《应用一元一次方程——追赶小明》典型例题讲课教案

合集下载

应用一元一次方程—追赶小明课件

应用一元一次方程—追赶小明课件
准确地解决问题。
THANKS
然后,解这个一元一次方程,找到未知 数的值。
其次,根据问题描述,建立一元一次方 程。
最后,验证解的正确性,并解释结果。
鼓励学生在生活中多尝试用数学解决问题
01
数学并不是抽象的学科,而 是与我们的生活紧密相连的

02
鼓励学生多尝试用数学解决 实际问题,可以培养他们的 数学思维和解决问题的能力

03
在生活中遇到问题时,可以 尝试用数学模型进行描述和 解决,这样可以更加高效、
一元一次方程是数学中基础且重要的方程形式,它代表了一个未知数 与常数之间的线性关系。
一元一次方程的标准形式
一元一次方程的标准形式
ax + b = 0,其中a和b是常数,x是未知元一次方程具有特定的结构,其中未知数x的系数a不能为0,否则 不满足一元一次方程的定义。
解一元一次方程的方法
验证答案是否符合等量关系
将答案代入等量关系中,验证是否符合等量关系。
04
实际生活中一元一次方程 的应用
速度、时间、距离的关系
总结词
速度、时间、距离是实际生活中常见的量,它们之间存在密切的关系,可以通过一元一次方程来表示和解决。
详细描述
在速度、时间、距离的关系中,速度等于路程除以时间,或者路程等于速度乘以时间。通过设定未知数表示其中 一个量,可以建立一元一次方程来解决问题。例如,小明从家里骑自行车去学校,路程为10公里,速度为每小时 15公里,求需要的时间。
根据题目描述,建立等量关系,如“我走 的路程=小明走的路程+50”。
将等量关系中的未知数代入,列出方程, 如“60x=30x+50”。
解方程求出答案
对方程进行化简和求解,得到x 的值。

应用一元一次方程——追赶小明教案

应用一元一次方程——追赶小明教案

应用一元一次方程——追赶小明教案《应用一元一次方程——追赶小明教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!教学目标【知识与技能】1.通过“线段题”分析题目中的数量关系,找出等量关系.2.运用一元一次方程解决行程问题.【过程与方法】通过运用一元一次方程解决行程问题,进一步体会方程模型的作用,培养分析问题,解决问题的能力.【情感态度价值观】结合本课教学特点,教育学生热爱学习,热爱生活,激发学生学习的兴趣.【教学重点】找出追及问题中的条件和要求的结论,并找出等量关系,列出方程,解决实际问题.【教学难点】借助“线段图”分析复杂问题中的数量关系.课前准备课件教学过程一、情境导入,初步认识在小学我们就学习过运用方程解决行程问题,你还记得路程、速度、时间三个量之间的关系吗?【教学说明】学生通过回忆,掌握行程问题的基本关系式.二、思考探究,获取新知1.追及问题问题1 教材第150页最上方的彩图及图相关的内容问题.【教学说明】学生根据题意画出线段图,借助线段图加以分析,尝试完成.【归纳结论】追及问题中的等量关系:快者行走的路程-慢者行走的路程=追及路程.2.相遇问题问题2 甲、乙两人从相距180千米的A,B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶.已知甲的速度为15千米/时,乙的速度为45千米/时,经过多少时间两人相遇?【教学说明】学生通过思考、分析,与同伴进行交流,最后展示自己的解答过程.【归纳结论】相遇问题中的等量关系:甲的行程+乙的行程=甲、乙出发点间的路程;若甲、乙同时出发,则甲行的时间=乙行的时间.3.航行问题问题3 一艘轮船在A、B两地之间航行,顺流用3.3h,逆流航行比顺流航行多用30min,轮船在静水中的速度为26km/h,求水流的速度.【教学说明】学生通过思考、分析,与同伴进行交流,尝试完成.【归纳结论】顺水中的航速=静水中的航速+水流速度,逆水中的航速=静水中的航速-水流速度.4.开放探究性问题问题4 育红学校七年级学生步行到郊外旅行,七(1)班的学生组成前队,步行速度为4km/h,七(2)班的学生组成后队,速度为6km/h,前队出发1h后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12km/h,根据上面的事实提出问题并尝试去解答.【教学说明】对于问题4,并没有提出问题,需要学生根据已知条件,提出合理的问题,再运用所学知识进行解答.学生可以提出不同的问题,然后与同伴进行交流.三、运用新知,深化理解1.甲的速度是5km/h,乙的速度是6km/h.两人分别从A、B两地同时出发,相向而行,若经过4h相遇,则A、B的距离是_____km;若经过6h还差10km相遇,则A、B的距离是_____km.2.甲、乙两同学从学校到县城,甲每小时走4km,乙每小时走6km,甲先出发1h,结果乙比甲早到1h.则学校与县城间的距离是_____km.3.甲、乙两人都从A地到B地,甲步行每小时走5km,先走了1.5h,乙骑自行车走了50min,两人同时到达B地,乙每小时骑多少千米?4.一船航行于A、B两个码头之间,顺水航行需3h,逆水航行需5h,已知水流速度为4km/h.求两码头之间的距离.【教学说明】学生自主完成,加深对新学知识的理解,检测对运用一元一次方程解决行程问题的掌握情况,对学生的疑惑,教师应及时加以指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.44 762.243.设乙每小时骑xkm,由题意得:5×(1.5+5/6)=5/6x解得x=14所以乙每小时骑14km.4.设船在静水中的进度为x km/h,由题意得3(x+4)=5(x-4)解得x=16,则3(x+4)=60所以两码头之间的距离为60km.四、师生互动,课堂小结1.师生共同回顾应用一元一次方程解决行程问题.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.课后作业:1.布置作业:从教材“习题5.9”中选取.2.完成练习册中本课时的相应作业.教学反思:本节课从学生运用一元一次方程解决行程问题,到探究开放性问题,培养学生分析问题,解决问题的能力,激发学生的学习兴趣.应用一元一次方程——追赶小明教案这篇文章共4983字。

七年级数学上册《应用一元一次方程追赶小明》优秀教学案例

七年级数学上册《应用一元一次方程追赶小明》优秀教学案例
二、教学目标
(一)知识与技能
1.理解一元一次方程的概念,掌握一元一次方程的解法,并能将其应用于解决实际问题。
2.能够根据实际问题,找出等量关系,正确列出相应的一元一次方程。
3.掌握一元一次方程在实际问题中的运用,如速度、时间、距离等关系,提高数学应用能力。
4.学会运用一元一次方程解决追赶小明等问题,培养分析和解决实际问题的能力。
5.引导学生关注生活,发现生活中的数学问题,培养他们学以致用的意识。
本章节教学目标旨在使学生在掌握一元一次方程知识的基础上,提高解决实际问题的能力,培养他们的数学思维和综合素质。在教学过程中,关注学生的情感态度与价值观的培养,使他们形成积极向上的学习态度,为今后的学习生活奠定坚实基础。
三、教学策略
(一)情景创设
(二)过程与方法
1.通过小组合作、讨论交流,培养学生团队协作能力和沟通能力。
2.引导学生运用数学思维,将实际问题抽象为数学模型,培养学生数学建模能力。
3.在解决实际问题的过程中,引导学生进行观察、分析、归纳,培养他们的逻辑思维能力。
4.注重启发式教学,激发学生的学习兴趣,引导学生主动探究、自主学习。
3.小组合作,促进交流
小组合作是本案例的一大亮点。学生分组讨论、共同解决问题,有助于培养团队协作精神和沟通能力。在小组合作过程中,学生能够相互借鉴、取长补短,共同提高,使课堂氛围更加活跃。
4.反思与评价,提升自我
本案例注重学生的反思与评价,帮助他们在总结学习经验的基础上,提高自身学习能力。通过自我反思和互相评价,学生能够认识到自己的不足,学习他人的优点,从而不断提升自我。
故事背景设定为学生们熟悉的生活场景:小明在操场上跑步,同学们想要追赶他。在此过程中,学生需要运用一元一次方程来计算追赶小明所需的时间。这样的案例设计既符合学生的认知水平,又能激发学生的学习兴趣,促使他们主动参与到课堂教学中来。

