第四章《图形初步认识》复习 教案
人教版七年级数学上册总复习说课稿:第四章《图形初步认识》
3.实践活动:组织学生进行图形变换的实践操作,如利用剪纸、画图等方式,亲身体验图形变换的魅力;
4.生活应用:鼓励学生从生活中寻找图形变换的例子,将所学知识应用到实际情境中。
(四)总结反馈
在总结反馈阶段,我将采取以下方式引导学生自我评价,并提供有效的反馈和建议:
(二)媒体资源
在教学过程中,我将使用以下教具和多媒体资源:
1.教具:图形模型、直尺、量角器等,让学生通过实际操作,加深对图形的认识和变换的理解;
2.多媒体资源:PPT、教学视频、几何画板软件等,通过图文并茂、动画演示等方式,直观展示图形变换过程,帮助学生克服理解难点;
3.技术工具:互动白板、网络资源等,实现师生实时互动,提高课堂趣味性。
3.观察学生的课堂表现,评估参与度和合作能力。
反思和改进措施包括:
1.根据学生的反馈调整教学方法,提高教学内容的趣味性和实用性;
2.对学生的共性问题进行针对性的讲解和辅导;
3.不断更新教学资源,提升自身的教学水平,以更好地满足学生的学习需求。
(三)学习动机
为了激发学生的学习兴趣和动机,我采取以下策略或活动:
1.创设情境:结合生活实例,让学生感受数学在生活中的广泛应用,提高他们的学习兴趣;
2.互动教学:设计小组讨论、问答等环节,鼓励学生积极参与,培养他们的合作交流能力;
3.实践探究:引导学生动手操作,通过实际操作感受图形变换的魅力,提高空间想象能力;
3.创设情境:利用多媒体展示一些美丽的图案,让学生在欣赏的过程中,思考这些图案是如何通过简单的图形变换得到的。
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
数学人教版七年级上册第四章 图形认识初步单元复习教案(第一课时)
第四章图形认识初步单元复习教案(第一课时)教学目标:1.知识与技能直观认识立体图形,掌握平面图形的基本知识;画出简单立体图形的三视图及平面展开图,根据三视图画出一些简单的实物图;2.过程与方法经历相关内容的归纳、总结,巩固对图形的直观认识,了解图形的分割和组合,探索学习空间与图形的方法;通过实验、操作,提高对图形的认识和动手能力.3.情感、态度与价值观在探索知识之间的相互联系及应用的过程中,体验推理的意义,获取学习的经验.教学重点:立体图形与平面图形的互相转化,及一些重要的概念、性质等.解决方法:通过观察、测量、折叠、模型制作与团队合作等活动,发展空间观念.教学难点:建立和发展空间观念;对图形的认识与运用.解决办法:通过实践操作;加强对图形的认识与运用.教学方法:引导式.教具准备:投影仪.教学过程设计:例2 如图,从正面看A、B、C、D四个立体图形,分别得到a、b、c、d四个平面图形,把上下两行相对应立体图形与平面图形用线连接起来.作业:1.圆锥是由个面围成,其中个平面,个曲面.2.如图中的几何体有个面,面面相交成线.3.把一块学生用的三角板以一条直角边为轴旋转一周形成的图形是.4.薄薄的硬币在桌面上转动时,看上去像球,这说明了_________.5.六棱柱有个顶点,个面.七棱锥有个顶点,个面.6.圆柱的侧面是,侧面展开图是.7.下列平面图形中不能围成正方体的是()A. B. C. D.8.如图是正方体的平面展开图,每一个面标有一个汉字,与“和”相对的面上的字是()A.构B.建C.郑D.州9、如图是由一些相同的小正方体构成的立体图形的三种视图.那么构成这个立体图形的小正方体有()A. 4个B. 5个C. 6 个D. 7个主视图左视图俯视图10、如图,是一个由若干个相同的小正方体组成的几何体的主视图和俯视图,则能组成这个几何体的小正方体的个数最少是________个.州郑谐和建构主视图 左视图 112221111121主视图 俯视图11、用4个棱长为1的正方体搭成一个几何体模型,其主视图与左视图如图所示,则该立方体的俯视图不可能...是: ( )主视图 左视图 A . B . C . D .12、 如图是由大小相同的小正方体组成的简单几何体的主视图和左视图那么组成这个几何体的小正方体的个数最多为________个.13、已知下图为一几何体的三视图:(1)写出这个几何体的名称;(2)任意画出它的一种表面展开图;(3)若主视图的长为8cm ,俯视图中圆的半径为3cm ,求这个几何体的表面积和体积.(π取3)俯视图:圆左视图:长方形主视图:长方形答案:1、两、一、一;2、3,曲;3. 圆锥;4. 面动成体;5. 12,8,8,8;6. 曲面,长方形;7、A ;8、D ;9、B ;10、9;11、D ;12、7; 13、(1)圆柱 (2)略 (3)表面积2198cm ,体积3216cm。
第四章图形认识初步复习教案
第四章图形认识初步复习教案学习目标:1.通过实物和具体模型,了解从物体外形抽象出来的几何体、平面、直线和点等概念,能识别一些基本几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等).初步了解立体图形与平面图形的概念.2.能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形;了解直棱柱、圆柱、圆锥的展开图,能根据展开图想象相应的几何体,制作立体模型,在平面图形和立体图形相互转换的过程中,初步培养空间观念和几何直觉.3.进一步认识直线、射线、线段的概念和它们的联系与区别,掌握它们的表示方法;掌握关于直线和线段的基本事实:两点确定一条直线,两点之间线段最短,了解这些性质在生活和生产实际中的应用;理解两点之间距离的意义;直观地了解平面上两条直线具有相交与不相交两种位置关系;会比较线段的大小,理解线段的和、差及线段的中点概念,会画一条线段等于已知线段.4.通过丰富的实例,进一步认识角,理解角的两种描述方法,掌握角的表示方法;会比较角的大小,认识度、分、秒,并会进行简单的换算,会计算角度的和与差;了解角的平分线的概念,了解余角和补角的概念,知道“等角的补角相等”“等角的余角相等”的性质.5.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形.6.初步认识图形是有效描述现实世界的重要工具,初步应用图形与几何的知识解释生活中的现象以及解决简单的实际问题,激发对学习图形与几何的兴趣,通过与其他同学的交流活动,初步形成积极参与数学活动,主动与他人合作交流的意识.知识结构:基础知识:1、立体图形举例:。
2、平面图形举例:。
3、点、线、面、体。
4、直线、射线、线段。
5、直线的性质是:。
6、线段的性质是:。
7、两点的距离。
8、角。
9、1周角=0,1平角=0,1直角=0。
10、角的平分线。
11、互为余角。
12、互为补角。
13、补角的性质是:。
14、余角的性质是:。
图形的初步认识复习教案
图形的初步认识复习教案一、教学目标:1. 让学生复习和巩固对平面图形的认识,包括三角形、四边形、五边形、六边形等。
2. 培养学生观察、描述和分析图形的能力。
3. 培养学生运用图形知识解决实际问题的能力。
二、教学内容:1. 复习平面图形的名称和特征。
2. 通过观察和操作,让学生掌握图形的分类和归纳方法。
3. 运用图形知识解决实际问题,如面积计算、周长计算等。
三、教学重点与难点:1. 重点:复习各种平面图形的特征和名称,提高学生的观察和描述能力。
2. 难点:运用图形知识解决实际问题。
四、教学方法:1. 采用问题驱动法,引导学生主动观察、思考和描述图形。
