新能源概论 新能源及其材料

合集下载

新能源概论新能源及其材料

新能源概论新能源及其材料
➢可再生能源 ——不随着人类使用而逐渐减少的能源 ,如 水能、风能、太阳能、地热能、海洋能、生物质能等非化石 能源
1.2 能源的分类
按现阶段使用的成熟程度划分
➢常规能源 ——指人类已长期使用,巳在技术上也比较成 熟的能源。
➢新能源 ——指虽已开发并少量使用,不过技术上还未成 熟而没有被普遍使用,但却具有潜在应用价值的能源。
2.2.3 生物质能的利用——直接燃烧
生物质的直接燃烧在今后相 当长的时期内仍将是我国农村生 物质能利用的主要方式。推广热 效率可达20%~30%的节柴灶这 种技术已被国家列为农村能源建 设的重点任务之一。
农牧民学习使用节柴灶
2.2.3 生物质能的利用——物化转化
物化转化主要包括干馏技术、生物质气化 技术及热裂解技术等。可以把生物质转变成热 值较高的可燃气、固定碳、木焦油及木醋液等 物质。可燃气含甲烷、乙烷、氢气、一氧化碳、 二氧化碳等,可做生活燃气或工业用气。
1.2 能源的分类
按能源的使用性质划分
➢含能体能源 ——指能够提供能量的物质能,其特点是 可以保存且可储存运输,如煤炭、石油等。
➢过程性能源 ——指能够提供能量的物质运动形式,它不 能保存、难于储存运输,如太阳能,电能等。
1.2 能源的分类
按能源可否再生划分
➢不可再生能源 ——指随人类的使用而减少的能源,如煤 炭、原油、天然气等化石能源
光电转化效率达到了7%,建立在快速的再生型光电转换过程之上,对于低电阻的 电子传输过程来说,对电极上常常会覆盖一层Pt催化剂。
2.1.4 太阳能的利用方式——光电转化
太阳能发电站
2.1.4 太阳能的利用方式——光电转化
太 阳 能 汽 车
2.1.4 太阳能的利用方式——光电转化

新能源概论

新能源概论

新能源概论1. 简介新能源是指能够代替传统石化能源(如煤炭、石油、天然气等)的一类能源,其主要特点是可再生、清洁、资源丰富。

随着全球能源需求的增长和环境问题的日益凸显,新能源的研究和应用成为各国普遍关注的焦点。

2. 新能源的分类2.1 太阳能太阳能是指利用太阳辐射能进行发电或供热的能源。

太阳能电池板将阳光转化为电能,被广泛应用于家庭和商业发电系统中。

此外,太阳能热能也可以用来供暖或供应热水。

2.2 风能风能利用大气中的风力产生动力,通过风力发电机转化为电能。

风能发电具有环保、资源丰富等特点,并且在适当的地理气候条件下可实现大规模利用。

2.3 水能水能利用水流、海洋潮汐和潜流等能量产生动力,通过水轮机或涡轮机转化为电能。

水电是最主要的水能利用方式,广泛应用于电力生产和供应系统。

2.4 生物能生物能利用生物质资源(如农作物秸秆、木材废料等)进行发电或制热。

生物质能作为一种可再生能源,广泛应用于农村生活和农业生产。

2.5 地热能地热能利用地下的热能产生动力,通过地热发电机转化为电能。

地热能具有稳定可靠、永久可用等特点,适用于供应热能和发电。

3. 新能源的优势3.1 可再生性新能源是指能源资源具有自然再生能力,不会因为使用而减少或消失。

相比之下,传统能源如煤炭、石油等属于非可再生能源,其消耗速度远快于再生的速度。

3.2 清洁无污染新能源的利用过程中几乎不产生或产生极少的污染物排放。

相比之下,传统能源的燃烧过程会产生大量的二氧化碳、硫化物和氮氧化物等有害气体,加剧全球气候变化和环境污染。

3.3 资源丰富新能源的资源分布广泛,且资源量相对较大,能够满足人类长期能源需求。

相比之下,传统能源的资源严重依赖于特定地域和有限存量的资源,难以满足全球能源需求。

4. 新能源的挑战4.1 技术成本新能源技术相对传统能源技术较为复杂且成本较高。

例如,太阳能电池板的制造和安装需要大量的投资和工程成本。

因此,降低新能源技术的成本是实现新能源普及应用的重要挑战。

新能源材料概论

新能源材料概论

4 常规能源和新能源(按利用程度) 常规能源和新能源(按利用程度)
常规能源:化石燃料、水流能、风能等人类早就应用的能源. 常规能源:化石燃料、水流能、风能等人类早就应用的能源 新能源:核能、太阳能、地热能、 新能源:核能、太阳能、地热能、潮汐能等新近才开始利用的能源

N 0.7
S 1.7
C:主要可燃成分, :主要可燃成分, C (s) + O2 (g) = CO2 (g) 298.15k 393. △rHmθ(298.15k)= -393.5 kj·mol-1 H:主要可燃元素 有效氢 有效氢——与C S P结合,可燃烧 结合, : 与 结合 化合氢——与O 结合,不能燃烧 化合氢 与 结合, O , S, N等:有害成分。 等 有害成分。
C
H2 CO CH4
1) C + O2 = CO2 2) C + 1/2 O2 = CO 3) C + CO2 = 2CO 4) C + H2O = CO + H2 5) C + 2H2O = CO2 + 2H2
6) CO + H2O = CO2 + H2 7) C + 2H2 = CH4 8) CO + 3H2 = CH4+ H2O 9) CO + 2H2 = CH4 10) CO2 + 4H2 = CH4+ 2H2O
2004年已探明储量 年已探明储量179.53亿m3 年已探明储量 亿
Company Logo
Natural gas reserves-to-production (R/P) ratios

