将函数y log 2 x的图象向左平移一个单位,得到图象C1,再将C1向上平移一个单位得到图象C2,那么C2的解析式为.y log 2(x 1) 1;[解析]将函数y log2 x的图象向左平移一个单位, 得到图象C1所对应的解析式为y log 2(x 1);要此根底上,再将C1向上平移一个单位得到图象C2,那么C2的解析式为y 1 log 2(x 1).[考点透析]根据函数图象平移变换的规律加以分析判断平移问题, 一般可以结合“左加右减,上减下加〞的规律加以应用.25 .假设函数y=lg (ax2+2x+1)的值域为R,那么实数a的取值范围为.[0, 1];[解析]由于函数y=lg (ax2+2x+1)的值域为R (0, + ) {u (x) |u (x) =ax2+2x+1},a 0当a=0时,u (x) =2x+1的值域为R,符合题意;当时,即0 a 1时也符合题意.4 4a 0[考点透析]通过引入变元,结合原函数的值域为R,转化为u (x)的问题来分析,要根据二次项系数的取值情况加以分类解析.26 .假设函数y=log 2 (kx2+4kx+3)的定义域为R,那么实数k的取值范围是.0,-;[解析]函数y=log 2 (kx2+4kx+3)的定义域为R kx2+4kx+3>0恒成立,当k=0时,3>0恒成立;4[考点透析]把函数的定义域问题转化为有关不等式的恒成立问题,再结合参数的取值情况加以分类解析.27 .给出以下四个命题:①函数y a x 〔 a 0且a 1〕与函数y log a a x 〔 a 0且a 1〕的定义域相同; ②函数y x 3和y 3x 的值域相同;_ x 2一〞 1 1. 〔1 2x 〕2③函数y ——与y 3 ----------- J 都是奇函数;2 2x 1 x?2xC — e,2x 1............................④函数y 〔x 1〕与y 2 在区间[0,〕上都是增函数.其中正确命题的序号是: .〔把你认为正确的命题序号都填上〕①、③;[解析]在①中,函数y a x 〔a 0且a 1〕与函数y log a a x 〔a 0且a 1〕的定义3xy x 3的值域为R, y 3x 的值域为R ,那么结论错误;在③中,函■ ■ ,, / x 、2y — —一与y 〔 ------------- 都是奇函数,那么结论正确;在④中,函数y 〔x 1〕2在[1,2 2x 1x?2xx 1............ ..............................数,y 2 在R 上是增函数,那么结论错误.[考点透析]综合考察指数函数、对数函数、哥函数的定义、定义域、值域、函数性质等相关内容.xx… … 一,1 1 -x -x ................................... ......28.直线x a 〔 a 0〕与函数y 一、y -、y2、y10的图像依次交于 A 、B 、C 、D 32四点,那么这四点从上到下的排列次序是 .D 、C 、B 、A;[解析]结合四个指数函数各自的图象特征可知这四点从上到下的排列次序是 D 、C 、B 、Ao[考点透析]结合指数函数的图象规律, 充分考察不同的底数情况下的指数函数的图象特征问题, 加以判断对应的交点的上下顺序问题.29.假设关于x 的方程25 |x 1| 4?5 |x 1| m 有实根,那么实数 m 的取值范围是 .{m| m 4 };[解析]令 y 5 |x 1| ,那么有 0 y 1 ,那么可转化 25 |x1| 4?5 |x 1| m 得22. ......................... 一2^ 一 . 一.y 4ym 0 ,根据题意,由于 y 4y m 0有实根,那么 〔4〕4〔 m 〕 0 ,解得m 4.[考点透析]通过换元,把指数方程转化为一元二次方程来分析求解, 关键要注意换元中对应的参数y 的取值范围,为求解其他参数问题作好铺垫.x ..k 0 16k 2 12k时,即0 k-时也符合题意.4域都是R,那么结论正确;在②中,函数〕上是增函30.lgx+lgy=2lg (x —2y),求log行一的值. y[分析]考虑到对数式去掉对数符号后,要保证 x 0, y 0, x —2y 0这些条件成立.假设 x=y ,那么有 x —2y=—x 0,这与对数的定义不符,从而导致多解.