2. 运用小组合作学习法,让学生在讨论中共同解决问题。
3. 采用案例分析法,让学生通过实际例子掌握图形知识。
五、教学准备:1. 准备各种平面图形的图片或实物模型。
2. 准备练习题和实际问题案例。
3. 准备黑板和投影仪,用于展示图形和解答问题。
六、教学过程:1. 导入:通过展示一组图形,让学生观察并说出它们的名称和特征。
2. 新课:引导学生复习各种平面图形的特征和名称,如三角形、四边形、五边形、六边形等。
3. 练习:让学生分组讨论,总结各种图形的共同点和不同点,并进行展示。
4. 应用:给出实际问题案例,让学生运用图形知识解决问题。
七、课后作业:1. 绘制一幅含有三角形、四边形、五边形和六边形的图案,并描述它们的特征。
2. 计算一个三角形的面积和周长,并解释计算过程。
八、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况和小组合作表现。
2. 练习题:检查学生完成的练习题,评估其对图形知识的掌握程度。
3. 课后作业:评估学生在作业中的表现,了解其对图形知识的应用能力。
九、教学反思:1. 总结课堂教学的优点和不足,提出改进措施。
2. 针对学生的学习情况,调整教学策略,以提高教学效果。
3. 不断更新教学内容,关注图形知识在实际生活中的应用。
十、教学拓展:1. 引导学生进一步学习立体图形的认识和计算。
《第4章 图形的初步认识》复习说课稿
第四章《几何图形初步》复习课说课稿各位评委、老师:大家好,今天我说课的内容是人教版七年级数学上册第四章《几何图形初步》复习课第一课时。
下面我将从教材分析、教法学法分析、教学流程、教学板书、教学设计五个方面进行阐述分析。
一、教材分析(首先是教材分析,将从三个方面来理解)1、教材地位和作用本节的内容是对图形的初步认识,从学生的认知水平看,小学阶段学生对正方体、长方体、点、线段等几何图形已有了感性认识,因此对几何图形并不陌生。
从课程设置看,本节课的知识是进一步学习平面几何以及立体几何的基础。
从发展学生能力看,本节知识对于帮助学生建立空间观念,丰富学生对空间图形的认识和感受,对培养观察能力、抽象概括能力有着非常重要的作用。
2、教学目标(基于以上对教材的理解和分析,结合学生既有的知识和能力,遵循课程标准要求,)我确定的教学目标是:(1)知识与能力:通过观察生活中的大量图片、几何模型或实物,体验、感受、认知以生活事物为原形的几何图形,认识一些简单的立体图形的基本特征,能识别这些几何图形。
(2)过程与方法:经历探索平面图形和立体图形的关系,发展空间观念,培养学生观察、分析、抽象、概括的能力,培养动手操作能力,经历问题解决的过程,提高解决问题的能力.(3)情感态度与价值观:经历从现实世界抽象出几何图形的过程,感受图形世界的丰富多彩,激发对学习空间图形的兴趣,通过与其他同学交流活动,初步形成积极参与数学活动、主动与他人合作交流的意识。
3、教学重点、难点根据以上分析,我认为识别简单的几何图形是教学重点。
从具体事物中抽象出几何图形是教学难点。
(基于对教材理解结合七年级学生年龄特点,如何很好的完成教学目标?下面我们来研究第二个方面:教法学法)二、教法学法分析学生的现有认知水平——以直观感知、无意注意为主,空间观念较薄弱,经过本节学习及生活中大量几何图形的直观表象,使本阶段的学生初步学会运用数学的思维方式去观察、分析现实生活,体会数学与人类生活的密切联系,增进学生学好数学的信心。
湘教版数学七年级上册第四章《图形的认识》复习教学设计
湘教版数学七年级上册第四章《图形的认识》复习教学设计一. 教材分析湘教版数学七年级上册第四章《图形的认识》复习教学设计,主要是对本章重点知识进行梳理和巩固。
本章内容包括平面图形的性质、位置关系及分类,以及立体图形的认识。
通过复习,使学生掌握平面图形的性质,了解不同立体图形的特征,提高学生的空间想象能力和逻辑思维能力。
二. 学情分析七年级的学生已经初步掌握了平面图形的性质和立体图形的认识,但部分学生在理解和运用上还存在困难。
针对这一情况,教师在复习教学中应注重启发引导,让学生在复习过程中巩固知识,提高解题能力。
三. 教学目标1.知识与技能:通过对本章知识的复习,使学生掌握平面图形的性质,了解不同立体图形的特征,提高空间想象能力和逻辑思维能力。
2.过程与方法:通过自主学习、合作交流,培养学生探究问题和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:平面图形的性质,立体图形的特征。
2.难点:如何运用所学知识解决实际问题。
五. 教学方法1.自主学习:引导学生独立思考,自主探究,提高学生学习的主动性。
2.合作交流:学生分组讨论,共同解决问题,培养学生团队协作能力。
3.启发引导:教师通过提问、设疑,激发学生思维,引导学生深入理解知识。
4.实例分析:运用生活中的实例,让学生感受数学与实际的联系。
六. 教学准备1.课件:制作本章复习课件,包括重点知识梳理、实例分析等。
2.练习题:准备适量练习题,用于巩固所学知识。
3.教学器材:立体模型、图片等。
七. 教学过程1.导入(5分钟)利用课件展示本章重点知识,引导学生回顾所学内容,为新课的复习做好铺垫。
2.呈现(10分钟)通过课件呈现不同类型的平面图形和立体图形,让学生观察、分析,找出它们的特征。
3.操练(10分钟)让学生分组讨论,每组选择一种图形,总结出它的性质和特征。
然后进行小组间的交流分享。
人教版数学七年级上册第四章《图形认识初步》复习优秀教学案例
3.在学生解答问题的过程中,给予适当的提示和指导,帮助学生克服困难,引导他们找到解决问题的方法。
(三)小组合作
小组合作是培养学生的合作意识和团队精神的重要途径。在本节课中,我将通过以下方式进行小组合作:
1.将学生分成小组,每组成员共同探究和解决问题;
本节课的教学目标主要包括:一是使学生巩固和加深对平面图形的基本概念、性质和判定方法的理解;二是提高学生的空间想象能力和逻辑思维能力;三是培养学生的创新意识和解决问题的能力。
针对这些目标,我设计了以下教学内容和活动:首先,通过复习平面图形的基本概念,如线段、角、平行线等,帮助学生巩固基础知识;其次,通过讲解和示例,使学生掌握图形的性质和判定方法,如三角形的稳定性、四边形的分类等;然后,通过开展小组合作活动,让学生自主探究和发现图形的性质,培养学生的合作意识和探究能力;最后,通过设计具有挑战性的课后习题,激发学生的思考,提高学生解决问题的能力。
2.设计一些需要团队合作的活动,如一起设计一个图形,并解释其性质和应用;
3.鼓励学生之间相互交流和讨论,培养他们的合作意识和团队精神。
(四)反思与评价
反思与评价是提高学生思维能力和自我认知的重要环节。在本节课中,我将通过以下方式进行反思与评价:
1.在课堂结束前,引导学生对自己的学习进行反思,思考自己在本节课中学到了什么,还有什么需要改进的地方;
(三)情感态度与价值观
在情感态度与价值观方面,本节课的主要目标是使学生能够:
1.培养对数学学科的兴趣和热情,树立自信心;
2.培养良好的学习习惯和团队合作精神;
3.学会欣赏和尊重他人的想法,培养公正客观的评价态度;
4.认识到数学与实际生活的紧密联系,提高学习的积极性。
人教版数学七年级上册 第四章 几何图形初步-复习教案设计
图形的初步认识复习(2)(角)【课时】:第13课时【课题】:图形认识初步复习(2)【设计与执教者】:【学情分析】:面向特色班的学生。
面向特色班的学生。
已经学完整章内容,对各个知识点掌握较好,但还没有形成完整的知识体系。