Company Logo
天然气主要贸易流向
限制并有计划的开采石油和天然气 发展原子能 加速开发利用新能源 节流

新能源概论知识点总结

新能源概论知识点总结

新能源概论知识点总结一、新能源概念新能源是指相对于传统火力发电、石油、煤炭等化石能源而言的一种清洁、可再生能源。

它主要包括太阳能、风能、水能、生物质能、地热能和海洋能等。

新能源具有不污染环境、资源丰富、可再生、分布广泛等特点,被认为是未来能源发展的重要方向。

二、太阳能太阳能是源于太阳的能量,主要有两种利用方式:光伏发电和光热利用。

光伏发电是利用光电效应将太阳能直接转化为电能,而光热利用则是通过太阳能热集中、吸收和转换等技术,将太阳能转化为热能,再进一步转化为电能。

太阳能具有资源丰富、分布广泛、环保无污染等特点,是一种非常理想的新能源。

三、风能风能是指利用风力发电,主要通过风轮的旋转驱动发电机来转换风能为电能。

风能具有资源广泛、可再生、环保无污染等特点,且在适宜地区发电成本相对较低,是一种非常重要的新能源。

四、水能水能是指利用水流产生的动能来发电,主要包括水电、潮汐能和波能等。

水能具有稳定可靠、规模化利用、无污染等特点,是世界上最重要的可再生能源之一。

五、生物质能生物质能是指通过生物质能源转化技术,将生物质资源转化为能源利用。

生物质能主要包括生物质颗粒、生物质液体燃料和生物质气体燃料等。

生物质能资源广泛,可再生,且可以通过生物质废弃物的转化来减少环境污染,是一个非常重要的新能源。

六、地热能地热能是指利用地球内部的热能产生电能,主要通过地热热水或蒸汽驱动发电机来实现。

地热能资源稳定、可再生且富集度高,是一种非常理想的新能源。

七、海洋能海洋能是指利用海洋资源产生能源,主要包括波浪能、海流能、潮汐能和海水温差能等。

海洋能具有资源丰富、分布广泛、不受季节影响等特点,是一种具有巨大发展潜力的新能源。

八、新能源发展现状目前,世界各国已经意识到传统能源的局限性,积极推动新能源的发展和利用。

各国纷纷推出政策支持和补贴措施,加大投入力度,推动新能源技术的创新和产业的发展。

中国作为新能源的大国,也在积极推进新能源的发展,且在风能、太阳能领域处于世界领先地位。

新能源材料概论范文

新能源材料概论范文

新能源材料概论范文新能源材料是指在新能源领域发挥重要作用的一类材料。

随着全球能源环境问题的日益严峻,人们对于新能源的研究和应用越来越重视,这也促使了新能源材料的发展。

新能源材料具有高效、可再生和环境友好等特点,被广泛应用于太阳能、风能、水能等新能源的开发和利用。

首先,太阳能是一种广泛使用的新能源形式。

太阳能是指将太阳的辐射能转化为电能或热能的能源形式。

太阳能电池是太阳能的主要利用形式之一,通过半导体材料吸收太阳辐射能,将其转化为电能。

硅是目前太阳能电池最常用的材料,但是硅太阳能电池的转化效率有限,需要不断寻找更高效的新能源材料。

其次,风能是另一种常见的新能源形式。

风能是指利用风的动力将风能转化为电能的能源形式。

风力发电机是利用风能进行发电的装置,其中叶片是关键的部件。

传统的风力发电机叶片多采用玻璃纤维增强复合材料制造,但是这种材料存在重量大、寿命短等问题。

近年来,一些新能源材料如碳纤维复合材料、聚合物复合材料等逐渐应用于风力发电机叶片中,以提高其强度和耐久性。

此外,水能也是一种常见的新能源形式。

水能是指将水的动能转化为电能的能源形式,一般通过水力发电机实现。

水力发电机的转子是关键的部件,材料的选择对于提高水力发电机的性能至关重要。

传统的水力发电机转子多采用钢材制造,但是钢材存在重量大、寿命短等问题。

新能源材料如杂化材料、陶瓷材料等可以替代传统材料,具有更轻、更耐用等优点。

在新能源材料的研究和应用过程中,还面临一些挑战。

首先是材料的研发难度较大。

新能源材料需要同时具备较高的能量转化效率和较低的成本,这对于材料的研发提出了更高的要求。

其次是材料的可持续性问题。

新能源材料的生产和回收过程对环境造成一定压力,需要找到更加环保的生产和回收方式。

此外,新能源材料的推广应用也面临一定的技术壁垒和市场竞争。

综上所述,新能源材料具有重要的应用价值和发展潜力。

随着人们对于新能源的需求不断增加,对于新能源材料的研究和应用也将越来越广泛。

新能源材料(概念实例分析材料)

新能源材料(概念实例分析材料)

新能源材料Chapter 1 绪论一、能源分类能源能够分为一次能源和二次能源。

一次能源是指直接取自自然界没有通过加工转换的各类能量和资源,它包括:原煤、原油、天然气、油页岩、核能、太阳能、水力、风力、波浪能、潮汐能、地热、生物质能和海洋温差能等等。