[解析]由于 lgx+lgy=2lg (x —2y),所以 xy= (x —2y) 2, 即 x 2—5xy+4y 2=0,所以(x —y) (x —4y) =0,解得 x=y 或 x=4y , 又由于x 0, y 0, x- 2y 0,所以x=y 不符合条件,应舍去,_ xx所以 一二4,即 log 2 — = log 2 y y[考点透析]在对数式log a N 中,必须满足a 0, a 1且N 0这几个条件.在解决对数问题时,要重 视这几个隐含条件,以免造成遗漏或多解.31 .根据函数y |2x 1|的图象判断:当实数 m 为何值时,方程|2x 1 | m 无解?有一解?有两解? [分析]可以充分结合指数函数的图象加以判断.可以把这个问题加以转换,将求方程 的个数转化为两个函数 y |2x 1|与y m 的图象交点个数去理解.xx[解析]函数y |2 1|的图象可由指数函数 y 2的图象先向下平移一个单位,然后再作 x 轴下方的局部关于x 轴对称图形,如以下图所示,函数y m 的图象是与x 轴平行的直线, 观察两图象的关系可知:当m 0时,两函数图象没有公共点,所以方程|2x 1| m 无解;当m 0或m 1时,两函数图象只有一个公共点,所以方程 |2x 11 m 有一解;当0 m 1时,两函数图象有两个公共点,所以方程|2x 11 m 有两解.[考点透析]由于方程解的个数与它们对应的函数图象交点个数是相等的,所以对于含字母方程解的个数讨论,往往用数形结合方法加以求解,准确作出相应函数的图象是正确解题的前提和关键. 32.x 1是方程xlgx=2021的根,x 2是方程x - 10x =2021的根,求x 1x 2的值.[分析]观察此题,易看到题中存在lgx 和10x ,从而联想到函数 y 1gx 与y 10x ,而x 1可以看成2021 ........................................................ x 2021 .................................y 1gx 和y 己竺 交点的横坐标,同样 X 2可看成y 10、和y 三丝女交点的横坐标,假设利用函数4 =4.|2x 1| m 的解x xy 1gx与y 10x的对称性,此题便迎刃而解了.…人 . 2021 、…、,[解析]令y a 1gx, y b -------------------------- ,设其交点坐标为(x[,y i),xx 2021同样令y c 10 ,它与y b -------------------------- 的交点的横坐标为(x2,y2),x由于反比例函数关于直线y x对称,那么有(为,y1)和(x2, y2)关于直线y x对称,一........ 2021 ......................点(x[,y i)即点(x1,x2)应该在函数y b -------------------- 上,所以有x1x2=2021.x[考点透析]中学数学未要求掌握超越方程的求解,故解题中方程是不可能的.而有效的利用指数函数和对数函数的性质进行解题此题就不难了,否那么此题是一个典型的难题.以上求解过程不能算此题超纲.33.实数a、b、c满足2b=a+c,且满足21g (b—1) =lg (a+1) +lg (c— 1),同时a+b+c=15,求实数a、b、c的值.[分析]在解题过程中,遇到求某数的平方根时,一般应求出两个值来,再根据题设条件来决定取舍, 如果仅仅取算术平方根,那么往往会出现漏解.[解析]由于2b=a+c, a+b+c=15,所以3b=15,即b=5,由于2b=a+c=10 ,那么可设a=5— d, c=5+d ,由于2lg (b—1) =lg (a+1) +lg (c— 1),所以21g4=lg (6—d) +lg (4+d),即16=25— (d—1) 2,那么有(d—1) 2=9,所以d—1= 3,那么d=4 或d= — 2,所以实数a、b、c的值分别为1, 5, 9或7, 5, 3.1 x _ _34.f (x) log a ----------------- (a 0,a 1).1 x(1)求f(x)的定义域;(2)判断f(x)的奇偶性;(3)求使f(x) 0的x的取值范围.1 x x 1[解析](1) 0,即乙」0,等价于(x 1)(x 1) 0,得1 x 1,1 x x 1所以f(x)的定义域是(1,1);1 x 1 x⑵ f (x) f ( x) log a-- log a-- = log a 1 = 0 ,1 x 1 x所以f( x) f (x),即f (x)为奇函数;1 x _(3)由f (x) 0,得log a ——0,1 x, ,一, , 1 x , 一r 一 ,当a 1时,有1 ,解得0 x 1;1 x一 , . 