对各个知识点间的联系还不够清楚。
【教学目标】:1、复习4.3角的内容,使学生系统的掌握本单元所学的知识,查漏补缺,理清知识及其联系。
2、能熟练应用所学知识解决问题。
【教学重点】:4.3角的知识及应用所学知识解决问题。
【教学难点】:灵活运用所学知识解决相关问题。
【教学突破点】:通过练习复习知识,通过易错题查漏补缺。
【教法、学法设计】:让学生通过做题回顾知识点并查漏补缺,老师通过点评学生的答案来帮助学生复习、总结、归纳知识点,再通过做练习进一步巩固【课前准备】:多媒体课件【教学过程设计】教学环节教学活动设计意图知识回顾一、角的相关知识(一)、试一试1:1、判断A、直线是一个平角,射线是一个周角B、平角是一条直线,周角是一条射线C、若将角的两边均延长至原来的两倍,则角的大小也扩大两倍通过做题回顾知识点并查漏补缺,老师通过点评学生的答案来帮助学生复习、总结、归纳知识点(二)想一想2:1、角的度量2、角的数量关系二、应用巩固周游数学世界基础知识:1、图中以O为顶点的角有几个?以D为顶点的角有几个?用适当的方式表示这些角。
(1)∠APO (2)∠AOP (3)∠OPC(4)∠OCP (5)∠O (6)∠PAO BD C2、已知∠A=36018’, 则∠ A的余角是 ,∠ A的补角是 .升级提高:1、如图所示,在三角形ABC中,BD、CD为∠ABC、∠ACB的平分线且交于点D, 已知∠BDC的度数为120°。
求∠BAC的度数.3、如图所示,将一张长方形的纸斜折过去,使角顶点A落在A′处,BC为折痕,然后把BE边折过去,使之与A′B边重合,折痕为BD,那么两折痕BC、BD间的夹角是多少度?练习巩固:让学生自己选择题目来“打擂”,增强学生的积极性。
初中数学 第四章《图形认识初步》复习 教案1
图形认识初步教学设计教学设计思想:本章的主要内容是线段与角的概念、性质及其大小的比较,平行、垂直的有关的问题,数学是研究现实世界的空间形式与数量关系的一门学科,而平面几何则是研究空间形式的入门与基础。
点与直线是平面图形的基本元素,掌握本章内容对于学好后继课程至关重要,为此必须加强几何语言的训练,要注意经常总结对比。
教学目标:1.知识与技能直观认识立体图形,掌握平面图形的基本知识;画出简单立体图形的三视图及平面展开图,根据三视图画出一些简单的实物图;进行线段的简单计算,正确区分线段、射线、直线.掌握角的基本概念,进行相关运算;巩固对角得度量及运算知识的掌握,能解决一些实际问题。
2.过程与方法经历相关内容的归纳、总结,巩固对图形的直观认识,了解图形的分割和组合,探索学习空间与图形的方法;通过实验、操作,提高对图形的认识和动手能力。
3.情感、态度与价值观在探索知识之间的相互联系及应用的过程中,体验推理的意义,获取学习的经验.教学重点:立体图形与平面图形的互相转化,及一些重要的概念、性质等。
解决方法:通过观察、测量、折叠、模型制作与团设计等活动,发展空间观念,自然就加强了对概念及其性质的理解和掌握。
教学难点:建立和发展空间观念;对图形的表示方法,对几何语言的认识与运用。
解决办法:通过多实践操作;加强对几何语言的运用。
教学方法:引导式。
教具准备:投影仪。
教学安排:2课时。
教学过程:第一课时一、导入回忆一下,这一章我们都学习了哪些知识呢?教师可以先给出本章的知识结构图:(投影仪)(教师先给一段时间思考,同学之间可以相互交流。
)二、知识回顾教师提问:本章的主要内容有哪些呢?师:(概述)本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形。
通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系。
在此基础上,认识一些简单的平面图形——直线、射线、线段和角。
第四章《图形初步认识》复习 教案
第四章《图形初步认识》复习教学目标知识与技能1.使学生理解本章的知识结构,并通过本章的知识结构掌握本章全部知识;2.对线段、射线、直线、角的概念及它们之间的关系有进一步的认识;过程与方法经历相关内容的归纳、总结,巩固对图形的直观认识,了解图形的分割和组合,探索学习空间与图形的方法情感、态度、价值观在探索知识之间的相互联系及应用的过程中,体验推理的意义,获取学习的经验教学重难点重点是理解本章的知识结构,掌握本章的全部定理和公理;难点是理解本章的数学思想方法.教学过程一、引导学生画出本章的知识结构框图二、具体知识点梳理(一)多姿多彩的图形立体图形:棱柱、棱锥、圆柱、圆锥、球等.1、几何图形平面图形:三角形、四边形、圆等.主(正)视图---------从正面看2、几何体的三视图侧(左、右)视图-----从左(右)边看俯视图---------------从上面看(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念2、直线的性质经过两点有一条直线,并且只有一条直线.简单地:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.图形:A M B符号:若点M是线段AB的中点,则AM=BM=12AB,AB=2AM=2BM.6、线段的性质两点的所有连线中,线段最短.简称:两点之间,线段最短.7、两点的距离连接两点的线段长度叫做两点的距离.8、点与直线的位置关系(1)点在直线上(2)点在直线外.(三)角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):3、角的度量单位及换算4、角的分类5、角的比较方法(1)度量法(2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.图形:符号:9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角. (2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角. (3)余(补)角的性质:等角的补(余)角相等.10、方向角(1)正方向(2)北(南)偏东(西)方向(3)东(西)北(南)方向四、练习1、下列说法中正确的是()A、延长射线OPB、延长直线CDC、延长线段CDD、反向延长直线CD2、下面是我们制作的正方体的展开图,每个平面内都标注了字母,请根据要求回答问题:(1)和A面所对的会是哪一面?(2)和B面所对的会是哪一面?(3)面E会和哪些面相交?3、两条直线相交有几个交点?三条直线两两相交有几个交点?四条直线两两相交有几个交点?思考:n条直线两两相交有几个交点?4、已知平面内有四个点A、B、C、D,过其中任意两点画直线,最少可画多少条直线,最多可画多少条直线?画出图来.5、已知点C是线段AB的中点,点D是线段BC的中点,CD=2.5厘米,请你求出线段AB、AC、AD、BD 的长各为多少?6、已知线段AB=4厘米,延长AB到C,使B C=2AB,取AC的中点P,求PB的长.五、作业设计课本第147~148页复习题4第1~8题。
人教版数学七年级上册第四章图形初步认识复习 教学案
课题第四章图形初步认识复习第周第课时导学目标1.知道基本几何体的平面展开图及其三视图。