由一次能源通过加工转换以后取得的能源产品,称为二次能源,例如:电力、蒸汽、煤气、汽油、柴油、重油、液化石油气、酒精、沼气、氢气和焦炭等等。

一次能源能够进一步分为再生能源和非再生能源两大类。

再生能源包括太阳能、水力、风力、生物质能、波浪能、潮汐能、海洋温差能等等。

它们在自然界能够循环再生。

而非再生能源包括:的煤、原油、天然气、油页岩、核能等,它们是不能再生的,用掉一点,便少一点。

表1 能源的分类二、新能源概念新能源是相关于常规能源而言,以采纳新技术和新材料而取得的,在新技术基础上系统地开发利用的能源,如太阳能、风能、海洋能、地热能等。

与常规能源相较,新能源生产规模较小,利用范围较窄。

常规能源与新能源的划分是相对的。

如核能曾被以为是新能源,此刻已被以为是常规能源;太阳能和风能被利用的历史比核能要早许多世纪,由于还需要通过系统研究和开发才能提高利用效率、扩大利用范围,因此此刻把它们列入新能源。

目前各国对这种能源的称呼有所不同,可是一起的熟悉是,除常规的化石能源和核能之外,其他能源都可称为新能源或可再生能源,要紧为太阳能、地热能、风能、海洋能、生物质能、氢能和水能。