《应用一元一次方程——追赶小明》示范公开课教学设计【北师大版七年级数学上册】

《应用一元一次方程——追赶小明》示范公开课教学设计【北师大版七年级数学上册】

第五章一元一次方程5.6应用一元一次方程——追赶小明教学设计一、教学目标1.借助“线段图”分析复杂问题中的数量关系,从而建立方程解决实际问题.2.使学生进一步领会采用代数方法解应用题的优越性.3.培养学生实事求是的态度及与人合作交流的能力,逐步树立克服困难的信心、意志力,培养学生学习数学的热情和良好的人格品质.二、教学重点及难点重点:找等量关系,列出方程,解决实际问题.难点:确定方程时找等量关系.三、教学准备多媒体课件四、相关资源微课《列一元一次方程解决“行程问题”》,动画《追及问题》等五、教学过程【问题情境】情境引入小明每天早上要在7:50之前赶到距家1 000米的学校上学.一天,小明以80米/分钟的速度出发,5分钟后,小明的妈妈发现他忘了带语文书.于是妈妈以180米/分钟的速度去追小明.问题1:妈妈能追上小明吗?问题2:妈妈追上小明用了多长时间?问题3:追上小明时,距离学校还有多远?请让我们一起学习本节,解决这些疑惑.师生活动:出示主题故事时,问题1、2、3事先没有直接给出,而是先问学生听到这个故事后想知道什么.绝大部分学生会关注爸爸能不能追上小明、妈妈追上小明用了多长时间、在距离学校多远的地方追上小明等等.根据学生关注点提供质疑的时机,唤起学生“主角”意识.设计意图:让学生感受生活中我们常常会遇到类似的问题,从学生熟悉的生活经历出发,选择学生身边的、感兴趣的“追赶小明”这一事件,激发学生的好奇心,进而轻松地引入本节所要探讨的主要问题,便于引起每位同学的兴趣.【新知讲解】探究一:追赶问题1.这是行程问题中的追赶问题,我们请两位同学分别扮演小明和妈妈来演示一下追赶的过程.设计意图:列方程解一些实际问题的过程是一个数学建模的过程,及时鼓励学生通过亲身体验、观察、分析找出其中的等量关系,并尝试用文字语言表述出来,通过画线段图让学生明白了数形结合的好处,教学中可以适当对文字语言、图形语言、符号语言的互相转换加以渗透,既提高了学生的语言表达能力,又培养学生对三种语言进行转换的能力.2.根据刚才的演示,你发现了哪些等量关系?(1)妈妈要追上小明,妈妈的速度与小明的速度关系怎样?(2)妈妈从家出发到追上小明时,两人所用的时间有何关系?(3)两人所行的总路程有何关系?3.如下图,你能用简单的“线段图”表示演示的追赶过程吗?4.路程、速度和时间三者之间有何关系呢?“线段图”反映了怎样的等量关系?解:(1)设妈妈追上小明用了x分钟.根据题意,得80×5+80x=180x.解得x=4.因此,妈妈追上小明用了4分钟.(2)因为180×4=720(米),1 000-720=280(米).所以,追上小明时,距离学校还有280米.设计意图:在学生亲身体验追赶过程的基础上,比较容易画出“线段图”,可以让他们独立完成,教师可以适当帮助一些有问题的学生.充分利用生活实践自己去提出问题并解决问题,这样更有利于扩展学生的思考空间,亲身体会数学变式问题的趣味性,感受到数学的实用性.三种语言的转换在教师点拨引导、学生探究分析过程中自然渗透、自然转换,让学生体会各种表达方式的优越性.另外,求爸爸追上小明时离学校还有多远,由于学生的思路不同,学生的解决方法就不同,有“总路程减去小明走过的路程=剩余路程”,即1 000-80×(4+5)=280(米),也有“总路程减去爸爸走过的路程=剩余路程”,即1 000-180×4=280(米),出现这些不同的见解,教师就因势利导,培养学生的思维的灵活性,拓宽学生思路.探究二:拓展提升拓展1:如果妈妈要赶在小明进校门之前把书送到,那么小明妈妈的速度最少应为多少?师生活动:学生了解题意,画出线段图,建议教师让学生板演“线段图”,通过展示不同学生的“线段图”进行比较、分析,取长补短,让学生去体会怎样画“线段图”等量关系表示的更清楚,同时,提示学生体会提出的问题,边解决问题,边在图上标注一些相关的点,为了说明方便,也可借助字母表示点,这样经过再次补充,充实自己的线段图,结合线段图找出等量关系,同时丰富了画“线段图”的体验及画图技巧.解:如图,设小明妈妈的速度最少应为x 米/分钟. 根据题意,得1000580⎛⎫- ⎪⎝⎭x =1 000. 化简,得7.5x =1 000.x =4003. 因此,小明妈妈的速度最少应为4003米/分钟. 设计意图:改变引例情境,学生通过展开讨论,动手画出线段图,在进行图形语言、符号语言与文字语言的相互转化中,理解题中的等量关系,不同的思路就会出现等量关系的不同表现形式,从而列出不同的式子.两个拓展题目有利于培养学生思维的灵活性,凸显“线段图”的直观演示,是建立方程的有利工具.拓展2:若当小明到校后发现忘带英语书,打电话通知妈妈送来.妈妈立即以180米/分钟的速度从家出发,同时小明以100米/分钟的速度从学校返回,两人几分钟后相遇?师生活动:情境由追击变成了相遇,解决这个问题时,有的同学一下找不着思路.教学时让学生亲身体验相遇过程,同时把这个问题分解成几个小问题,边引导边提问,逐一解决,降低难度,帮助学生理出思路,解决问题.解:如图,设两人x 分钟后相遇.根据题意,得180x +100x =1 000.化简,得280x =1 000.x =257. 因此,两人257分钟后相遇. 设计意图:及时引导学生借助“线段图”对追击问题和相遇问题的基本等量关系进行总结.【典型例题】例1.A ,B 两站相距300千米,一列快车从A 站开出,行驶速度是每小时60千米,一列慢车从B 站开出,行驶速度是每小时40千米,问:(1)两车同时开出,相向而行,几小时后相遇?(2)快车先开15分钟,两车相向而行,快车开出几小时后两车相遇?(3)两车同时同向开出,慢车在前,出发后多长时间快车追上慢车?(4)慢车先开30分钟,两车同向而行,慢车在前,快车出发后多长时间追上慢车?此时慢车行驶了多少千米?分析:(1)(2)两问都属于相遇问题;(3)(4)两问属于追及问题.可借助线段图分析,找出等量关系列方程.如图所示.解:(1)设两车行驶x 小时后相遇.依题意得60x +40x =300,解得x =3.所以两车同时开出3小时后相遇.(2)设快车开出x 小时后两车相遇,则慢车行驶了1560x ⎛⎫-⎪⎝⎭小时. 依题意得60x +401560x ⎛⎫-⎪⎝⎭=300, 解得x =3.1.所以快车开出3.1小时后两车相遇.(3)设两车出发x 小时后快车追上慢车.解得x =15.所以两车出发15小时后快车追上慢车.(4)设快车出发x 小时后追上慢车.依题意,得60x =300+40×3060+40x , 解得x =16.40×3060+40x =20+40×16=660(千米). 所以快车出发16小时后追上慢车,此时慢车行驶了660千米.例2.A 、B 两地相距112千米,甲、乙两人驾车同时从A 、B 两地相向而行,甲比乙每小时多行4千米,经过两小时后两人相遇,求甲、乙两人每小时各行多少千米?分析:甲速=乙速+4.甲行程+乙行程=A 、B 两地距离112千米.解:设乙每小时行x 千米,则甲每小时行(x +4)千米,根据题意,得2(x +4)+2x =112,解这个方程,得x =26.当x =26时,x +4=30.答:甲每小时行30千米,乙每小时行26千米.例3.甲、乙两车自南向北行驶,甲车的速度是每小时48千米,乙车的速度是每小时72千米,甲车开出25分钟后,乙车开出,问几小时后乙车追上甲车?解:设x 小时后乙车追上甲车,根据题意,得482560x ⎛⎫+⎪⎝⎭=72x , 解这个方程,得x =65. 答:65小时后,乙车追上甲车. 例4.小彬和小明每天早晨坚持跑步,小彬每秒跑4米,小明每秒跑6米.(1)如果他们站在百米跑道的两端同时相向起跑,那么几秒后两人相遇?(2)如果小明站在百米跑道的起点处,小彬站在他前面的10米处,两人同时同向起跑,几秒后小明能追上小彬?分析:第(1)问是相遇问题.等量关系是:小彬行程+小明行程=两人间距离100米. 第(2)问是追及问题.等量关系是:小明行程=小彬行程+两人间的距离10米. 解:(1)设x 秒后两人相遇.解这个方程,得x =10.答:10秒后两人相遇.(2)设x 秒后小明能追上小彬.根据题意,得6x =4x +10,解这个方程,得x =5.答:小明5秒后追上小彬.设计意图:在行程问题中,画线段图,利用线段间的和差关系,可以帮助我们分析题意,找出题目中的等量关系.【随堂练习】1.(1)某人上山的速度为v ,后又沿原路下山,速度是上山时速度的2倍,那么这个人上、下山的平均速度是(C ).A .32v B .23v C .43v D .34v (2)某船顺流航行的速度为20 km/h ,逆流航行的速度为16 km/h ,则水流速度为(单位:km/h )(A ).A .2B .4C .18D .36(3)一个旅客乘坐火车甲,他看见迎面来了一列火车乙从他身边驶过,当火车乙完全从他身边离开时则有(B ).A .甲、乙火车所走路程之和=甲车车身长B .甲、乙火车所走路程之和=乙车车身长C .甲、乙火车所走路程之和=甲、乙两车车身之和D .甲、乙火车所走路程之和=甲、乙两车车身之差2.甲、乙两同学从学校去县城,甲每小时走4千米,乙每小时走6千米,甲先出发1小时,结果乙还比甲早到1小时,若设学校距县城为x 千米,则根据题意列方程 得__________.1146x x -=+ 3.A ,B 两站相距300千米,一列快车从A 站开出,行驶速度是每小时60千米,一列慢车从B 站开出,行驶速度是每小时40千米,问:(1)两车同时开出,相向而行,几小时后相遇?(2)慢车先开30分钟,两车同向而行,慢车在前,快车出发后多长时间追上慢车?此时慢车行驶了多少千米?解:(1)设两车行驶x 小时后相遇,依题意,得60x +40x =300,解得x=3,答:两车同时开出3小时后相遇.(2)设快车出发x小时后追上慢车,依题意,得30 60300404060x x=+⨯+,解得x=16.所以40×3060+40x=20+40×16=660(千米).答:快车出发16小时后追上慢车,此时慢车行驶了660千米.六、课堂小结学生们思考总结这节课的收获,从知识与方法两方面去概括.1.要借助“线段图”分析,寻找数量关系.2.注意抓住其中不变的量.3.对于复杂的数学问题的分析,借助“线段图”比较容易理解,借助方程更易求解.同时,要养成认真、细致的良好习惯.七、板书设计。