2.知道直线、射线、线段的区别和联系,直到两点之间的距离和线段中点的含义3.会度、分、秒之间的互化,及其角平分线、余角和补角性质的应用重点角分线、余角、补角概念、性质难点角分线、余角、补角性质的运用课型复习课课时1课时设计人审核人教学过程环节教学内容任务设计教师活动学生活动预见性问题及策略备习直线、射线、线段概念及性质角的比较与运算余角、补角概念性质观察学生的看图梳理情况,并对学生的错误加以纠正小组内交流互助完成,如有疑问请教专家组然后小组代表汇报预见性问题:可能部分学总结不准确策略:指派学生予以纠正知识运用1.正方体展开图、余角、补角的考查1.如图,每个图片都是6个相同的正方形组成的,不能折成正方形的是()2.如果∠α=26°,那么∠α余角的补角等于() A、20° B、70 ° C、110 ° D、116°:巡视学生的完成情况,对于学困生进行指导,纠正出现的错误学生先独立完成,然后小对子互查,再组内交流互助,统一答案,代表汇报预见性问题:展开图形式不熟策略:教师引导2.线段、角的运算的考查3.余角定义的运用4.角分线性质、补角的运用3.如果线段MN=6cm,NP=2cm,那么M、P两点的距离是().A.8cm B.4cm C.8cm或4cm D.无法确定4.如图∠AOD-∠AOC=()A、∠ADCB、∠BOCC、∠BODD、∠COD5. 如图,∠AOD=∠BOC=90°,∠COD=42°,求∠AOC、∠AOB的度数.OCADB6.如图,∠AOB是直角,OD平分∠BOC,OE平分∠AOC,求∠EOD的度数。
7.一个角的补角加上10o等于这个角的余角的3倍,求这个角。
引导学生分析题意,并进行计算,纠正解题错误指导学生完成各题,规范学生的解题过程,对学困生进行讲解巡视学生的完成情况,纠正计算出现的错误及书写格式根据教师指导进行计算,小对子相互纠正,代表汇报独立完成,小组交流,统一答案后,代表板演汇报,其他同学纠错小组内独立根据教师的引导进行解题,然后小组内交流,统一答案,代表板演讲解汇报预见性问题:只考虑一种情况策略:教师讲解另一种情况预见性问题:学困生解题不规范策略:教师予以纠正预见性问题:学困生不会分析题意策略:教师进行精讲时习整理学案板书设计第四章复习课知识梳理 6: 7:反思。
人教版数学七年级上册第四章 图形认识初步复习 教学设计
课题:第四章图形认识初步复习教案(人教版数学七年级第四章)二、基础知识回顾(夯实根基,打好基础)1、几何图形包括图形和图形。
图中的一些物体与我们学过的哪些图形相类似?把相应的物体和图形连接起来2、如图,这是一幅电热水壶的正面看的图,则从上面看的图是()(第3题图) A. B. C. D.3、一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.微D.山4、直线、射线、线段的比较名称直线射线线段图形表示方法延伸性端点个数作图叙述5、经过两点有条直线,并且只有。
在墙上钉一根木条需_______个钉子,其根据是________.6、线段上的一点把线段分成的线段,这点叫做线段的中点。
7、两点的所有连线中,最短,即为,最短。
如右图,把河道由弯曲改直,根据__________说明1、指导学生完成任务,并在学生回答完之后,总结一下常见的柱体和椎体2、3、提醒学生三视图的看法,让学生自主完成4、让学生独立完成,在学生回答后,注意对学生的辅导。
1、学生连线2、学生思考并根据从不同的方向看,可以很容易地完成选择3、学生观察,判断,并回答自己的答案。
4、学生可以讨论完成5、6、7、8、9、 10、学生自主完成二、通过生活中的现象发现数学问题可以激发学生的求知欲和兴趣。
2、让学生进一步感受体和形的关系,图形是从物体中抽象出来的。
3、复习正方体的表面展开图的形式4、复习“三线”,正确认识它们的区别和联系。
主要是复习直建设和谐微山第3题图这六个展开图的特点是这三个展开图的特点是这两个展开图的特点是2、如图、线段AB=28cm,C是AB上一点,且AC=18cm,O是AB的中点,求线段OC的长度。
3、如图,已知∠AOB=90°,∠AOC是60°,OD平分∠BOC,OE平分∠AOC。
求∠DOE。
师与学生共同探讨。
规律为:141型231型阶梯型教师让学生先自主思考,可以到学生中知道完成。
图形的初步认识复习教案
图形的初步认识复习教案第一章:复习平面图形的基本概念教学目标:1. 复习平面图形的基本概念,包括三角形、四边形、五边形、六边形等。
2. 能够识别和命名各种平面图形。
3. 理解平面图形的性质和特点。
教学内容:1. 回顾平面图形的基本概念,包括定义和特征。
2. 复习如何识别和命名各种平面图形,例如三角形、四边形、五边形、六边形等。
3. 探究平面图形的性质和特点,例如边数、角数、对称性等。
教学活动:1. 教师通过示例图形,引导学生复习平面图形的基本概念。
2. 学生通过观察和描述不同种类的平面图形,加深对它们的理解和记忆。
3. 学生通过练习题,巩固对平面图形的识别和命名能力。
第二章:复习图形的面积和周长教学目标:1. 复习图形的面积和周长的计算方法。
2. 能够计算常见图形的面积和周长。
3. 理解面积和周长的概念及其应用。
教学内容:1. 回顾图形的面积和周长的概念,包括定义和计算方法。
2. 复习如何计算常见图形的面积和周长,例如矩形、三角形、圆形等。
3. 探究面积和周长的应用,例如计算实际物体的面积和周长。
教学活动:1. 教师通过示例图形,引导学生复习图形的面积和周长的概念及计算方法。
2. 学生通过观察和计算不同图形的面积和周长,加深对它们的理解和记忆。
3. 学生通过实际操作和练习题,巩固对图形面积和周长的计算能力。
第三章:复习图形的对称性教学目标:1. 复习图形的对称性,包括轴对称和中心对称。
2. 能够识别和分类图形的对称性。
3. 理解对称性的性质和应用。
教学内容:1. 回顾图形的对称性概念,包括轴对称和中心对称。
2. 复习如何识别和分类图形的对称性,例如矩形、三角形、圆形等。
3. 探究对称性的性质和应用,例如在图案设计和几何证明中的应用。
教学活动:1. 教师通过示例图形,引导学生复习图形的对称性概念及分类方法。
2. 学生通过观察和描述不同图形的对称性,加深对它们的理解和记忆。
3. 学生通过练习题和实际操作,巩固对图形对称性的识别和应用能力。
初中数学教学设计.4.图形认识初步单元复习
4.《图形认识初步》单元复习一、教学目标知识技能:直观认识立体图形,掌握平面图形的基本知识;画出简单立体图形的三视图及平面展开图,根据三视图画出一些简单的实物图;进行线段的简单计算,正确区分线段、射线、直线.掌握角的基本概念,进行相关运算;巩固对角得度量及运算知识的掌握,能解决一些实际问题.数学思考:经过相关内容的归纳、总结,巩固对图形的直观认识,了解图形的分割和组合,探索学习空间与图形的方法.问题解决:通过实验、操作,提高对图形的认识和动手能力.情感态度:在探索知识之间的相互联系及应用的过程中,体验推理的意义,获取学习的经验.二、重难点分析教学重点:立体图形与平面图形的互相转化,及一些重要的概念、性质等.通过观察、测量、折叠、模型制作与团设计等活动,发展空间观念,自然就加强了对概念及其性质的理解和掌握.教学难点:建立和发展空间观念;对图形的表示方法,对几何语言的认识与运用.通过多实践操作;加强对几何语言的运用.三、学习者学习特征分析学生在学完本单元知识后,对某些知识可能还存在一些不同程度的问题.比如,对图形的表示方法,对几何语言的认识与运用等等. 点与直线是平面图形的基本元素,掌握本章内容对于学好后继课程至关重要,为此必须加强几何语言的训练,要注意经常总结对比.四、教学过程(一)创设情境,引入新课教师引导学生思考:在本单元的学习中自己有哪些收获?学生自由发言,阐述自己在学习本单元知识后有什么收获,学习到了哪些知识.