三、新能源材料基础能源材料是材料学科的一个重要研究方向,有的学者将能源材料划分为新能源技术材料、能量转换与储能材料和节能材料等。

综合国内外的一些观点,咱们以为新能源材料是指实现新能源的转化和利用和进展新能源技术中所要用到的关键材料,是进展新能源技术的核心和其应用的基础。

从材料学的本质和能源进展的观点看,能贮存和有效利用现有传统能源的新型材料也能够归属为新能源材料。

新能源材料覆盖了镍氢电池材料、锂离子电池材料、燃料电池材料、太阳能电池材料、反映堆核能材料、进展生物质能所需的重点材料、新型相谈储能和节能材料等。

新能源概论

新能源概论

新能源概论核能是新能源,是最为高效、清洁、安全、可靠的能源。

核能是通过转化其质量从原子核释放的能量。

核能在未来也肯定会成为最重要的能源,所以必须大力发展核能,同时也要注意核能的安全。

概述(新型核能发展的意义和背景)核能(nuclear energy)是人类历史上的一项伟大发明,这离不开早期西方科学家的探索发现,他们为核能的应用奠定了基础。

在1945年之前,人类在能源利用领域只涉及到物理变化和化学变化。

二战时,原子弹诞生了。

人类开始将核能运用于军事、能源、工业、航天等领域。

美国、俄罗斯、英国、法国、中国、日本、以色列等国相继展开对核能应用前景的研究。

核能是利用核反应堆中核裂变所释放出的热能进行发电的方式。

它与火力发电极其相似。

只是以核反应堆及核能发电站蒸汽发生器来代替火力发电的锅炉,以核裂变能代替矿物燃料的化学能。

除沸水堆外(见轻水堆),其他类型的动力堆都是一回路的冷却剂通过堆心加热,在蒸汽发生器中将热量传给二回路或三回路的水,然后形成蒸汽推动汽轮发电机。

沸水堆则是一回路的冷却剂通过堆心加热变成70个大气压左右的饱和蒸汽,经汽水分离并干燥后直接推动汽轮发电机。

核能发电利用铀燃料进行核分裂连锁反应所产生的热,将水加热成高温高压,利用产生的水蒸气推动蒸汽轮机并带动发电机。

核反应所放出的热量较燃烧化石燃料所放出的能量要高很多(相差约百万倍),比较起来所以需要的燃料体积比火力电厂少相当多。

核能发电所使用的的铀235纯度只约占3%-4%,其余皆为无法产生核分裂的铀238。

举例而言,核电厂每年要用掉80吨的核燃料,只要2支标准货柜就可以运载。

如果换成燃煤,需要515万吨,每天要用20吨的大卡车运705车才够。

如果使用天然气,需要143万吨,相当于每天烧掉20万桶家用瓦斯。

换算起来,刚好接近全台湾692万户的瓦斯用量。

所以核能的发展一定程度上反应的是社会的发展,也是人类在科技和能源水平上努力突破的重点,是有着很深远的发展意义的。

新能源概论

新能源概论

新能源概论新能源是指相对于传统能源而言,能源来源更加清洁、环保、可持续发展的能源形式。

传统能源主要包括煤炭、石油和天然气等,这些能源的开采和利用过程中会产生大量的二氧化碳等污染物,对环境造成严重影响,并且存在资源枯竭的问题。

而新能源则是通过利用太阳能、风能、水能、生物质能等自然资源转化而来,具有环境友好、可再生、永续利用等特点。

太阳能是指利用太阳辐射能转化为电能或热能的能源形式。

太阳能广泛分布于地球上的各个地区,不仅充足而且可以再生利用。

太阳能电池是太阳能利用的主要途径,它通过将太阳能转化为电能,广泛应用于家庭和工业领域的电力供应。

太阳能热利用则是通过利用太阳能将热能转化为热水或蒸汽,用于供暖和工业生产等领域。

风能是指利用风力将其转化为机械能或电能的能源形式。

风能资源广泛分布于全球各地,尤其是海洋和高地等地区。

风力发电是目前应用最广泛的风能利用方式,通过风机将风能转化为电能。

风力发电具有技术成熟、稳定性好、零排放等优点,是清洁能源的重要组成部分。

水能是指利用水的流动或水压将其转化为机械能或电能的能源形式。

水能广泛存在于河流、瀑布和海洋等地方。

水力发电是应用最广泛的水能利用方式,通过水轮机将水能转化为电能。

水力发电具有资源丰富、稳定性好、环境友好等特点,是一种重要的清洁能源。

生物质能是指利用植物、动物和微生物等生物质资源转化为能源的方式。

生物质可以通过燃烧、厌氧消化和发酵等方式转化为热能、电能和生物燃料。

生物质能源具有可再生、低碳排放等特点,可以有效地降低温室气体的排放量,减少对传统能源的依赖。

除了上述提到的几种新能源外,核能也是一种重要的新能源形式。

核能是指利用核裂变或核聚变反应释放出的能量转化为热能或电能的能源形式。

核能具有能量密度高、资源丰富等特点,但核能的发展需要高度的安全控制和管理。

新能源的发展对于解决能源危机和环境问题具有重要意义。

新能源具有可再生、清洁、环保、永续利用等特点,能够有效地减少传统能源的使用,降低温室气体的排放量,保护生态环境,实现可持续发展。