1 x当0 a 1时,有0 —— 1 ,解得1 x 0;1 x故当a 1 时,x (0,1);当0 a 1 时,x ( 1,0).1、~35.函数 f(x) 1 f(—)?10g 2X .X(1)求函数f(x)的解析式;(2)求f(2)的值;(3)解方程f(x) f(2).[解析](1)由于 f(x) 1 f (-) ?1og 2 X , Xf(-) 1 f(x)?10g 21,那么有 f (1) 1x x x把 f(1) 1 f(x)?10g 2x 代入 f (x) 1 f (1)?1og 2 x 可得: x xf (x) 1 [1 f (x) ? 10g 2 x] ?10g 2 x ,解得 f (x)⑵由(1)得 f(x)Ld0^,那么 f(2) 1;1 10g2 x1 10g2 2(3)由(1)得 f(x)1 10g22x ,那么(2)得 f(2) 1,1 10g2 x那么有 f(x) -一10g22xf (2) 1,即 1 10g 2 x 1 10g 22 x,1 10g2 x解得10g 2 x 0或10g 2x 1,所以原方程的解为:x 1或x 2.[考点透析]对于给定抽象函数关系式求解对应的函数解析式,要合理选取比拟适合的方法加以分析处 1 ..................... ………理,关键是要结合抽象函数关系式的特征,这里用到的是以 一代x 的方式来到达求解函数解析式的目的.x36.函数 f (x)10g a (a a x ) ( a 1).(1)求f (x)的定义域、值域;(2)判断f(x)的单调性; (3)解不等式 f 1(x 2 2) f(x).[分析]根据对数函数的特征,分析相应的定义域问题,同时结合指数函数的特征,综合分析值域与单调 性问题,综合反函数、不等式等相关内容,考察相关的不等式问题.[解析](1)要使函数f(x) 10g a (a a x ) (a 1 )有意义,那么需要满足 a a x 0, 即a x a ,又a 1 ,解得x 1 ,所以所求函数f(x)的定义域为(,1); 又10g a (a a x ) 10g a a 1,即f(x) 1 ,所以所求函数 f(x)的值域为(,1);(2)令a a x ,由于a 1 ,那么 a a x 在(,1)上是减函数,x又y 10g a 是增函数,所以函数 f (x) 10g a (a a )在(,1)上是减函数;1 上式中,以1代x 可得: xf (x)?10g 2x, 1 10g 2 x-; 2~ ;1 10g2 x(3)设y log a(a a x),那么a y a a x,所以a x a a y,即x log a(a a y),所以函数f(x)的反函数为f 1(x) log a(a a x),2由于f (x 2) f(x),得log a(a a ) log a(a a ),2 2由于a 1 ,那么a a' a a",即a' a x,所以x2 2 x,解得1 x 2,而函数f(x)的定义域为(,1),故原不等式的解集为{x| 1 x 1}.[考点透析]主要考查指数函数与对数函数相关的定义域、值域、图象以及主要性质,应用指数函数与对数函数的性质比拟两个数的大小,以及解指数不等式与对数不等式等.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学精英讲解-----------------幂函数、指数函数、对数函数【第一部分】知识复习【第二部分】典例讲解考点一:幂函数例1、比较大小例2、幂函数,(m∈N),且在(0,+∞)上是减函数,又,则m= A.0B.1C.2D.3解析:函数在(0,+∞)上是减函数,则有,又,故为偶函数,故m为1.例3、已知幂函数为偶函数,且在区间上是减函数.(1)求函数的解析式;(2)讨论的奇偶性.∵幂函数在区间上是减函数,∴,解得,∵,∴.又是偶数,∴,∴.(2),.当且时,是非奇非偶函数;当且时,是奇函数;当且时,是偶函数;当且时,奇又是偶函数.