其中大部分的答案都是本节复习课中所要涉及到的知识,教师可以不作具体的点评,等几个学生回答后可直接引入本节主题.(二)知识点归纳1.本单元知识体系教师首先给学生3-5分钟时间通览一遍教材,对本单元有一个总体的回顾,然后与学生一起归纳本单元的知识体系,以及本单元知识以哪些单元的内容为基础,又会对今后学习哪些单元的知识有铺垫作用.(学生在本环节中,可能会出现不太理解通览教材的含义的情况,还尝试比较详细的进行阅读,教师要引导学生只回顾知识点,以提高通览的速度.设计意图:让学生按学习的时间顺序对本章的知识点大体回顾一下,便于后面归纳知识体系.)本单元的知识可以从立体图形和平面图形两个角度进行知识点的分类,教师可以从所学内容的特征出发,引导学生进行知识的归类.本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形.通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系.在此基础上,认识一些简单的平面图形——直线、射线、线段和角.本单元具体知识体系见下图:2.本单元知识与其他单元知识之间的关系本章的内容是以后学习的重要基础,如何通过结合立体图形与平面图形的互相转化的学习来发展空间观念,一些重要的概念、性质等是本章的一项重点内容.建立和发展学生的空间观念是图形与几何学习的核心目标之一,能由实物形状想象出几何图形,由几何图形想象出实物形状,进行几何体与其三视图、展开图之间的相互转化是培养空间观念的重要方面.本章中许多概念在前一学段有初步的了解,但比较分散,现在要比较系统的学习,要进一步加深认识.另外,尽管学生在小学阶段已经学习了一些图形与几何的知识,但是学生对于进入初中以后进一步学习图形与几何知识和所需要改变的学习方法等还未必能较快地适应,例如,如何从具体事物中抽象出各种具体几何图形?如何掌握各种几何图形的概念?如何区分一些相近的概念?另外,对图形的表示和画图、作图,对几何语言的学习、运用等,都需要一个学习并逐渐熟悉的过程.这些,对于今后的学习都很重要,同时也是本章的难点.3.本单元学习方法及对以后单元的启示:本章的内容是以后学习的重要基础,如何通过结合立体图形与平面图形的互相转化的学习来发展空间观念,一些重要的概念、性质等是本章的一项重点内容.建立和发展学生的空间观念是图形与几何学习的核心目标之一,能由实物形状想象出几何图形,由几何图形想象出实物形状,进行几何体与其三视图、展开图之间的相互转化是培养空间观念的重要方面.(三)典型题归纳例1. 如图4-1所示,讲台上放着一本书,书上放着一个粉笔盒,指出右边三个平面图形分别是左边立体图形的哪个视图.图4-1解:(1)左视图,(2)俯视图,(3)正视图例2. (1)如图4-2所示,上面是一些具体的物体,下面是一些立体图形,试找出与下面立体图形相类似的物体.(2)如图4-3所示,写出图中各立体图形的名称.图4-2图4-3解:(1)①与d类似,②与c类似,③与a类似,④与b类似.(2)①圆柱,②五棱柱,③四棱锥,④长方体,⑤五棱锥.例3.(1)过一个已知点的直线有多少条?(2)过两个已知点的直线有多少条?(3)过三个已知点的直线有多少条?(4)经过平面上三点A,B,C中的每两点可以画多少条直线?(5)根据(4)的结论,猜想经过平面上四点A,B,C,D中的任意两点画直线,会有什么样的结果?如果不能画,请简要说明理由;如果能画,请画出图来.解:(1)过一点可以画无数条直线.(2)过两点可以画惟一的一条直线.(3)过三个已知点不一定能画出直线.当三个已知点在一条直线上时,可以画出一条直线.当三个已知点不在一条直线上时,不能画出直线.(4)如图4-4所示,当A,B,C三点不共线时,过其中的每两点可以画一条直线,共可画出三条直线;当A,B,C三点在一条直线上时,经过每两点画出的直线重合为一条直线.图4-4(5)经过平面上四点中的任意两点画直线,一共有三种情况,如图4-5所示,当A,B,C,D四点共线时,只能画出一条直线;当A,B,C,D四点中有三点在同一直线上时,可以画出四条直线;当A,B,C,D中不存在三点在同一直线上时,可以画出六条直线.图4-5例4. 如图4-6所示,已知三点A,B,C,按照下列语句画出图形.(1)画直线AB;(2)画射线AC;(3)画线段BC.[分析]本题要求能根据几何语言规范而准确地画出图形,要做到这一点,关键是:第一,要读懂这些几何语句;第二,要抓住这些基本图形的共同特点及细微区别.如直线、射线、线段的共同特点是都是笔直的线,不同的是:线段有两个端点,不能延伸;射线有一个端点,向一方无限延伸;直线没有端点,向两方无限延伸.它们的表示方法:线段是用它的两个端点的大写字母来表示的;射线是用它的端点和射线上另外一个任意点的大写字母来表示的,且端的字母要写在前面;直线是用它上面的任意两个点的大写字母来表示的.弄清楚这几点,图就不难画出了.图4-6解:如图4-6所示,直线AB、射线AC、线段BC即为所求.例5.如图4-7所示,回答下列问题.图4-7(1)图中有几条直线?用字母表示出来;(2)图中有几条射线?用字母表示出来;(3)图中有几条线段?用字母表示出来.[分析]掌握线段、直线的区别与联系,射线的方向性,线段的无向性,就可以解决这类问题.解:(1)图中有1条直线,表示为直线AD(或直线AB,AC,BD,BC,CD);(2)共有8条射线,能用字母表示的有射线AB,AC,AD,BC,BD,CD,不能用字母表示的有2条;(3)共有6条线段,表示为线段AB,AC,AD,BC,BD,CD.例6. 如图4-8所示的是两块三角板.(1)用叠合法比较∠1,∠α,∠2的大小;(2)量出各角的度数,并把图中6个角从小到大排列,然后用“<”或“=”号连接.[分析]叠合法就是把两个角的一边重合,根据另一边的位置就可以比较出角的大小.解:(1)如图4-8所示图4-8把两块三角板叠在一起,可得∠1<∠α,用同样的方法可得∠α<∠2,所以∠1<∠α∠2.(2)用量角器量出各角的度数分别是∠1=30°, ∠2=60°, ∠3=90°, ∠α=45°, ∠β=45°, ∠γ=90°,∴∠1<∠α=∠β<∠2<∠3=∠γ.例7.(1)计算:①27°42′30″+1070′;②63°36′-36.36°.(2)用度、分、秒表示48.12°.(3)用度表示50°7′30″.[分析]在复名数与单名数的加减运算中,参加运算的各个名数需化成相应的同一名数(同为复名数或同为单名数).进行角度的单位换算时,因为是60进制,所以度化分、分化秒要乘以60,秒化分、分化度要除以60(即从高一级单位化为低一级单位要乘以60,从低一级单位化为高一级单位要除以60).解:(1)①27°42′30″+1070′=27°42′30″+17°50′=45°32′30″.②63°36′-36.36°=63°36′-36°21′36″=63°35′60″-36°21′36″=27°14′24″或63°36′-36.36°=63°36′-36°21.6′=27°14.4′=27°14′24″.(2)∵48.12°=48°+0.12°,0.12°=60′×0.12=7.2′=7′+0.2′,0.2′=60″×0.2=12″,∴48.12°=48°7′12″.(3)∵50°7′30″=50°+7′+30″=50°+7′+0.5′=50°+7.5′=50°+0.125°=50.125°.∴50°7′30″=50.125°.例8.任意画一个角.(1)用量角器量出它的度数,然后计算它的余角与补角的度数;(精确到度)(2)用三角板画出它的余角及补角,再用量角器量出余角及补角的度数.