新能源概述

新能源概述

新能源概述新能源是指不依赖传统能源来源的可再生能源,包括太阳能、风能、水能、生物质能、地热能等。

新能源凭借其清洁、可持续的特点,逐渐成为国际社会关注的焦点,也是解决环境问题和实现可持续发展的重要途径。

太阳能是新能源中最为普遍和重要的能源之一。

太阳能利用光能转化为电能或热能,具有丰富的资源、无污染、不受地区限制等优点。

目前,太阳能发电技术已经逐渐成熟,太阳能电池板和太阳能光热发电系统被广泛应用于家庭、工业和公共设施。

风能是利用风力转化为机械能或电能的新能源。

由于风力资源广泛分布、可再生、低碳环保,风能发电成为国际上最为快速发展的新能源产业之一。

风力发电机的技术不断改进和创新,风电场建设也越来越大规模化。

水能是利用水流的动能、水位能以及潮汐能转化为电能的新能源。

水能资源是稳定可靠的能源来源,尤其是大型水电站的建设和利用,不仅可以解决电力供应问题,也能发挥调峰和备用能源的作用。

生物质能是利用植物和动物的生物质转化为能源的新能源形式。

生物质能包括固体生物质能、液体生物质能和气体生物质能。

固体生物质能主要利用农作物秸秆、木材等进行燃烧发电,液体生物质能主要是生物柴油和生物醇燃料,气体生物质能主要是利用有机废弃物发酵产生的沼气。

生物质能是一种可再生、清洁的能源,通过生物质能的利用可以减少温室气体排放和替代化石能源。

地热能是利用地下热能转化为电能或热能的新能源。

地热能广泛分布于地球内部,通过地热电站可以直接利用地热资源产生电能。

此外,地热能还能够应用于供暖和温室种植等领域。

地热能是一种可再生、持久稳定的能源,具有可持续利用的优势。

除了以上几种主要的新能源外,还有其他一些新能源技术,如海洋能、生物能源等,正在不断研究和开发中。

新能源的发展和利用对于实现能源的可持续性、环境保护和经济增长具有重要意义。

随着科学技术的不断进步和政策的扶持,新能源有望在未来得到更广泛的应用,推动能源转型和可持续发展。

《新能源概论》绪论

《新能源概论》绪论

海洋能技术
潮汐能发电
利用潮汐差异产生的水位差驱动水轮机转化为电 能。
海浪能发电
利用海浪的波动驱动水轮机或液压装置转化为电 能。
海底热液发电
利用海底热液喷口产生的热能,通过热液泵转化 为电能。
03 新能源应用
新能源在工业领域的应用
工业生产
在工业生产中,新能源可以用于替代传统的化石能源,如太阳能 、风能等,为工厂设备提供动力,降低生产成本。
《新能源概论》绪论
汇报人: 日期:
contents
目录
• 新能源概述 • 新能源技术 • 新能源应用 • 新能源政策与市场 • 新能源的挑战与机遇 • 新能源的未来展望
01 新能源概述
新能源定义
新能源定义
指在新技术基础上开发利用,包括风能、太阳能、生物质能、地热 能、海洋能等,不同于传统能源,具有清洁、可再生等特点。
新能源与化石能源的区别
新能源不依赖化石燃料,而是利用新技术进行开发利用,如太阳能 利用光能、风能利用动能等。
新能源的优越性
新能源具有清洁、可再生等特点,不会导致环境污染和能源枯竭等 问题,对环境和人类社会可持续发展具有重要意义。
新能源分类
风能
利用风力进行发电、航运等, 如风力发电机、风力船等。
地热能
风力发电
利用风力发电机将风能转 化为电能,可分为陆上风 力发电和海上风力发电两 种类型。
风能制冷
利用风力驱动制冷设备实 现制冷或空调效果,适用 于缺电地区或移动式制冷 设备。
风能泵水
利用风力驱动泵水设备实 现灌溉、供水等目的,适 用于偏远地区或缺乏电力 供应的地方。
生物质能技术
生物质发电
利用生物质燃料燃烧产生热能, 通过蒸汽轮机转化为电能。

新能源概论

新能源概论

新能源概论目前,由于能量利用效率不高,浪费惊人,地球出现了能源危机。

世界各国都急待开发利用新能源。

新能源一般是指在新技术基础上加以开发利用的可再生能源,按类别可分为:太阳能,风能,生物质能,核能,氢能,地热能,海洋能,小水电,化工能(如醚基燃料)等。

首先,必须提到在能源更替中有不可取代地位的太阳能。

太阳能一般指太阳光的辐射能量。

太阳能的主要利用形式有太阳能的光热转换、光电转换以及光化学转换三种主要方式,目前分别体现在太阳能光热、太阳能光伏、太阳能合能。

所以对于太阳能的开发和利用前景是可观的。

其次,风能和核能是近年来新能源话题的焦点。

核能是通过转化其质量从原子核释放的能量,能普遍利用的有核裂变能、核聚变能,所释放的能量也是非常巨大的,而核能也有很多的缺陷:资源利用率低;反应后产生的核废料成为危害生物圈的潜在因素,其最终处理技术尚未完全解决;反应堆的安全问题尚需不断监控及改进;核不扩散要求的约束;核电建设投资风险较大。