北师大版七年级上册数学5.6应用一元一次方程-追赶小明教案

北师大版七年级上册数学5.6应用一元一次方程-追赶小明教案
-学生需要掌握将实际问题抽象成一元一次方程的能力。
-强调速度、时间、距离三者之间的关系,并能够用方程表达。
b.方程的列立与求解:
-重点讲解如何根据问题情境列出正确的一元一次方程。
-强调方程求解的步骤,包括移项、合并同类项、化简等。
c.应用与实践:
-通过多个实际问题的案例分析,使学生熟练运用一元一次方程解决问题。
同学们,今天我们将要学习的是《应用一元一次方程-追赶小明》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个人在不同速度下开始走,然后一个人开始追赶另一个人的情况?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一元一次方程在追赶问题中的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调如何正确列立方程和求解方程这两个重点。对于难点部分,比如理解速度差与时间差的关系,我会通过具体的例子和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元一次方程相关的实际问题,如追赶小明的各种变体。
2.实验操作:为了加深理解,我们将进行一个简单的模拟实验。通过角色扮演和计时,学生可以直观地看到速度和时间差对追赶过程的影响。
其次,在方程的列立和求解过程中,有些同学容易犯错,比如移项时忘记变号,合并同类项出错等。这说明他们在基本的数学运算方面还需要加强练习。我计划在课后为他们提供一些额外的练习题,巩固方程求解的基本技能。
此外,小组讨论环节,同学们的参与度较高,但也有一些小组在讨论过程中偏离了主题。为了提高讨论效率,我将在下次教学中明确讨论要求,并在讨论过程中适时引导,确保每个小组都能围绕主题展开讨论。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。

七年级数学上册《应用一元一次方程追赶小明》教案、教学设计

七年级数学上册《应用一元一次方程追赶小明》教案、教学设计
2.选做题:
(1)探索一元一次方程的其他解法,比较各种解法的优缺点。
(2)研究一元一次方程在实际问题中的应用,总结出至少三个不作业质量。
(2)书写工整,步骤清晰,方便教师批改和指导。
(3)完成后认真检查,确保无误。
4.作业提交时间:
下节课前将作业交给课代表,由课代表统一交给教师。
(2)培养学生熟练掌握一元一次方程的解法,并在实际运算中避免出错。
(二)教学设想
1.教学方法:
(1)采用情境教学法,以实际问题为背景,激发学生的学习兴趣,引导学生主动参与课堂。
(2)采用探究式教学法,鼓励学生自主探究、合作交流,培养学生的创新能力和团队合作精神。
(3)运用多媒体辅助教学,通过动态演示、图像展示等手段,增强学生对一元一次方程的直观认识。
二、学情分析
七年级的学生在数学学习上已经具备了一定的基础,掌握了基本的算术运算和简单的代数知识。在此基础上,学生对一元一次方程的学习既有挑战性,也具有可行性。学生对实际问题情境具有较强的兴趣,但将实际问题抽象成数学模型的能力尚需培养。此外,学生在解决实际问题时,可能存在以下问题:
1.对问题的分析不够深入,难以正确列出相应的一元一次方程。
(2)一元一次方程的解法及注意事项;
(3)如何避免在解一元一次方程时出现错误。
2.各小组汇报讨论成果,教师点评并总结。
(四)课堂练习
1.设计不同难度的练习题,让学生独立完成,巩固所学知识。
2.练习题包括以下类型:
(1)列出一元一次方程解决实际问题;
(2)解一元一次方程;
(3)应用一元一次方程解决实际问题。
3.加强一元一次方程解法的训练,提高学生的运算速度和准确率。
4.针对不同学生的学习情况,给予个性化的指导和鼓励,帮助学生克服恐惧心理,树立学习信心。

初中数学北师大七年级上册 一元一次方程应用一元一次方程 ——追赶小明_教案

初中数学北师大七年级上册 一元一次方程应用一元一次方程 ——追赶小明_教案

应用一元一次方程——追赶小明【教学目标】1.知识技能(1)借助“线段图”分析复杂问题中的数量关系,从而建立方程解决实际问题,进一步掌握列方程解应用题的步骤。

(2)能充分利用行程中的速度、路程、时间之间的关系列方程解应用题。

2.能力训练要求(1)培养学生分析问题、解决问题的能力,进一步体会方程模型的作用,提高学生应用数学的意识。

(2)培养学生文字语言、图形语言、符号语言这三种语言转换的能力。

3. 情感与价值观要求(1)通过开放性的问题,为学生提供思维的空间,从而培养学生的创新意识,团队精神和克服困难的勇气。

(2)体验生活中的数学的应用与价值,感受数学来源于生活,感受数学与人类生活的密切联系,激发学生学数学,用数学的兴趣。

【教学重难点】利用一元一次方程解追击问题【教学过程】温故与预习1.列方程解应用题的一般步骤有哪些?2.行程问题主要研究、、三个量的关系。

第一环节:情境引入多媒体展示熊大熊二与光头强的追击视频。

目的:让学生感受生活中我们常常会遇到类似的问题,从学生熟悉的生活经历出发,选择学生身边的、感兴趣的动画视频,采用生动活泼的影像效果,激发学生的好奇心,进而轻松地引入本节所要探讨的主要问题、便于引起每位同学的兴趣。

二、第二环节:自主学习小明每天早上7:30从家出发,他要在7:50之前赶到距家1000米的学校上学。

一天,小明以80米/分的速度出发,5分钟后,小明的爸爸发现他忘了带语文书。

于是爸爸以180米/分的速度去追小明。

根据以上情景,让学生作出线段图,并尝试解答题目中的问题。

目的:此时让学生结合生活中的实际情况提出问题,使学生亲身体会到问题的实质所在,明确解决这些问题的必要性,教师没有直接提出如何解决问题,而是让学生自己思考,使课堂具有开放性,从而能引起学生的极大兴趣,产生强烈的思考欲望。