例4、下面六个幂函数的图象如图所示,试建立函数与图象之间的对应关系(1)(A),(2)(F),(3)(E),(4)(C),(5)(D),(6)(B).变式训练:1、下列函数是幂函数的是()A.y=2x B.y=2x-1C.y=(x+1)2D.y=2、下列说法正确的是()A.y=x4是幂函数,也是偶函数B.y=-x3是幂函数,也是减函数C.是增函数,也是偶函数D.y=x0不是偶函数3、下列函数中,定义域为R的是()A.y=B.y=C.y=D.y=x-14、函数的图象是()A.B.C.D.5、下列函数中,不是偶函数的是()A.y=-3x2B.y=3x2C.D.y=x2+x-1 6、若f(x)在[-5,5]上是奇函数,且f(3)<f(1),则()A.f(-1)<f(-3)B.f(0)>f(1) C.f(-1)<f(1)D.f(-3)>f(-5) 7、若y=f(x) 是奇函数,则下列坐标表示的点一定在y=f(x)图象上的是()A.(a,-f(a))B.(-a,-f(a)) C.(-a,-f(-a))D.(a,f(-a )) 8、已知,则下列正确的是()A.奇函数,在R上为增函数B.偶函数,在R上为增函数C.奇函数,在R上为减函数D.偶函数,在R上为减函数9、若函数f(x)=x2+ax是偶函数,则实数a=()A.-2B.-1 C.0D.110、已知f(x)为奇函数,定义域为,又f(x)在区间上为增函数,且f(-1)=0,则满足f(x)>0的的取值范围是()A.B.(0,1) C.D.11、若幂函数的图象过点,则_____________.12、函数的定义域是_____________.13、若,则实数a的取值范围是_____________.14、是偶函数,且在上是减函数,则整数a的值是_____________.DACAD ABACD9、,函数为偶函数,则有f(-x)=f(x),即x2-ax=x2+ax,所以有a=0.10、奇函数在对称区间上有相同的单调性,则有函数f(x)在上单调递增,则当x<-1时,f(x)<0,当-1<x<0时,f(x)>0,又f(1)=-f(-1)=0,故当0<x<1时,f(x)<0,当x>1时,f(x)>0.则满足f(x)>0的.11、解析:点代入得,所以.12、解:13、解析:,解得.14、解:则有,又为偶函数,代入验证可得整数a的值是5.考点二:指数函数例1、若函数y=a x+m-1(a>0)的图像在第一、三、四象限内,则()A.a>1B.a>1且m<0C.0<a<1且m>0D.0<a<1例2、若函数y=4x-3·2x+3的值域为[1,7],试确定x的取值范围.例3、若关于x的方程有负实数解,求实数a的取值范围.例4、已知函数.(1)证明函数f(x)在其定义域内是增函数;(2)求函数f(x)的值域.例5、如果函数(a>0,且a≠1)在[-1,1]上的最大值是14,求a的值.例1、解析:y=a x的图像在第一、二象限内,欲使其图像在第一、三、四象限内,必须将y=a x向下移动.而当0<a<1时,图像向下移动,只能经过第一、二、四象限或第二、三、四象限.只有当a>1时,图像向下移动才可能经过第一、三、四象限,故a>1.又图像向下移动不超过一个单位时,图像经过第一、二、三象限,向下移动一个单位时,图像恰好经过原点和第一、三象限.欲使图像经过第一、三、四象限,则必须向下平移超过一个单位,故m-1<-1,∴m<0.故选B.答案:B例2、分析:在函数y=4x-3·2x+3中,令t=2x,则y=t2-3t+3是t的二次函数,由y ∈[1,7]可以求得对应的t的范围,但t只能取正的部分. 根据指数函数的单调性我们可以求出x的取值范围.解答:令t=2x,则y=t2-3t+3,依题意有:∴x≤0或1≤x≤2,即x的范围是(-∞,0]∪[1,2].小结:当遇到y=f(a x)类的函数时,用换元的思想将问题转化为较简单的函数来处理,再结合指数函数的性质得到原问题的解.例3、分析:求参数的取值范围题,关键在于由题设条件得出关于参数的不等式.解答:因为方程有负实数根,即x<0,所以,解此不等式,所求a的取值范围是例4、分析:对于(1),利用函数的单调性的定义去证明;对于(2),可用反解法求得函数的值域.解答:(1),设x1<x2,则.因为x1<x2,所以2x1<2x2,所以,所以.又+1>0, +1>0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),故函数f(x)在其定义域(-∞,+∞)上是增函数.