相反,风能清洁环保,蕴藏量大,是水能的10倍,分布广泛,永不枯竭,对交通不便、远离主干电网的岛屿及边远地区尤为重要。

风力发电是当代人利用风能最常见的方式。

然而目前许多国家“弃风量”增加,据电监会统计,我国风电机组故障率近两年来呈上升趋势,2011年1~8月份,全国共发生193起风电机组脱网事故,暴露出风电运行不稳定、风电规划建设不协调、风电接入和消纳困难等问题。

因此,不论是风能还是核能,都面临着巨大考验。

当然不得不说的一项急待开发利用的新能源:海洋能。

它指蕴藏于海水中的各种可再生能源,包括潮汐能、波浪能、海流能、海水温差能、海水盐度差能等。

这些能源都具有可再生性和不污染环境等优点,属于清洁能源。

还有目前逐步在农村应用的一项新能源:生物质能来源于生物质,也是太阳能以化学能形式贮存于生物中的一种能量形式,它直接或间接地来源于植物的光合作用。

生物质能是贮存的太阳能,更是一种唯一可再生的碳源。

新能源材料

新能源材料

新能源材料一、概述1、新能源是相对于常规能源而言,以采用新技术和新材料而获得的,在新技术基础上系统地开发利用的能源。

2、新能源:除常规的化石能源和核能之外,其他的能源都可称为新能源或可再生能源。

3、包括:氢能、风能、水能、核能、太阳能、地热能、海洋能、可燃冰、生物质能。

4、新能源材料是指实现新能源的转化和利用以及发展新能源技术中所要用到的关键材料,它是发展新能源技术的核心和其应用的基础。

从材料学的本质和能源发展的观点看,能储存和有效利用现有传统能源的新型材料也可以归属为新能源材料。

新能源材料是指支撑新能源发展,具有能量储存盒转换功能的功能材料或结构功能一体化材料。

二、金属氢化物镍电池材料5、金属氢化物镍电池工作原理:金属氢化物镍电池的正极活性物质采用氢氧化镍,负极活性物质为储氢合金,电解液为碱性水溶液(如氢氧化钾溶液),其基本电极反应为:正极:Ni (OH )2 + OH - ⇌ NiOOH + H 2O + e -负极:M + H 2O + e -⇌ MH + OH -电池总反应: Ni (OH )2 + M ⇌ NiOOH + MH电池的充放电过程可以看作是氢原子或质子从一个电极移到另一个电极的往复过程。

在充电过程中,通过水在电极表面上生成的氢不是以气态分子氢形式逸出,而是电解水生成的原子氢直接被储氢合金吸收,并向储氢合金内部扩散,进入并占据合金的晶格间隙,形成金属氢化物。

6、MH-Ni 电池的核心技术是负极材料—储氢合金。

7、目前研究的储氢合金负极材料主要有AB 5型稀土镍系储氢合金、AB 2型Laves 相合金、A 2B 型镁基储氢合金以及V 基固溶体型合金等类型。

放电充电放电充电充电放电8、负极材料:(1)AB 5型混合稀土系统储氢电极合金(LaNi 5H 6) (2)AB 2型Laves 相储氢电极合金(TiMn 2H 3、ZrMn 2H 3)(3)其他新型高容量储氢合金电极材料:Mg-Ni 系非晶合金电极材料(Mg 2NiH 4)、V 基固溶体型合金电极材料(V 0.8Ti 0.2H 0.8)、Ti 系AB 型储氢合金电极材料(TiFeH 2、TiCoH 2)、V 基BCC 固溶体储氢合金电极材料、AB 3型储氢合金电极材料。

4、新能源概论

4、新能源概论

风能的优点
• 风能为洁净的能量来源。 • 风能设施日趋进步,大量生产降低成本,在适当地点,风力发电成本 已低于其它发电机。 • 风能设施多为不立体化设施,可保护陆地和生态。 • 风力发电是可再生能源,很环保,很洁净。 • 风力发电节能环保。
风能的缺点
风力发电在生态上的问题是可能干扰鸟类,如美国堪萨斯州的松鸡在 风车出现之后已渐渐消失。目前的解决方案是离岸发电,离岸发电价 格较高但效率也高。 在一些地区、风力发电的经济性不足:许多地区的风力有间歇性,更 糟糕的情况是如台湾等地在电力需求较高的夏季及白日、是风力较少 的时间;必须等待压缩空气等储能技术发展。[1] 风力发电需要大量土地兴建风力发电场,才可以生产比较多的能源。 进行风力发电时,风力发电机会发出庞大的噪音,所以要找一些空旷 的地方来兴建。 现在的风力发电还未成熟,还有相当发展空间。
奥布灵斯克核电站

核能实验
核反应堆
核燃料水池
大亚湾核电站
大亚湾核电站
原子弹爆炸后的广岛
海洋能
• 海洋能指蕴藏于海水中的各种可再生能源, • 包括潮汐能、波浪能、海流能、海水温差能、海水盐度差能等。 • 这些能源都具有可再生性和不污染环境等优点,是一项亟待开发利用 的具有战略意义的新能源。

• •

风能的限制及弊端
• • • • • • 风能利用存在一些限制及弊端 1)风速不稳定,产生的能量大小不稳定; 2)风能利用受地理位置限制严重; 3)风能的转换效率低; 4)风能是新型能源,相应的使用设备也不是很成熟。 5) 在地势比较开阔,障碍物较少的地方或地势较高的地方适合用风 力发电。
新能源应用发展趋势
• 随着化石能源的不断发现和采掘技术的进步,来数十年内其成本依然 会比其他零碳排放能源具有竞争优势。 • 此外,从美国的状况来看,未来50年能源供应结构依然会保持能源形 式多样化的局面。但为了能够及时减缓未来全球气候变暖的风险,必 须加速清洁能源和可再生能源技术大规模商业化应用的步伐。虽然任 何技术创新将取决于其所能带来的效益,但人类的惰性、现实状况及 可预见的财务风险等因素,使人们更倾向于维持现状。 • 为此,各国政府的政策必须致力于激励发明和创新,并使之能与市场 力量密切配合。