由学生分析,学生画出线段图师生一起分析题目中的等量关系。

目的:列方程解一些实际问题的过程是一个数学化的过程,及时鼓励学生通过观察、分析找出其中的等量关系,并尝试用文字语言表述出来,通过画线段图让学生明白了数形结合的好处,教学中可以适当对文字语言、图形语言、符号语言的互相转换加以渗透,既提高了学生的语言表达能力,又培养学生对三种语言进行转换的能力。

应用一元一次方程-追赶小明教案

应用一元一次方程-追赶小明教案

第五章一元一次方程应用一元一次方程——追赶小明郑州市第七十三中温亚娟一、教学目标学习目标:1.借助“线段图”分析复杂问题中的数量关系,建立方程解决实际问题。

2.发展文字语言、图形语言、符号语言之间的转换能力。

二、教学重点和难点重点:借助“线段图”分析复杂问题中的数量关系,建立方程解决实际问题。

难点:1.借助“线段图”分析复杂问题中的数量关系,建立方程解决实际问题。

五、教学过程设计本节课设计了六个教学环节:第一环节:情景导入;第二环节:温故知新;第三环节:合作探究;第四环节:当堂检测;第五环节:延伸迁移;第六环节:布置作业.教学流程:环节一、情景导入活动内容:第七十三中1903学生步行去植物园。

女生组成前队,速度为4千米/时,男生组成成后队,速度为6千米/时。

女生出发一小时后,男生才出发,同时班长骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米/时请根据上面的事实提出问题目的:通过实际具体活动引起大家的兴趣,提出问题,然后让大家带着疑问和好奇来开始本节课,激发学生的好奇心,进而轻松地引入本节所要探讨的主要问题、便于引起每位同学的兴趣.学生提出三个问题:1.班长总共走了多远?2.男生什么时间追上女生?3.学校离植物园多远?环节二、温故知新1.若小明每秒跑4米,那么他5秒能跑_____米路程=速度×时间2.小明用4分钟绕学校操场跑了两圈(每圈400米),那么他的速度为_____米/分.速度=路程÷时间3.已知小明家距离火车站1500米,他以4米/秒的速度骑车到达车站需要____分钟.时间=路程÷速度注意:最后一个单位换算问题环节三、合作探究1. 相遇问题:当我们队伍走500米时,副班长发现班级少了小明同学,立刻以100米/分钟的速度回去找小明,而此时小明发现队伍走了,也同时以150米/分钟的速度去追队伍,请问班长和小明多久他们能相遇?解:设x秒后小明和班长相遇。

《一元一次方程——应用一元一次方程—追赶小明》数学教学PPT课件(4篇)

《一元一次方程——应用一元一次方程—追赶小明》数学教学PPT课件(4篇)
5.6 应用一元一次方程----追赶小明
七年级上册
学习目标
1
能借助“线段图”分析复杂问题中的数量关系,从而列出方程,解决
问题.
熟悉行程问题中路程、速度、时间之间的关系,从而实现从文字语
2
言到符号语言的转换.
自主学习
自主学习任务1:阅读课本 152页-153页,掌握下列知识要点。
用图示法分析应用题的数量关系
4千米,3小时后两人相遇,设小刚的速度为x千米/时,
列方程得( C )
A.4+3x=25.2
B.3×4+x=25.2
C.3(4+x)=25.2
D.3(x-4)=25.2
2.一列长30米的队伍以每分钟60米的速度向前行进,队尾一名同
90
学用1分钟从队尾走到队头,这位同学走的路程为____米,速度是
90
驶路程=慢车行驶路程+相距路程.
解:设快车x小时后追上慢车,
根据题意得85x=450+65x.
解得x=22.5.
答:快车22.5小时后追上慢车.
随堂检测
4一列匀速前进的火车,从它的车头进入600米长的隧道至车尾
离开共需30秒,已知在隧道顶部有一盏固定的灯,灯光垂直照射
到火车上的时间为5秒,那么这列火车长多少米?
从B地出发每秒走6米,那么甲出发几秒与乙相遇?


相遇
解:设甲出发t秒与乙相遇,根据题意得8t+6t=280.解得t=20.
答:甲出发20秒与乙相遇.
做一做
育红学校七年级学生步行到郊外旅行,1班的学生组成前队,步行的速度
为4千米/小时,2班的学生组成后队,速度为6千米/小时,前队出发1小
时后,后队出发, 同时后队派一名联络员骑自行车在两队之间不间断地

北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教案

北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教案

北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教案一. 教材分析《6 应用一元一次方程—追赶小明》这一节内容,主要让学生通过实际情境,理解一元一次方程的应用,培养学生运用数学知识解决实际问题的能力。

教材通过追赶小明的例子,让学生学会如何列出方程,求解未知数,从而找到解决问题的方法。

二. 学情分析七年级的学生已经学习了代数基础知识,对一元一次方程有一定的理解。

但学生在实际应用中,可能会对如何将实际问题转化为数学问题存在困惑。

因此,在教学过程中,教师需要引导学生正确地将实际问题转化为方程,并熟练地求解。

三. 教学目标1.让学生理解一元一次方程在实际问题中的应用。

2.培养学生运用数学知识解决实际问题的能力。

3.让学生掌握如何将实际问题转化为方程,并熟练求解。

四. 教学重难点1.重点:让学生通过实际情境,理解一元一次方程的应用。

2.难点:如何引导学生将实际问题转化为方程,并熟练求解。

五. 教学方法采用问题驱动法,让学生在解决问题的过程中,理解一元一次方程的应用。

同时,采用分组讨论法,让学生在小组内合作解决问题,提高学生的合作能力。

六. 教学准备1.准备相关的实际问题,用于引导学生思考。

2.准备课件,帮助学生直观地理解问题。

七. 教学过程1.导入(5分钟)教师通过讲解追赶小明的例子,引导学生思考如何用数学知识解决问题。

2.呈现(10分钟)教师呈现具体的问题,让学生尝试独立解决。

问题可以设置为:小明以每小时4公里的速度行走,小红以每小时6公里的速度追赶小明,请问小红需要多少时间才能追上小明?3.操练(10分钟)学生独立思考问题,并列出方程。