(2)设,则,因为102x>0,所以,解得-1<y<1,所以函数f(x)的值域为(-1,1).例5、分析:考虑换元法,通过换元将函数化成简单形式来求值域.解:设t=a x>0,则y=t2+2t-1,对称轴方程为t=-1.若a>1,x∈[-1,1],∴t=a x∈,∴当t=a时,y max=a2+2a-1=14.解得a=3或a=-5(舍去).若0<a<1,x∈[-1,1],∴t=a x∈.∴当时,.解得(舍去).∴所求的a值为3或.变式训练:1、函数在R上是减函数,则的取值范围是()A.B.C.D.2、函数是()A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数3、函数的值域是()A.B.C.D.4、已知,则函数的图像必定不经过()A.第一象限B.第二象限C.第三象限D.第四象限5、函数的定义域为()A.B.C.D.6、函数,满足f(x)>1的x的取值范围是()A.B.C.D.7、函数的单调递增区间是()A.B.C.D.8、已知,则下列正确的是()A.奇函数,在R上为增函数B.偶函数,在R上为增函数C.奇函数,在R上为减函数D.偶函数,在R上为减函数9、函数在区间上是增函数,则实数的取值范围是()A.B.C.D.10、下列说法中,正确的是()①任取x∈R都有;②当a>1时,任取x∈R都有;③是增函数;④的最小值为1;⑤在同一坐标系中,的图象对称于y轴.A.①②④B.④⑤C.②③④D.①⑤11、若直线y=2a与函数y=|a x-1|(a>0且a≠1)的图象有两个公共点,则a的取值范围__.12、函数的定义域是______________.13、不论a取怎样的大于零且不等于1的实数,函数y=a x-2+1的图象恒过定点________.14、函数y=的递增区间是___________.15、已知9x-10·3x+9≤0,求函数y=()x-1-4()x+2的最大值和最小值.16、若关于x的方程25-|x+1|-4·5-|x+1|-m=0有实根,求m的取值范围.17、设a是实数,.(1)试证明对于a取任意实数,f(x)为增函数;(2)试确定a的值,使f(x)满足条件f(-x)=-f(x)恒成立.18、已知f(x)=(a>0且).(1)求f(x)的定义域、值域.(2)讨论f(x)的奇偶性.(3)讨论f(x)的单调性.答案及提示:1-10 DADAD DDACB1、可得0<a2-1<1,解得.2、函数定义域为R,且,故函数为奇函数.3、可得2x>0,则有,解得y>0或y<-1.4、通过图像即可判断.5、.6、由,由,综合得x>1或x<-1.7、即为函数的单调减区间,由,可得,又,则函数在上为减函数,故所求区间为.8、函数定义域为R,且,故函数为奇函数,又,函数在R上都为增函数,故函数f(x)在R上为增函数.9、可得.10、①中当x=0时,两式相等,②式也一样,③式当x增大,y减小,故为减函数.11、0<a<提示:数形结合.由图象可知0<2a<1,0<a<.12、提示:由得2-3x>2,所以-3x>1,.13、(2,2) 提示:当x=2时,y=a0+1=2.14、(-∞,1]提示:∵y=()x在(-∞,+∞)上是减函数,而函数y=x2-2x+2=(x-1)2+1的递减区间是(-∞,1],∴原函数的递增区间是(-∞,1].15、解:由9x-10·3x+9≤0得(3x-1)(3x-9)≤0,解得1≤3x≤9.∴0≤x≤2,令()x=t,则≤t≤1,y=4t2-4t+2=4(t-)2+1.当t=即x=1时,y min=1;当t=1即x=0时,y max=2.16、解法一:设y=5-|x+1|,则0<y≤1,问题转化为方程y2-4y-m=0在(0,1]内有实根.设f(y)=y2-4y-m,其对称轴y=2,∴f(0)>0且f(1)≤0,得-3≤m<0.解法二:∵m=y2-4y,其中y=5-|x+1|∈(0,1],∴m=(y-2)2-4∈[-3,0).17、(1)设,即f(x1)<f(x2),所以对于a取任意实数,f(x)在(-∞,+∞)上为增函数.(2)由f(-x)=-f(x)得,解得a=1,即当a=1时,f(-x)=-f(x).18、解:(1)定义域为R...∴值域为(-1,1).(2),∴f(x)为奇函数.(3)设,则当a>1时,由,得,,∴当a>1时,f(x)在R上为增函数.同理可判断当0<a<1时,f(x)在R上为减函数.