新能源概论

新能源概论

新能源概论引言新能源是指在现代社会能够满足人类日常生活需求的能源,包括但不限于太阳能、风能、水能等。

随着人类对环境保护的重视程度不断提高,新能源的研究和应用逐渐成为人们关注的焦点。

本文将介绍新能源的定义、分类、发展现状以及未来发展趋势。

1. 新能源的定义新能源是指以可再生能源和清洁能源为基础的能源。

可再生能源是指来自于自然界,并能够不断恢复的能源,如太阳能、风能、水能等;清洁能源是指在能源的开发、利用和排放过程中减少环境污染和对生态系统的破坏的能源,如核能、地热能等。

2. 新能源的分类根据能源的来源和利用形式,新能源可以分为以下几类:2.1 太阳能太阳能是指通过太阳辐射转化为可用能量的能源。

利用太阳能可以发电、供热、照明等。

目前,太阳能光伏发电技术和太阳能热利用技术已经相对成熟,被广泛应用于家庭、工业和农业等领域。

2.2 风能风能是指通过风的动力转化为电能或机械能的能源。

利用风能可以发电、驱动风车等。

风能是一种可再生的清洁能源,具有较大的开发潜力和广阔的应用前景。

2.3 水能水能是指通过水的动力转化为电能或机械能的能源。

利用水能可以发电、供水、灌溉等。

水能是一种最主要的可再生能源之一,广泛应用于水电站、水轮机等项目。

2.4 核能核能是指利用核反应释放出的能量来产生电能或热能的能源。

核能具有能量密度高、污染少等特点,但是核能开发利用过程中涉及核废料处理和安全问题等挑战。

2.5 地热能地热能是指通过地壳内部的热能转化为电能或热能的能源。

地热能具有稳定可靠、无污染等优势,目前在地热供暖、温泉开发等方面得到了广泛应用。

2.6 生物能源生物能源是指通过生物质和生物化学反应转化为能源的能源形式。

利用生物能源可以发电、生产生物燃料等。

生物能源具有可再生、减少温室气体排放等优势,但也面临着农业用地占用和生物多样性损失等问题。

3. 新能源的发展现状新能源的发展现状主要包括以下几个方面:3.1 太阳能发电太阳能光伏发电已经成为可再生能源中最重要的一种形式之一。

新能源材料概述

新能源材料概述

新能源材料概述整体来看,新能源材料是一个非常有趣且重要的领域呢。

大致分这几个部分,首先得了解什么是新能源。

新能源就是区别于传统化石能源,像太阳能、风能、水能、生物能等这些可再生、清洁的能源。

那新能源材料呢,就是和这些新能源的开发利用紧密相关的材料。

从太阳能方面讲,主要包括硅材料等。

硅是制造太阳能电池的关键材料。

比如说单晶硅,它的纯度很高,能够高效地把太阳能转化为电能。

多晶硅也广泛应用于太阳能光伏产业,虽然效率比单晶硅略低一点,但成本也低一些,这就非常符合大规模商业化应用的需求。

这就是新能源材料在太阳能领域的典型例子。

风能这块呢,风电叶片的材料就很关键,像玻璃纤维增强复合材料。

它要具备高强度和轻重量的特点,这样才能在风力的吹动下,有效地带动发电机发电。

再说说锂电池这类新能源材料,它与新能源汽车等领域息息相关。

锂电池中的正极材料、负极材料、电解液等每个部分都非常重要。

例如,正极材料有钴酸锂、磷酸铁锂等不同类型,它们的性能特点决定了锂电池的蓄电能力、安全性等关键因素。

磷酸铁锂安全性较好,应用在很多对安全性要求较高的新能源汽车上。

还有氢能相关的材料,像储氢材料,它关系到氢气的存储和运输。

这是一个比较新的研究方向,目前有很多种储氢材料在研究阶段,像金属氢化物储氢材料等。

核心内容是新能源材料都是为了提高新能源的利用效率、降低成本、增强安全性,使得新能源能更好地商业化并走进人们的生活。

对了还有个方面,随着研究的不断发展和深入,很多新能源材料会不断优化甚至被全新的材料所替代,这就是这个领域不断进步的魅力所在。

总的来说,通过这些具体的例子去理解新能源材料的每个部分,就能比较好地掌握它的整体框架,也能明白各个部分之间是怎么联系起来为新能源这个大的战略需求服务的。

新材料产业——新能源材料

新材料产业——新能源材料

新材料产业——新能源材料新能源材料是指用于新能源领域的材料,包括太阳能、风能、地热能、生物能、核能等方面的材料。

新能源材料的研发和应用对于实现能源可持续发展、提高能源利用效率和保护环境具有重要意义。

以下是关于新能源材料的一些概述。

首先,太阳能材料是新能源材料中的重要组成部分。

太阳能电池是将光能转化为电能的装置,其关键是太阳能吸收材料。

目前主要的太阳能吸收材料包括单晶硅、多晶硅、铂、钴等。

此外,近年来,很多新型材料如钙钛矿材料、有机光伏材料等也被广泛研究和应用于太阳能领域,这些材料具有高效、低成本等特点,有望成为未来太阳能电池的主流材料。

其次,风能材料也是新能源材料领域的重点研究对象。

风能是一种非常可靠且源源不断的新能源,风力发电的核心是风机叶片。

目前,风能材料的研究主要集中在提高风机叶片的能效、抗风险和减少噪音等方面。

新型复合材料如碳纤维增强聚酰胺复合材料、碳纤维增强环氧复合材料等被广泛应用于风机叶片,可以提高其强度、刚度和耐腐蚀性能。

第三,地热能材料也是新能源材料领域的研究热点之一、地热能是通过利用地壳储存的热能进行发电和供热的一种新能源形式,其核心是地热换热系统。

目前,地热能材料的研究主要集中在开发具有良好热导率和热稳定性的材料,以提高地热换热系统的效率和寿命。

钻井材料、导热材料和防腐蚀材料等都是地热能材料的重要组成部分。

最后,核能材料是新能源材料中的另一个重要领域。

核能是一种高效、可持续且低碳的能源形式,核能材料的研究涉及到核燃料、冷却剂、辐射屏蔽材料等方面。

新型核燃料材料如MOX燃料、TWR燃料等被广泛研发和应用于核能领域,可以提高核能的利用效率和安全性。

总之,新能源材料是实现能源可持续发展的关键因素之一、随着对能源需求的不断增长和环境保护的要求,新能源材料的研发和应用将会越来越受到重视。

通过不断地研究和创新,有望开发出更加高效和环保的新能源材料,为能源领域的可持续发展作出更大贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

按目前太阳的质量消耗速率计,
可维持6×1010年。所以可以说它是
“取之不尽,用之不竭”的能源。
2.1.1 太阳能特点
1) 总量最大——取之不尽,用之不竭(应对能源危机) 2) 分布最广——遍布世界各地(应对传统能源的区域差 异和贸易壁垒) 3) 最清洁——利用过程中不会产生任何污染,也不会产 生废弃物(应对环境恶化) 4) 能源品位低——需要一定的面积保证(通常认为在不 考虑地球大气吸收的情况下,功率是1.39KW/m2 ) 5) 不稳定因素多——多数利用方式受天气状况影响
1.1 能源的概念
能源是指一切能量比较集中的含能体和提 供能量的物质运动形式


天然气
石油
1.2 能源的分类
按能源的形成方式划分
一次能源——直接来自自然界的未经加工转换的能源,如 柴草、煤炭、原油、天然气、核燃料、水力、风力、太阳能、 地热能、海洋能等。 二次能源——把一次能源直接或间接转化来的能源称二次 能源,如蒸汽、焦炭、洗煤、煤气、电力、汽、煤、柴、油、 氢能等。
2.1.4 太阳能的利用方式——光电转化
太阳能发电站
2.1.4 太阳能的利用方式——光电转化
太 阳 能 汽 车
2.1.4 太阳能的利用方式——光电转化
日本通产省(MITI)第二次新能源分委会宣布了光伏、风能和太阳热利用计划,2010年光 伏发电装机容量达到5GW