(精确到度)图3-186解:(1)任意画一个角∠ABC(如图4-9(1)所示),用量角器量得∠ABC=38°,那么∠ABC的余角是度数是90°-∠ABC=90°-38°=52°;∠ABC的补角的度数是180°-∠ABC=180°-38°=142°.(2)如图4-9(2)所示,用三角板的直角顶点对准∠ABC的顶点B,使三角板的一条直角边与BC重合,画出∠CBD=90°(BA在∠CBD的内部),则∠ABD是∠ABC的余角,再用量角器量得∠ABD=52°.反向延长BC,得射线BE,则∠ABE是∠ABC的补角,再用量角器量得∠ABE=142°.[注意]此题中任意画的角∠ABC必须是锐角,否则它没有余角.例9.小明从A点出发,向北偏西33°方向走33 m到B点,小林从A点出发,向北偏东20°方向走了6.6 m到C点,试画图确定A,B,C三点的位置(1cm表示3m),并从图上求出点B,C的实际距离.图4-10解:①如图4-10所示,任取一点A,经过点A画一条东西方向的直线WE和一条南北方向的直线NS(两条直线相交成90°角).②在∠NAW内作∠NAB=33°,量取AB=1.1cm.③在∠NAE内作∠NAC=20°,量取AC=2.2cm.④连接BC,量得BC=1.8cm,∴BC的实际距离是5.4m.(四)思想方法归纳本单元强调学生的动手操作和主动参与,让他们在观察、操作、想象、交流等活动中认识图形,发展空间观念, 让学生多从事一些动手操作、观察、想象等学习活动,给学生提供一些现实的、有意义的、并有一定挑战性的学习材料,开展数学交流、活动,引导他们在做数学的活动中获得建立几何图形的知识和技能,丰富学生进行形象思维的思想材料,以利于空间观念和想象力的建立和提高. 开始阶段,应鼓励学生先动手、后思考,逐步过渡到先思考、后动手验证.五、学习评价(一)选择题1.下面的图形中,是三棱柱的侧面展开图的为( )(A) (B) (C) (D)2.甲看乙的方向为北偏东30°,那么乙看甲的方向是( )(A)南偏东60°. (B)南偏西60°. (C)南偏东30°.(D)南偏西30°.3.下列四个图中,能用上∠1、∠AOB、∠O三种方法表示同一个的是( )(A) (B) (C) (D)4.观察下图,请把左边的图形绕着给定的直线旋转一周后可能形成的几何体选出来( )(A) (B) (C) (D)5.物体的形状如图所示,则此物体的俯视图是( )(A) (B) (C) (D)6.下面一些角中,可以用一副三角尺画出来的角是( )①15o 的角,②65o 的角,③75o 的角,④135o 的角,⑤145o 的角.(A) ①③④. (B)①③⑤. (C)①②④. (D)②④⑤.(二)填空题7.若要使图中平面展开图按虚线折叠成正方体后,相对面上两个数之和为6,x = , y = .8.正方体或长方体是一个立体图形,它是由 个面, 条棱, 个顶点组成的.9.若C 是线段AB 的中点,则可表示为BC =12,AB = AC. 10.把33.28o = 度 分 秒.108o 21'36''= 度.11.在下列几何体中,三个面的有 ,四个面的有 (填序号).12.如图,从且地到B 地有三条路①②③可走,每路长分别为a ,m ,n .则第 条路最短,另外两条路的长短关系是 .(三)解答题13.如图,AB⊥CD,垂足为O.(1)比较∠AOD,∠EOB,∠AOE的大小.(2)若∠EOC=28o,求∠EOB和∠EOD的度数.14.如图,已知C点为线段AB的中点,O点为BC的中点,AB=l0cm,求AD的长度.15.由3个立方体搭成的几何体,从上看形状是,请画出从正面看到的一种视图.16.如图,宽为50cm的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为多少?17.观察下表中三角形个数变化规律,填表并回答下面问题.问题:(1)当横截线条数为n条时应有个三角形;(2)如果图中三角形的个数是102个,则图中应有条横截线.答案与提示一、选择题1.D.2.D.3.D.4.D.5.C.6.A.二、填空题7.5;3.8.6;12; 8.9.AB; 2BC;2.10.33 ;16 ;48 秒;108.36 度.11. (2);(6) .12.③;相等.三、解答题13.解:(1)∠EOB>∠AOD>∠AOE(2)∠EOB=∠COB+∠EOC=90°+28°=118°∠EOD=∠COD-∠EOC=180°-28° =152°14.解:AD=AC+CD= 12 AB+12 BC= 12 ×10+12 ×12 ×10 =7.5(cm).15.解:一层2个正方体,二层一个,左边右边都可以.16.解:小长方形的宽= 15 ×矩形的宽=15 ×50=10cm 小长方形的长=50-10= 40 cm.所以一个小长方形的面积= 长×宽= 40×10= 400(cm2).17.解:(1)6×(n+1);(2)16.。
九年级数学一轮复习 第四章《图形初步认识(1)》教案 人教新课标版
课题:第四章《图形初步认识》总复习教案1.对线段、射线、直线、角的概念及它们之间的关系有进一步的认识;2.掌握本章的全部定理和公理;理解本章的数学思想方法;了解本章的题目类型.二、教学重点和难点重点是理解本章的知识结构,掌握本章的全部定理和公理;难点是理解本章的数学思想方法.三、教学过程(一)知识梳理和考点汇总1.多姿多彩的图形:(重点考查立体图形的展开与平面图形的关系)(1)几何图形是有______________组成的,分为_______图形和_____________。
(2)如图,每个图片都是6个相同的正方形组成的,不能折成正方形的是()(3)如左图所示的正方体沿某些棱展开后,能得到的图形是()2.直线、射线和线段:(考察定义、性质、公理等)(1)下列语句中表述正确的是()A.延长直线A B B.延长射线OC C.作直线AB=BC D.延长线段AB(2)已知M是线段AB的中点,那么,①AB=2AM;②BM=AB;③AM=BM;④AM+BM=AB。
上面四个式子中,正确的有() A.1个 B.2个 C.3个D.4个(3)如图2,OA、OB是两条射线,C是OA上一点,D、E分别是OB上两点,则图中共有__________条线段,共有___________射线.(5)题图(3)不在同一直线上的四点最多能确定条直线。
(4)平面上有三点A、B、C,如果AB=8,AC=5,BC=3,则()A 点C在线段AB上B 点B在线段AB的延长线上C 点C在直线AB外D 点C可能在直线AB上,也可能在直线AB外(5)如右图所示,B,C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是()A 2(a-b) B 2a-b C a+b D a-b(6)n条直线两两相交,最多有__________个交点。
DNCBMA西 东AD 3. 角的度量:(1)把33.28°化成度、分、秒得_______________。
最新人教版七年级数学上册《图形的初步认识总复习》教学设计(精品教案)
⎧⎨⎩第四章《图形初步认识》总复习教学目标1.使学生理解本章的知识结构,并通过本章的知识结构掌握本章的全部知识;2.对线段、射线、直线、角的概念及它们之间的关系有进一步的认识;3.掌握本章的全部定理和公理;4.理解本章的数学思想方法;5.了解本章的题目类型.教学重点和难点重点是理解本章的知识结构,掌握本章的全部定理和公理;难点是理解本章的数学思想方法.教学手段引导——活动——讨论教学方法启发式教学教学过程(一)多姿多彩的图形立体图形:棱柱、棱锥、圆柱、圆锥、球等。