教师巡回指导,帮助学生解决遇到的问题。

4.巩固(10分钟)教师选取几个学生的解答,进行讲解和分析,让学生理解不同的解题思路。

5.拓展(10分钟)教师引导学生思考:如果小明的速度变为每小时5公里,小红的速度变为每小时7公里,小红需要多少时间才能追上小明?让学生独立求解。

北师大版七年级数学上册《应用一元一次方程——追赶小明》示范课教学设计

北师大版七年级数学上册《应用一元一次方程——追赶小明》示范课教学设计

第五章一元一次方程6 应用一元一次方程——追赶小明一、教学目标1.借助“线段图”分析复杂问题中的数量关系,从而建立方程解决实际问题.2.发展文字语言、图形语言、符号语言之间的转换能力.培养良好的分析能力与严谨认真的学习态度.3.充分利用行程问题中的速度、路程、时间的关系列方程解决问题.4.经历分析行程问题中数量关系的过程,体会方程模型的作用,发展思维能力.二、教学重难点重点:会画“线段图”分析复杂问题中的相等关系,建立方程模型.难点:借助“线段图”找出行程问题中的相等关系,进行文字语言、图形语言、符号语言的相互转化.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.【引例】小明每天早上要在7:50之前赶到距家1000 m的学校上学.一天,小明以80 m/min 的速度出发,5 min后,小明的爸爸发现他忘了带语文书.于是,爸爸立即以180 m/min的速度去追小明,并且在途中追上了他.(1)爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远?【分析】当爸爸追上小明时,两人所行路程相等,小明走的总时间-爸爸追的时间=5 min.假设爸爸追上小明用了x分钟.画线段图如下:解:(1)设爸爸追上小明用了x min.根据题意,得180x=80x+80×5.化简,得100x=400.x=4.因此,爸爸追上小明用了4 min.(2)线段图如下:解:180×4=720(m)1000-720=280(m)所以,追上小明时,距离学校还有280 m.【议一议】育红学校七年级学生步行到郊外旅行:七(1)班的学生组成前队,步行速度为4 km/h,七(2)班的学生组成后队,速度为6 km/h.前队出发1 h后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12 km/h.根据上面的事实提出问题并尝试去解答.预设答案:问题1:后队追上前队用了多长时间?问题2:后队追上前队时联络员行了多少路程?问题3:联络员第一次追上前队时用了多长时间?解答:问题1:【分析】相等关系:前队行的路程=后队行的路程.解:设后队追上前队用了x小时,由题意列方程得:6x=4x+4×1解方程得:x=2 .答:后队追上前队时用了2小时.问题2:【分析】相等关系:联络员行的时间=后队行的时间.解:由问题1得后队追上前队用了2小时,因此联络员共进行了:12×2=24(km)答:后队追上前队时联络员行了24千米.问题3:【分析】相等关系:联络员行的路程=前队行的路程.解:设联络员第一次追上前队时用了x小时,由题意:12x=4x+4.解得x=0.5.答:联络员第一次追上前队时用了0.5小时.例1甲、乙两人相距280米,相向而行,甲从A地出发每秒走8米,乙从B地出发每秒走6米,那么甲出发几秒后与乙相遇?【分析】等量关系:甲行的时间=乙行的时间,甲的行程+乙的行程=A、B两地间的距离.解:设甲出发t秒与乙相遇,根据题意得8t+6t=280.解得t=20.所以,甲出发20秒后与乙相遇.例2一艘轮船在A、B两地之间航行,顺流用3 h,逆流航行比顺流航行多用30 min,轮船在静水中的速度为26 km/h,求水流的速度.【分析】相等关系:顺水中的航速=静水中的航速+ 水流速度逆水中的航速=静水中的航速-水流速度顺水中的航程=逆水中的航程教师活动:我们已经知道了静水中的航速为26 km/h,接下来就是如何求水流速度.解:设水流速度为x千米/小时.根据题意得:3(x+26)=3.5(26-x).解得:x=2.答:水流速度为2千米/小时.问题中的数量关系.追及问题:(1)对于同向同时不同地的问题,S甲-S乙=两出发地的距离;(2)对于同向同地不同时的问题,S甲=S乙先+S乙后.注意:同向而行注意始发时间和地点.相遇问题:往往根据路程之和等于总路程列方程.S甲+S乙=两地距离.环形跑道问题:设v甲>v乙,环形跑道长s米,经过t秒甲、乙第一次相遇.一般有如下两种情形:①同时同地、同向而行:v甲t-v乙t=s.②同时同地、背向而行:v甲t+v乙t=s.教师给出练习,随时观察学生完成情况并相应C.55x+85( x-1)=335D.55( x+1 )+85x=335【分析】等量关系:慢车路程+快车路程=335.答案:D2.在800米的环形跑道上有两人在练习中长跑,甲每分钟跑320米,乙每分钟跑280米,若两人同时同地同向起跑,t分钟后第一次相遇,则t的值为.3.一艘轮船在同一河道中航行,顺流而下每小时航行23 km,逆流而上每小时航行15 km,则轮船在平静的河面航行的速度是______km/h,河水的流速是_______km/h.答案:2. 20; 3. 19,44.甲、乙两站间的路程为450千米,一列慢车从甲站开出,每小时行驶65千米,一列快车从乙站开出,每小时行驶85千米.设两车同时开出,同向而行,则快车几小时后追上慢车?【分析】等量关系:快车所用时间=慢车所用时间;快车行驶路程=慢车行驶路程+相距路程.解:设快车x小时后追上慢车.根据题意得85x=450+65x.解得x=22.5.答:快车22.5小时后追上慢车.5. A,B两地相距80千米,甲、乙两人分别从A,B两地出发相向而行,甲的速度是9千米/时,乙的速度是6千米/时.经过多长时间两人相距5千米?情况一【分析】等量关系:甲路程+乙路程+5=80.解:设经过x小时后两人相距5千米.根据题意得9x+5+6x=80.解得x=5.答:经过5小时后两人相距5千米.情况二【分析】等量关系:甲路程-5+乙路程=80.解:设经过x小时后两人相距5千米.根据题意得9x-5+6x=80..解得x=173小时后两人相距5千米.答:经过173思维导图的形式呈现本节课的主要内容:教科书第151页习题5.9 第1、2、3题.。