欧盟可再生能源白皮书及相伴随的“起飞运动”是驱动欧洲光伏发展的里程碑,总目标 是2010年光伏发电装机容量达到3GW
我国大型风电机组历年总装机容量图
2.4 小水电
所谓小水电,通常是指电
站总容量在5 万kW以下的小
型水电站及与其相配套的小电 网的统称。小水电的开发方式,
按照集中水头的办法,可分为
引水式、堤坝式和混合式三类。
2.4.1 小水电的特点
工程简单、建设工期短,一
3年平均增长 速度(%) 33.8 34.6 31.3
丹麦
印度 意大利 英国
2456
1456 700 525
2880
1702 806 570
3076
2125 922 759
6.8
24.9 14.4 33.1
9.5
20.3 29.5 21.3
荷兰
中国 日本 世界前10名 世界总计
523
406 357 22957 24927
2.1.2全球太阳能资源分布情况
2.1.3 我国太阳能资源分布特点
我国太阳能分布: 太阳能的高值中心和低 值中心都处在北纬 22°-35°这一带,青 藏高原是高值中心,四 川盆地是低值中心;太 阳年辐射总量,西部地 区高于东部地区,而且 除西藏和新疆两个自治 区外,基本上是南部低 于北部。
2.1.4 太阳能的利用方式
☆热管太阳能热水器 在普通真空太阳集热管中
加上传热导管即可,因为增加了传热介质,热效率 有一定损耗。优点是管内无水,永不结垢,适用严 寒地区使用。
2.1.4 太阳能的利用方式——光热转化
太阳能热水器与其它热水器使用效益比较表
热水器装置类别
太阳能热水器
燃气热水器
电热水器
装置投资(元)
装置寿命(年) 每年燃料动力费 (元) 15年需总费用(元)
生物质的直接燃烧在今后相 当长的时期内仍将是我国农村生
物质能利用的主要方式。推广热
效率可达20%~30%的节柴灶这 种技术已被国家列为农村能源建 设的重点任务之一。
农牧民学习使用节柴灶
2.2.3 生物质能的利用——物化转化
物化转化主要包括干馏技术、生物质气化 技术及热裂解技术等。可以把生物质转变成热 值较高的可燃气、固定碳、木焦油及木醋液等 物质。可燃气含甲烷、乙烷、氢气、一氧化碳、 二氧化碳等,可做生活燃气或工业用气。
2.3.3 风能的利用
不同能源发电成本
2.3.3 风能的利用
世界风电市场前10名国家的风电发展增速统计
国家
德国 美国 西班牙 累计装机
2001年底
875043
2003年底
14612 6361 6420
2002-2003增长 速度(%) 22.1 36.1 27.3
动而产生的能量。太阳能在地 面上约2%转变为风能,全球 风力用于发电功率可达11.3 万亿kW。
2.3.1 风能的特点
风能的优点: 1) 蕴藏量大、分布广泛 2) 无污染、可再生 3) 适应性强、发展潜力大
风能的限制性: • 能量密度低,只有水力的l/8l6 • 不稳定性,气流瞬息万变 • 地区差异大
727
473 486 29329 32037
938
571 761 36545 40301
29.0
20.7 56.6 24.6 25.6
25.6
17.5 75.1 29.2 29.2
2.3.4 我国风能的发展现状
经过多年的努力,截至2002年底,我国风力发电的装机 容量已经达到了46.85万千瓦(不包括台湾地区)。
秸杆发电
2.2.3 生物质能的利用——生化转化
生化转化主要包括厌氧消化技术和 酶技术。厌氧消化是利用厌氧微生物的 生长代谢过程将生物质转化为CH4 等可 燃气体,同时得到厌氧发酵液、渣等厌 氧发酵残留物,用作农田肥料,效果很 好。 酶技术是利用微生物体内的酶分解 生物质,生产液体燃料,如乙醇、甲醇 等。
环境污染 —— 化石燃料的使用带来了 严重的环境污染, 导致了温室效应的产生 和酸雨的形成。2005年2月16日,旨在减 排室温气体的《京都协议书》已经正式生 效。 能源危机 ——石油、天然气和煤炭这三 种人类使用的主要能源可开采年限,分别 只有40 年、50 年和240 年。目前我国已 经有超过31%的石油需要进口,而到2010 年,这一数字将会增长到45-55%。
2.3.2 我国风能的分布
资源丰富区有山东、辽
东半岛、黄海之滨,南澳岛
以西的南海沿海、海南岛和 南海诸岛,内蒙古从阴山山
脉以北到大兴安岭以北,新
疆达坂城、阿拉山口,河西 走 廊,松花江下游,张家口 北部等地,以及分布各地的 高山山口和山顶。
2.3.3 风能的利用
利用风力可以发电、提水、助航、制冷、致热等。
1.2 能源的分类
按能源的使用性质划分
含能体能源 ——指能够提供能量的物质能源,其特点是 可以保存且可储存运输,如煤炭、石油等。 过程性能源 ——指能够提供能量的物质运动形式,它不 能保存、难于储存运输,如太阳能,电能等。
1.2 能源的分类
按能源可否再生划分
不可再生能源 ——指随人类的使用而减少的能源,如煤 炭、原油、天然气等化石能源 可再生能源 ——不随着人类使用而逐渐减少的能源 ,如 水能、风能、太阳能、地热能、海洋能、生物质能等非化石 能源
2.1.4 太阳能的利用方式——光热转化
☆平板太阳能热水器 产水量大,利于清洁,热 效率高,是与建筑物相结合的首选产品。但不抗 冻,环境温度0℃时则不能工作,广泛运用于非 结冰地区,国外90%以上的用户使用本产品(通 过改造的平板热水器可抗严寒)。 ☆真空管太阳能热水器 高硼硅玻璃真空管具有一 定的抗冻能力,可在-15℃的环境中照常工作。管 内走水,易炸裂,时间长了会有水垢积存,影响热 效率,

美国能源部制定了从2000年1月1日开始的新5年国家光伏计划和2020~2030年的长期规划, 按照预计的发展速度,2010年美国光伏发电装机容量达到4.7GW

澳大利亚计划于2010年使光伏发电的装机容量达到0.75GW
2.1.4太阳能的利用方式——光化学转化
光化学转化:就是用光和物质 相互作用引起化学变化的过程。 这种转换技术包括半导体电极 产生电而电解水产生氢、利用 氢氧化钙或金属氢化物热分解
优点:燃烧容易,污染少,灰分较低。 缺点:热值及热效率低,体积大而不易运输, 直接燃烧生物质的热效率仅为10%一30%。
2.2.2 生物质能种类
生物质能通常包括以下几个方面: 1)木材及森林工业废弃物;
2)农业废弃物;
3)水生植物; 4)油料植物; 5)城市和工业有机废弃物; 6)动物粪便。
2.2.3 生物质能的利用——直接燃烧
光——热转化 光——电转化
光——化学转化
2.1.4 太阳能的利用方式——光热转化
光热转化:就是把太阳辐射能通 过各种集热装置(集热器)转变
成热能。主要包括热水器、干燥
器、采暖和制冷、太阳房、太阳 灶和高温炉、海水淡化装置、水 泵、热力发电装置及太阳能医疗 器具;
北京2008奥运会的示范工程, 中国太阳能第一楼
2.2.4 生物质能的发展前景
从资源和技术(包括技术的经济性)两方面看,利用生物质能发电和生产生 物燃油在我国有广阔的发展前景,将为满足我国的电力需求、石油需求起到重要 作用,而且具有良好的经济、环境和社会效益。
表 1 2003年我国生物质能开发利用量
2.3 风能
风能是太阳辐射造成地球
各部分受热不均,引起空气运
1.2 能源的分类
按现阶段使用的成熟程度划分
常规能源 ——指人类已长期使用,巳在技术上也比较成 熟的能源。 新能源 ——指虽已开发并少量使用,不过技术上还未成 熟而没有被普遍使用,但却具有潜在应用价值的能源。
1.3 能源问题
随着技术和经济的发展以 及人口的增长,人们对能源的 需求越来越大,能源问题也越 来越突出。
正在开采的油井
1.3 能源问题
▲2、我国的能源结构 ▲1、我国和世界的能源消耗
20%的能源消耗生产了约5%的GPD
新能源技术
——新能源和可再生能源
2 新能源的几种形式
生物质能 太阳能
小水电
氢 能
天然气水合物
风能
地热能 海洋能
2.1 太阳能
相关文档
最新文档