⎧⎨⎩1、几何图形平面图形:三角形、四边形、圆等。
主视图--------从正面看2、几何体的三视图 左视图--------从左边看俯视图--------从上面看(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图。
(2)能根据三视图描述基本几何体或实物原型。
3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的。
(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型。
4、点、线、面、体 (1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
(二)直线、射线、线段 1、基本概念直线射线线段图形端点个数无一个两个表示法直线a直线AB(BA)射线AB线段a线段AB(BA)作法叙述作直线AB;作直线a作射线AB作线段a;作线段AB;连接AB延长叙述不能延长反向延长射线AB延长线段AB;反向延长线段BA2、直线的性质经过两点有一条直线,并且只有一条直线。
简单地:两点确定一条直线。
3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点。
人教版数学七年级上册第四章《几何图形初步》复习教学设计
1.教学内容:回顾并巩固点、线、面的基本概念,讲解三角形、四边形、圆等基本图形的分类和性质。在此基础上,引入几何图形的绘制方法和计算技巧。
2.教学方法:采用直观演示法、启发式教学法和讲解法,结合多媒体课件和实物模型,帮助学生理解几何图形的性质和特点。
3.目标:使学生掌握几何图形的基本知识和操作方法,为解决实际问题奠定基础。
(2)运用直观演示法,通过实物、教具等展示几何图形的性质和特点,增强学生的直观感知。
(3)实施启发式教学,引导学生主动探究几何图形的性质和规律,培养学生的逻辑思维能力。
(4)开展小组合作学习,促进学生之间的交流与分享,提高学生的团队协作能力。
2.教学策略:
(1)注重分层教学,针对不同学生的学习需求,设计不同难度的教学任务和练习题。
3.强化几何图形在实际生活中的应用,帮助学生建立几何知识与现实生活的联系,提高学生的几何应用能力。
4.通过小组合作、讨论交流等形式,培养学生的团队协作能力和沟通能力。
5.注重情感教育,关注学生的心理需求,营造轻松愉快的学习氛围,使学生在愉悦的情感体验中学习几何知识。
三、教学重难点和教学设想
(一)教学重难点
1.重点:掌握几何图形的基本概念、性质和判定方法,以及几何图形的绘制和计算。
2.难点:
(1)空间想象能力的培养和提高;
(2)几何图形性质与判定方法的灵活运用;
(3)解决实际问题时,将几何知识与生活情境相结合的能力。
(二)教学设想
1.教学方法:
(1)采用情境教学法,创设生活情境,让学生在情境中感受几何图形的美,激发学习兴趣。
4.理解并运用几何图形的性质和判定方法,提高解决问题的能力。
(二)过程与方法
七年级数学上册第4章图形的初步认识本章复习教案华东师大版.doc
第4章图形的初步认识【基本目标】1.使学生理解本章的知识结构,并通过本章的知识结构掌握本章的全部知识;2.对线段、射线、直线、角的概念及它们之间的关系有进一步的认识;3.掌握本章的相关概念和图形的性质;4.理解本章的数学思想方法;5.了解本章的题目类型.【教学重点】立体图形与平面图形的互相转化及一些重要的概念、性质等.【教学难点】建立和发展空间观念;对图形的表示方法,对几何语言的认识与运用.一、知识框图,整体把握【教学说明】教师引导学生回顾本章知识点,边回顾边画出本章知识框图.使学生对本章知识有一个总体把握,了解各知识点之间的联系,加深对知识点的理解,为后面的运用奠定基础.二、释疑解惑,加深理解1.通常画一个立体图形要分别从正面看、从左面看、从上面看.如从不同方向看图1就可得到图2中的三个图形.同样由图2的三个图形也可以画出图1.如果不能认真的观察分析立体图形的特征,就不能正确画出相应的平面图形.图1 图22.在研究直线、线段、射线的有关概念时,容易出现延长直线或延长射线之类的错误.在用两个大写字母表示射线时,容易忽视第一个字母表示的是这条射线的顶点.3.直线有这样一个重要性质:经过两点有一条直线,并且只有一条直线,即两点确定一条直线.线段有这样一条重要性质:两点的所有连线中,线段最短.简单说成:两点之间,线段最短.这两个性质是研究几何图形的基础,应抓住性质中的关键性字眼,不能出现似是而非的错误.4.注意线段的中点是指把线段分成相等的两条线段的点;而连结两点间的线段的长度,叫做这两点的距离.这里应特别注意线段与距离的区别,即距离是线段的长度,是一个量;线段则是一种图形,它们之间是不能等同的.5.角的表示方法中,当用三个大写字母来表示时,顶点的字母必须写在中间,在角的两边上各取一点,将表示这两个点的字母分别写在顶点字母的两旁,两旁的字母不分前后.6.在研究互为余角和互为补角时,容易混淆这两个概念.常常误认为互为余角的两个角的和等于180°,互为补角的两个角的和等于90°.【教学说明】教师引导学生对本章重点知识和需要注意的问题进行详细的回顾,使学生对本章知识进行进一步的理解,形成知识网络.三、典例精析,温故知新例1如图1所示,上面是一些具体的物体,下面是一些立体图形,试找出与下面立体图形相类似的物体.解:①与d类似,②与c类似,③与a类似,④与b类似.例2如图2所示,讲台上放着一本书,书上放着一个粉笔盒,指出右边三个平面图形分别是左边立体图形的哪个视图.解:(1)左视图(2)俯视图(3)主视图例3已知三点A,B,C,按照下列语句画出图形.(1)画直线AB;(2)画射线AC;(3)画线段BC.解:如图所示,直线AB、射线AC、线段BC即为所求.图3例4如图所示,回答下列问题.(1)图中有几条直线?用字母表示出来;(2)图中有几条射线?用字母表示出来;(3)图中有几条线段?用字母表示出来.解:(1)图中有1条直线,表示为直线AD(或直线AB,AC,BD,BC,CD);(2)共有8条射线,能用字母表示的有射线AB(或AC、AD),BA,BC(或BD),CB(或CA),CD,DC(或DB,DA),不能用字母表示的有2条;(3)共有6条线段,表示为线段AB,AC,AD,BC,BD,CD.例5已知线段AB=4厘米,延长AB到C,使B C=2AB,取AC的中点P,求PB的长.分析:先画出图形,求出BC的长,再求出AC的长,因为P是AC的中点,所以可以求出PA的长,从而用PA减AB得到PB的长度.【答案】PB为2厘米例6(1)用度、分、秒表示48.12°.(2)用度表示50°7′30″.解:(1)∵48.12°=48°+0.12°,0.12°=60′×0.12=7.2′=7′+0.2′,0.2′=60″×0.2=12″,∴48.12°=48°7′12″.(2)∵50°7′30″=50°+7′+30″=50°+7′+0.5′=50°+7.5′=50°+0.125°=50.125°.∴50°7′30″=50.125°.例7小明从A点出发,向北偏西33°方向走3.3 m到B点,小林从A点出发,向北偏东20°方向走了6.6 m到C点,试画图确定A,B,C三点的位置(1cm表示3m),并从图上求出点B,C的实际距离.解:①如图所示,任取一点A,经过点A画一条东西方向的直线WE和一条南北方向的直线NS(两条直线相交成90°角).