考点三:对数函数例1、求函数的定义域和值域,并确定函数的单调区间.例2、已知函数f(x)=lg(ax2+2x+1)(a∈R).(1)若函数f(x)的定义域为R,求实数a的取值范围;(2)若函数f(x)的值域为R,求实数a的取值范围.例3、已知的最大值和最小值以及相应的x值.例4、已知f(x)=log a(a x-1)(a>0,a≠1).(1)求f(x)的定义域;(2)讨论f(x)的单调性;(3)求函数y=f(2x)与y=f-1(x)的图象交点的横坐标.例1解:由-x2+2x+3>0 ,得 x2-2x-3<0,∴-1<x<3,定义域为 (-1,3);又令 g(x)=-x2+2x+3=-(x-1)2+4,∴当 x∈(-1,3) 时, 0<g(x)≤4.∴ f(x)≥=-2 ,即函数 f(x) 的值域为[-2,+∞);∵ g(x)=-(x-1)2+4 的对称轴为 x=1.∴当-1<x≤1 时, g(x) 为增函数,∴为减函数.当 1≤x<3 时, g(x)为减函数,∴ f(x)为增函数.即f(x) 在(-1,1] 上为减函数;在[1,3 )上为增函数.例2、分析:令g(x)=ax2+2x+1,由f(x)的定义域为R,故g(x)>0对任意x∈R均成立,问题转化为g(x)>0恒成立,求a的取值范围问题;若f(x)的值域为R,则g(x)的值域为B必满足B(0,+∞),通过对a的讨论即可.解答:(1)令g(x)=ax2+2x+1,因f(x)的定义域为R,∴ g(x)>0恒成立.∴∴函数f(x)的定义域为R时,有a>1.(2)因f(x)的值域为R,设g(x)=ax2+2x+1的值域为B,则B(0,+∞).若a<0,则B=(-∞,1-](0,+∞);若a=0,则B=R,满足B(0,+∞).若a>0,则△=4-4a≥0,∴ a≤1.综上所述,当f(x)的值域为R时,有0≤a≤1.例3、分析:题中条件给出了后面函数的自变量的取值范围,而根据对数的运算性质,可将函数化成关于log2x的二次函数,再根据二次函数在闭区间上的最值问题来求解.解答:当t=3时,y有最大值2,此时,由log2x=3,得x=8.∴当x=2时,y有最小值-.当x=8时,y有最大值 2.例4、分析:题设中既含有指数型的函数,也含有对数型的函数,在讨论定义域,讨论单调性时应注意对底数a进行讨论,而(3)中等价于求方程f(2x)=f-1(x)的解.解答:(1)a x-1>0得a x>1.∴当a>1时,函数f(x)的定义域为(0,+∞),当0<a<1时,函数f(x)的定义域为(-∞,0).(2)令g(x)=a x-1,则当a>1时,g(x)=a x-1在(0,+∞)上是增函数.即对0<x1<x2,有0<g(x1)<g(x2),而y=log a x在(0,+∞)上是增函数,∴ log a g(x1) <log a g(x2),即f(x1)<f(x2).∴ f(x)= log a(a x-1)在(0,+∞)上是增函数;当0<a<1时,g(x)=a x-1在(-∞,0)上是减函数.即对x1<x2<0,有g(x1)>g(x2)>0.而y=log a x在(0,+∞)上是减函数,∴ log a g(x1) <log a g(x2),即f(x1)<f(x2).∴ f(x)=log a(a x-1)在(-∞,0)上是增函数.综上所述,f(x)在定义域上是增函数.(3)∵ f(2x)= log a(a2x-1),令y=f(x)= log a(a x-1),则a x-1=a y,∴ a x=a y+1,∴ x= log a (a y+1)(y∈R).∴ f-1(x)= log a (a x+1)(x∈R).由f(2x)=f-1(x),得log a(a2x-1)= log a(a x+1).∴ a2x-1= a x+1,即(a x)2-a x-2=0.∴ a x=2或a x=-1(舍).∴ x=log a2.即y=f(2x)与y= f-1(x)的图象交点的横坐标为x=log a2.变式训练:一、选择题1、当a>1时,在同一坐标系中,函数y=a-x与y=log a x的图象是()A.B.C.D.2、将y=2x的图象(),再作关于直线y=x对称的图象,可得函数y=log2(x+1)和图象.A.先向左平行移动1个单位B.先向右平行移动1个单位C.先向上平行移动1个单位D.先向下平行移动1个单位3、函数的定义域是()A.(1,+∞)B.(2,+∞)C.