最新北师大版七年级数学上册《应用一元一次方程——追赶小明》名师教案

最新北师大版七年级数学上册《应用一元一次方程——追赶小明》名师教案

5.6 应用一元一次方程——追赶小明教学目标:1.能利用行程中的速度、路程、时间之间的关系列方程解应用题,感知数学在生活中的作用.2.通过观察、抽象、探索、理解与运用,学生进一步体会到方程的模型作用,提高应用数学的意识.借助“线段图”分析复杂问题中的数量关系,从而建立方程,解决实际问题,发展分析问题、解决问题的能力.3.通过师生间、学生间的探索与交流以及情境的创设,激发学生的学习热情和求知欲望.从而进一步提高学习数学、应用数学解决实际问题的意识,养成良好的学习习惯.教学重点与难点:重点:分析题意,寻找等量关系,列方程解决行程问题.难点:利用线段图分析行程问题,寻找等量关系,建立数学模型.教法与学法指导:本节课主要是通过学生亲身的生活体验来展开,再加以延伸,从中抽象出数学问题,再通过建立模型解决实际问题.通过练习来巩固所学知识.消除了学生对新课、新知识的抵触情绪和畏惧心理,各个环节的过渡都非常自然.让学生在不知不觉中学完本节课.同时也体现出了从生活发现数学,让数学回归生活的设计理念.课前准备:制作课件,检查学生预习稿的完成情况,收集学生预习中遇到的问题信息.教学过程:一、创设情境,导入新课师:我们来看两张图片.(教师出示课件)生(热情洋溢地):是博尔特百米比赛,我们学校刚刚举行的运动会.师:看来同学们对这两张图片很熟悉,你知道其中蕴含着什么数学问题吗?生:路程、速度、时间.师:这三个量之间有怎样的关系呢?速度=路程÷时间路程=速度时间时间=路程÷速度行程问题中速度、路程、时间之间的关系?s=vt v=s/t t=s/v生:路程=速度⨯时间;速度=时间路程;时间=速度路程. 师:(展示课件)师:很好!那就用你的知识完成下面的问题吧.1.若小亮每秒跑4米,那么他10秒能跑多少____米.(路程=速度⨯时间)2.小亮用4分钟绕学校操场跑了两圈(每圈400米),那么他的速度为_____米/分. (速度=时间路程) 3.已知小亮家距离学校1000米,他以5米/秒的速度骑车到达学校需要_____分钟. (时间=速度路程) 师:好,看来同学们对这三个量的关系掌握的很好,请想一想生活中的行程问题都有那些?生:相遇问题、追及问题.(学生之间互相补充并说明特点)师:这节课我们就来共同研究有关相遇、追及等方面的问题.【教师板书课题:5.6 应用一元一次方程—追赶小明】【设计意图】通过图片的形式揭示生活中蕴含着我们数学的一个常见问题——追及问题,激发学生的好奇心,引起每位同学的兴趣,唤醒学生的思维和问题意识,进而轻松地引入本节所要探讨的主要问题.二、合作探究,获取新知师:(多媒体展示例题)例1 小明早晨要在7:20以前赶到距家1000米的学校上学,一天,小明以80米/分的速度出发.5分钟后,小明的爸爸发现他忘了带历史作业,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他.(1)爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远?(学生读题)师:同学们,你是否遇到过类似小明的经历呢.生(很兴奋,七嘴八舌):有的说有,有的说没有.师:家人要追上你与什么因素有关呢?生:绝大数学生都可能会说与速度有关,少数学生可能会说与距离有关等等.(学生仔细审题,理清题目中的数量关系,提高阅读能力.根据自己的理解口述题目中的内容.)师:在这个问题里已知条件是什么?求的是什么?生:小明家到学校距离1000m,小明的速度是80米/分,爸爸的速度是80米/分,小明提前5分钟出发.求的是爸爸追上小明的时间.师:这个问题中涉及了哪个数量关系?生:路程、速度、时间.师:你能将他们的行走过程用图形表示出来吗?(学生先自己画图但不够完整,教师适当点拨补充完善.)小明先走的路程小明又走的路程追及点家学校师:结合图形,你找到有几个等量关系?生:①小明走的路程=爸爸走的路程;②小明所用时间=5+爸爸所用时间.(对于第一个关系学生很容易得出,第二个关系需要教师提示.)师:你将用哪一个等量关系建立方程?生:小明走的路程=爸爸走的路程.师:如果设爸爸追上小明用了x分钟,你能将数量关系用线段图表示出来吗?生:生:80×5+80x=180x.师:好!根据我们的分析,你能将这题的步骤整理出来吗?(师生一起规范整理步骤)生:解:设爸爸追上小明用了x分钟,根据题意,得80×5+80x=180x.解得x=4.答:爸爸追上小明用了4分钟.师:你能独立完成问题(2)吗?生:(在前面的基础上学生比较容易得出结果.)180×4=720(米),1000-720=280(米).答:追上小明时,距离学校还有280米.(师生小结:追及问题若甲先走,乙后走则等量关系有:甲的路程=乙的路程;甲的时间=乙的时间+时间差.)【设计意图】从学生熟悉的生活经历出发,选择学生身边感兴趣的事件给学生提出有关的数学问题,唤起学生的思维和问题意识.三、变式训练,巩固提高变式训练(一):师:(多媒体展示问题)在前面的问题中如果小明的爸爸要赶时间上班,他必须在5分钟之内追上小明,那么爸爸的速度至少应是多少?生:表现出浓厚的兴趣,互相讨论.一部分同学借助上题的经验与方法,开始思考本道题的解题思路.师:这个问题与上面的问题有什么不同?生:本题限制了时间,所要解决的问题是爸爸的速度.师:(根据学生的讨论情况,进行适当的提示).1.如爸爸5分钟追上小明,这时小明共走了几分钟?2.追上小明时,小明走过的路程是多少?3.爸爸走的路程与小明所走的路程有什么关系?4.那么,爸爸的速度呢?生:在练习本上画出线段图,并完成书写步骤.(学生类比上题画出本题的线段图,互相交流改进补充完整.)小明前5分钟走的路程 小明后5分钟走的路程家生:解:设爸爸的速度为x 米/分,根据题意,得 5x=80×10.解这个方程,得 x=160.答:爸爸的速度至少应是160米/分.【设计意图】通过问题情境的转换,让学生在探索和教师的引导中进一步掌握用画线段图解决行程问题中的追赶问题,启发学生的思维,锻炼学生的解决问题能力.变式训练(二):师:(多媒体展示问题)在前面的问题中若当小明到校后才发现忘带语文课本,赶紧打电话给爸爸,爸爸立即以180米/分的速度从家出发,同时小明从学校以100米/分的速度从学校返回,两人几分钟后相遇?生:(阅读题目,理清题目中的逻辑关系)师:这个问题与上面的问题有什么区别?生:从两个地点相向而行.师:你能正确画出线段图并完成书写步骤吗?(教师进行点拨,规范.)生:(在练习本上画出线段图,并完成书写步骤.)生:解:设经过x 分钟相遇,根据题意,得 180x +100x =1000.解得x=257.答:经过257分钟相遇.(师生小结:相向而行,等量关系:甲所用时间=乙所用时间;甲的路程+乙的路程=总路程.)【设计意图】分析相遇问题,由于已有对上一个问题的理解故而学生能比较正确地画出线段图,并得出其中的等量关系,正确列出方程,解决问题,最终能规范写出解题过程.四、学以致用,解决问题师:(多媒体展示问题)育红学校七年级学生步行到郊外旅行.七(1)班学生组成前队,步行速度为4千米/时,七(2)班学生组成后队,速度为6千米/时.前队出发一小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12千米/时.生:(积极的合作探究,根据上面的事实分组提出问题、讨论、交流,并尝试解答.)师:(在学生仔细读题后提问)这个问题与我们的例题有什么异同?生:(小组讨论,分析比较后得出)相同之处是有两个“人”一前一后,且后面的速度比前面的快,不同的是这个问题中有个联络员.师:提示学生从速度、时间、路程三个角度进行挖掘.生:通过小组讨论、交流比较容易得出:问题1:后队追上前队用了多长时间?解:设后队追上前队用了x小时,根据题意,得6x = 4x + 4×1.解这个方程,得x =2.答:后队追上前队时用了2小时.问题2:联络员第一次追上前队时用了多长时间?解:设联络员第一次追上前队时用了x小时.由题意,得12x = 4x + 4.解这个方程,得x =0.5.答:联络员第一次追上前队时用了0.5小时.问题3:后队追上前队时联络员行了多少路程?问题4:当后队追上前队时,他们已经行进了多少路程?问题5:联络员在前队出发多少时间后第一次追上前队?对于问题3、4、5学生不容易得出,教师适当引导提出问题,并鼓励学生课下利用方程解决问题.【设计意图】这是一个开放性的问题,答案不唯一,旨在拓展学生思维,寻求个性发展.教师应鼓励学生交流、讨论,结合例题大胆提出问题,如后队追上前队用了多少时间;后队追上前队时联络员行了多少路程;通讯员第一次追上前队时,用了多少时间;当后队追上前队时,他们已经行进了多少路程;联系员在前队出发多少时间后,第一次追上前队等,教师还应鼓励学生尝试利用方程去解决这些问题,并与同伴交流自己的问题和解决问题的过程.五、巩固训练,提升能力1.小兵每秒跑6米,小明每秒跑7米,小兵先跑4秒,小明几秒钟追上小兵.2.甲骑摩托车,乙骑自行车同时从相距150千米的两地相向而行,经过5小时相遇,已知甲每小时行驶的路程是乙每小时行驶的路程的3倍少6千米,求乙骑自行车的速度.3.七年级一班列队以每小时6千米的速度去甲地.王明从队尾以每小时10千米的速度赶到队伍的排头后又以同样的速度返回排尾,一共用了7.5分钟,求队伍的长.4.甲、乙两人相距280米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,那么甲出发几秒与乙相遇?【设计意图】进一步强化本节的内容,通过题目的练习让学生真正理解和掌握用画线段图来解决行程问题中的相遇和追赶问题.六、课堂小结,反思归纳师:今天你们学到了什么知识?是怎样学到的?还有什么疑问?(让学生自己总结,可以加深印象,提高学生学习的积极性.师适时点拨.)生1:借助“线段图”能帮助我们分析复杂问题中的数量关系,从而建立方程解决实际问题.生2:相遇问题:甲走的路程+乙走的路程=总路程.生3:追及问题:前者走的路程+两者间的距离=追者走的路程.生4:路程=速度×时间;时间=路程÷速度;速度=路程÷时间.【设计意图】强调本课的重点内容是要学会借线段图来分析行程问题,并能掌握各种行程问题中的规律及等量关系.引导学生自己对所学知识和思想方法进行归纳和总结,从而形成自己对数学知识的理解和解决问题的方法策略.七、达标检测,反馈矫正多媒体出示:1.A,B两地相距480千米,一列慢车从A地开出,每小时行60千米,一列快车从B 地开出,每小时行65千米,若两车同时开出,相向而行,x小时相遇,则由条件列出的方程为.2.甲乙两站相距450千米,一列慢车从甲站开出速度是52千米/时,一列快车从乙站开出速度是70千米/时,慢车开出0.5小时后快车开出,两车相向而行,问快车经过几小时与慢车相遇?设快车经过x小时与慢车相遇则可列方程()A、52x+70x=450B、70x=52x+52×0.5C、70x=52x+450D、52×0.5+52x+70x=4503.一架飞机飞行于两城市之间,顺风需要5小时30分,逆风需要6小时,已知风速每小时24千米,则顺风中飞机的速度为多少?逆风中飞机的速度为多少?【设计意图】通过达标检测及时反馈学生对本节课的知识点的掌握程度,以便有的放矢进行后续教学.七、布置作业,拓展延伸必做题:一个自行车队进行训练,训练时所有队员都以35千米/小时的速度前进.突然,1号队员一45千米/小时的速度独自行进,行进10千米后掉转车头,仍以45千米/小时的速度往回骑,直到与其他队员会合.1号队员从离队开始到与队员重新会合,经过了多长时间?选做题:给定方程2.5x+2.5(x+2)=55,你能联系生活实际编写一道数学问题吗?与同学探讨,并负责讲解.【设计意图】作业分层体现分层教学思想,让不同学生得到不同程度的发展.板书设计:教学反思:励志名言: 1、学习从来无捷径,循序渐进登高峰。