①∠NAW内作∠NAB=33°,量取AB=1.1cm.②∠NAE内作∠NAC=20°,量取AC=2.2cm.④连接BC,量得BC=1.8cm,∴BC的实际距离是5.4m.例8 个角的余角比它的补角的12少20°.则这个角为()A.30°B.40°C.60°D.75°分析:若设这个角为x,则这个角的余角是90°-x,补角是180°-x,于是构造出方程即可求解.解:设这个角为x,则这个角的余角是90°-x,补角是180°-x.则根据题意,得12(180°-x)-(90°-x)=20°.解得:x=40°.故应选B.归纳总结:说明处理有关互为余角与互为补角的问题,除了要弄清楚它们的概念,通常情况下还要引进未知数,构造方程求解.【教学说明】教师出示典型例题,让学生先尝试解答,教师予以讲解,在讲解的过程中,应着重于知识点的应用和解题方法的渗透.四、拓展训练,巩固提高1.下列说法中,正确的是()A.棱柱的侧面可以是三角形B.由六个大小一样的正方形所组成的图形是正方体的展开图C.正方体的各条棱都相等D.棱柱的各条棱都相等2.下面是一个长方体的展开图,其中错误的是()3.下面说法错误的是( )A.M是AB的中点,则AB=2AMB.直线上的两点和它们之间的部分叫做线段C.一条射线把一个角分成两个角,这条射线叫做这个角的平分线D.同角的补角相等4.从点O出发有五条射线,可以组成的角的个数是( )A.4个B.5个C.7个D.10个5.海面上,灯塔位于一艘船的北偏东50°,则这艘船位于这个灯塔的()A.南偏西50°B.南偏西40°C.北偏东50°D.北偏东40°6.平面内两两相交的6条直线,其交点个数最少为m个,最多为n个,则m+n等于()A.12B.16C.20D.以上都不对7.用一副三角板画角,下面的角不能画出的是()A.15°的角B.135°的角C.145°的角D.150°的角8.一个角的补角比它的余角的4倍还多15°,求这个角的度数.9.线段AB=4cm,延长线段AB到C,使BC = 1cm,再反向延长AB到D,使AD=3 cm,E 是AD中点,F是CD的中点,求EF的长度.【教学说明】学生独立完成练习,进一步熟练相关知识点的应用和提高解题能力.【答案】1.C2.C3.C4.D5.A6.B7.C8.解:设这个角为x,则(180°-x)=4(90°-x)+15°,x=65°.9.解:DC=AD+AB+BC=3+4+1=8cm,∵E是AD的中点,∴DE=12AD=12×3=1.5cm,∵F是CD的中点,∴DF=12CD=12×8=4cm,∴EF=DF-DE=4-1.5=2.5cm.完成本课时对应的练习.本章是学生第一次系统学习几何知识的开始,是学生的思维由具体到抽象的过渡,同时也是学生使用比较规范的几何语言来解决问题的第一次尝试.所以在教学中应当强调几何语言的规范性和格式的规范性,同时渗透一定的数学思想.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章《图形初步认识》复习
教学目标
知识与技能
1.使学生理解本章的知识结构,并通过本章的知识结构掌握本章全部知识;
2.对线段、射线、直线、角的概念及它们之间的关系有进一步的认识;
过程与方法
经历相关内容的归纳、总结,巩固对图形的直观认识,了解图形的分割和组合,探索学习空间与图形的方法
情感、态度、价值观
在探索知识之间的相互联系及应用的过程中,体验推理的意义,获取学习的经验教学重难点
重点是理解本章的知识结构,掌握本章的全部定理和公理;
难点是理解本章的数学思想方法.
教学过程
一、引导学生画出本章的知识结构框图
二、具体知识点梳理
(一)多姿多彩的图形
立体图形:棱柱、棱锥、圆柱、圆锥、球等.
1、几何图形
平面图形:三角形、四边形、圆等.
主(正)视图---------从正面看
2、几何体的三视图侧(左、右)视图-----从左(右)边看
俯视图---------------从上面看
(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.
(2)能根据三视图描述基本几何体或实物原型.
3、立体图形的平面展开图
(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.
(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.
4、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形最基本的图形.
线:面和面相交的地方是线,分为直线和曲线.
面:包围着体的是面,分为平面和曲面.
体:几何体也简称体.
(2)点动成线,线动成面,面动成体.
(二)直线、射线、线段
1、基本概念
2、直线的性质
经过两点有一条直线,并且只有一条直线.
简单地:两点确定一条直线.
3、画一条线段等于已知线段
(1)度量法(2)用尺规作图法
4、线段的大小比较方法
(1)度量法(2)叠合法
5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点.
图形:
A M B
符号:若点M是线段AB的中点,则AM=BM=1
2
AB,AB=2AM=2BM.
6、线段的性质
两点的所有连线中,线段最短.简称:两点之间,线段最短.
7、两点的距离
连接两点的线段长度叫做两点的距离.
8、点与直线的位置关系
(1)点在直线上(2)点在直线外.
(三)角
1、角:由公共端点的两条射线所组成的图形叫做角.
2、角的表示法(四种):
3、角的度量单位及换算
4、角的分类
5、角的比较方法
(1)度量法(2)叠合法
6、角的和、差、倍、分及其近似值
7、画一个角等于已知角
(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.
(2)借助量角器能画出给定度数的角.
(3)用尺规作图法.
8、角的平线线
定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.
图形:符号:
9、互余、互补
(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角. (2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角. (3)余(补)角的性质:等角的补(余)角相等.
10、方向角
(1)正方向
(2)北(南)偏东(西)方向
(3)东(西)北(南)方向
四、练习
1、下列说法中正确的是()
A、延长射线OP
B、延长直线CD
C、延长线段CD
D、反向延长直线CD
2、下面是我们制作的正方体的展开图,每个平面内都标注了字母,请根据要求回答问题:(1)和A面所对的会是哪一面?
(2)和B面所对的会是哪一面?
(3)面E会和哪些面相交?
3、两条直线相交有几个交点?
三条直线两两相交有几个交点?
四条直线两两相交有几个交点?
思考:n条直线两两相交有几个交点?
4、已知平面内有四个点A、B、C、D,过其中任意两点画直线,最少可画多少条直线,
最多可画多少条直线?画出图来.
5、已知点C是线段AB的中点,点D是线段BC的中点,CD=2.5厘米,请你求出线段AB、AC、AD、BD 的长各为多少?
6、已知线段AB=4厘米,延长AB到C,使B C=2AB,取AC的中点P,求PB的长.
五、作业设计
课本第147~148页复习题4第1~8题。