(-∞,2)D.(1,2]4、函数y=lg(x-1)+3的反函数f-1(x)=()A.10x+3+1B.10x-3-1 C.10x+3-1D.10x-3+15、函数的递增区间是()A.(-∞,1)B.(2,+∞)C.(-∞,)D.(,+∞)6、已知f(x)=|log a x|,其中0<a<1,则下列各式中正确的是()A.B.C.D.7、是()A.奇函数而非偶函数B.偶函数而非奇函数C.既是奇函数又是偶函数D.既非奇函数也非偶函数8、已知0<a<1,b>1,且ab>1,则下列不等式中正确的是()A.B.C.D.9、函数f(x)的图象如图所示,则y=log0.2f(x)的图象示意图为()A.B.C.D.10、关于x的方程(a>0,a≠1),则()A.仅当a>1时有唯一解B.仅当0<a<1时有唯一解C.必有唯一解D.必无解二、填空题11、函数的单调递增区间是___________.范围内的最大值和最小值分别是12、函数在2≤x≤4___________.13、若关于x的方程至少有一个实数根,则a的取值范围是___________.14、已知(a>0,b>0),求使f(x)<0的x的取值范围.15、设函数f(x)=x2-x+b,已知log2f(a)=2,且f(log2a)=b(a>0且a≠1),(1)求a,b的值;(2)试在f(log2x)>f(1)且log2f(x)<f(1)的条件下,求x的取值范围.16、已知函数f(x)=log a(x-3a)(a>0且a≠1),当点P(x,y)是函数y=f(x)图象上的点时,点Q(x-2a,-y)是y=g(x)图象上的点.(1)写出y=g(x)的解析式;,试求a的取值范围.(2)若当x∈[a+2,a+3]时,恒有|f(x)-g(x)|≤1答案及提示:1-10 DDDDA BBBCC1、当a>1时,y=log a x是单调递增函数,是单调递减函数,对照图象可知D正确. ∴应选 D.2、解法1:与函数y=log2(x+1)的图象关于直线y=x对称的曲线是反函数y=2x-1的图象,为了得到它,只需将y=2x的图象向下平移1个单位.解法2:在同一坐标系内分别作出y=2x与y=log2(x+1)的图象,直接观察,即可得 D.3、由≥0,得 0<x-1≤1,∴ 1<x≤2.5、应注意定义域为(-∞,1)∪(2,+∞),答案选 A.6、不妨取,可得选项B正确.7、由f(-x)=f(x)知f(x)为偶函数,答案为 B.8、由ab>1,知,故且,故答案选 B. 10、当a>1时,0<<1,当0<a<1时,>1,作出y=a x与y=的图象知,两图象必有一个交点.11、答案:(-∞,-6)提示: x2+4x-12>0 ,则 x>2 或 x<-6.当 x<-6 时, g(x)=x2+4x-12 是减函数,∴在(-∞,-6)上是增函数 .12、答案:11,7 :∵ 2≤x≤4,∴.则函数,∴当时,y最大为11;当时,y最小为7.13、答案:(-∞,] 提示:原方程等价于由③得. ∴当x>0时,9a≤,即a≤.又∵ x≠3,∴ a≠2,但a=2时,有x=6或x=3(舍).∴ a≤.14、解:要使f(x)<0,即.当a>b>0时,有x>;当a=b>0时,有x∈R;当0<a<b时,有x<.15、解:(1)∵f(log2a)=b,f(x)=x2-x+b,∴(log2a)2-log2a+b=b,解得a=1(舍去),a=2,又log2f(a)=2,∴log2(a2-a+b)=2,将a=2代入,有log2(2+b)=2, ∴b=2;(2)由log2f(x)<f(1)得log2(x2-x+2)<2,∴x2-x-2<0,解得-1<x<2,由f(log2x)>f(1)得(log2x)2-log2x+2>0,解得0<x<1或x>2,∴x∈(0,1).16、解:(1)设Q(x′,y′),则,∵点P(x,y)在y=f(x)的图象上,∴.(2)当x∈[a+2,a+3]时,有x-3a>0且>0成立.而x-3a≥a+2-3a=2-2a>0,∴ 0<a<1,且恒成立.∴ 0<a<1.由 |f(x)-g(x)|≤1,即∴ r(x)=x2-4ax+3a2在[a+2,a+3]上是增函数.∴ h(x)=log a(x2-4ax+3a2)在[a+2,a+3]上是减函数. ∴当x=a+2时,h(x)max=h(a+2)=log a(4-4a),当x=a+3时,h(x)min=h(a+3)=log a(9-6a).。