北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教案2

北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教案2

北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教案2一. 教材分析《6 应用一元一次方程—追赶小明》这一节内容,主要让学生学会运用一元一次方程解决实际问题。

通过小明追赶问题的实例,让学生理解速度、时间和路程之间的关系,并能够运用一元一次方程进行求解。

教材通过这个实例,让学生感受数学与生活的紧密联系,培养学生的数学应用能力。

二. 学情分析学生在学习这一节内容前,已经学习了简单的一元一次方程求解,对速度、时间和路程的关系有一定的了解。

但部分学生可能对这些概念之间的关系理解不深,对运用一元一次方程解决实际问题的方法不够熟练。

因此,在教学过程中,需要引导学生深入理解速度、时间和路程之间的关系,并通过实际问题,让学生学会运用一元一次方程进行求解。

三. 教学目标1.理解速度、时间和路程之间的关系。

2.学会运用一元一次方程解决实际问题。

3.培养学生的数学应用能力和解决实际问题的能力。

四. 教学重难点1.教学重点:运用一元一次方程解决实际问题。

2.教学难点:对速度、时间和路程之间关系的深入理解。

五. 教学方法采用问题驱动的教学方法,通过小明追赶问题的实例,引导学生理解速度、时间和路程之间的关系,并运用一元一次方程进行求解。

同时,运用小组合作学习的方法,让学生在讨论中深化对知识的理解,培养学生的团队协作能力。

六. 教学准备1.准备相关的小明追赶问题的实例。

2.准备课件,用于辅助教学。

七. 教学过程1.导入(5分钟)通过一个简单的小明追赶问题,引导学生思考速度、时间和路程之间的关系,激发学生的学习兴趣。

2.呈现(10分钟)呈现小明追赶问题的详细情况,让学生观察并提出问题。

引导学生运用一元一次方程解决实际问题。

3.操练(10分钟)让学生分组讨论,每组选择一个实例,运用一元一次方程进行求解。

教师巡回指导,解答学生的问题。

4.巩固(10分钟)对学生的解答进行评价,总结运用一元一次方程解决实际问题的方法和步骤。

让学生通过练习,进一步巩固所学知识。

北师大版七年级上册数学5.6应用一元一次方程——追赶小明优秀教案

北师大版七年级上册数学5.6应用一元一次方程——追赶小明优秀教案

5.6应用一元一次方程——追赶小明1.能剖析行程问题中已知数与未知数之间的数目关系,利用行程、时间与速度三个量之间的关系式,列出一元一次方程 a 解应用题 .2.会用“线段图”剖析复杂问题中的数目关系,进而成立方程解决本质问题,培育剖析问题、解决问题的能力,进一步领会方程模型的作用.一、情境导入亲爱的同学们,你们读过名著《西游记》吗?对于孙悟空的故事你必定知道好多吧.有这样一首描绘孙悟空捉妖的诗:悟空顺风探妖踪,千里只用四分钟;归时四分行六百,风速多少才算准 .请你帮孙悟空算算当时的风速每分钟是多少里?二、合作研究研究点一:用一元一次方程解决相遇问题小明家离学校 2.9 千米,一天小明下学走了 5 分钟以后,他爸爸开始从家出发骑自行车去接小明,已知小明每分钟走60 米,爸爸骑自行车每分钟骑200 米,请问小明爸爸从家出发几分钟后接到小明?分析:此题等量关系:小明所走的行程+爸爸所走的行程=所有行程,但要注意小明比爸爸多走了 5 分钟,此外也要注意此题单位的一致.解:设小明爸爸出发x 分钟后接到小明,如下图,由题意,得200x+ 60( x+ 5)=2900.解得 x= 10.答:小明爸爸从家出发10 分钟后接到小明.方法总结:找出问题中的等量关系是列方程解应用题的重点,对于行程问题,往常借助“线段图”来剖析问题中的数目关系.这样能够比较直观地反应出方程中的等量关系.研究点二:用一元一次方程解决追及问题敌我两军相距25km,敌军以5km/h 的速度逃跑,我军同时以8km/h 的速度追击,并在相距1km 处发生战斗,问战斗是在开始追击后几小时发生的?分析:此题相等关系:我军所走的行程-敌军所走的行程=敌我两军相距的行程.解:设战斗是在开始追击后x 小时发生的 .依据题意,得8x- 5x= 25- 1.解得 x= 8.答:战斗是在开始追击后8 小时发生的 .研究点三:用一元一次方程解决环形问题甲、乙两人在一条长400 米的环形跑道上跑步,甲的速度为360 米 /分,乙的速度是 240 米/分.(1)两人同时同地同向跑,问第一次相遇时,两人一共跑了多少圈?(2)两人同时同地反向跑,问几秒后两人第一次相遇?分析:( 1)题本质上是追及问题,两人第一次相遇,本质上就是快者追上慢者一圈,其等量关系是追上时,甲走的行程-乙走的行程=400 米;( 2)题本质上是相遇问题,两人第一次相遇就是两人所走的行程之和为环行跑道一圈的长,其等量关系是相遇时,甲走的行程+乙走的行程= 400 米 .解:( 1)设 x 分钟后两人第一次相遇,由题意,得360x-240x=400.解得x=103(.103× 360+10× 240)÷400=5(圈) . 3答:两人一共跑了 5 圈 .( 2)设x 分钟后两人第一次相遇,由题意,得360x+ 240x= 400.解得x=2(分钟)=340(秒) .答: 40 秒后两人第一次相遇.方法总结:环形问题中的相等关系:两个人同地背向而行:相遇问题(初次相遇)甲的行程+乙的行程=一圈周长;两个人同地同向而行:追及问题(初次追上),甲的行程-乙的行程=一圈周长.三、板书设计,追赶小明→行程问题→相遇问题追及问题环形问题教课过程中,经过对开放性问题的商讨与沟通,学与人类生活的亲密联系,激发学生学习数学的兴趣,服困难的勇气.体验生活中数学的应用与价值,感觉数培育学生的创新意识、团队精神和克。

北师大版七年级数学上册《应用一元一次方程——追赶小明》教学教案

北师大版七年级数学上册《应用一元一次方程——追赶小明》教学教案

《应用一元一次方程——追赶小明》教学教案分析:此题用线段图可表示为:解:(1)设爸爸追上小明用了x分钟,在经历6x =4x +4解方程得:x =2答:后队追上前队时用了2小时。

(2)由问题1得后队追上前队用了2小时,因此,联络员共行进了12×2=24(千米)答:后队追上前队时联络员行了24千米。

(3)设联络员第一次追上前队时用了x 小时,由题意得:12x =4x +4解方程得:x =0.5答:联络员第一次追上前队时用了0.5小时。

教师引导学生思考总结:对于行程问题,通常借助“线段图”来分析问题中的数量关系.甲、乙两人同向出发,甲追乙这类问题为追及问题:(1)对于同向同时不同地的问题,如图所示,甲的行程-乙的行程=两出发地的距离;甲出发地乙出发地追及地乙的行程甲的行程(2)对于同向同地不同时的问题,如图所示,甲的行程=乙先走的路程+乙后走的路程.3、出示课件试一试:教师引导学生思考环形跑道问题:问题1:操场一周是400米,小明每秒跑5米,乙先走的路程乙后走的路程甲的行程甲、乙出发地追及地小华骑自行车每秒15米,两人绕跑道同时同地同向而行,他俩能相遇吗?解:设经过x 秒两人第一次相遇,依题意,得15x-5x=400,解得x=40.答:经过40秒两人第一次相遇操场一周是400米,小明每秒跑5米,小华骑自行车每秒15米,两人绕跑道同时同地同向而行,两人同时同地相背而行,则两个人何时相遇?解:设经过x 秒两人第一次相遇,依题意,得15x+5x=400,解得x=20.答:经过20秒两人第一次相遇教师引导学生归纳:环形跑道问题:设v 甲>v 乙,环形跑道长s 米,经过t 秒甲、乙第一次相遇.一般有如下两种情形:通过试一试有效地激发了学生的学习兴趣,调动了学生学习的积极性,一方面巩固学生对所学知识的掌握,另一方面充分利用情境,有助于学生发散思维能力的培养.课堂练习1.小明和小刚从相距25.2千米的两地同时相向而行,小明每小时走4千米,3小时后两人相遇,设小刚的速度为x 千米/时,列方程得(C)A.4+3x=25.2B.3×4+x=25.2C.3(4+x)=25.2D.3(x-4)=25.22.一列长30米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程为90米,速度是90米/分.3.一架飞机在两城市之间飞行,风速为24千米/时,顺风飞行需要2小时50分,逆风飞行需要3小时.求无风时飞机的飞行速度和两城之间的航程.解:设无风时飞机的飞行速度为x千米/时,则顺风飞行的速度为(x+24)千米/时,逆风飞行的速度为(x-24)千米/时.根据题意,得176(x+24)=3(x-24).解得x=840.所以3(x-24)=2448(千米).答:无风时飞机的飞行速度为840千米/时,两城之间的航程为2448千米课堂小结解决行程问题的基本步骤:1、问题的已知条件2、画出线段图3、找出等量关系4、列方程并求解5、检验6、回答(1)相遇问题:路程和=相遇时间×速度和;(2)追及问题:被追及距离=追及时间×速度差;(3)航行问题:顺水速度=静水中航行速度+水流速度,逆水速度=静水中航行速度-水流速度.促进了学生的表达与交流,为后续学习打下基础。

北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教案3

北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教案3

北师大版数学七年级上册《6 应用一元一次方程—追赶小明》教案3一. 教材分析《6 应用一元一次方程—追赶小明》这一节内容,主要让学生掌握如何运用一元一次方程解决实际问题。

通过追赶小明的故事情境,让学生理解速度、时间和路程之间的关系,并学会运用一元一次方程进行计算。

教材通过具体的案例,使学生能够将所学的数学知识与实际生活相结合,提高解决问题的能力。

二. 学情分析学生在学习本节内容前,已经掌握了一元一次方程的基本概念和计算方法。

但部分学生可能对实际问题与数学知识的结合还不够熟练,需要通过实例来进行引导和训练。

此外,学生可能对速度、时间和路程之间的关系有一定的了解,但需要通过数学方程来进行深入的解析和应用。

三. 教学目标1.理解速度、时间和路程之间的关系,并能够运用一元一次方程进行计算。

2.学会将实际问题转化为数学问题,提高解决问题的能力。

3.培养学生的逻辑思维和数学素养,使学生能够运用数学知识解释实际问题。

四. 教学重难点1.掌握速度、时间和路程之间的关系。

2.将实际问题转化为数学问题,并运用一元一次方程进行计算。

3.解决实际问题时,如何正确选择变量和建立方程。

五. 教学方法采用问题驱动的教学方法,通过追赶小明的故事情境,引导学生理解速度、时间和路程之间的关系。

利用实例,让学生动手尝试建立方程,并进行计算。

在教学过程中,注重学生的参与和思考,鼓励学生提出问题和解决问题。

同时,进行分组讨论和合作交流,提高学生的团队协作能力。

六. 教学准备1.准备追赶小明的案例材料,包括小明的行程路线、时间和速度等信息。

2.准备相关的一元一次方程计算练习题,用于巩固学生的计算能力。

3.准备黑板和粉笔,用于板书解题过程和重点知识。

七. 教学过程1.导入(5分钟)通过讲述一个关于追赶小明的故事,引导学生思考速度、时间和路程之间的关系。

提出问题:“如果你是追赶者,如何计算追赶所需的时间和距离?”2.呈现(10分钟)呈现小明的行程路线、时间和速度等信息。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《应用一元一次方程——追赶小明》典型例题
例1 某校新生列队去学校实习基地锻炼,他们以每小时4千米的速度行进,走了4
1小时时,一学生回校取东西,他以每小时5千米的速度返回学校,取东西后又以同样速度追赶队伍,结果在距学校实习基地1500米的地方追上队伍,求学校到实习基地的路程.
例2 某初一学生在做作业时,不慎将墨水瓶打翻,使一道作业题只看到如下字样:“甲、乙两地相距40千米,摩托车的速度为45千米/时,运货汽车的速度为35千米/时,__________?”(横线部分表示被墨水覆盖的若干文字)请将这道作业题补充完整,并列出方程.
例3 甲骑自行车从A 地出发,以每小时12千米的速度驶向B 地,经15分钟后乙骑自行车从B 地出发,以每小时14千米的速度驶向A 地,两人相遇时,乙已超过中点1.5千米,求A 、B 两地的距离.
参考答案
例1 分析 该题可以有如下相等关系:
一学生从学校追上队伍走的路程=队伍走过的路程
如果设当学生追上队伍时,队伍走了x 小时,则队伍走过的路程可以表示
为4x ,学生离开队伍到追上队伍共走了4
1-x 小时,所以学生从学校追上队伍走过的路程可以表示为441)41(5⨯--x ,所以可得方程.444
1)41(5x x =⨯-- 解 设从队伍出发到学生追上队伍所用的时间是x 小时,根据题意,得
x x 444
1)41(5=⨯-- 解这个方程,得 4
12=x ,所以学校到实习基地的路程是: 5.105.14
124=+⨯ 答:学校到实习基地的路程是10.5千米.
说明:该题也可以直接设学校到实习基地的路程是x 千米,有兴趣的读者可以自己试一试.
例2 分析 可以进行不同的构思.比如:相遇问题、追及问题等.
解法一 补充:若两车分别从两地同时开出,相向而行,经几小时两车相遇? 解答:设经x 小时两车相遇,根据题意,得 .403545++x x
解法二 补充:如果两车同时从甲地出发,当摩托车到达乙地时,运货汽车距乙地还有多远?
解答:设运货汽车距乙地还有x 千米,依题意得 .45
403540=-x 解法三 补充:两车同时从甲地出发,摩托车到达乙地后立即返回,两车在距甲地多少千米处相遇?
解答:设两车在距甲地x 千米处相遇,依题意得 .45
40235x x -⨯= 请和你的同学一起研究,争取写出更多的补充部分,列出更多的方程. 说明: 这里是条件开放,探究需要补充什么条件求解.
例3 分析 (1)首先我们可以从行驶时间和行驶路程两个角度寻找相等关系.
1)从行驶时间角度考虑,有下列相等关系:
①乙从出发到相遇所行时间=甲从出发到相遇所行时间-甲提前经过的时间;
②乙从出发到相遇所行时间+甲提前经过的时间=甲从出发到相遇所行时间;
③从整体考虑,乙出发到相遇所行时间二甲、乙两人以速度和行驶全程(两地距离)与甲提前15分钟行驶路程的差所用时间.
2)从行驶路程角度考虑,有下列等量关系:
①甲行驶的路程=全程一半-1.5千米;
②乙行驶的路程=全程一半+1.5千米.
(2)本题也可以通过间接设元法来找到答案.
甲、乙两人的速度已知,行驶时间未知,我们可以从行程中找到等量关系.根据本题特点,A 、B 两地的半程、全程、甲行程、乙行程都存在相应的数量关系,我们利用这些等量关系,也可以顺利解出本题.
解法一 设A 、B 两地距离为2x 千米,依时间关系①,得
60
15125.1145.1--=+x x , 即
4
124322832--=+x x , 两边乘以4,得1632732--=+x x ,
去分母,得42)32(7)32(6--=+x x ,
解这个方程,得.812=x
答:A 、B 两地的距离为81千米.为节省篇幅,对以下不同解法,只给出方程,不再给出求解的过程.
解法二 设A 、B 两地的距离为2x 千米,依时间关系②,得
.125.16015145.1-=++x x
解法三 设A 、B 两地的距离为2x 千米,依时间关系③
.14
126015122145.1+⨯-=+x x
解法四 设乙出发x 小时后与甲相遇,则A 、B 两地相距)5.114(2-x 千米,
依路程关系①,得 .5.1145.1601512-=+⎪⎭⎫ ⎝⎛+x x 解这个方程,得.3=x
81)5.1314(2)5.114(2=-⨯⨯=-x ,答:A 、B 两地相距81千米.
解法五 设甲出发x 小时后与乙相遇,则A 、B 两地相距)5.112(2+x 千米,依路程关系②,得
5.1125.1601514+=-⎪⎭⎫ ⎝⎛-⨯x x
解这个方程,得25.3=x ,
+
(2=

=
x
+
.
12
)5.1
81
)5.1
25
.3
(2
12
说明:这里介绍五种解法,目的启发同学创新意识,并运用创新意识求解应用问题,其他解法不一一列举,均大同小异.。

相关文档
最新文档